12,125 research outputs found

    An energy scaled and expanded vector-based forwarding scheme for industrial underwater acoustic sensor networks with sink mobility

    Get PDF
    Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay

    Modeling induction and routing to monitor hospitalized patients in multi-hop mobility-aware body area sensor networks

    Get PDF
    In wireless body area sensor networks (WBASNs), energy efficiency is an area of extreme significance. At first, we present a mathematical model for a non-invasive inductive link which is used to recharge the battery of an implanted biomedical device (pacemaker). Afterwards, we propose a distance-aware relaying energy-efficient (DARE) and mutual information-based DARE (MI-DARE) routing protocols for multihop mobility-aware body area sensor networks (MM-BASNs). Both the routing protocols and the non-invasive inductive link model are tested with the consideration of eight patients in a hospital unit under different topologies, where the vital signs of each patient are monitored through seven on-body sensors and an implanted pacemaker. To reduce energy consumption of the network, the sensors communicate with a sink via an on-body relay which is fixed on the chest of each patient. The behavior (static/mobile) and position of the sink are changed in each topology, and the impact of mobility due to postural changes of the patient(s) arms, legs, and head is also investigated. The MI-DARE protocol further prolongs the network lifetime by minimizing the number of transmissions. Simulation results show that the proposed techniques outperform contemporary schemes in terms of the selected performance metrics. © 2016, Javaid et al

    On Mobility Management in Multi-Sink Sensor Networks for Geocasting of Queries

    Get PDF
    In order to efficiently deal with location dependent messages in multi-sink wireless sensor networks (WSNs), it is key that the network informs sinks what geographical area is covered by which sink. The sinks are then able to efficiently route messages which are only valid in particular regions of the deployment. In our previous work (see the 5th and 6th cited documents), we proposed a combined coverage area reporting and geographical routing protocol for location dependent messages, for example, queries that are injected by sinks. In this paper, we study the case where we have static sinks and mobile sensor nodes in the network. To provide up-to-date coverage areas to sinks, we focus on handling node mobility in the network. We discuss what is a better method for updating the routing structure (i.e., routing trees and coverage areas) to handle mobility efficiently: periodic global updates initiated from sinks or local updates triggered by mobile sensors. Simulation results show that local updating perform very well in terms of query delivery ratio. Local updating has a better scalability to increasing network size. It is also more energy efficient than ourpreviously proposed approach, where global updating in networks have medium mobility rate and speed

    Predicting topology propagation messages in mobile ad hoc networks: The value of history

    Get PDF
    This research was funded by the Spanish Government under contracts TIN2016-77836-C2-1-R,TIN2016-77836-C2-2-R, and DPI2016-77415-R, and by the Generalitat de Catalunya as Consolidated ResearchGroups 2017-SGR-688 and 2017-SGR-990.The mobile ad hoc communication in highly dynamic scenarios, like urban evacuations or search-and-rescue processes, plays a key role in coordinating the activities performed by the participants. Particularly, counting on message routing enhances the communication capability among these actors. Given the high dynamism of these networks and their low bandwidth, having mechanisms to predict the network topology offers several potential advantages; e.g., to reduce the number of topology propagation messages delivered through the network, the consumption of resources in the nodes and the amount of redundant retransmissions. Most strategies reported in the literature to perform these predictions are limited to support high mobility, consume a large amount of resources or require training. In order to contribute towards addressing that challenge, this paper presents a history-based predictor (HBP), which is a prediction strategy based on the assumption that some topological changes in these networks have happened before in the past, therefore, the predictor can take advantage of these patterns following a simple and low-cost approach. The article extends a previous proposal of the authors and evaluates its impact in highly mobile scenarios through the implementation of a real predictor for the optimized link state routing (OLSR) protocol. The use of this predictor, named OLSR-HBP, shows a reduction of 40–55% of topology propagation messages compared to the regular OLSR protocol. Moreover, the use of this predictor has a low cost in terms of CPU and memory consumption, and it can also be used with other routing protocols.Peer ReviewedPostprint (published version
    corecore