70 research outputs found

    Circuit Techniques for Low-Power and Secure Internet-of-Things Systems

    Full text link
    The coming of Internet of Things (IoT) is expected to connect the physical world to the cyber world through ubiquitous sensors, actuators and computers. The nature of these applications demand long battery life and strong data security. To connect billions of things in the world, the hardware platform for IoT systems must be optimized towards low power consumption, high energy efficiency and low cost. With these constraints, the security of IoT systems become a even more difficult problem compared to that of computer systems. A new holistic system design considering both hardware and software implementations is demanded to face these new challenges. In this work, highly robust and low-cost true random number generators (TRNGs) and physically unclonable functions (PUFs) are designed and implemented as security primitives for secret key management in IoT systems. They provide three critical functions for crypto systems including runtime secret key generation, secure key storage and lightweight device authentication. To achieve robustness and simplicity, the concept of frequency collapse in multi-mode oscillator is proposed, which can effectively amplify the desired random variable in CMOS devices (i.e. process variation or noise) and provide a runtime monitor of the output quality. A TRNG with self-tuning loop to achieve robust operation across -40 to 120 degree Celsius and 0.6 to 1V variations, a TRNG that can be fully synthesized with only standard cells and commercial placement and routing tools, and a PUF with runtime filtering to achieve robust authentication, are designed based upon this concept and verified in several CMOS technology nodes. In addition, a 2-transistor sub-threshold amplifier based "weak" PUF is also presented for chip identification and key storage. This PUF achieves state-of-the-art 1.65% native unstable bit, 1.5fJ per bit energy efficiency, and 3.16% flipping bits across -40 to 120 degree Celsius range at the same time, while occupying only 553 feature size square area in 180nm CMOS. Secondly, the potential security threats of hardware Trojan is investigated and a new Trojan attack using analog behavior of digital processors is proposed as the first stealthy and controllable fabrication-time hardware attack. Hardware Trojan is an emerging concern about globalization of semiconductor supply chain, which can result in catastrophic attacks that are extremely difficult to find and protect against. Hardware Trojans proposed in previous works are based on either design-time code injection to hardware description language or fabrication-time modification of processing steps. There have been defenses developed for both types of attacks. A third type of attack that combines the benefits of logical stealthy and controllability in design-time attacks and physical "invisibility" is proposed in this work that crosses the analog and digital domains. The attack eludes activation by a diverse set of benchmarks and evades known defenses. Lastly, in addition to security-related circuits, physical sensors are also studied as fundamental building blocks of IoT systems in this work. Temperature sensing is one of the most desired functions for a wide range of IoT applications. A sub-threshold oscillator based digital temperature sensor utilizing the exponential temperature dependence of sub-threshold current is proposed and implemented. In 180nm CMOS, it achieves 0.22/0.19K inaccuracy and 73mK noise-limited resolution with only 8865 square micrometer additional area and 75nW extra power consumption to an existing IoT system.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138779/1/kaiyuan_1.pd

    MEMS sensors as physical unclonable functions

    Get PDF
    A fundamental requirement of any crypto system is that secret-key material remains securely stored so that it is robust in withstanding attacks including physical tampering. In this context, physical unclonable functions (PUFs) have been proposed to store cryptographic secrets in a particularly secure manner. In this thesis, the feasibility of using microelectromechanical systems (MEMS) sensors for secure key storage purposes is evaluated for the first time. To this end, we investigated an off-the-shelf 3-axis MEMS gyroscope design and used its properties to derive a unique fingerprint from each sensor. We thoroughly examined the robustness of the derived fingerprints against temperature variation and aging. We extracted stable keys with nearly full entropy from the fingerprints. The security level of the extracted keys lies in a range between 27 bits and 150 bits depending on the applied test conditions and the used entropy estimation method. Moreover, we provide experimental evidence that the extractable key length is higher in practice when multiple wafers are considered. In addition, it is shown that further improvements could be achieved by using more precise measurement techniques and by optimizing the MEMS design. The robustness of a MEMS PUF against tampering and malicious read-outs was tested by three different types of physical attacks. We could show that MEMS PUFs provide a high level of protection due to the sensitivity of their characteristics to disassembly.Eine grundlegende Anforderung jedes Kryptosystems ist, dass der verwendete geheime Schlüssel sicher und geschützt aufbewahrt wird. Vor diesem Hintergrund wurden physikalisch unklonbare Funktionen (PUFs) vorgeschlagen, um kryptographische Geheimnisse besonders sicher zu speichern. In dieser Arbeit wird erstmals die Verwendbarkeit von mikroelektromechanischen Systemen (MEMS) für die sichere Schlüsselspeicherung anhand eines 3-achsigen MEMS Drehratensensor gezeigt. Dabei werden die Eigenschaften der Sensoren zur Ableitung eines eindeutigen Fingerabdrucks verwendet. Die Temperatur- und Langzeitstabilität der abgeleiteten Fingerabdrücke wurde ausführlich untersucht. Aus den Fingerabdrücken wurden stabile Schlüssel mit einem Sicherheitsniveau zwischen 27 Bit und 150 Bit, abhängig von den Testbedingungen und der verwendeten Entropie-Schätzmethode, extrahiert. Außerdem konnte gezeigt werden, dass die Schlüssellänge ansteigt, je mehr Wafer betrachtet werden. Darüber hinaus wurde die Verwendung einer präziseren Messtechnik und eine Optimierung des MEMS-Designs als potentielle Verbesserungsmaßnahmen identifiziert. Die Robustheit einer MEMS PUF gegen Manipulationen und feindseliges Auslesen durch verschiedene Arten von physikalischen Angriffen wurde untersucht. Es konnte gezeigt werden, dass MEMS PUFs aufgrund der Empfindlichkeit ihrer Eigenschaften hinsichtlich einer Öffnung des Mold-Gehäuses eine hohe Widerstandsfähigkeit gegenüber invasiven Angriffen aufweisen

    A Physical Unclonable Function Based on Inter-Metal Layer Resistance Variations and an Evaluation of its Temperature and Voltage Stability

    Get PDF
    Keying material for encryption is stored as digital bistrings in non-volatile memory (NVM) on FPGAs and ASICs in current technologies. However, secrets stored this way are not secure against a determined adversary, who can use probing attacks to steal the secret. Physical Unclonable functions (PUFs) have emerged as an alternative. PUFs leverage random manufacturing variations as the source of entropy for generating random bitstrings, and incorporate an on-chip infrastructure for measuring and digitizing the corresponding variations in key electrical parameters, such as delay or voltage. PUFs are designed to reproduce a bitstring on demand and therefore eliminate the need for on-chip storage. In this dissertation, I propose a kind of PUF that measures resistance variations in inter-metal layers that define the power grid of the chip and evaluate its temperature and voltage stability. First, I introduce two implementations of a power grid-based PUF (PG-PUF). Then, I analyze the quality of bit strings generated without considering environmental variations from the PG-PUFs that leverage resistance variations in: 1) the power grid metal wires in 60 copies of a 90 nm chip and 2) in the power grid metal wires of 58 copies of a 65 nm chip. Next, I carry out a series of experiments in a set of 63 chips in IBM\u27s 90 nm technology at 9 TV corners, i.e., over all combination of 3 temperatures: -40oC, 25oC and 85oC and 3 voltages: nominal and +/-10% of the nominal supply voltage. The randomness, uniqueness and stability characteristics of bitstrings generated from PG-PUFs are evaluated. The stability of the PG-PUF and an on-chip voltage-to-digital (VDC) are also evaluated at 9 temperature-voltage corners. I introduce several techniques that have not been previously described, including a mechanism to eliminate voltage trends or \u27bias\u27 in the power grid voltage measurements, as well as a voltage threshold, Triple-Module-Redundancy (TMR) and majority voting scheme to identify and exclude unstable bits

    Comprehensive study of physical unclonable functions on FPGAs: correlation driven Implementation, deep learning modeling attacks, and countermeasures

    Get PDF
    For more than a decade and a half, Physical Unclonable Functions (PUFs) have been presented as a promising hardware security primitive. The idea of exploiting variabilities in hardware fabrication to generate a unique fingerprint for every silicon chip introduced a more secure and cheaper alternative. Other solutions using non-volatile memory to store cryptographic keys, require additional processing steps to generate keys externally, and secure environments to exchange generated keys, which introduce many points of attack that can be used to extract the secret keys. PUFs were addressed in the literature from different perspectives. Many publications focused on proposing new PUF architectures and evaluation metrics to improve security properties like response uniqueness per chip, response reproducibility of the same PUF input, and response unpredictability using previous input/response pairs. Other research proposed attack schemes to clone the response of PUFs, using conventional machine learning (ML) algorithms, side-channel attacks using power and electromagnetic traces, and fault injection using laser beams and electromagnetic pulses. However, most attack schemes to be successful, imposed some restrictions on the targeted PUF architectures, which make it simpler and easier to attack. Furthermore, they did not propose solid and provable enhancements on these architectures to countermeasure the attacks. This leaves many open questions concerning how to implement perfect secure PUFs especially on FPGAs, how to extend previous modeling attack schemes to be successful against more complex PUF architectures (and understand why modeling attacks work) and how to detect and countermeasure these attacks to guarantee that secret data are safe from the attackers. This Ph.D. dissertation contributes to the state of the art research on physical unclonable functions in several ways. First, the thesis provides a comprehensive analysis of the implementation of secure PUFs on FPGAs using manual placement and manual routing techniques guided by new performance metrics to overcome FPGAs restrictions with minimum hardware and area overhead. Then the impact of deep learning (DL) algorithms is studied as a promising modeling attack scheme against complex PUF architectures, which were reported immune to conventional (ML) techniques. Furthermore, it is shown that DL modeling attacks successfully overcome the restrictions imposed by previous research even with the lack of accurate mathematical models of these PUF architectures. Finally, this comprehensive analysis is completed by understanding why deep learning attacks are successful and how to build new PUF architectures and extra circuitry to thwart these types of attacks. This research is important for deploying cheap and efficient hardware security primitives in different fields, including IoT applications, embedded systems, automotive and military equipment. Additionally, it puts more focus on the development of strong intrinsic PUFs which are widely proposed and deployed in many security protocols used for authentication, key establishment, and Oblivious transfer protocols

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Secure and Unclonable Integrated Circuits

    Get PDF
    Semiconductor manufacturing is increasingly reliant in offshore foundries, which has raised concerns with counterfeiting, piracy, and unauthorized overproduction by the contract foundry. The recent shortage of semiconductors has aggravated such problems, with the electronic components market being flooded by recycled, remarked, or even out-of-spec, and defective parts. Moreover, modern internet connected applications require mechanisms that enable secure communication, which must be protected by security countermeasures to mitigate various types of attacks. In this thesis, we describe techniques to aid counterfeit prevention, and mitigate secret extraction attacks that exploit power consumption information. Counterfeit prevention requires simple and trustworthy identification. Physical unclonable functions (PUFs) harvest process variation to create a unique and unclonable digital fingerprint of an IC. However, learning attacks can model the PUF behavior, invalidating its unclonability claims. In this thesis, we research circuits and architectures to make PUFs more resilient to learning attacks. First, we propose the concept of non-monotonic response quantization, where responses not always encode the best performing circuit structure. Then, we explore the design space of PUF compositions, assessing the trade-off between stability and resilience to learning attacks. Finally, we introduce a lightweight key based challenge obfuscation technique that uses a chip unique secret to construct PUFs which are more resilient to learning attacks. Modern internet protocols demand message integrity, confidentiality, and (often) non-repudiation. Adding support for such mechanisms requires on-chip storage of a secret key. Even if the key is produced by a PUF, it will be subject to key extraction attacks that use power consumption information. Secure integrated circuits must address power analysis attacks with appropriate countermeasures. Traditional mitigation techniques have limited scope of protection, and impose several restrictions on how sensitive data must be manipulated. We demonstrate a bit-serial RISC-V microprocessor implementation with no plain-text data in the clear, where all values are protected using Boolean masking and differential domino logic. Software can run with little to no countermeasures, reducing code size and performance overheads. Our methodology is fully automated and can be applied to designs of arbitrary size or complexity. We also provide details on other key components such as clock randomizer, memory protection, and random number generator

    Low-power emerging memristive designs towards secure hardware systems for applications in internet of things

    Get PDF
    Emerging memristive devices offer enormous advantages for applications such as non-volatile memories and in-memory computing (IMC), but there is a rising interest in using memristive technologies for security applications in the era of internet of things (IoT). In this review article, for achieving secure hardware systems in IoT, low-power design techniques based on emerging memristive technology for hardware security primitives/systems are presented. By reviewing the state-of-the-art in three highlighted memristive application areas, i.e. memristive non-volatile memory, memristive reconfigurable logic computing and memristive artificial intelligent computing, their application-level impacts on the novel implementations of secret key generation, crypto functions and machine learning attacks are explored, respectively. For the low-power security applications in IoT, it is essential to understand how to best realize cryptographic circuitry using memristive circuitries, and to assess the implications of memristive crypto implementations on security and to develop novel computing paradigms that will enhance their security. This review article aims to help researchers to explore security solutions, to analyze new possible threats and to develop corresponding protections for the secure hardware systems based on low-cost memristive circuit designs

    Nano-intrinsic security primitives for internet of everything

    Get PDF
    With the advent of Internet-enabled electronic devices and mobile computer systems, maintaining data security is one of the most important challenges in modern civilization. The innovation of physically unclonable functions (PUFs) shows great potential for enabling low-cost low-power authentication, anti-counterfeiting and beyond on the semiconductor chips. This is because secrets in a PUF are hidden in the randomness of the physical properties of desirably identical devices, making it extremely difficult, if not impossible, to extract them. Hence, the basic idea of PUF is to take advantage of inevitable non-idealities in the physical domain to create a system that can provide an innovative way to secure device identities, sensitive information, and their communications. While the physical variation exists everywhere, various materials, systems, and technologies have been considered as the source of unpredictable physical device variation in large scales for generating security primitives. The purpose of this project is to develop emerging solid-state memory-based security primitives and examine their robustness as well as feasibility. Firstly, the author gives an extensive overview of PUFs. The rationality, classification, and application of PUF are discussed. To objectively compare the quality of PUFs, the author formulates important PUF properties and evaluation metrics. By reviewing previously proposed constructions ranging from conventional standard complementary metal-oxide-semiconductor (CMOS) components to emerging non-volatile memories, the quality of different PUFs classes are discussed and summarized. Through a comparative analysis, emerging non-volatile redox-based resistor memories (ReRAMs) have shown the potential as promising candidates for the next generation of low-cost, low-power, compact in size, and secure PUF. Next, the author presents novel approaches to build a PUF by utilizing concatenated two layers of ReRAM crossbar arrays. Upon concatenate two layers, the nonlinear structure is introduced, and this results in the improved uniformity and the avalanche characteristic of the proposed PUF. A group of cell readout method is employed, and it supports a massive pool of challenge-response pairs of the nonlinear ReRAM-based PUF. The non-linear PUF construction is experimentally assessed using the evaluation metrics, and the quality of randomness is verified using predictive analysis. Last but not least, random telegraph noise (RTN) is studied as a source of entropy for a true random number generation (TRNG). RTN is usually considered a disadvantageous feature in the conventional CMOS designs. However, in combination with appropriate readout scheme, RTN in ReRAM can be used as a novel technique to generate quality random numbers. The proposed differential readout-based design can maintain the quality of output by reducing the effect of the undesired noise from the whole system, while the controlling difficulty of the conventional readout method can be significantly reduced. This is advantageous as the differential readout circuit can embrace the resistance variation features of ReRAMs without extensive pre-calibration. The study in this thesis has the potential to enable the development of cost-efficient and lightweight security primitives that can be integrated into modern computer mobile systems and devices for providing a high level of security
    corecore