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Abstract

This paper presents remote store programming (RSP).
This paradigm combines usability and efficiency through
the exploitation of a simple hardware mechanism, the re-
mote store, which can easily be added to existing multi-
cores. Remote store programs are marked by fine-grained
and one-sided communication which results in a stream of
data flowing from the registers of a sending process to the
cache of a destination process. The RSP model and its hard-
ware implementation trade a relatively high store latency
for a low load latency because loads are more common
than stores, and it is easier to tolerate store latency than
load latency. This paper demonstrates the performance ad-
vantages of remote store programming by comparing it to
both cache-coherent shared memory and direct memory ac-
cess (DMA) based approaches using the TILEPro64 proces-
sor. The paper studies two applications: a two-dimensional
Fast Fourier Transform (2D FFT) and an H.264 encoder for
high-definition video. For a 2D FFT using 56 cores, RSP is
1.64× faster than DMA and4.4× faster than shared mem-
ory. For an H.264 encoder using 40 cores, RSP achieves
the same performance as DMA and4.8× the performance
of shared memory. Along with these performance advan-
tages, RSP requires the least hardware support of the three.
RSP’s features, performance, and hardware simplicity make
it well suited to the embedded processing domain.

1. Introduction

The emergence of multicore architectures has generated
increased interest in parallel programming. While a great
deal of research has been done in the field of multichip par-
allel computing, multicore architectures offer a new set of
opportunities and challenges. This paper proposes the re-
mote store programming (RSP) model, which is designed
to be easy to use, efficient, and incrementally supportable
in multicore architectures that support loads and stores.

In the RSP model processes have private address spaces
by default, but they can give other processes write access

to their local memory. Once a producer has write access
to a consumer’s memory, it communicates directly with
the consumer using the standard store instruction to target
remote memory, hence the name “remote store program-
ming.” Communication in the RSP model is one-sided and
easy to schedule and consumer processes are guaranteed to
read physically close, or local, memory. This locality of ref-
erence is important for performance on non-uniform mem-
ory access (NUMA) architectures.

The RSP model is similar to both the partitioned global
address space (PGAS) [6, 8, 28, 16] and virtual memory
mapped communication (VMMC) [11] models which were
developed for multichip computer architectures. All three
paradigms combine the programming ease of a shared ad-
dress space with features that allow programmers to ensure
that performance critical memory references access physi-
cally close hardware. However, the RSP model is distin-
guished in the following two ways. First, RSP is defined by
including only mechanisms that require incremental hard-
ware support in multicores. For example, the RSP model
does not include features that require hardware support for
cache coherence or direct memory access (DMA), which
is commonly used in PGAS and VMMC implementations1.
Second, RSP programs are characterized by extremely fine
grain communication that streams from a source processor’s
registers to a destination processor’s cache. In comparison,
multichip programs require data to be buffered in memory
on the producing core and then transferred to the consuming
core in bulk. These multichip programs are characterized
by bulk data transfers from DRAM to DRAM. While the
VMMC and PGAS models are well-suited to multichip dis-
tributed memory architectures, the RSP model can achieve
higher performance on a multicore architecture while re-
quiring less hardware support.

The performance of the remote store programming
model is evaluated by emulating it using the TILEPro64
processor [26]. This implementation demonstrates that the
RSP paradigm can achieve efficient parallel implementa-
tions on important multicore applications like video encod-

1While cache-coherence is not required, RSP mechanisms can be easily
implemented on an architecture with cache-coherent sharedmemory.



ing. An RSP implementation of an H.264 encoder achieves
a speedup of 24.7x using 40 processes, while a 2D FFT
achieves a speedup of 57.7x using 56 processes. Addi-
tionally, the TILEPro64 allows comparison of remote store
programming to both cache-coherent shared memory and
DMA based implementations. Results show that RSP can
achieve over five times the performance of shared mem-
ory for large numbers of processes. This speedup relative
to shared memory is due to its emphasis on locality-of-
reference, as RSP programs always access physically close
memory and minimize load latencies. In addition, RSP per-
formance is comparable to that of DMA in the worst case
and as much as 64% better in the best case. RSP achieves
this performance with less hardware support.

While incrementally supportable in many multicores,
RSP may be best suited to emerging multicore digital signal
processors (DSPs) such as the three-core chip produced by
Texas Instruments [24]. The RSP model is a good match for
the regular computations commonly found in DSP applica-
tions and it is supportable with a small amount of hardware.
Current multichip DSP approaches often communicate us-
ing DMA to transfer data between shared DRAM and local
scratch-pad memories. Multicore DSPs could communicate
using remote stores to write data directly into scratch-pad
memory on remote cores, eliminating DMA from intra-core
communication.

The remainder of this paper is organized as follows.
Section 2 presents the remote store programming model
and discusses some of its features and drawbacks. Sec-
tion 3 discusses the hardware and operating system support
required to efficiently implement the RSP paradigm on a
multicore architecture. Section 4 describes implementation
of the RSP model on the TILEPro64 processor and com-
pares the performance of RSP applications to shared mem-
ory and DMA-based approaches. Related work is discussed
in Section 5, and the paper concludes in Section 6.

2. The remote store programming model

This section discusses programming using the remote
store model. The termprocessrefers to the basic unit of
program execution. A parallel program is one that has
more than one process actively performing computation at
some point during its execution. A parallel programming
paradigm is a framework for coordinating the computation
of processes within a parallel program. This work assumes
that there is a one-to-one mapping between processes and
processors, but that restriction is easily relaxed. A parallel
programming paradigm is distinguished by three features:

1. Theprocess model- the programmer’s “mental pic-
ture” of the underlying hardware and system software.

2. The communicationmechanism - the protocol pro-
cesses use to transfer data.

3. The synchronizationmechanism - the protocol pro-
cesses use to ensure ordering and atomicity con-
straints.

The process model. RSP presents a system abstrac-
tion where each process has its own local, private mem-
ory. However, a process can explicitly give a subset of
other processes write access to regions of its private mem-
ory. These regions of memory are referred to asremotely
writable. The system abstraction for remote store program-
ming is illustrated in Figure 1. The key idea of the remote
store paradigm is that programmers ensure that a process
always reads local memory.

Core 0 Core 1
Process 0
x = 1

st x

Process 1
ld x

Memory 1
private

remotely 
writable

int x
st x

ld x

Network

Memory 0
private

Figure 1. Illustration of the remote store pro-
gramming model. There are two cores, each of which
executes a process. Process 1 allocates a remotely-writable
region of memory to hold the integerx. Process 0 writes
a new value intox, and this new data travels from Process
0’s registers to Process 1’s cache. A succession of writes
results in a stream of data flowing from the registers of 0 to
the cache of 1.

The communication mechanism. In a remote store ap-
plication, processes communicate by writing directly into
other processes’ memory using the store instruction as the
communication primitive. A process that wants to con-
sume data uses a special memory allocation function to al-
locate remotely writable memory. The consumer process
then makes the address of this memory available to the data
producer. The producer uses the standard store instruction
to write to the remote memory. Once the data is stored re-
motely, the consumer uses standard load instructions to read
the data generated by the producer; however, load instruc-
tions are not allowed to target remote memory.

The synchronization mechanism. Processes in a re-
mote store program synchronize using atomic synchroniza-
tion operations, like test-and-set or fetch-and-add. These
synchronization operations are allowed to access remote
memory and are the one class of operations that are al-
lowed to read remote memory. One can easily build more
advanced synchronization primitives from these operations,
so high level synchronization features like mutexes, condi-



tion variables, and barriers are available as part of the RSP
model.

Given this description, RSP has the following features:

• Familiarity of shared memory programming. Like
shared memory, RSP uses standard load and store in-
structions to communicate.

• Emphasis on locality of reference. RSP encourages
programmers to write code in such a way that loads
always target local, physically close memory, which
leads to high performance on NUMA architectures.

• One-sided communication. In RSP programs, data is
pushed from the producer to the consumer using the re-
mote store mechanism. Unlike two-sided communica-
tion schemes that require asendto be accompanied by
a receive, remote stores do not require acknowledge-
ment in this model. One-sided communication leads
to code that is both easier to write and higher perform-
ing than a two-sided model.

• No explicit support for bulk transfers. The RSP model
does not support a specialput operation like SHMEM
and UPC2. This omission is designed to encourage
programmers to store data remotely as it is produced.
This style allows data to be transferred from the regis-
ters of the producer to the cache of the consumer with
no extra buffering or copying. In addition, the lack of
bulk transfers reduces the hardware burden as no spe-
cialized hardware is required.

• No support for remote reads. The RSP model does
not support remote loads orgetoperations. This omis-
sion is designed to encourage users to structure code
such that all reads target local memory, ensuring that
loads have minimum latency. RSP focuses on min-
imizing load latency for two reasons. First, loads
are more common than stores. Second, it is easier
to tolerate store latency than load latency. One can
overlap communication and computation with simple
hardware support using remote stores, but such over-
lap would be hard to achieve for remote loads with-
out more expensive hardware, like a DMA engine, to
prefetch data into the local cache.

3. Implementation of the RSP model

This section describes the desired hardware and operat-
ing system support for the implementation of the remote
store programming model on a multicore architecture. The
RSP model is designed specifically to be incrementally

2The C functionmemcpy can provide the semantics of a bulk trans-
fer function in the RSP model, but the RSP model does not assume any
additional bulk data movement mechanisms.

achievable in multicore architectures that support loads and
stores using a small set of hardware features that have a
large impact on program performance.

The vision of the RSP model is one in which data is
transfered from the registers of a producer into the cache
of a consumer as illustrated in Figure 2(a). The data is
not buffered on the producer to be transferred in bulk, but
each datum is sent as it is produced. This model results in
many small messages and does not attempt to amortize the
cost of communication by bundling many messages into a
small number of large messages. In trade, remote store pro-
grams exhibit good locality of reference, suffer fewer data
cache misses, and outperform shared memory and DMA-
based approaches on multicores.

To realize this goal, RSP needs hardware and operat-
ing system support for the following mechanisms: allo-
cating remotely-writable data, executing store instructions
targeting remotely-writable data, maintaining memory con-
sistency, and executing synchronization operations target-
ing remotely-writable data. These features are discussed in
turn.

• Allocation of remotely writable data. Processes
must be capable of allocating data that can be written
by other processes. Such data should be both readable
and writable by the allocating process.

• Store instructions targeting remote data. Processes
may execute store instructions where the destination
register specifies an address in remote memory. The
processor executing such a store should not allocate
the cache-line, but forward the operation to the con-
sumer processor that allocated the data. This forward-
ing should be handled in hardware and requires that a
message be sent to the consumer containing both the
datum and the address at which it is to be stored. The
consumer receives this message and handles it as it
would any other write. The consumer can support ei-
ther write allocate or no-write allocate policies. In
RSP, data that is allocated as remotely writable can
only exist in the cache of the allocating processor. This
protocol preserves locality of reference by guarantee-
ing that reads are always local, ensuring minimal load
latency.

• Support for managing memory consistency. After
a producer process writes data to remote memory, it
needs to signal the availability of that memory to the
consumer. To ensure correctness, the hardware must
provide sequential consistency, or a memory fence op-
eration so that the software can ensure correct execu-
tion.

• Synchronization instructions may read and write
remote data. RSP allows atomic synchronization op-



erations, such as test-and-set or fetch-and-add, to both
read and write remote data. This allows one to allocate
locks, condition variables, and other synchronization
structures in shared memory.

With support for these features a multicore architecture
can efficiently implement remote store programs. This set
of features represents a small, incremental change over the
set of features that would be required on any multicore ar-
chitecture. On an architecture supporting loads and stores, a
core must be able to send a message to a memory controller
to handle cache misses. To support RSP, this capability is
augmented so that write misses to remotely allocated data
are forwarded not to the memory controller, but to the core
that allocated the data. The RSP implementation can use
the same network that communicates with the memory con-
troller. The additional hardware support required is logic
to determine whether to send a write miss to the memory
controller or to another core.

3.1. Comparison to other models

This section illustrates the benefits of the remote store
approach by comparing the data movement and hardware
support required for other communication models. Cache-
coherent shared memory is discussed first, then DMA.

Cache-coherent shared memory hardware transfers data
from registers to a local cache and then to a globally shared
cache or memory as illustrated in Figure 2(b). To support
cache-coherent shared memory one could implement either
a snoopy or a directory-based coherence protocol. A snoopy
protocol would require a centralized structure which would
be difficult to scale to large numbers of cores. Directory-
based schemes provide better scalability, but require addi-
tional O(P ) bits (where P is the number of processors) to
store directory information [13] and possibly another net-
work that is dedicated to coherence messages. In addition
to the extra hardware structures, a cache coherence protocol
requires additional design and verification complexity. The
overall cost for cache-coherence is much greater than that
to support remote stores.

To communicate using a DMA, a processor first pro-
duces a value in its registers, then stores it to local memory
or cache, and finally transfers the data to a remote cache
or memory by invoking the DMA engine as illustrated in
Figure 2(c). Hardware support for DMA requires dedicated
die area for the DMA. The cost in area is small, but adding
a DMA engine increases the design and verification time
of the hardware. Additionally the DMA is harder to pro-
gram than cache-coherent shared memory or RSP. Also,
one would like to use DMA to transfer data directly from
one core to another without affecting the computation tak-
ing place on those cores. This is not possible if the local
memory on the cores only has a single read and write port
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Figure 2. Communication mechanisms in
multicore. The figure illustrates three different mech-
anisms for sending data from Core 0 to Core 1. RSP trans-
fers data directly from the sender’s registers (the box la-
beled “RF”) to the receiver’s local memory. Cache-coherent
shared memory transfers data through the global address
space. DMA stores data locally and then copies data from
the producer to the consumer.

because the DMA will compete with the core for memory
bandwidth. For the DMA to run with no noticeable effect
on the cores involved in the transfer, it would need a sec-
ond read and write port to the local memories, which would
double their size.

4. Performance of remote store programs

This section discusses the performance of the remote
store paradigm as implemented on the TILEPro64 proces-
sor [26]. To begin, the TILEPro64 and its implementation
of the RSP model are described. Next is an in-depth look
at two applications, the 2D FFT and H.264 encoding, and a
comparison of the performance of remote store implemen-
tations to that of both cache-coherent shared memory and
DMA-based approaches. Finally, speedup numbers for sev-
eral different applications are presented.

4.1. The TILEPro64

The TILEPro64 processor is a 64 core multicore proces-
sor with hardware support for both cache-coherent shared
memory, message passing, and a core-to-core direct mem-
ory access (DMA) engine. Each of the 64 cores is an iden-
tical three-wide VLIW capable of running SMP Linux. In



addition to standard RISC instructions, all cores support a
SIMD instruction set designed to accelerate video, image,
and digital signal processing applications. Each core has a
unified 64KB L2 cache. Further, all the L2 caches can be
shared among cores to provide an effective 4MB of shared,
coherent, and distributed L3 cache. Cores are connected
through six low-latency, two-dimensional mesh intercon-
nects. Two of these networks carry user data, while the
other four handle memory, I/O and coherence traffic. The
TILEPro64 can run off-the-shelf POSIX threads [5] pro-
grams under SMP Linux. Alternatively, users can transfer
data using the core-to-core DMA engine.

The TILEPro64 uses a variation of a directory-based
cache-coherence scheme, so loads and stores to shared
memory which miss in the local L2 cache generate coher-
ence messages that are handled by a remote core. The la-
tency of these coherence messages is proportional to twice
the distance between the accessing core and the core that
contains the directory for that memory location. Ideally,
one wants to access directories that are physically close to
minimize latency.

The TILEPro64 DMA interface is similar to that of
remote direct memory access (RDMA) as implemented
in interconnects like InfiniBand [1], Myrinet [4], and
Quadrics [17]. However the TILEPro64 allows data to be
transferred from cache to cache over the on-chip network
rather than transferring data from one DRAM to another
over a local area network.

In addition to standard cache-coherent shared memory,
the TILEPro64 allows users to allocate shared memory that
is homedon the allocating core. On the home core, reads
and writes function as usual. However, when cores write
remotely homed memory, no cache line is allocated on the
remote core. Instead, writes to remotely homed memory
stream out of the writing core to the home cache without
generating any other coherence traffic. This homed memory
is used to implement remotely writable memory for remote
store programs.

The various mechanisms and the large number of cores
available on the TILEPro64 make it an excellent platform
for comparing the performance of remote store programs
to that of two common techniques: cache-coherent shared
memory and DMA. This comparison is made by imple-
menting two applications in each of these three paradigms
and presenting the relative performance for each. First the
two-dimensional fast Fourier transform (2D FFT) is de-
scribed and then an H.264 encoder for high-definition (HD)
video.

4.2. 2D FFT

To compute a two-dimensional FFT on anN×N matrix,
one first performs an FFT on each row and then performs an

FFT on each column [15]. This implementation uses an out-
of-place computation for both the row and column FFTs, so
the results of the row FFTs are stored in a temporary matrix
that is used as input for the column FFTs. Output is written
into a third matrix. Before executing the column FFTs, the
temporary data is transposed in memory so that the consec-
utive elements in a column are unit distance apart. This lay-
out results in better cache performance during the column
FFTs. In a parallel implementation of the 2D FFT usingP
processes, each process computesN/P rows and thenN/P
columns. Barrier synchronization is used between the row
and column FFTs to ensure correctness. On a distributed
memory architecture, this pattern requires that each process
communicates with every other process. The same algo-
rithm and the same barrier construct is used for each of the
implementations and the focus is on the difference in data
movement.

Cache-coherent shared memory FFT. In this imple-
mentation each of the arrays, input, temporary, and output,
are allocated in globally addressable shared memory. Data
is read and written without regard to the physical location
of any of the data or corresponding coherence directories.
Using shared memory the transpose is performed by storing
the results of the row FFTs to the temporary array as they
are produced. As illustrated in Figure 2(b), the data is trans-
ferred from the producer to the consumer through the global
address space.

DMA-based FFT. A DMA-based approach is used to
simulate what a PGAS implementation employing existing
multichip techniques might look like on the TILEPro64.
Bell et. al. describe a UPC implementation of a three-
dimensional FFT which uses one-sided RDMA transactions
on a multichip computer architecture [3]. The DMA-based
implementations of the 2D FFT on TILEPro64 are patterned
after two of those described by Bell. For both DMA imple-
mentations, each process allocates private data to hold its
assigned rows and columns of the input and output data.
Additionally, each process allocates two buffers to hold
portions of the temporary matrix. The first buffer is allo-
cated in local memory and the second buffer is allocated in
homed memory. The DMA engine transfers data from the
local memory to the homed memory. As illustrated in Fig-
ure 2(c), a producer process stores data in a local buffer and
then the core-to-core DMA engine copies that buffer to the
consumer.

Given this setup, two different DMA based approaches
are implemented. In the first approach, modeled after Bell’s
“UPC Exchange” implementation, all row FFTs are com-
puted first, then all DMA transactions are enqueued, the
barrier is entered, and finally the column FFTs are per-
formed. Using the TILEPro64’s 2D DMA engine and the
exchange technique, each core initiatesP DMA transac-
tions to move data. The exchange implementation results
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Figure 3. Performance comparison of cache-coherent shared memory, DMA, and RSP. (a) shows per-
formance of the 2D FFT, while (b) shows the performance of theH.264 encoder. All performance is normalized to that of cache-
coherent shared memory.

in minimal communication, but offers little opportunity for
overlapping communication and computation. The second
approach is modeled after Bell’s “UPC Overlap Pencils,”
which was the best performing UPC approach on a vari-
ety of multichip architectures. Using the pencils approach,
P DMA transactions are enqueued after each row is com-
pleted resulting in a total ofN · P transactions per core.
After completing the final row FFT, the program ensures
all DMA transactions have finished and then executes the
column FFTs. This second approach requires more indi-
vidual DMA transactions and thus more overhead, but it al-
lows a greater opportunity for overlapping communication
and computation. In both of these approaches the temporary
data is transposed locally once it has reached its destination.

Remote Store FFT. In the RSP implementation, each
process allocates a private buffer to hold its portion of the
input and a separate private buffer to hold its portion of the
output. The temporary array is allocated using homed mem-
ory to emulate remotely-writable memory. Each process
makes its temporary array available to all other processes.
As a process completes individual elements of its assigned
row FFTs, these elements are written directly into the ap-
propriate regions of remotely writable memory resulting in
a total ofN · N/P messages per core. In the RSP imple-
mentation, data is sent directly from the registers of the pro-
ducer to the cache of the consumer without any buffering, as
illustrated in Figure 2(a). As in the shared memory imple-
mentation, the temporary data is transposed as it is stored
remotely so there is no separate transposition step.

Both the DMA-based approaches and the RSP approach
use locality and one-sided communication. However, be-

cause each individual word is sent as a separate message,
the RSP implementation has even greater communication
overhead than either of the DMA-based implementations
described above. Due to its use of ultra-fine-grain commu-
nication, RSP provides the maximum opportunity for over-
lapping communication and computation. Additionally, it
requires no communication instructions other than standard
stores. Finally, this approach does not require that data is
buffered on the producer side. Since no data is buffered,
RSP has a smaller cache footprint and fewer memory in-
structions than the DMA-based approach.

FFT Performance. The performance of each of these
implementations is measured by executing a 2D FFT on a
256×256 matrix using varying numbers of processes3. The
results are shown in Figure 3(a) with performance normal-
ized to that of the shared memory implementation. From
the figure one can see that the shared memory implemen-
tation is fastest for small numbers of processes. With few
processes, data is never far away, so locality does not have a
pronounced effect on performance. Therefore, the overhead
incurred in the RSP and DMA implementations to ensure
locality results in a performance loss compared to shared
memory. In the worst case this performance loss is as much
as 50% for DMA-base approaches, while the RSP imple-
mentation is only about 17% slower than shared memory.

As the number of processes grows, locality becomes in-

3Although not required, in all the following experiments, eight cores
are reserved for the operating system and the maximum numberof cores
available to the application is fifty-six. Additionally, the FFT performance
of all implementations using 32 and 56 cores is measured using the cycle-
accurate simulator. The simulator is used to avoid an interaction with the
page table that distorts performance in favor of remote store programming.



creasingly important for performance and both the DMA
and RSP approaches out-perform shared memory. With six-
teen processes, RSP just outperforms shared memory, while
DMA lags behind. However, with 32 and 64 processes, the
benefit of locality in both the remote store and DMA im-
plementations starts to become clear. With this many pro-
cesses, a cache miss in the shared memory FFT can result
in accessing a cache-coherence directory that is physically
far away. In this case many of the distant accesses are loads,
and the resulting high load latency has a dramatic effect on
performance. However, in the case of both RSP and DMA,
loads do not generate coherence traffic to remote cores. The
emphasis on locality results in greater performance for both
RSP and DMA implementations of the FFT when compared
to shared memory using large numbers of processes.

While both the DMA and RSP implementations focus on
locality for performance, the RSP approach is much more
efficient than the DMA based one. The RSP implementa-
tion is over 64% faster than the best DMA based approach
even though it generates more communication. The advan-
tages of the RSP approach are three-fold. First, the RSP
FFT does not require a buffer to store temporary data on
the producer side, resulting in fewer memory accesses and
fewer cache misses. Second, because the RSP approach
communicates at an extremely fine granularity, it can almost
completely hide the latency of communication. Third, in the
remote store approach the matrix transpose is performed as
part of the communication, while in the DMA-based ap-
proach transposition requires a separate step.

The next section demonstrates that the RSP approach
provides performance not only on kernel applications like
the FFT, but also on large scale applications.

4.3. H.264 encoding

The viability of remote store programming in a large
scale application is demonstrated by experimenting with
several implementations of a Baseline profile H.264 en-
coder for high-definition, 720p video [14]. This H.264 im-
plementation attempts to minimize the average encoding la-
tency of each frame by partitioning the encoding of a frame
among multiple processes. Each process is responsible for
encoding its assigned region of the frame. To perform this
encoding each process needs data from those processes that
are assigned neighboring regions of the frame. As with the
FFT, the differences in implementations is limited solely
to differences in data movement and the same algorithm is
used for all three implementations.

Cache-coherent shared memory H.264 Encoder. In
this implementation, all video frames are allocated in glob-
ally shared memory. When a process needs data produced
by a neighbor, it reads that data from the global address
space. In this implementation, processes do not need to

know who produced which data item, they simply need to
know when it is safe to read data. As with the shared mem-
ory FFT, data in the H.264 encoder is read and written with-
out regard to the physical location of any of the data or the
corresponding coherence directories. As illustrated in Fig-
ure 4(a), the frame data is shared through the global address
space.

DMA-based H.264 Encoder. In this implementation,
each process allocates local, homed memory to hold its as-
signed region of the frame and additional local memory to
hold the values that will be produced by neighboring pro-
cesses. As each process produces data it is stored locally
and later copied to the homed memory of each process that
needs to access it. These copies are performed using DMA
and DMA transactions are scheduled to maximize the over-
lap of communication and computation. As illustrated in
Figure 4(b), a producer process stores frame data in a local
buffer and then uses the core-to-core DMA engine to copy
that buffer to multiple consumers.

RSP H.264 Encoder. The RSP implementation is simi-
lar to the DMA-based implementation. Each process again
allocates memory to hold its local data and the data pro-
duced by neighbors and each process copies data explic-
itly to the neighbors that need it. The difference is that the
RSP implementation performs the copy by storing directly
to the remote memory rather than using DMA as illustrated
in Figure 4(c).

H.264 Performance. The performance of each of these
implementations is measured by executing the H.264 en-
coder using various numbers of processes4. Figure 3(b)
presents the performance of the H.264 encoder relative to
shared memory. Again, the impact of locality on perfor-
mance is clear. In this case, both the DMA and RSP based
approaches outperform shared memory from the beginning.
While the difference in performance is slight for two and
four process implementations, the eight process implemen-
tation already shows a 50% improvement for the DMA and
RSP approaches. For larger numbers of processes the per-
formance benefit is even more pronounced and both the
DMA and RSP implementations achieve almost 4.5 times
the performance of shared memory using 40 processes.

As noted above, both the RSP and DMA implementa-
tions of the H.264 encoder require extra copy operations to
update neighboring processes. These copies are not nec-
essary in the shared memory implementation. This copied
data is written once and read repeatedly. The results indi-
cate that the overhead of these additional copy operations is
more than compensated for by the resulting locality of the
reads.

In the case of the H.264 encoder, the DMA and RSP im-
plementations achieve almost the same performance. For

4None of the three implementations benefit from additional processes
beyond forty.
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Figure 4. Communication patterns in the H264 encoder. The figure shows how the frame data is sent from a
producer on core 0 to multiple consumers on cores 1 and 2. Shared memory transfers data through the global address space. DMA
copies data from the producer to each of the consumers. RSP buffers data locally and then copies to the consumers by issuing store
instructions targeting the receiver’s local memory.

the FFT, RSP is faster than DMA because it requires less
buffering and allows greater overlap in communication and
computation. However, in the H.264 encoder each data item
is used by multiple consumers. This usage pattern requires
that data be buffered on the producer side so that it can
be copied to multiple locations. Both the DMA and RSP
implementations need the same amount of buffering in this
case. Also, in the H.264 encoder there is a much higher ratio
of computation to communication so it is easier to overlap
the two.

Given the need for buffering and the ratio of computation
to communication in the H.264 encoder it is not surprising
that both the DMA and RSP implementations achieve sim-
ilar performance. However, the RSP implementation does
not require hardware support for a DMA engine making it
a much cheaper micro-architectural alternative for the same
performance level. If a multicore implementing RSP pro-
vided support for a multicast remote store, it would be pos-
sible to implement the H.264 encoder with multicast RSP
and avoid the extra copying. Such an implementation may
outperform DMA.

4.4. Speedup of remote store applications

In addition to the applications described above,
four other applications have been implemented on the
TILEPro64 using the remote store paradigm. This section
presents the speedup results of all six of these applications.

The first two benchmarks are the 2D FFT and the H.264
encoder, both of which are discussed in the previous section.
Benchmark three is radix sort [9], which is measured sorting
an array ofN = 1048576 usingP processes. Benchmark
four is one-dimensional Jacobi relaxation performed on an
array of lengthN = 57344. Benchmark five is full-search
motion estimation for video encoding [12]. This benchmark
divides720 × 480 frames of pixels into16 × 16 regions
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Figure 5. Speedup of remote store applica-
tions.

called macroblocks, and then attempts to find the most sim-
ilar 16× 16 region in a reference frame. Benchmark five is
the BDTI Communications Benchmark (OFDM) [2]. This
benchmark implements a simplified multi-channel orthogo-
nal frequency division multiplexing wireless receiver.

Figure 5 shows the speedup achieved by RSP applica-
tions for all six benchmarks. Again, the performance im-
provement is due to the advantages of RSP in emphasizing
(1) locality of reference in minimizing load latency, and (2)
fine-grained communication that allows overlapping com-
putation and communication. For all six of these bench-
marks, load latency is critical for performance and the RSP
model guarantees that loads target local memory ensuring
minimal load latency. Additionally, as the RSP paradigm
results in fine-grained communication, there is ample op-
portunity to overlap computation and communication. For



example, the FFT stores a value to remote memory and then
immediately begins computing the next value without wait-
ing for acknowledgement or issuing other communication
instructions.

5. Related work

This section compares remote store programming to pre-
vious work on programming models for parallel architec-
tures.

The two best known paradigms for parallel computing
are shared memory (with common implementations in the
POSIX threads library [5] and Open MP [7]) and message
passing (with common implementations in PVM [22] and
MPI [21]). In shared memory programs, processes com-
municate by using standard load and store instructions to
read and write data in globally accessible memory. In mes-
sage passing programs, processes communicate through a
two-sided exchange which transfers data between processes
private address spaces. Shared memory is generally consid-
ered easier to use because of the familiar communication
mechanism, while message passing is generally considered
higher performance because it requires that programmers
carefully consider data layout and locality in their programs.

The partitioned global address space (PGAS) model
combines the familiarity associated with shared memory
programming and the focus on locality of reference associ-
ated with message passing programming. The PGAS model
has been implemented in both the SHMEM library [19] and
several languages including Unified Parallel C [8], Tita-
nium [28], and Co-Array Fortran (CAF) [16]. The model
and its implementations target multichip parallel comput-
ers with physically distributed, non-uniform memory access
(NUMA) memory architectures like clusters and supercom-
puters. In these architectures, processors have their own
DRAM, and multiple processors (and DRAMs) are con-
nected by a network.

Although the PGAS programming model conceptually
uses load and store instructions as communication prim-
itives, an individual load or store to a remote DRAM is
expensive. PGAS implementations typically perform best
when total communication is reduced, the remaining com-
munication is bundled into a small number of large mes-
sages, and communication and computation is overlapped.
(Although, as discussed above in the FFT implementation,
sometimes the desire to overlap communication conflicts
with the desire to minimize total communication.) These
optimization techniques, in turn, effect the interface as most
PGAS implementations includeput andget(or similar) op-
erations that are used to transfer large buffers between local
and remote DRAMs.

The RSP model, however, targets multicore NUMA ar-
chitectures. These architectures typically have many pro-

cessors connected by a powerful on-chip network. The on-
chip network makes it possible for processors to transfer
data from cache to cache (e.g. IBM Cell [18]), registers to
cache (e.g. TILEPro64 as described above [27]), or even
from registers to registers (e.g. the register-mapped net-
works of the Raw architecture [23]). The remote store pro-
gramming model is specifically designed to support fine-
grained communication on these types of multicore archi-
tectures. As discussed in Section 4, such communication
can produce better performance than the bulk communica-
tion common to multichip PGAS implementations. Fur-
thermore, this performance is achievable with less hardware
support.

Like RSP, the virtual memory mapped communication
(VMMC) model [11] allows processes to transfer data di-
rectly between the producer’s and consumer’s virtual ad-
dress space. In fact, the “automatic update” option of
VMMC is semantically similar to RSP in the case where
data has one producer and one consumer. In both cases
the producer writes to a memory region and these writes
show up in the consumer’s memory. The difference between
RSP and VMMC is the hardware mechanisms used by each.
VMMC is implemented by writing data to memory on the
producer. The consumer snoops the memory bus, sees these
writes, and stores its own copy of the data. The RSP im-
plementation uses messages and can be implemented on a
mesh network without requiring a snoopy protocol or a cen-
tralized bus. Furthermore, RSP does not require the pro-
ducer to keep a separate copy of the data in its own local
memory.

Several multichip hardware architectures provide sup-
port for the remote store programming model. These in-
clude distributed shared memory architectures like the Cray
T3D [10], T3E [20] and the TMC CM5 [25]. All three
of these processors are scalable multichip computers that
support shared memory programming using physically dis-
tributed memories. While these machines provide most of
the hardware required to support RSP, it would likely result
in inefficient application code. For example, while the T3E
supports single word transfers to remote memory, network
bandwidth is optimized when when transfers are 16 KB or
larger [20]. The necessity of transferring large data buffers
for performance makes PGAS interfaces, which explicitly
support such transfers throughputandgetoperations, a bet-
ter match for the architecture. RSP is better suited to dis-
tributed shared memory multicores where the powerful on
chip networks can stream individual words from one core’s
registers to another’s cache.

6. Conclusion

The remote store programming model is designed to
provide high performance and ease-of-use while requiring



only incremental hardware support in multicore architec-
tures. As demonstrated, RSP implementations of a two-
dimensional FFT and an H.264 video encoder on a multi-
core exhibit equal or better performance than common mul-
tichip techniques like shared memory and DMA.

Although this paper distinguishes between the RSP and
PGAS models, note that these two models are not mutually
exclusive. Many PGAS interfaces are actually implemented
as languages and it would be possible for the back-end of a
PGAS (or any other) parallelizing compiler to target a mul-
ticore RSP implementation for high performance.

Consider two possible uses of the RSP model in emerg-
ing multicore architectures. First, RSP could be used to aug-
ment directory-based cache-coherence schemes for multi-
cores with many processors. Standard shared memory tech-
niques could be used for code that is highly dynamic in its
memory access patterns, while RSP could be used for per-
formance critical sections of regularly structured code. Sec-
ond, RSP could be used as a convenient and efficient pro-
gramming model on multicore DSPs. These architectures
are designed for the same applications that map well to the
RSP paradigm: regular, numerical computation with high
performance requirements. RSP may be a more convenient
and less costly interface for these processors than the DMA-
based interfaces that dominate multichip DSP architectures.
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