2,107 research outputs found

    Tree-based Intelligent Intrusion Detection System in Internet of Vehicles

    Full text link
    The use of autonomous vehicles (AVs) is a promising technology in Intelligent Transportation Systems (ITSs) to improve safety and driving efficiency. Vehicle-to-everything (V2X) technology enables communication among vehicles and other infrastructures. However, AVs and Internet of Vehicles (IoV) are vulnerable to different types of cyber-attacks such as denial of service, spoofing, and sniffing attacks. In this paper, an intelligent intrusion detection system (IDS) is proposed based on tree-structure machine learning models. The results from the implementation of the proposed intrusion detection system on standard data sets indicate that the system has the ability to identify various cyber-attacks in the AV networks. Furthermore, the proposed ensemble learning and feature selection approaches enable the proposed system to achieve high detection rate and low computational cost simultaneously.Comment: Accepted in IEEE Global Communications Conference (GLOBECOM) 201

    Application of advanced machine learning techniques to early network traffic classification

    Get PDF
    The fast-paced evolution of the Internet is drawing a complex context which imposes demanding requirements to assure end-to-end Quality of Service. The development of advanced intelligent approaches in networking is envisioning features that include autonomous resource allocation, fast reaction against unexpected network events and so on. Internet Network Traffic Classification constitutes a crucial source of information for Network Management, being decisive in assisting the emerging network control paradigms. Monitoring traffic flowing through network devices support tasks such as: network orchestration, traffic prioritization, network arbitration and cyberthreats detection, amongst others. The traditional traffic classifiers became obsolete owing to the rapid Internet evolution. Port-based classifiers suffer from significant accuracy losses due to port masking, meanwhile Deep Packet Inspection approaches have severe user-privacy limitations. The advent of Machine Learning has propelled the application of advanced algorithms in diverse research areas, and some learning approaches have proved as an interesting alternative to the classic traffic classification approaches. Addressing Network Traffic Classification from a Machine Learning perspective implies numerous challenges demanding research efforts to achieve feasible classifiers. In this dissertation, we endeavor to formulate and solve important research questions in Machine-Learning-based Network Traffic Classification. As a result of numerous experiments, the knowledge provided in this research constitutes an engaging case of study in which network traffic data from two different environments are successfully collected, processed and modeled. Firstly, we approached the Feature Extraction and Selection processes providing our own contributions. A Feature Extractor was designed to create Machine-Learning ready datasets from real traffic data, and a Feature Selection Filter based on fast correlation is proposed and tested in several classification datasets. Then, the original Network Traffic Classification datasets are reduced using our Selection Filter to provide efficient classification models. Many classification models based on CART Decision Trees were analyzed exhibiting excellent outcomes in identifying various Internet applications. The experiments presented in this research comprise a comparison amongst ensemble learning schemes, an exploratory study on Class Imbalance and solutions; and an analysis of IP-header predictors for early traffic classification. This thesis is presented in the form of compendium of JCR-indexed scientific manuscripts and, furthermore, one conference paper is included. In the present work we study a wide number of learning approaches employing the most advance methodology in Machine Learning. As a result, we identify the strengths and weaknesses of these algorithms, providing our own solutions to overcome the observed limitations. Shortly, this thesis proves that Machine Learning offers interesting advanced techniques that open prominent prospects in Internet Network Traffic Classification.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    A machine learning-based framework for preventing video freezes in HTTP adaptive streaming

    Get PDF
    HTTP Adaptive Streaming (HAS) represents the dominant technology to deliver videos over the Internet, due to its ability to adapt the video quality to the available bandwidth. Despite that, HAS clients can still suffer from freezes in the video playout, the main factor influencing users' Quality of Experience (QoE). To reduce video freezes, we propose a network-based framework, where a network controller prioritizes the delivery of particular video segments to prevent freezes at the clients. This framework is based on OpenFlow, a widely adopted protocol to implement the software-defined networking principle. The main element of the controller is a Machine Learning (ML) engine based on the random undersampling boosting algorithm and fuzzy logic, which can detect when a client is close to a freeze and drive the network prioritization to avoid it. This decision is based on measurements collected from the network nodes only, without any knowledge on the streamed videos or on the clients' characteristics. In this paper, we detail the design of the proposed ML-based framework and compare its performance with other benchmarking HAS solutions, under various video streaming scenarios. Particularly, we show through extensive experimentation that the proposed approach can reduce video freezes and freeze time with about 65% and 45% respectively, when compared to benchmarking algorithms. These results represent a major improvement for the QoE of the users watching multimedia content online

    Towards Effective Detection of Botnet Attacks using BoT-IoT Dataset

    Get PDF
    In the world of cybersecurity, intrusion detection systems (IDS) have leveraged the power of artificial intelligence for the efficient detection of attacks. This is done by applying supervised machine learning (ML) techniques on labeled datasets. A growing body of literature has been devoted to the use of BoT-IoT dataset for IDS based ML frameworks. A few number of related works have recognized the need for a balanced dataset and applied techniques to alleviate the issue of imbalance. However, a significant amount of related research works failed to treat the imbalance in the BoT-IoT dataset. A lack of unanimity was observed in the literature towards the definition of taxonomy for balancing techniques. The study presented here seeks to explore the degree to which the imbalance of the dataset has been treated and to determine the taxonomy of techniques used. In this thesis, a comparison analysis is performed by using a small subset of an entire dataset to determine the threshold sample limit at which the model achieves the highest accuracy. In addition to this analysis, a study was conducted to determine the extent to which each feature of the dataset has an impact on the threshold performance. The study is implemented on the BoT-IoT dataset using three supervised ML classifiers: K-nearest Neighbor, Random Forest, and Logistic Regression. The four principal findings of this thesis are: existing taxonomies are not understood and imbalance of the dataset is not treated; high performance across all metrics is achieved on a highly imbalanced dataset; model is able to achieve the threshold performance using a small subset of samples; certain features had varying impact on the threshold value using different techniques

    A machine learning-based investigation of cloud service attacks

    Get PDF
    In this thesis, the security challenges of cloud computing are investigated in the Infrastructure as a Service (IaaS) layer, as security is one of the major concerns related to Cloud services. As IaaS consists of different security terms, the research has been further narrowed down to focus on Network Layer Security. Review of existing research revealed that several types of attacks and threats can affect cloud security. Therefore, there is a need for intrusion defence implementations to protect cloud services. Intrusion Detection (ID) is one of the most effective solutions for reacting to cloud network attacks. [Continues.

    Important Features of CICIDS-2017 Dataset For Anomaly Detection in High Dimension and Imbalanced Class Dataset

    Get PDF
    The growth in internet traffic volume presents a new issue in anomaly detection, one of which is the high data dimension. The feature selection technique has been proven to be able to solve the problem of high data dimension by producing relevant features. On the other hand, high-class imbalance is a problem in feature selection. In this study, two feature selection approaches are proposed that are able to produce the most ideal features in the high-class imbalanced dataset. CICIDS-2017 is a reliable dataset that has a problem in high-class imbalance, therefore it is used in this study. Furthermore, this study performs experiments in Information Gain feature selection technique on the imbalance class datasaet. For validation, the Random Forest classification algorithm is used, because of its ability to handle multi-class data. The experimental results show that the proposed approaches have a very surprising performance, and surpass the state-of-the-art methods

    Improving Phishing Website Detection with Machine Learning: Revealing Hidden Patterns for Better Accuracy

    Get PDF
    Phishing attacks remain a significant threat to internet users globally, leading to substantial financial losses and compromising personal information. This research study investigates various machine learning models for detecting phishing websites, with a primary focus on achieving high accuracy. After an extensive analysis, the Random Forest Classifier emerged as the most suitable choice for this task. Our methodology leveraged machine learning techniques to uncover subtle patterns and relationships in the data, going beyond traditional URL and content-based restrictions. By incorporating diverse website features, including URL and derived attributes, Page source code-based features, HTML JavaScript-based features, and Domain-based features, we achieved impressive results. The proposed approach effectively classified the majority of websites, demonstrating the efficiency of machine learning in addressing the phishing website detection challenge with an accuracy of over 98%, recall exceeding 98%, and a false positive rate of less than 4%. This research offers valuable insights to the field of cyber security, providing internet users with improved protection against phishing attempts
    corecore