7,233 research outputs found

    Teaching the dynamics of the growth of a business venture through transparent simulations

    Get PDF
    Achieving rapid and sustainable growth is essential for business ventures to succeed. This being so, future entrepreneurs need to understand and manage the dynamics of business growth. Simulation-based learning environments (SBLEs) have been proposed as effective tools to help learners improve their understanding of complex business problems. However, previous research has found that learners tend to underestimate dynamic complexity. Transparent simulations allow entrepreneurship learners to explore the dynamic complexity of business ventures while accessing the model structure and growth behaviour. Previous studies have addressed some aspects of model transparency and produced inconclusive results regarding their impact on learning effectiveness. This study explores the learning and performance effects of using transparent simulations to teach the dynamics of the growth of a business venture. One such simulation experiment used a system dynamics model that represented the development of an energy service company (ESCO) venture under varying conditions of simulator transparency. Students who were subjected to the more transparent strategy achieved higher performance and demonstrated better comprehension of the business dynamics. However, our findings indicate that the effect to be gained from making only the simulator model more visible is more limited. The structural debriefing (focused on the critical variables and relations) was determinant in improving students’ learning regarding the stocks and flows structure in the prospects pipeline. Only after participating in the behavioural debriefing (focused on the relation between model structure, patterns of actions, and system behaviour), were the students able to appreciate the dynamics of the business feedback loops. The research suggests that educators who use complex business simulations should complement model transparency with structural and behavioural debriefings.info:eu-repo/semantics/acceptedVersio

    The Gamification Framework of Military Flight Simulator for Effective Learning and Training Environment

    Get PDF
    The purpose of this thesis is to develop a framework for the gamification of flight simulators to provide an active learning and training environment for military jet pilots. Currently, with the development of visual displays and computer processing capabilities, the modern simulator has made great progress in visual and auditory terms that is incomparable to the past. In addition, functions that were previously implemented through supercomputers and complex hardware devices are now available through desktop computers at an affordable cost. Despite these advances, the simulators so far are thought to have been negligent in building an active learning and training environment for users, focusing only on such things as sound and visual immersion and training requirements. On top of that, misbelief in the effectiveness of pilots\u27 flight simulators, old paradigms failing to keep up with computer technology, and lack of instructor manpower have not led to the progress of simulator training programs. Meanwhile, studies show that the gamified system, which has become an increasingly hot topic in business, health care, and education over the past decade, has made users more motivated and actively engaged in the use of specific platforms. And the resulting effect was also positive. This Research aimed: (1) to examine a research-based Gamification Framework to understand the concept of a gamified system, (2) to identify pilots\u27 flight training needs and motivations, (3) and finally to suggest evaluation tool with example. The Gamification Framework of Flight Simulator(GFFS) was designed on the basis of research and a survey conducted for Korean Air Force fighter pilots for detailed Gamified Flight Simulator(GFS) evaluation tool. GFFS was modified and applied from Kim\u27s gamification framework and the Octalysis framework was used to identify and compare pilots\u27 needs and motivation factors

    Dynamic QoS optimization architecture for cloud-based DDDAS

    Get PDF
    Cloud computing urges the need for novel on-demand approaches, where the Quality of Service (QoS) requirements of cloud-based services can dynamically and adaptively evolve at runtime as Service Level Agreement (SLA) and environment changes. Given the unpredictable, dynamic and on-demand nature of the cloud, it would be unrealistic to assume that optimal QoS can be achieved at design time. As a result, there is an increasing need for dynamic and self- adaptive QoS optimization solutions to respond to dynamic changes in SLA and the environment. In this context, we posit that the challenge of self-adaptive QoS optimization encompasses two dynamics, which are related to QoS sensitivity and conflicting objectives at runtime. We propose novel design of a dynamic data-driven architecture for optimizing QoS influenced by those dynamics. The architecture leverages on DDDAS primitives by employing distributed simulations and symbiotic feedback loops, to dynamically adapt decision making metaheuristics, which optimizes for QoS tradeoffs in cloud-based systems. We use a scenario to exemplify and evaluate the approach

    A review of system dynamics models applied in transportation

    Get PDF
    It is 20 years since Abbas and Bell [1994. “System Dynamics Applicability to Transportation Modeling.” Transportation Research Part A 28 (5): 373–390] evaluated the strengths and weaknesses of system dynamics (SD) as an approach for modelling in the transportation area. They listed 12 advantages of the approach and in particular suggested it was well suited to strategic issues and that it could provide a useful tool for supporting policy analysis and decision-making in the transport field. This paper sets out a review of over 50 peer-reviewed journal papers since 1994 categorising them by area of application and providing a summary of particular insights raised. The fields of application include the take-up of alternate fuel vehicles, supply chain management affecting transport, highway maintenance, strategic policy, airport infrastructure and airline business cycles and a set of emerging application areas. The paper concludes with recommendations for future application of the SD approach

    MODELLING & SIMULATION HYBRID WARFARE Researches, Models and Tools for Hybrid Warfare and Population Simulation

    Get PDF
    The Hybrid Warfare phenomena, which is the subject of the current research, has been framed by the work of Professor Agostino Bruzzone (University of Genoa) and Professor Erdal Cayirci (University of Stavanger), that in June 2016 created in order to inquiry the subject a dedicated Exploratory Team, which was endorsed by NATO Modelling & Simulation Group (a panel of the NATO Science & Technology organization) and established with the participation as well of the author. The author brought his personal contribution within the ET43 by introducing meaningful insights coming from the lecture of \u201cFight by the minutes: Time and the Art of War (1994)\u201d, written by Lieutenant Colonel US Army (Rtd.) Robert Leonhard; in such work, Leonhard extensively developed the concept that \u201cTime\u201d, rather than geometry of the battlefield and/or firepower, is the critical factor to tackle in military operations and by extension in Hybrid Warfare. The critical reflection about the time - both in its quantitative and qualitative dimension - in a hybrid confrontation it is addressed and studied inside SIMCJOH, a software built around challenges that imposes literally to \u201cFight by the minutes\u201d, echoing the core concept expressed in the eponymous work. Hybrid Warfare \u2013 which, by definition and purpose, aims to keep the military commitment of both aggressor and defender at the lowest - can gain enormous profit by employing a wide variety of non-military tools, turning them into a weapon, as in the case of the phenomena of \u201cweaponization of mass migrations\u201d, as it is examined in the \u201cDies Irae\u201d simulation architecture. Currently, since migration it is a very sensitive and divisive issue among the public opinions of many European countries, cynically leveraging on a humanitarian emergency caused by an exogenous, inducted migration, could result in a high level of political and social destabilization, which indeed favours the concurrent actions carried on by other hybrid tools. Other kind of disruption however, are already available in the arsenal of Hybrid Warfare, such cyber threats, information campaigns lead by troll factories for the diffusion of fake/altered news, etc. From this perspective the author examines how the TREX (Threat network simulation for REactive eXperience) simulator is able to offer insights about a hybrid scenario characterized by an intense level of social disruption, brought by cyber-attacks and systemic faking of news. Furthermore, the rising discipline of \u201cStrategic Engineering\u201d, as envisaged by Professor Agostino Bruzzone, when matched with the operational requirements to fulfil in order to counter Hybrid Threats, it brings another innovative, as much as powerful tool, into the professional luggage of the military and the civilian employed in Defence and Homeland security sectors. Hybrid is not the New War. What is new is brought by globalization paired with the transition to the information age and rising geopolitical tensions, which have put new emphasis on hybrid hostilities that manifest themselves in a contemporary way. Hybrid Warfare is a deliberate choice of an aggressor. While militarily weak nations can resort to it in order to re-balance the odds, instead military strong nations appreciate its inherent effectiveness coupled with the denial of direct responsibility, thus circumventing the rules of the International Community (IC). In order to be successful, Hybrid Warfare should consist of a highly coordinated, sapient mix of diverse and dynamic combination of regular forces, irregular forces (even criminal elements), cyber disruption etc. all in order to achieve effects across the entire DIMEFIL/PMESII_PT spectrum. However, the owner of the strategy, i.e. the aggressor, by keeping the threshold of impunity as high as possible and decreasing the willingness of the defender, can maintain his Hybrid Warfare at a diplomatically feasible level; so the model of the capacity, willingness and threshold, as proposed by Cayirci, Bruzzone and Gunneriusson (2016), remains critical to comprehend Hybrid Warfare. Its dynamicity is able to capture the evanescent, blurring line between Hybrid Warfare and Conventional Warfare. In such contest time is the critical factor: this because it is hard to foreseen for the aggressor how long he can keep up with such strategy without risking either the retaliation from the International Community or the depletion of resources across its own DIMEFIL/PMESII_PT spectrum. Similar discourse affects the defender: if he isn\u2019t able to cope with Hybrid Threats (i.e. taking no action), time works against him; if he is, he can start to develop counter narrative and address physical countermeasures. However, this can lead, in the medium long period, to an unforeseen (both for the attacker and the defender) escalation into a large, conventional, armed conflict. The performance of operations that required more than kinetic effects drove the development of DIMEFIL/PMESII_PT models and in turn this drive the development of Human Social Culture Behavior Modelling (HCSB), which should stand at the core of the Hybrid Warfare modelling and simulation efforts. Multi Layers models are fundamental to evaluate Strategies and Support Decisions: currently there are favourable conditions to implement models of Hybrid Warfare, such as Dies Irae, SIMCJOH and TREX, in order to further develop tools and war-games for studying new tactics, execute collective training and to support decisions making and analysis planning. The proposed approach is based on the idea to create a mosaic made by HLA interoperable simulators able to be combined as tiles to cover an extensive part of the Hybrid Warfare, giving the users an interactive and intuitive environment based on the \u201cModelling interoperable Simulation and Serious Game\u201d (MS2G) approach. From this point of view, the impressive capabilities achieved by IA-CGF in human behavior modeling to support population simulation as well as their native HLA structure, suggests to adopt them as core engine in this application field. However, it necessary to highlight that, when modelling DIMEFIL/PMESII_PT domains, the researcher has to be aware of the bias introduced by the fact that especially Political and Social \u201cscience\u201d are accompanied and built around value judgement. From this perspective, the models proposed by Cayirci, Bruzzone, Guinnarson (2016) and by Balaban & Mileniczek (2018) are indeed a courageous tentative to import, into the domain of particularly poorly understood phenomena (social, politics, and to a lesser degree economics - Hartley, 2016), the mathematical and statistical instruments and the methodologies employed by the pure, hard sciences. Nevertheless, just using the instruments and the methodology of the hard sciences it is not enough to obtain the objectivity, and is such aspect the representations of Hybrid Warfare mechanics could meet their limit: this is posed by the fact that they use, as input for the equations that represents Hybrid Warfare, not physical data observed during a scientific experiment, but rather observation of the reality that assumes implicitly and explicitly a value judgment, which could lead to a biased output. Such value judgement it is subjective, and not objective like the mathematical and physical sciences; when this is not well understood and managed by the academic and the researcher, it can introduce distortions - which are unacceptable for the purpose of the Science - which could be used as well to enforce a narrative mainstream that contains a so called \u201ctruth\u201d, which lies inside the boundary of politics rather than Science. Those observations around subjectivity of social sciences vs objectivity of pure sciences, being nothing new, suggest however the need to examine the problem under a new perspective, less philosophical and more leaned toward the practical application. The suggestion that the author want make here is that the Verification and Validation process, in particular the methodology used by Professor Bruzzone in doing V&V for SIMCJOH (2016) and the one described in the Modelling & Simulation User Risk Methodology (MURM) developed by Pandolfini, Youngblood et all (2018), could be applied to evaluate if there is a bias and the extent of the it, or at least making clear the value judgment adopted in developing the DIMEFIL/PMESII_PT models. Such V&V research is however outside the scope of the present work, even though it is an offspring of it, and for such reason the author would like to make further inquiries on this particular subject in the future. Then, the theoretical discourse around Hybrid Warfare has been completed addressing the need to establish a new discipline, Strategic Engineering, very much necessary because of the current a political and economic environment which allocates diminishing resources to Defense and Homeland Security (at least in Europe). However, Strategic Engineering can successfully address its challenges when coupled with the understanding and the management of the fourth dimension of military and hybrid operations, Time. For the reasons above, and as elaborated by Leonhard and extensively discussed in the present work, addressing the concern posed by Time dimension is necessary for the success of any military or Hybrid confrontation. The SIMCJOH project, examined under the above perspective, proved that the simulator has the ability to address the fourth dimension of military and non-military confrontation. In operations, Time is the most critical factor during execution, and this was successfully transferred inside the simulator; as such, SIMCJOH can be viewed as a training tool and as well a dynamic generator of events for the MEL/MIL execution during any exercise. In conclusion, SIMCJOH Project successfully faces new challenging aspects, allowed to study and develop new simulation models in order to support decision makers, Commanders and their Staff. Finally, the question posed by Leonhard in terms of recognition of the importance of time management of military operations - nowadays Hybrid Conflict - has not been answered yet; however, the author believes that Modelling and Simulation tools and techniques can represent the safe \u201ctank\u201d where innovative and advanced scientific solutions can be tested, exploiting the advantage of doing it in a synthetic environment

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    Redução da oscilação em acoplamentos entre sistemas de subsuperfície e superfície utilizando controladores PID

    Get PDF
    Orientadores: Denis José Schiozer, Eduardo GildinDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia MecânicaResumo: A simulação acoplando reservatórios e sistemas de produção é um problema desafiador e pode se tornar uma tarefa difícil caso modelos intensivos computacionalmente com múltiplos reservatórios e sistemas de produção complexos sejam considerados. Todavia, simulações aplicando a técnica de acoplamento podem promover melhor precisão na previsão de produção, especialmente em planos de desenvolvimento de longo prazo. A integração dos sistemas petrolíferos pode ser realizada por duas metodologias principais: utilizando diferentes simuladores (acoplamento explícito) ou considerando todos componentes individuais do sistema em um único programa (acoplamento implícito). O método explícito é mais flexível, permitindo a integração entre simuladores comerciais preparados para cada aplicação. Como desvantagem, soluções oscilatórias podem ser geradas. Neste trabalho, uma nova metodologia para redução das instabilidades numéricas (oscilações) decorrentes do acoplamento explícito é formulada por meio de uma configuração de controle. Resultados deste trabalho mostram que o acoplamento explícito sem um mecanismo para evitar instabilidades numéricas apresenta oscilações que podem crescer ao longo da simulação. A razão desse efeito é atribuída a curva IPR (Inflow Performance Relationship) e consequentemente a vazão do ponto de operação (q_OP) permutados no início do passo de tempo entre simulador de reservatórios e programa acoplador, os quais podem não ser representativos para todo intervalo de acoplamento. A fim de reduzir as oscilações numéricas, é implementado um tipo de sistema de controle por feedback, conhecido como controlador PID (Proporcional, Integral e Derivativo). O controlador PID, com parâmetros (K_C,?_I,?_D) sintonizados manualmente para um grupo de configurações de poços, ajusta a curva IPR tradicional gerada pelo simulador de reservatórios, de forma que o erro entre a pressão de fundo de poço calculada pelo simulador de reservatórios (?BHP?_RS) e a pressão de fundo de poço definida pelo ponto de operação (?BHP?_OP) seja mínimo. Dessa forma, é obtido um valor de q_OP representativo para o intervalo de acoplamento. A nova metodologia foi testada em um modelo numérico sintético (UNISIM-I-D) baseado no campo de Namorado (Bacia de Campos ¿ Brasil), composto por 20 poços satélites (7 injetores e 13 produtores). O controle PID reduz oscilações nas variáveis vazão e pressão no estudo de caso e, além disso, os resultados convergem com o caso base que representa o sistema de produção dos poços produtores por meio de tabelas apropriadas de perda de carga. Palavras Chave: Acoplamento Explícito; Curva IPR; Oscilação; Controlador PIDAbstract: Simulation coupling subsurface (reservoir) and surface (network) systems is a challenging problem and can become a daunting task if computationally intensive multi-reservoir models and complex surface network facilities are considered. Nevertheless, simulations applying the coupling technique can bring greater accuracy in production forecast, especially in long-term field development plans. Integration of petroleum systems can be done by two principal methodologies: using different simulators (explicit coupling) or considering all individual components of the system in one simulator (implicit coupling). The explicit method is more flexible, allowing the integration of commercial-off-the-shelf simulators. However, as a drawback, it can yield oscillatory solutions. In this work, a new framework for mitigating explicit coupling numerical instabilities (oscillations) is developed by recasting the problem in a control setting. Results from this work show that explicit coupling without a mechanism to avoid numerical instabilities presents oscillations that can grow throughout the simulation. The reason for such effect is attributed to the IPR (Inflow Performance Relationship) curve and consequently the operating point flow rate (q_OP) exchanged at the beginning of each time step between the reservoir simulator and the coupling program, which may not be representative for the entire coupling interval. In order to mitigate the numerical oscillations, one type of feedback control system, namely a PID (Proportional, Integral and Derivative) controller is applied. The PID controller, with parameters (K_C,?_I,?_D) tuned manually for a group of well settings, adjusts the traditional IPR curve generated by the reservoir simulator so that the error between the bottom-hole pressure calculated by the reservoir simulator (?BHP?_RS) and the bottom-hole pressure defined in the operating point (?BHP?_OP) is minimal. In this case, a q_OP value representative for the entire coupling interval is obtained. The new methodology was tested in a synthetic numerical model (UNISIM-I-D) based on Namorado field (Campos Basin ¿ Brazil), comprised by 20 satellite wells (7 injectors and 13 producers). The PID control reduces the rate and pressure oscillations in the case study, and results converge with base case scenario, which represents the network system of producer wells by proper pressure drop tables. Key Word: Explicit Coupling; IPR Curve; Oscillation; PID ControllerMestradoReservatórios e GestãoMestre em Ciências e Engenharia de Petróleo33003017CAPE

    Feasibility analysis study of battlefield distributed simulation - developmental (BDS-D) Version 1.0 system testbed extension : Fidelity and verification validation and accreditation

    Get PDF
    Issued as Report, Project E-16-M96 (subproject: A-9606)Report has title: Feasibility analysis study of battlefield distributed simulation - developmental (BDS-D) Version 1.0 system testbed extension : Fidelity and verification validation and accreditatio
    corecore