3,568 research outputs found

    Immunometabolism is a key factor for the persistent spontaneous elite control of HIV-1 infection

    Get PDF
    Approximately 25% of elite controllers (ECs) lose their virological control by mechanisms that are only partially known. Recently, immunovirological and proteomic factors have been associated to the loss of spontaneous control. Our aim was to perform a metabolomic approach to identify the underlying mechanistic pathways and potential biomarkers associated with this loss of control. Methods: Plasma samples from EC who spontaneously lost virological control (Transient Controllers, TC, n=8), at two and one year before the loss of control, were comparedwith a control group of ECwho persistently maintained virological control during the same follow-up period (Persistent Controllers, PC, n=8). The determination of metabolites and plasma lipids was performed by GC-qTOF and LC-qTOF using targeted and untargeted approaches. Metabolite levels were associated with the polyfunctionality of HIV-specific CD8+T-cell response. Findings: Our data suggest that, before the loss of control, TCs showed a specific circulating metabolomic profile characterized by aerobic glycolytic metabolism, deregulated mitochondrial function, oxidative stress and increased immunological activation. In addition, CD8+ T-cell polyfunctionality was strongly associated with metabolite levels. Finally, valine was the main differentiating factor between TCs and PCs. Interpretation: All these metabolomic differences should be considered not only as potential biomarkers but also as therapeutic targets in HIV infection.Instituto Carlos III PI10/02635 PI13/00796 PI16/00503 PI12/02283 PI16/00684 CPII014/00025 FI14/00431 FI17/00186 INT11/240 INT12/282 INT15/226Fondos Europeos para el Desarrollo Regional PI10/02635 PI13/00796 PI16/00503 PI12/02283 PI16/00684 CPII014/00025 FI14/00431 FI17/00186FEDER PI10/02635 PI13/00796 PI16/00503 PI12/02283 PI16/00684 CPII014/00025 FI14/00431 FI17/00186FEDER PI10/02635 PI13/00796 PI16/00503 PI12/02283 PI16/00684 CPII014/00025 FI14/00431 FI17/00186Programa de Suport als Grups de Recerca 2017SGR948 2014SGR250Gilead Fellowship Program GLD14/293 GLD17/00299Red de Investigación en Sida RD12/0017/0005 RD16/0025/0006 RD12/0017/0029 RD16/0025/0020Junta de Andalucía C-0032/17Generalitat de Catalunya PERIS SLT002/16/0010

    Epigenetics and immunometabolism in diabetes and aging

    Get PDF
    Significance: A strong relationship between hyperglycemia, impaired insulin pathway, and cardiovascular disease in type 2 diabetes (T2D) is linked to oxidative stress and inflammation. Immunometabolic pathways link these pathogenic processes and pose important potential therapeutic targets. Recent Advances: The link between immunity and metabolism is bidirectional and includes the role of inflammation in the pathogenesis of metabolic disorders such as T2D, obesity, metabolic syndrome, and hypertension and the role of metabolic factors in regulation of immune cell functions. Low-grade inflammation, oxidative stress, balance between superoxide and nitric oxide, and the infiltration of macrophages, T cells, and B cells in insulin-sensitive tissues lead to metabolic impairment and accelerated aging. Critical Issues: Inflammatory infiltrate and altered immune cell phenotype precede development of metabolic disorders. Inflammatory changes are tightly linked to alterations in metabolic status and energy expenditure and are controlled by epigenetic mechanisms. Future Directions: A better comprehension of these mechanistic insights is of utmost importance to identify novel molecular targets. In this study, we describe a complex scenario of epigenetic changes and immunometabolism linking to diabetes and aging-associated vascular disease. © Tomasz J

    Epigenetics and immunometabolism in diabetes and aging

    Get PDF
    Significance: A strong relationship between hyperglycemia, impaired insulin pathway and cardiovascular disease in type 2 diabetes (T2D) is linked to oxidative stress and inflammation. Immunometabolic pathways link these pathogenic processes and pose important potential therapeutic targets. Recent Advances: The link between immunity and metabolism is bi-directional and includes the role of inflammation in the pathogenesis of metabolic disorders such as T2D, obesity, metabolic syndrome and hypertension as well as the role of metabolic factors in regulation of immune cell functions. Low-grade inflammation, oxidative stress, balance between superoxide and nitric oxide, and the infiltration of macrophages, T cells, B cells in insulin-sensitive tissues, leads to metabolic impairment and accelerated ageing. Critical Issues: Inflammatory infiltrate and altered immune cell phenotype precede development of metabolic disorders. Inflammatory changes are tightly linked to alterations in metabolic status and energy expenditure and are controlled by epigenetic mechanisms. Future directions: A better comprehension of these mechanistic insights is of utmost importance to identify novel molecular targets. Here, we describe a complex scenario of epigenetic changes and immunometabolism linking to diabetes and aging-associated vascular disease

    Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function

    No full text
    Immune cell differentiation and function are crucially dependent on specific metabolic programs dictated by mitochondria, including the generation of ATP from the oxidation of nutrients and supplying precursors for the synthesis of macromolecules and post-translational modifications. The many processes that occur in mitochondria are intimately linked to their morphology that is shaped by opposing fusion and fission events. Exciting evidence is now emerging that demonstrates reciprocal crosstalk between mitochondrial dynamics and metabolism. Metabolic cues can control the mitochondrial fission and fusion machinery to acquire specific morphologies that shape their activity. We review the dynamic properties of mitochondria and discuss how these organelles interlace with immune cell metabolism and function

    Raman micro-spectroscopy as a tool to study immunometabolism

    Get PDF
    In the past two decades, immunometabolism has emerged as a crucial field, unraveling the intricate molecular connections between cellular metabolism and immune function across various cell types, tissues, and diseases. This review explores the insights gained from studies using the emerging technology, Raman micro-spectroscopy, to investigate immunometabolism. Raman micro-spectroscopy provides an exciting opportunity to directly study metabolism at the single cell level where it can be combined with other Raman-based technologies and platforms such as single cell RNA sequencing. The review showcases applications of Raman micro-spectroscopy to study the immune system including cell identification, activation, and autoimmune disease diagnosis, offering a rapid, label-free, and minimally invasive analytical approach. The review spotlights three promising Raman technologies, Raman-activated cell sorting, Raman stable isotope probing, and Raman imaging. The synergy of Raman technologies with machine learning is poised to enhance the understanding of complex Raman phenotypes, enabling biomarker discovery and comprehensive investigations in immunometabolism. The review encourages further exploration of these evolving technologies in the rapidly advancing field of immunometabolism

    Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms

    Get PDF
    Hypertension and type 2 diabetes are common comorbidities. Hypertension is twice as frequent in patients with diabetes compared with those who do not have diabetes. Moreover, patients with hypertension often exhibit insulin resistance and are at greater risk of diabetes developing than are normotensive individuals. The major cause of morbidity and mortality in diabetes is cardiovascular disease, which is exacerbated by hypertension. Accordingly, diabetes and hypertension are closely interlinked because of similar risk factors, such as endothelial dysfunction, vascular inflammation, arterial remodelling, atherosclerosis, dyslipidemia, and obesity. There is also substantial overlap in the cardiovascular complications of diabetes and hypertension related primarily to microvascular and macrovascular disease. Common mechanisms, such as upregulation of the renin-angiotensin-aldosterone system, oxidative stress, inflammation, and activation of the immune system likely contribute to the close relationship between diabetes and hypertension. In this article we discuss diabetes and hypertension as comorbidities and discuss the pathophysiological features of vascular complications associated with these conditions. We also highlight some vascular mechanisms that predispose to both conditions, focusing on advanced glycation end products, oxidative stress, inflammation, the immune system, and microRNAs. Finally, we provide some insights into current therapies targeting diabetes and cardiovascular complications and introduce some new agents that may have vasoprotective therapeutic potential in diabetes

    Does Altered Cellular Metabolism Underpin the Normal Changes to the Maternal Immune System during Pregnancy?

    Get PDF
    Pregnancy is characterised by metabolic changes that occur to support the growth and development of the fetus over the course of gestation. These metabolic changes can be classified into two distinct phases: an initial anabolic phase to prepare an adequate store of substrates and energy which are then broken down and used during a catabolic phase to meet the energetic demands of the mother, placenta and fetus. Dynamic readjustment of immune homeostasis is also a feature of pregnancy and is likely linked to the changes in energy substrate utilisation at this time. As cellular metabolism is increasingly recognised as a key determinant of immune cell phenotype and function, we consider how changes in maternal metabolism might contribute to T cell plasticity during pregnancy

    Metabolism Tailors Macrophage Functions: One Size Does Not Fit All

    Get PDF
    It is well established that macrophages are critical for maintaining tissue integrity. It follows that impaired or exacerbated macrophage functions are often associated to disease. This is true in inflammatory related disorders, such as obesity, in which tissue macrophages become dysfunctional and display a persistent inflammatory activity. Conversely, in cancer, macrophages acquire an anti-inflammatory, immunosuppressive and pro-angiogenic function, sustaining, rather than constraining, tumor development and metastasis formation [1,2]. In all these pathological conditions macrophages receive signals from the surrounding tissues, engaging in a very complex plethora of functional states that support disease. Emerging research is now showing that in vitro polarized macrophages display different metabolic features, which are associated to their effector functions [3,4]. Yet, it is not completely clear if this holds true in vivo, and if specific metabolic traits impose a defined phenotype or vice versa, since the in vivo complexity of macrophage heterogeneity together with the impact that environmental signals can have on their phenotypic skewing would require a temporal and spatial definition that is strongly awaited. The present collection aims at providing an effective tool to contribute to the comprehensive understanding of the immunometabolic functions of macrophages and their communication with tissues in vivo in the context of two specific diseases: obesity and cancer
    • …
    corecore