
PROGRAMA DE DOCTORADO EN TECNOLOGÍAS DE LA
INFORMACIÓN Y LAS COMUNICACIONES

TESIS DOCTORAL:

APPLICATION OF ADVANCED MACHINE
LEARNING TECHNIQUES TO EARLY NETWORK

TRAFFIC CLASSIFICATION

Presentada por Santiago Egea Gómez para optar al
grado de

Doctor/a por la Universidad de Valladolid

Dirigida por:
Belén Carro Martínez, Luis Hernández Callejo y Antonio

Javier Sánchez Esguevillas

Acknowledgements

… to who inspired this research.

… to who unconditionally backed me during this long adventure.

… to who has contributed to this research.

… to my supervisors and the people involved in this challenging journey.

… to my true friends and genuine relatives.

… to who they are not already in this world, but always are with me.

… they know who they are.

Table of Contents

ABSTRACT ... 4

RESUMEN .. 5

1. Introduction .. 6

1.1. Traffic Classification for Network Management 7

1.2. Network traffic classification based on Machine Learning 9

1.3. Methodology in ML ... 10

1.4. Research Motivation & Objectives .. 12

1.5. Research Methodology ... 13

1.6. Thesis Organization ... 14

2. Thesis Framework & Contributions ... 15

2.1. Minor contributions ... 15

2.2. Major contributions ... 16

2.3. Paper Rationale and Research Questions .. 17

3. State of the Art ... 19

4. Thesis Methodology ... 25

4.1 Network Environments ... 25

4.2 Feature Extraction .. 26

4.3 Extra Datasets Used in this Research ... 27

4.4 Feature Selection Techniques .. 27

4.5 Learning Algorithms ... 28

4.6 Model Validation & Performance Metrics ... 30

4.7 Employed Tools ... 32

4.8 Summary of Methodologies ... 33

5. General Conclusions .. 34

6. Future Research Opportunities .. 36

List of References ... 37

A.1 Journal Paper. Intelligent IoT Traffic Classification Using Novel Search

Strategy for Fast Based-Correlation Feature Selection in Industrial

Environments ... 45

A.2 Journal Paper. Ensemble network traffic classification: Algorithm

comparison and novel ensemble scheme proposal ... 46

A.3 Journal Paper. Exploratory Study on Class Imbalance and Solutions for

Network Traffic Classification .. 47

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

2

A.4 Conference Paper. Exploratory Study on Class Imbalance and Solutions

for Network Traffic Classification ... 48

List of Figures

Figure 1. General Methods & Materials in ML ... 11

Figure 2. Research Methodology .. 13

Figure 3. Minor and Major Contributions of this dissertation 15

Figure 4. Scientific Manuscripts and their Connections to Research Questions 18

Figure 5. Processes in the Feature Extractor .. 26

Figure 6. AUC-ROCs for different model performances ... 31

List of Tables

Table 1. Extra Datasets used in this dissertation ... 27

Table 2. Feature Selection Algorithms employed during this research 28

Table 3. Ensemble Algorithms employed during this research 29

Table 4. Algorithm to deal with Class Imbalance ... 30

Table 5. Model Validation Approaches .. 30

Table 6. Software Libraries & Tools employed in this research 32

Table 7. Summary of the methodologies applied in our research articles 32

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

3

List of Acronyms

ADASYNC ADAptive SYNthetic algorithm IoT Internet of Things

AUC Area Under Curve IP Internet Protocol

BA Byte Accuracy ISP Internet Service Provider

BC Balance Cascade JMI Joint Mutual Information

BoF Bag of Flows KELM Kernel-based Extreme Learning Machine

CART Classification And Regression Tree LOA Local Optimization Approach

CIFE Conditional Infomax Feature Extractio MIFS Mutual Interformation Feature Selection

CMIM
CoNditional Mutual Information

Maximization
MIM Mutual Information Maximization

CNN Condensed Nearest Neighbor MRMR
Minimum-Redundancy Maximum-

Relevance

CV Cross Validation NCR Neighborhood Cleaning Rule

DBSCAN
Density-Based Spatial Clustering

Application with Noise
NM Near Miss

DPI Deep Packet Inspection OA Overal Accuracy

EE Easy Ensemble OSS One Sided Selection

EFOA Efficient Feature Optimization Approach P2P Peer to Peer

EL Extreme Learning PCA Principal Component Analysis

ENN Edited Nearest Neighbor PCAP Packet CAPture

FCBF Fast Correlation Based Filter PNN Probabilistic Neural Networks

FCBF#
Fast Correlation Based Filter with a

different search strategy
ROC Receiver Operating Characteristic

FCBFiP Fast Correlation Based Filter in Pieces ROS Random OverSampling

FFT Fast Fourier Transform RUS Random UnderSampling

FS Feature Selecion SLIC Self Learning Intelligent Classifier

FTP File Transfer Protocol SMOTE
Synthetic Minority Oversampling

TEchnique

GA Genetic Algorithm SSH Secure SHel

GM Geometric Mean SVM Support Vector Machine

GMM Gaussian Mixture Model TCEV
Traffic Classifier based on Expanding

Vectors

GOA Global Optimization Approach TCP Transport Congestion Protocol

HTTP HyperText Transfer Protocol T-DTC Tailored Decision Tree Chain

IANA Internet Assigned Numbers Authority TL Tomek Link

ICAP Interaction CAPping UDP User Datagram Protocol

IDGB
Imbalanced Data Gravitation Based

Classifier
WMI Weighted Mutual Information

IHT Instance Hardness Threshold WSU Weighted Symmetrical Uncertainty

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

4

ABSTRACT

The fast-paced evolution of the Internet is drawing a complex context which

imposes demanding requirements to assure end-to-end Quality of Service. The

development of advanced intelligent approaches in networking is envisioning

features that include autonomous resource allocation, fast reaction against

unexpected network events and so on. Internet Network Traffic Classification

constitutes a crucial source of information for Network Management, being decisive

in assisting the emerging network control paradigms. Monitoring traffic flowing

through network devices support tasks such as: network orchestration, traffic

prioritization, network arbitration and cyberthreats detection, amongst others.

The traditional traffic classifiers became obsolete owing to the rapid Internet

evolution. Port-based classifiers suffer from significant accuracy losses due to port

masking, meanwhile Deep Packet Inspection approaches have severe user-privacy

limitations. The advent of Machine Learning has propelled the application of

advanced algorithms in diverse research areas, and some learning approaches have

proved as an interesting alternative to the classic traffic classification approaches.

Addressing Network Traffic Classification from a Machine Learning perspective

implies numerous challenges demanding research efforts to achieve feasible

classifiers. In this dissertation, we endeavor to formulate and solve important

research questions in Machine-Learning-based Network Traffic Classification. As a

result of numerous experiments, the knowledge provided in this research constitutes

an engaging case of study in which network traffic data from two different

environments are successfully collected, processed and modeled.

Firstly, we approached the Feature Extraction and Selection processes providing our

own contributions. A Feature Extractor was designed to create Machine-Learning

ready datasets from real traffic data, and a Feature Selection Filter based on fast

correlation is proposed and tested in several classification datasets. Then, the

original Network Traffic Classification datasets are reduced using our Selection

Filter to provide efficient classification models. Many classification models based on

CART Decision Trees were analyzed exhibiting excellent outcomes in identifying

various Internet applications. The experiments presented in this research comprise

a comparison amongst ensemble learning schemes, an exploratory study on Class

Imbalance and solutions; and an analysis of IP-header predictors for early traffic

classification. This thesis is presented in the form of compendium of JCR-indexed

scientific manuscripts and, furthermore, one conference paper is included.

In the present work we study a wide number of learning approaches employing the

most advance methodology in Machine Learning. As a result, we identify the

strengths and weaknesses of these algorithms, providing our own solutions to

overcome the observed limitations. Shortly, this thesis proves that Machine

Learning offers interesting advanced techniques that open prominent prospects in

Internet Network Traffic Classification.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

5

RESUMEN

La imparable evolución de Internet está dibujando un complejo entorno que

impone numerosos requisitos para asegurar la Calidad de Servicio. La aparición de

nuevos paradigmas de red inteligentes proyecta en los dispositivos de red

capacidades como: la gestión automática de los recursos de la red, la reacción

instantánea ante eventos inesperados, etc. La Clasificación de Tráfico de Red

constituye una fuente de información esencial para el Gestión de Redes, siendo

manifiesta su gran importancia para los nuevos paradigmas de red. Monitorizar el

tráfico que circula por ciertos dispositivos de red conlleva importantes beneficios

para tareas como: la orquestación de redes, priorización de tráfico, arbitraje en la

utilización de la red y detección de ciber amenazas, entre otros.

Los clasificadores de tráfico tradicionales han quedado obsoletos debido a la rápida

evolución de Internet. Los clasificadores basados en puertos sufren importantes

pérdidas de precisión debido al enmascaramiento de puertos, mientras que los

enfoques de Inspección Profunda de Paquetes están limitados debido a problemas de

privacidad. La aparición de técnicas de Aprendizaje Automático ha abierto nuevas

posibilidades en numerosos problemas, y se ha demostrado que algunas de ellas son

una alternativa interesante para la Clasificación de Tráfico de Internet. Abordar este

problema usando Aprendizaje Automático implica numerosos retos de investigación

con el fin de lograr clasificadores eficientes. Esta tesis trata de formular y responder

preguntas de investigación cruciales en esta área de investigación. Como resultado

de numerosos experimentos, el conocimiento aportado en este trabajo constituye un

valioso caso de estudio en el que tráfico proveniente de distintos entornos de red es

recolectado, procesado y modelado con éxito.

Para empezar, se abordó el problema de recolección y selección de atributos

aportando nuestras propias soluciones. Se diseñó un Extractor de Atributos para

generar conjuntos de datos de Aprendizaje Automático a partir de tráfico de red;

también se presentó un algoritmo de Selección de Atributos basado en medidas de

correlación, cuyo rendimiento fue probado en varios problemas de clasificación. A

continuación, se utilizó dicho algoritmo para reducir el número de atributos en

nuestros conjuntos de datos de Clasificación de Tráfico buscando mejorar la

eficiencia de nuestros modelos predictivos. Más adelante, se analizaron numerosos

modelos de clasificación basados en Árboles de Decisión, produciendo excelentes

resultados en la identificación de tráfico de red. Los experimentos presentados en

esta tesis incluyen un análisis de algoritmos ensamblados, un estudio del problema

de Clases Desequilibradas y soluciones para éste; y un análisis de distintos

parámetros extraídos de cabeceras IP usados como atributos. Esta tesis se presenta

como un compendio de artículos científicos publicados en revistas JCR indexadas,

además de un artículo de conferencia.

En la presente investigación, se han estudiado un amplio número de técnicas de

aprendizaje asumiendo las metodologías más avanzadas en Aprendizaje Automático.

Como resultado, se identificaron las ventajas y desventajas de estos algoritmos,

aportando también nuestras propias soluciones para solucionar las limitaciones

observadas. En resumen, esta tesis demuestra que las técnicas avanzadas en

Aprendizaje Automático tienen unas prometedoras perspectivas en la Clasificación

de Tráfico de Internet.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

6

1. Introduction

The World of the Internet is composed of millions of users around the world,

millions of server computers providing a wide range of online facilities and a global

infrastructure that interconnects countless local networks. Internet networks

require innovating their infrastructures and control mechanisms to provide support

to emerging services continuously growing and evolving [1]. Currently, the Internet

provides communication to numerous public and private institutions that are

unceasingly transferring sensitive information about their customers, products and

facilities. Therefore, a communication disruption might bring important information

leakages and huge economic losses obstructing the activity of industries and even

governments [2]. Furthermore, the control and surveillance of certain critical

infrastructures (such as dams and reservoirs, nuclear and energy stations, transport

infrastructure and so forth) rely on Internet networks, which evidently imposes the

necessity of implementing secure and trustworthy communications. Finally, the

Internet is also used to perform bank transactions, consume multimedia services and

share personal information in the instance of home networks.

Efficiently monitoring and administrating Internet networks assure that the

communications are not under risk of sabotage by malicious users or of disruptions

due to service collapses. In this regard, network administrators daily cope with vast

amounts of traffic flowing through network devices corresponding to thousands of

different services, online applications and users. As network topologies tend to be

more and more complex and fast events unexpectedly happen at any instant,

Network Management is a non-trivial task comprising diverse mechanisms

including Traffic Analysis and Active/Passive Network Probing, amongst others [2].

The development of tools that automatically diagnose the status of network devices

has been assisting network operators’ work for last decades; however, the dynamicity

of the Internet imposes arising challenges that need to be addressed. Some of the

reasons that make the Internet a challenging scenario for management are:

- The characteristics of topologies and supported traffic vary depending on

network environments, locations and even dates [3]. For example, a traffic

classifier must be robust to packet losses and multipath effect when it is

deployed in a node in the middle of a backbone network, unlike simple home

networks. And, evidently, the Internet traffic supported in a home

environment considerably differs from the consumed in an enterprise.

Additionally, the amount of traffic generated in enterprises during regular

dates is not the same as in holiday seasons.

- The emergence of novel services, applications and encryption techniques also

imposes obstacles for network managers. Network resource utilization varies

depending on the kind of services and applications consumed by users, and

demanding applications are regularly launched to the market providing new

products and facilities, such as online TV. This fact forces the innovation of

Network Management systems to fulfil the emerging demands.

- The Internet is a dynamic worldwide communication infrastructure that is

daily increasing the number of interconnected devices. The architecture of the

Internet is substantially complex, comprising different transport technologies

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

7

(such as, optical and submarine links) that interconnect continents to serve

millions of users [4].

- Emerging networking paradigms envision intelligent architectures enabling

autonomous Network Management and automatic resource allocation. In the

case of the paradigms of Cognitive Networks and Self-Organizing Networks,

environment perception is defined as a crucial component for these cutting-

edge paradigms [1].

- Finally, the convergence of different communication technologies, such

satellite and mobile networks [5], with the Internet is drawing a context with

diverse demands to satisfy Quality-of-Service (QoS) of the different

technologies. This fact is also the case of the Internet of Things (IoT), which

is envisioned as one of the most trending paradigms for remote sensing in the

future intelligent cities and Smart Cities.

Network Traffic Classification (NTC) is a key information source to monitor the

network activity and/or early detect threats that could jeopardize both regular and

critical communications [6]–[9]. This dissertation is focused on NTC based on

Machine Learning (ML) techniques, which are attaching a relevant research interest

due to their promising outcomes producing efficient classification models. Through

this section, we pretend to introduce relevant concepts and bring the readers into

the two main research areas that are linked in this thesis: (1) Network Traffic

Classification and (2) Machine Learning. Therefore, Section 1.1 briefly introduces

NTC along with other important concepts and discusses its relevance for Network

Management. Later, NTC based on ML and its essentials are introduced in Section

1.2, meanwhile general methodological aspects in ML are described in Section 1.3.

The research motivation and objectives pursued in this dissertation are presented in

Section 1.4. The research methodology followed to identify the research questions is

presented in Section 1.5 and, finally, Section 1.6 presents the organization of this

dissertation.

1.1. Traffic Classification for Network Management

NTC aims at associating Internet flows with the applications or protocols that

generate them. It constitutes an important source of information for Network

Management and dynamic resource allocation [10], since many events can be

efficiently detected via monitoring the traffic supported in network nodes (i.e.

Denial-of-Services attacks or Internet link disruptions). Furthermore, NTC can

assist in other relevant networking tasks and mechanisms that are quite interesting

for Internet Service Providers (ISPs), such as: service arbitration, traffic

prioritization, infrastructure planning and so on.

The basic classification objects in NTC are Internet connection flows, which have

been defined in different ways during years of Network Management development.

Internet connection flows essentially represent information exchanges between

tuples origin-destination, typically a client and a server. In this work, we consider

Internet flows as the IP packets that transport the messages of a communication in

both directions, that is client to server and vice versa. Thus, the packets sharing the

same four tuples <Source IP, Source Port, Destination IP and Destination Port>

during a fixed temporal window are considered belonging to the same connection

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

8

flow. As we consider bidirectional connections in this research, the source and

destination fields are exchangeable depending on packet directions.

The earliest traffic classification techniques were based on the communication port

numbers contained in the transport layer of the OSI model. Under the assumption

that numerous applications and protocols use standard and predefined port numbers

(e.g. HTTP in port 80, SSH in 22, ftp in 21 and so on), Port-based approaches identify

flows via inspecting port numbers and associating them with applications according

to the well-known ports defined by the Internet Assignment Number Authority

(IANA) [11]. However, the port numbers are parameters that can be configured by

users, constituting an important handicap for Port-based Classification. Thus,

certain users and applications can easily evade this control mechanism masking

Internet connections beyond port numbers used by other well-known services. In

fact, port evasion is very often performed by Peer-to-Peer (P2P) applications to avoid

being detected. Additionally, P2P applications are quite resource-consuming, since

their communication scheme is employed by very demanding services, such as: video

streaming and data sharing applications. These facts caused that Port-based

classification became obsolete during last decades.

In order to provide a more accurate classification, Deep Packet Inspection (DPI)

approach arose as one of the most prominent solutions [8]. DPI tools examine the

data contained into IP application layers seeking fixed binary patterns. This

approach assumes that some information patterns are signature for certain

applications (i.e. the string “HTTP GET” for HTTP queries), so that application data

is inspected and compared to a database containing prefixed application signatures.

These approaches have produced outstanding improvements in accuracy respecting

Port-based tools; but, conversely, several constraints appeared for DPI. Firstly, the

use of encryption techniques; as the pointed data are scrambled, pattern seeking

turns out challenging for encrypted connections. Secondly, high-speed networks

normally support millions of connections per second with vast amounts of packets at

single nodes, so that inspecting all packets for all connection flows is very complex

and computationally prohibitive. Although novel DPI approaches are increasing

notably their capacities in terms of encryption robustness and computational

efficiency, there exists other important issue to overcome yet. In this regard, the

most limiting obstacle for DPI is privacy violation, since application layers contain

personal, sensitive information about users that is lawful protected [12].

The former NTC methods are not the only approaches proposed in the recent years,

alternative traffic classification techniques are: Decoding Protocols [7] and Traffic

Identification based on Statistical Patterns [13]. In the first case, certain protocols

are assumed to implement their communications according to repetitive message

exchange patterns between clients and servers; therefore, they can be detected via

observing these patterns. In the instance of NTC based on Statistical Patterns,

several indicators (such as: number of packets, time of life or bytes transferred) are

observed and statistically modeled, and inferring methods are used to identify

incoming unknown connections. Next section introduces NTC based on ML and

discusses important methodological considerations about ML that underpin some of

the advanced methodological techniques applied in this dissertation.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

9

1.2. Network traffic classification based on Machine

Learning

One of the most remarkable pioneers in ML research was Arthur Samuel in

1959 [14], who defined ML as: “the field of study that gives computers the ability to

learn with being programmed in an explicit manner”. The fast-paced development of

intelligent techniques and algorithms providing computers with the capacity of

learning from experience has opened numerous lines of application to solve problems

in diverse research areas [15].

Nowadays, ML provides a wide, varied number of tools that enable processing

information at several levels to achieve the final goal of modeling a system,

phenomena or problem. These techniques cover from data preprocessing methods to

learning algorithms, which can learn from the internal knowledge contained in

training data samples. In short, given a system that reacts with a response to certain

inputs, ML aims at modeling the internal system behavior via supplying learning

algorithms with representative examples about the problem.

There exist two main learning paradigms according to the nature of the addressed

problem and the availability of the response to predict: supervised and unsupervised

learning. Whether the response is known and is measurable during data acquisition,

the problem can be solved from a supervised perspective, in which human

intervention is needed to create a ground truth. On the contrary, unsupervised

learning assists in solving problems in which the response is unknown and/or

unmeasurable. Finally, some problems can be approached from a semi-supervised

perspective, which combine assumptions from the two former paradigms.

Regarding the nature of the response to predict, three main problems can be solved

using ML: (1) Regression, (2) Classification problems and (3)

Clustering/Segmentation. In the instance of regression problems, the response to

model is continuous and can take infinite values (numerical measures, such as

prices, temperature and so on); meanwhile, the response takes categorical and

discrete values in classification problems (i.e. categorizing objects in an image,

identification of types of genes, etc.). Finally, clustering refers to problems in which

the aim is to identify groups of samples according to their similarities (this is the

case of marketing segmentation applications). Although NTC can be also solved from

a semi-supervised perspective, we assume it as a supervised classification problem

with the objective of associating connection flows to their generating applications,

whose ground truth is established via alternative accurate means.

Regarding NTC based on ML, the first researchers that experimented with ML on

network traffic were A. McGregor et al. and A.W. Moore and D. Zuev. The former

presented in April of 2004 an approach based on the Expectation Maximization

clustering algorithm to categorize Internet connections [16]. The objective of this

approach is not to classify flows according to Internet applications, but cluster them

regarding their network properties (packet size, duration, inter-arrival time and so

on). A few months later, A.W. Moore and D. Zuev presented a supervised approach

to classify complete TCP connections according to their applications in [17]. The

authors trained the Naïve Bayes algorithm using a dataset with 248 features. This

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

10

dataset has become very popular, being used by many other authors to experiment

with [18]–[20].

In 2006, L. Bernaille et al. presented the concept of Early NTC in [21], consisting in

classifying connections flows using the minimal number of packets as possible. The

authors employed the distant-based clustering algorithm K-Means to identify

Internet applications using the few first packets at beginning of TCP connections.

This research work was afterwards extended in [22] testing more clustering

algorithms and including features based on inter-arrival times, jitter and packet

sizes. The classification models presented in these works exhibited promising

accuracies greater than 90%.

Then, N. Williams et al. experimented with different supervised algorithms [23],

including: Bayesian Net, C4.5 Decision Tree, Naïve Bayes and Naïve Bayes Tree.

The dataset employed in this work was composed by 22 predictors and the models

were trained after applying Correlation-based Feature Selection (FS). In [24], J.

Erman et al. compared two clustering algorithms (K-Means and DBSCAN) to other

previous approaches. Later, T. Auld et al. [25] proposed an approach based on

Bayesian Neural Networks and compared it to the Naïve Bayes and multi-layer

perceptron classification algorithms. Although substantial advances in ML-based

NTC must be performed to achieve feasible classification models, the earliest

research shown that ML constitutes a promising solution for accurate, efficient and

privacy-respectful NTC.

In this section we have reviewed the most pioneering research that constitutes the

advent of this field, and a more extensive revision of the most recent works is

provided in subsequent sections of this dissertation. Below, we present the general

and most relevant methodological aspects when a problem is approached from an

ML perspective.

1.3. Methodology in ML

When a classification problem is formulated from an ML perspective,

unavoidable methodological steps must be considered to successfully solve it. Figure

1 presents the most essential methods and materials in ML, from the problem

statement until the final predictive model is built. In Figure 1, different colors are

employed to differentiate between methodological processes and the materials they

produce.

The first and one of the most crucial steps is Problem Definition. Through Problem

Definition, both inputs and outputs (Predictors & Responses) of classification objects

(instances or samples) must be identified and clearly defined. The predictors and

responses contain the basic knowledge about classification objects, which will be

processed by ML algorithms to generate the sought predictive models. This step also

defines how to collect and process the Metadata of the system or problem to model.

In this dissertation, each classification object represents a bidirectional connection

flow consisting in a tuple <x, y>, including the statistical attributes used as inputs

and the responses, which are the protocols and applications that generate the

connection flows.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

11

Figure 1. General Methods & Materials in ML

Feature Extraction takes as inputs the collected Metadata from the problem, which

is processed in order to adequate the information to be computerized according to

the guidelines defined in Problem Definition. A critical phase in Feature Extraction

is ground-truth creation, which consists of assigning the actual response (classes or

labels) to each instance. Feature Extraction must be efficient and accurate, since

issues in this phase could alter the representation of classification objects leading to

inaccurate models. Furthermore, data collection and processing may be very time-

consuming depending on the approached problem. As a result of Feature Extraction,

a Dataset ready to be fed to ML techniques and Learning Algorithms is yielded.

In some cases, Data Preprocessing is needed to adapt the classification objects to

suitable format to be processed by Learning Algorithms. This process can include

encoding literal features to numerical formats, transforming or processing predictors

to generate new attributes (Feature Engineering), data normalization and

resampling techniques, amongst others.

Feature Selection (FS) is a relevant step in ML, which enables more efficient and

accurate predictive models. When Metadata collection is performed, it is very

common to include features or attributes that could result irrelevant or redundant

for the modeling task. Optimizing the inputs to learning algorithms normally results

in much better models, since redundant and irrelevant attributes detriment the

learning process inputting noise and leading to overfitting on certain classes [26].

Thereby, FS produces Subsets from the original dataset. Another important

advantage of FS is that reducing the number of predictors speeds up training and

classification processes, turning out faster and more interpretable models.

Through Model Validation, the different Subsets selected in FS are assessed

according to a validation strategy and to one or more performance metrics [27]. The

validation approach defines how the dataset is used to train and evaluate the

performance of classifiers. The simplest validation approach is randomly selecting

two datasets, one used for training and the other to assess predictive model

performances. However, we have employed more sophisticated validation methods

so as to adapt our experiments to arising methodological considerations in ML [28]

(such as: Class Imbalance or Concept Drift).

Note that the workflow depicted in Figure 1 is not strict, the phases presented can

be altered and some phases could be performed in different orders. Additionally,

solving a problem using ML necessarily requires a two-fold knowledge on ML and

the specific domain of the addressed problem. Through Section 4 “Thesis

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

12

Methodology”, we describe in detail the methods applied during this dissertation.

Having a preliminary view of the general methodology in ML, we present the

research motivation and objectives pursued in this thesis below.

1.4. Research Motivation & Objectives

The last advances in ML have propelled the application of these algorithms

in order to solve complex problems. ML is being constantly developed via identifying

emerging methodology concerns, proposing novel algorithms or spreading out its

application domains. Focusing on classification problems, one of the most

challenging research lines is how to improve model performances when classes are

not equally distributed in datasets. This phenomenon is known as Class Imbalance,

and it is also an intrinsic feature in NTC. The appearing of novel and complex

learning algorithms, such as ensemble and cost-sensitive algorithms, has opened

research opportunities in different problems.

Regarding NTC, a crucial open issue is defining consistent and efficient classifiers

to achieve real-time traffic identification, as the Internet imposes demanding

requirements in terms of accuracy, but also of latency and classification speed. High-

speed networks normally support very high transmission rates, what requires

optimal classification models. Also, enhancements in FS and Extraction algorithms

are a hot research line in ML-based NTC, since providing optimal subsets conduct to

more efficient traffic classifiers with a stronger robustness against Class Imbalance.

Finally, never seen before technological advances in communication system envision

a technology convergence that will have a significant impact on the observed traffic.

That is the case of paradigms as the Internet of Things (IoT), that connects

thousands of sensors through regular Internet networks. Thus, proposed network

classifiers have to be tested in modern and demanding network environments and

data.

Accordingly, we define the following research objectives and questions to be solved

in this dissertation:

Regarding model creation for NTC, defining a consistent set of attributes providing

the enough knowledge to obtain accurate and fast classification models is crucial.

Considering the former, we formulate the following questions:

Q1. What attributes are the most informative and relevant for early NTC?

How can it efficiently perform Feature Selection on NTC dataset to achieve

effective models?

Focusing on learning algorithms, ensemble techniques have exhibited better

performances compared to single estimators for many classification problems,

however they were not exhaustively analyzed for ML based NTC. Accordingly,

several insightful research lines arise:

Q2. Can ML approaches accomplish similar classification performances to

previous NTC approaches? Can ensemble algorithms efficiently perform

early NTC according to the accuracy and latency requirements in high-

speed networks?

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

13

Finally, considering that traffic distributions are notably different between Internet

applications, the following questions about Class Imbalance in NTC can be

formulated:

Q3. How does Class Imbalance affect Internet traffic classifier

performances? How does Class Imbalance vary amongst different network

environments? Is it possible to solve Class Imbalance in NTC using

advanced ML techniques (such as: data-level resampling, advanced

ensemble structures and cost-sensitive algorithms)?

All the present research questions are addressed and answered through this

dissertation. As major outcomes of the experiments performed, three scientific

manuscripts have been published in top-tier journals in the field and extra

contributions interesting for the research community have produced in form of

software, analysis and materials (Collection of Attributes, NTC datasets, etc.). All

the contributions resulting from this research are thoroughly presented and

discussed in subsequent sections and the research articles produced.

1.5. Research Methodology

Regarding the research methodology, we briefly present in Figure 2 the main

steps applied to identify Research Questions and contribute in solving them.

Figure 2. Research Methodology

Literature Review. Through this phase, we have reviewed the latest and most

relevant literature in ML-based NTC in order to identify open research lines and

gather methodological considerations. This process has required a two-folded

knowledge acquisition, reviewing literature specific for both ML and NTC. As a

result, the Research Questions to solve during through this dissertation are

formulated.

Software Development. During this phase, the necessary software was designed

and developed with the aim of solving the Research Questions formulated. This

software derived from coping with the different methodological steps in ML (see

Section 1.3), from Problem Definition to classification Model Validation.

Experimentation. This phase consists of experimenting with state-of-art

algorithms and our own algorithm proposals. During the performed experiments, we

have assumed different methodologies comprising from dataset creation to several

model validation schemes. The resulting observations leaded to worthy asset

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

14

observations to solve the Research Questions. The whole process was iteratively

performed in order to contribute to different problems in this research area.

After presenting the general research workflow followed, we present the structure of

this dissertation.

1.6. Thesis Organization

The present dissertation is structured as follows: Section 2 “Thesis

Framework & Contributions” provides an overall view on the contributions achieved

and relates them to the ML workflow; Section 3 “State of the Art” reviews the latest

research work in ML-based NTC; Section 4 “Thesis Methodology” describes the

different methodological aspects applied in this research, and the general

conclusions and future research are presented in Section 5 & 6, respectively. Finally,

the research manuscripts composing the publication compendium are annexed at the

end of this dissertation.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

15

2. Thesis Framework & Contributions

The modality of this dissertation is the compendium of publications in JCR-

indexed journals in the field of Computer Science. Through this research, three

manuscripts have been published in top-tier journals, and additional asset were

produced in form of different contributions that could be interesting for the research

community.

After presenting the ML methodology and the research questions, the contributions

of this dissertation are presented and related to the different ML steps in Figure 2.

Accordingly, there exist two types of contributions (Figure 3): (1) Major

Contributions that are highlighted with thicker squares, and (2) Minor Contributions

represented by narrower squares. Major Contributions compose the main asset

produced in this research, meanwhile Minor Contributions are worthy original

materials shared with the research community.

Since this original research addresses ML-based NTC from Problem Definition to

Learning Algorithms, the derived contributions are closely related to the ML

workflow and comprise different elements: Scientific Manuscripts, Generated

Knowledge, Software and NTC datasets. Below, we describe in detail all Minor and

Major Contributions and the connections between them.

Figure 3. Minor and Major Contributions of this dissertation

2.1. Minor contributions

The Minor Contributions compose the generated materials that are

interesting for the research community in ML-based NTC, but without constituting

the most relevant output presented in the compendium of articles.

When a ML classification problem is approached, the first crucial step is consistently

defining the input predictors and the output response (Section 1.3). As result of an

exhaustive literature revision, potential predictors from IP headers were identified

and compiled in a Collection of Attributes. The provided Collection of Attributes was

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

16

used and extended in subsequent research stages. Finally, the classification

granularity was also defined in this phase to conform the final classification objects.

After defining the classification objects for our problem, a Feature Extractor was

implemented to create early NTC Datasets from traffic data contained in PCAP

network traces. As the studied network environments presented different privacy

requirements, several versions of this software were developed. Due to the scarcity

of available NTC datasets for scientific experimentation, our NTC Datasets are

shared with other researchers via emailing the authors to facilitate model

comparison and innovation. Finally, an extra version of the Feature Extractor was

developed to generate time-series NTC datasets that were used in a third-party

research [29].

In addition to the three scientific manuscripts that compose the publication

compendium, a conference paper [30] was presented and published in the First

International Conference on Advances in Signal Processing and Artificial

Intelligence (ASPAI' 2019). Through this article titled “A Feature Selection

Framework and a Predictors Study for Internet Traffic Classification”, we observe

different kind of predictors for early NTC and provide a FS Framework.

Furthermore, we discuss in this manuscript which are the best attributes for this

classification task and relate their performances to network features. To this end,

the preliminary NTC Datasets were extended to include more predictors, including

raw attributes, statistics and Fast Fourier Transform (FFT) components. As result

of the application of our FS method to the Extended NTC Datasets, a reduced Subset

of Attributes for Efficient Early NTC is provided. Finally, an Analysis of Port

Masking is carried out to assess this detrimental effect when port numbers are

included as predictors in the classification model.

The presented Minor Contributions constituted essential and worthwhile materials

to carry out the experimentation that produced the Major Contributions presented

below. The most of those materials are made available to the research community

through emailing the authors or in the GitHub repository [31].

2.2. Major contributions

 The Major Contributions yielded through this thesis have been materialized

in three scientific manuscripts published in top-tier Computer Science journals.

In the first paper titled “Intelligent IoT Traffic Classification Using Novel Search

Strategy for Fast Based-Correlation Feature Selection in Industrial Environments”

[32], the FS stage is approached via proposing a novel search scheme as modification

of the well-known Fast Correlation Based Filter algorithm [33] (FCBF). The novel

FS algorithm, called FCBF in Pieces (FCBFiP), was tested in different classification

datasets from diverse research areas (including Anomaly Detection in Internet

networks) and its applicability to emerging Internet Traffic Classification was

discussed. The results show that the proposed search strategy significantly speeds

up the selection process preserving similar performances to the previous versions of

FCBF [33]. Our FS filter is afterwards employed in subsequent experimentation

stages to generate optimal models for ML-based NTC. We make the implementation

of FCBFiP available in [34].

https://www.researchgate.net/publication/331980147_A_Feature_Selection_Framework_and_a_Predictors_Study_for_Internet_Traffic_Classification?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/331980147_A_Feature_Selection_Framework_and_a_Predictors_Study_for_Internet_Traffic_Classification?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

17

As second Major Contribution presented in the paper “Ensemble Network Traffic

Classification: Algorithm Comparison and Novel Ensemble Scheme Proposal” [35],

we provide an original comparative analysis of well-known ensemble algorithms for

early NTC and propose a new ensemble scheme called Tailored Decision Tree Chain

(T-DTC). During this research, more than nine learning algorithms are compared in

terms of accuracy and latency for different network environments after applying

FCBFiP, showing that T-DTC exhibits the best performances for early NTC. The

implementation of the proposed ensemble scheme is available in [36]. Furthermore,

the Collection of Attributes is presented and described in this manuscript.

The third Major Contribution comprises an exhaustive study on Class Imbalance

and solutions for our NTC Datasets, and it is presented in the article “Exploratory

Study on Class Imbalance and Solutions for Network Traffic Classification” [37].

Through this Exploratory Study on Imbalanced NTC and Solutions, we discuss and

characterize the Class Imbalance issue relating it to network conditions and

performances for ML-based traffic classifiers. Several approaches to deal with

imbalanced class distributions are compared for different NTC datasets, including:

21 data-level techniques, advanced ensemble algorithms and cost-sensitive

solutions. Furthermore, this is the first time that some data-level algorithms are

mixed with Boosting training schemes to compensate Class Imbalance in

multiclassification problems to the best of our knowledge. Consequently, the

proposed combination of Tomek Link and Boosting yielded the best results for

imbalanced early NTC. Finally, this manuscript describes methodological

considerations that must be considered in Class Imbalance contexts, and that have

been ignored by the ML-based NTC community up to now. As additional output of

this experimental stage, we provide strategies to extend binary Class Imbalance

solutions to multiclassification and the learning algorithm implementations in [38].

As summary of all contributions achieved in this dissertation, the following section

relates all of them to each other and to the research questions previously formulated.

2.3. Paper Rationale and Research Questions

 This section is focused on the relation between the research articles produced

in this thesis and the Research Questions formulated in Section 1.4 (Figure 4).

The first paper written is [32] and it is directly related to Q1. This paper was

published in IEEE Internet of Things Journal addressing the problem of FS for

multiclassification problems. And the application of the proposed FS algorithm to

the Internet of Things traffic classification is discussed.

Later, [35] was published in the Journal Elsevier Computer Networks. This

manuscript answers Q1 and Q2 through observing and comparing several ensemble

algorithms assessing both model performances and latency. Additionally, a novel

ensemble scheme is proposed to preserve a proper ratio between accuracy and

classification time.

https://www.researchgate.net/publication/319009874_Ensemble_Network_Traffic_Classification_Algorithm_Comparison_and_Novel_Ensemble_Scheme_Proposal?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/319009874_Ensemble_Network_Traffic_Classification_Algorithm_Comparison_and_Novel_Ensemble_Scheme_Proposal?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/330863909_Exploratory_Study_on_Class_Imbalance_and_Solutions_for_Network_Traffic_Classification?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/330863909_Exploratory_Study_on_Class_Imbalance_and_Solutions_for_Network_Traffic_Classification?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

18

Figure 4. Scientific Manuscripts and their Connections to Research Questions

In the instance of [37], it was accepted in the Special Issue “Learning in the presence

of class imbalance and concept drift” [39] published in the Journal Elsevier

Neurocomputing. This paper copes with Q2 and Q3 assessing numerous solutions to

Class Imbalance in NTC, including advanced ensemble algorithms.

Finally, [30] addresses the questions Q1 and Q3 providing a Feature Selection

Framework and discussing the capacities of different IP header parameters for early

imbalanced NTC. This manuscript was accepted as conference article in ASPAI’19.

All the manuscripts presented in this section are annexed in subsequent sections of

this dissertation. Overall, more than 30 predictive models based on the CART

Decision Tree algorithm were generated for NTC for two quite different networks

scenarios in numerous experiments. The ML techniques considered include

preprocessing steps (such as: 21 resampling techniques and FFT attribute

generation), 15 ensemble algorithms, one cost-sensitive technique, three model

validation approaches and six performance metrics according to several

methodological factors from Computer Networks and ML perspective. In the

following section, we go in depth into the latest and most advanced literature about

ML-based NTC.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

19

3. State of the Art

In Section 1.2, we reviewed the most pioneering works in ML-based NTC from

which the essentials of this research field derive. These essentials underpin the most

advanced research conducted during the recent years, and that is revisited through

this section. As each research manuscript composing the compendium summarizes

previous research works, we focus here on the literature that we consider the most

relevant.

In [19], a comparison of different NTC approaches was conducted. The methods

under comparison included Port-based classification, a DPI tool and two ML

algorithms: C4.5 Decision Tree and Naïve Bayes. In this case, UDP and TCP flow

identification was separately studied focusing on classifiers stability for traffic

collected in different dates and locations. The results reported show that C4.5

Decision Tree was the best-performing algorithm preserving an excellent ratio

between classification performances and latency.

A. Este et al. approached TCP flow identification using Support Vector Machines

(SVMs) in [40]. The presented algorithm exhibited accuracies of 95% for fine-grained

classification of specific Internet applications. As extension of their work, A. Este et

al. [41] studied packet-level attributes for TCP application classification based on

ML. The authors experimented with two supervised (Naïve Bayes and Multilayer

Perceptron) and two semi-supervised (K-Nearest Neighbors and Gaussian Mixture

Model) learning algorithms probing the predictive power of packet-size related

predictors. Other SVM-based classification scheme was presented in [42] for real-

time traffic identification. In this instance, R. Yuan et al. studied different kernel

functions using a collection of 19 attributes. Radial Basis Function kernel exhibited

the best performances; however, the author did not assume the early-NTC

predictors.

In [43], several experiments were conducted with the objective of comparing different

ML approaches for NTC. The algorithms compared were Bayesian Neural Networks,

Decision Trees and Multilayer Perceptron using NetFlow-based features. According

to the reported results, Decision Tree was anew found as the most promising

approach. Other learning algorithms comparison was performed by Collado et al. [3]

including six learning algorithms and various different network environments. The

authors demonstrated that network conditions may considerably affect ML-based

performances. Additionally, the authors proposed four combination strategies to

ensemble different predictive models and boost classification performances.

The effect of packet sampling on traffic classifiers was analyzed in [44] when

NetFlow predictors are assumed. The authors employed C4.5 Decision Trees as

learning model and extracted ten attributes under different sampling rates proving

that packet sampling is detrimental for ML-based NTC. Finally, a new approach to

compensate the performance losses was presented exhibiting the best robustness

against packet sampling.

T.T.T. Nguyen et al. [45] proposed a technique based on C4.5 Decision Tree and

Naïve Bayes for continuous interactive flow classification (namely, VoIP and online

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

20

game traffic). A sliding window of 25 packets was used to compute statistical

attributes at different points of flow connections enabling tracking the interactive

connections. Additionally, two preprocessing techniques were proposed for

augmenting model performances.

While on FS for imbalanced NTC datasets, a wrapper FS algorithm, called WSU-

AUC, was presented in [20]. The authors used Weighted Symmetrical Uncertainty

(WSU) information metric to preselect the predictors and AUC-ROC metric along

with a base learning algorithm to evaluate subset performances. This research was

focused on TCP connections, thus discarding UDP protocols.

One of the first works assessing standard solutions to Class Imbalance in ML-based

NTC is [46]. Two data-level and one cost-sensitive technique were compared using

Decision Tree as base estimator. Sixteen datasets collected from three different

network locations were analyzed considering only TCP connections. The results show

different advantages depending on the technique employed, for example Random

UnderSampling was found the most beneficial in terms of training time savings;

meanwhile, MetaCOST obtained the best results when training data size is large

enough.

In [47], the authors analyzed FS filters using data traffic collected from the Internet

of China. The authors trained separate classification models for TCP and UDP and

proposed a FS algorithm using information gain and information gain ratio.

J. Zang et al. presented the concept of Bag-of-Flows (BoF) in [48], which exploits

correlated flow predictions to boost traffic classifiers. The authors trained Naïve

Bayes classifiers using full unidirectional flows and posterior probabilities were

aggregated to identify connection flows. The new approach was compared to state-

of-the-art ML algorithms exhibiting promising results. Later, this research was

extended in [49], in which BoF was used to improve 1-Nearest Neighbor

performances.

A new classification approach based on server-client interactions was presented in

[50]. The main difference respecting others is that the predictors extracted describe

information exchange patterns between both sides of connections. Accordingly, six

ML algorithm were analyzed using these attributes, proving that Decision Tree was

the best-performing algorithm.

In [51], the FS problem for TCP traffic classification was addressed via proposing an

algorithm called Local Optimization Approach (LOA). LOA was conceived as result

of experimenting with six FS techniques and assessing their stability and goodness

using Naïve Bayes as base estimator. Then, A. Fahad et al. presented the Global

Optimization Approach (GOA) in their posterior research [52], which combines

several FS filters to preselect predictors and wrapper techniques to get the final

subset.

With the aim of identifying unknown flows, Zhang et al. [53] proposed a new learning

approach that exploits the concepts of Bag of Words and Latent Semantic Analysis.

The applications are clustered using k-Nearest Neighbor algorithm, and resulting

clusters are merged using statistical and payload-based information. This approach

exhibited very prominent performances using protected, sensitive user information,

though.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

21

In [54], J. Camacho et al. presented a traffic classifier that uses flow pairing for

stable flow and P2P traffic classification. Distant-based algorithms were studied

focusing on statistical validation and generalization ability for dynamic traffic.

Finally, the authors presented a similarity function, which classifies connections

employing IP addresses, port numbers and timestamps.

In [55], D. Li et al. proposed a NTC approach able to rank predictors and provide

classification models exploiting the concept of Multi-Task Learning (MTL). The

authors compared their proposal to other MTL techniques and ML algorithms for

binary classification.

A self-learning approach classification, called SeLeCT, was presented in [56] to

model emerging Internet applications using semi-supervised learning. In this case,

K-Means algorithm was upgraded with the ability of interactively creating new

clusters to represent new traffic classes. The algorithm was tested for TCP long-live

connections yielding superior performances than basic K-Means algorithm.

In [57], L. Peng et al. studied the optimal number of packets to perform early TCP

flow classification. The datasets were constructed only using packet lengths

extracted from IP headers after TCP handshake phase, and several predictive

models based on different supervised models were examined. After statistically

validate their results, the authors concluded that 5-7 packets are enough for effective

TCP flow classification.

Other FS technique for imbalanced NTC was presented in [58]. The algorithm, called

Class-Oriented FS, reduces training datasets in two phases. Firstly, the algorithm

searches the optimal features for each individual class, and the final subset is

selected according to WSU information metric. Additionally, an ensemble scheme

was proposed consisting in different models for each class and a weighted

classification strategy.

In [59], Valentín Carela et al. presented a classification system composed by three

different classification mechanisms, including a Decision Tree model trained with

NetFlow predictors. In order to assure the classifier stability on time, an Automatic

Retraining System is proposed showing that the proposed system is able to preserve

classification accuracy with time.

The identification of zero-day applications was also addressed in [60]. The authors

proposed a semi-supervised technique based on K-Means, Random Forest and BoFs

to detect new traffic applications. This system has numerous tuning parameters;

thus, the authors also presented a procedure for selecting the input parameters.

D. M. Divakaran et al. [61] proposed an intelligent classifier called Self Learning

Intelligent Classifier (SLIC), able to retrain itself via exploiting the concept of BoFs.

SLIC rebuilds its classification model using an internal dataset that is grown with

samples that are consistently identified. The proposed approach was compared to

other techniques producing the best outcomes.

A low complexity traffic classifier based on fuzzy nets was proposed in [62]. The

classification model uses a 3-layer neuro-fuzzy network and was compared to other

state-of-the-art ML algorithms. The reported results prove that the proposed

classifier can accomplish similar performances to other algorithms while reducing

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

22

considerably the computational complexity. Finally, the authors presented an

implementation for hardware platforms.

In [63], a new classification approach based on Markov Models using sequence of

messages sizes was proposed for NTC. Naïve Bayes classifiers were used to model

each state in application Markov chains and a GMM estimates posterior

probabilities to decide the final class. The authors employed Expectation

Maximization Clustering to reduce the number of application classes, and the

proposal was tested for TCP and UDP connections.

The temporal behaviors of Internet connections were examined in [64], including a

clustering analysis. Unlike previous reviewed manuscripts, the aim of this research

is analyzing temporal signatures in data traffic. The presented analysis was

performed employing flow-level statistics as inputs, fuzzy Gustafson-Kessel method

to detect flow patterns and K-Means to classify the different traffic patterns.

A self-adaptive online classifier was presented in [65], the proposed algorithm uses

K-Means as estimator and a cluster refinement technique to remove meaningfulness

application clusters. The model was retrained using its own predictions, which are

selected for retraining according to an inter-cluster conflicts criterion. The algorithm

was also tested for network intrusion detection datasets.

Feature Extraction and Selection for optimal and robust traffic classification was

approached in [66]. The authors presented a method to extract predictors based on

Wavelet Multifractal transformation, and an FS algorithm, called PCABFS, was also

proposed. PCABFS essentially uses Principal Component Analysis (PCA) to filter

usefulness features according to variance ratios for the resulting components. The

authors compared their proposal to other approaches reporting quite positive

outcomes for TCP and UDP traffic.

In order to reduce the number of packets processed for classification, a new approach

based on expanding vectors was developed in [67]. Traffic Classifier based on

Expanding Vectors (TCEV) examines relationships amongst connections regarding

the four tuples <IPsrc, PORTsrc, IPdst, PORTdst> to detect three levels of relation.

Then, expanding vectors are computed for a time windows employing the relation

between connections, and several well-known ML algorithms were trained using

these expanding vectors.

A novel classification algorithm, called Imbalanced Data Gravitation Based

Classifier (IDGB), was studied in [68] for traffic classification under Class Imbalance

conditions. This technique uses weights to deal with imbalanced class distributions

strengthening minority class detection. IDGB model was compared to classic ML

algorithms and solutions to Class Imbalance for binary traffic classification (such as

cost-sensitive and data-level techniques).

The identification of Internet video applications was addressed in [69]. Y. Dong et al.

presented a two-phase classification approach, which firstly distinguishes

symmetrical and unsymmetrical connections and then identifies video applications

based on K-Nearest Neighbors models. The authors shown that their proposal

outperforms other similar approaches for video application detection.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

23

An ensemble algorithm using Probabilistic Neural Networks (PNN) was presented

in [70] pursuing efficiency and flexibility for traffic classifiers. One PNN is trained

to identify one type of traffic class, and heuristics rules are applied for final

classification according to posterior probability estimates. The authors compared

their proposal to other ML approaches showing that multiclassification PNNs are

more efficient and robust against dataset size variations than the rest.

The concept of Extreme-Learning (EL) is exploited in the classification approach

presented in [71]. The Kernel Extreme Learning Machine (KELM) with a wavelet

transform kernel was employed to train the traffic classification model, and a

Genetic Algorithm (GA) was also proposed to automatically tune the kernel

parameters. The proposed approach produced positive results when it was trained

with a balanced version of the dataset used in [72].

Several Deep Learning approaches based on Recurrent and Convolutional Neural

Networks were tested for time-series NTC in [29]. The datasets used were extracted

from some data traffic employed in this dissertation using 20 packets at the

beginning of each connection. The authors conducted several experiments assessing

different neural network settings, dataset sizes and lengths for the time-series

dataset.

In [73], Decision Trees and a fuzzy multicriteria technique were combined for NTC

and Network Anomaly Detection in order to complement the strengths and weakness

of both techniques. The new approach, named PROAFTN, extracts fuzzy decision

patterns from a Decision Tree model to create the final classification model.

Other FS wrapper method to select optimal subsets for imbalanced NTC was

proposed in [74]. The presented technique preselects the most informative predictors

using Weighted Mutual Information (WMI) metric, and then the final subset is built

training a learning model and evaluating the AUC-ROC performance metric. The

presented FS algorithm was validated using 11 well-known learning algorithms and,

additionally, a Robust Selection method was proposed to obtain robust and stable

subsets.

In [75], an Efficient Feature Optimization Approach (EFOA) is proposed consisting

in Feature Generation and Selection methods. The Feature Generation is based on

Deep Learning using Deep Belief Networks to generate new predictors from a

preselected subset. The synthetized features are afterwards reduced using WSU.

EFOA approach was compared to previous FS approaches yielding the best scores

using several learning algorithms as base estimator on two well-known data traffic.

A semi-supervised approach with the capacity of self-training was presented in [76].

The proposed classification approach exploits the concept of multi-view ML via

creating different sample representations using three component projections

techniques: Isomap, Random Projection and Kernel-based PCA. The generated

components are used to train different clustering models based on K-Means. The

decided clusters are mapped to actual Internet applications using advanced

agreement functions. A mechanism using SVMs was employed to refine decision

boundaries and interactively retrain the classification models. The presented

algorithm was compared to other semi-supervised approaches for Network Intrusion

Detection and NTC datasets.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

24

From literature review, several research gaps were found according to the research

methodology presented in Section 1.5.

Although it is well-known that ensemble algorithms can significantly boost model

performances, we noted that there is not a uniform comparison amongst these

techniques providing clear observations on their capacities. As aforementioned,

high-speed networks are demanding scenarios support high transmission rates,

thereby assessing advance learning algorithms considering both accuracy and

latency requirements may be very worthy.

The Class Imbalance problem is a hot research topic in general ML and in ML-based

NTC. Numerous techniques have been proposed to compensate the detrimental

effect of imbalanced traffic class distributions. But, although several authors coped

with imbalanced NTC, a consistent analysis of Class Imbalance in NTC datasets and

existing solutions is necessary. Also, assuming the most advanced research methods

is mandatory to precisely assess the considered techniques.

Additionally, due to the relevance of Feature Extraction and Selection for ML

problems, we also consider an important asset contributing to these two processes.

That is the reason why we approached the research experiments addressing all

phases in the ML workflow, from Problem Definition until providing the Predictive

Models (see Section 1.3). Regarding the former, we designed our own collection of

attributes and proposed an FS algorithm to reduce it, producing quite positive

results as the results presented in our manuscripts reveal.

Finally, we detected that performed research tend to be skewed due to some

experimental concerns. In this regard, many researchers focused their research only

on certain applications or transport layer, typically TCP, altering dataset

compositions. In our research, we have considered the importance of detecting the

most diverse range of applications, and not to notably modify the composition of our

datasets. In subsequent sections, we present all the methodological aspects assumed

in our experiments.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

25

4. Thesis Methodology

Through this section, we present the most important methodological aspects

assumed during the different experimental stages of this dissertation. As the

scientific manuscripts that compose this thesis present descriptive sections dealing

with the methodologies assumed, this section focuses on the most essential and

general aspects.

As aforementioned, several essential steps must be followed when an ML

classification problem is addressed. The contributions of this thesis comprise diverse

artifacts, including software and NTC datasets that are also presented here.

However, the most relevant contributions are presented and discussed in the three

research articles conforming the compendium of publications. Consequently, the

methods and materials assumed in our experiments have been refined according to

the feedbacks provided by expert reviewers during the publication processes. Here,

we describe common methodological steps and present the derived contributions.

4.1 Network Environments

After defining the response and predictors for the traffic classification model,

the metadata extracted from the pointed network environments must be processed

to build the training datasets. In our case, the metadata are network traces that

contain the activity of a network device or a host at packet level; thus, the collected

traffic data are PCAP files containing IP packets.

It is well-known that Internet traffic can notably differ amongst network

environments and validating ML classifiers using data extracted from different

dates and locations is highly recommended. Therefore, we have considered two quite

network scenarios with dissimilar network conditions for experimentation.

Host environment. In this instance, the traffic traces were shared by the CBA

research group of UPC BarcelonaTech. The network activity was manually

simulated and collected in host computers located in research labs at University of

Catalunya. Three network traces were studied corresponding with different

computers and collected during periods of time between February and April of 2008.

These traffic data were previously employed in the NTC research [44], [77], [78].

These datasets are denoted as “HOST” in the rest of this dissertation and our

research articles.

Internet Service Provider (ISP) environment. An ISP has cooperated with this

research sharing real network traffic collected at their backbone network between

January and March of 2017. This ISP provides Internet connection to public and

educational institutions reaching millions of users around Spain. Additionally, the

node in which the traffic was collected supports transmission rates close to 7 GB/s.

So that this environment constitutes a challenging case of study due to the

characteristics of the network. Due to privacy and security concerns, the name of the

ISP is omitted through this dissertation, and these datasets are denoted as ISP in

our papers.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

26

These network environments constitute two quite diverse cases of study in NTC

based on ML, enabling the validation of traffic classifiers under different traffic

profiles and network conditions. Note that the ISP network traces are very

susceptible of suffering packet losses and multipath effect; meanwhile, these

conditions are much weaker for HOST traffic. Additionally, the diversity in the

Internet applications also differs between environments, since the applications

detected in HOST datasets were manually selected in contrast to ISP network traffic

that is composed by actual traffic. Further considerations about traffic compositions

of the considered network traces are described in detail in our papers.

4.2 Feature Extraction

In order to build our NTC datasets, we have compiled a list of potential

predictors for early NTC, and a Feature Extractor software was developed to process

the network traces. The Feature Extractor takes as input standard PCAP files and

provides a dataset in which each instance is associated to a connection flow.

Although the number of attributes was extended in [32], the preliminary set of

predictors comprises a collection of 77 statistical attributes along with the

application ground truth and it was presented in [35]. According to [21], informative

and relevant predictors can be computed processing a few numbers of packets at the

beginning of each connection. Consequently, we have computed the collection of

statistical attributes using only five packets at the beginning of connections flows to

fulfill the early NTC requirement. Although some research focuses only on TCP or

UDP connections, we considered both in this dissertation. Figure 5 describes the

different modules and processes that compose our Feature Extractor, in which each

color corresponds to different Internet connections.

Figure 5. Processes in the Feature Extractor

As Figure 5 shows, the input to the Feature Extractor is packet-level traffic that can

suffer packet duplications, out-of-order packets and packet losses. In the first step,

the Traffic Data is transformed to Flow Data, consisting in PCAP files that contain

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

27

all packets belonging to a same connection. As aforementioned, we consider

bidirectional Internet flows and they are defined for a specific lifetime. Thus, when

the lifetime expires without observing new packets for a given connection, the

incoming packets with the same source-destination information are considered

belonging to a new flow. The flow lifetime was set to 60 seconds for our experiments.

As DPI tools are highly recommended for ground-truth creation due to their

precision, Flow Data instances are labelled using nDPI [79]. We selected nDPI

because it has probed as one of the most accurate open-source DPI engines [78]. As

some of the connection flows were not correctly identified or were identified as

“unknown”, we performed a second labeling stage based on port numbers.

In the case of ISP datasets, the traffic data was processed in an external server

deployed with the aim of preserving users’ privacy. Thus, the preliminary software

features were extended to include trace anonymization and remote processing. While

on HOST datasets, we processed the network traces in a regular personal computer.

Finally, the software was upgraded to create the time-series NTC datasets used in

[29] and to expand the initial collection of attributes [30]. The datasets employed in

this research have been made available for researchers, which is a worthy resource

considering the scarcity of NTC datasets.

4.3 Extra Datasets Used in this Research

Although this research copes with NTC, the FS technique FCBFiP was tested

for extra datasets. Table 1 describes the additional datasets employed in [32].

Table 1. Extra Datasets used in this dissertation

 Description

Orange Churn

Prediction [80]

Orange dataset is a collection of information about costumer churn in a telecom

company.

KDD99

[81]

KDD99 is a well-known dataset in network anomaly detection. The dataset contains

instances representing normal and attack connections.

LSVT Voice

[82]

LSVT Voice is a dataset employed in Parkinson diagnosis via voice signals. The

dataset records voice signal indicator and the evolution of the patient to predict.

CNAE-9

[83]

CNAE-9 dataset contains text information about the activity of Brazilian companies

with the objective of categorizing their activity.

4.4 Feature Selection Techniques

During this research, numerous FS methods were considered for ML-based

NTC. Although one of our contributions is a FS algorithm (FCFBiP), we have also

employed additional methods including wrapper and filter algorithms. FS filters

assume information-based metrics to evaluate the importance of each attribute,

meanwhile wrapper methods score predictors employing classification performance

metrics and learning algorithms. The description of FCBFiP is detailed in [32], and

it was applied in the other articles conforming the compendium. Whilst the rest of

algorithms were integrated in the FS Framework presented in [30]. Table 2 contains

all FS techniques employed in this dissertation.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

28

Table 2. Feature Selection Algorithms employed during this research
 Description

FCBF

[84]

FCBF uses the correlation metric Symmetrical Uncertainty to assess the relevance

and redundancy in datasets.

FCBF#

[33]

FCBF# modifies the search strategy of FCBF to achieve a more accurate attribute

selection.

FCBFiP

[32]

FCBFiP is a modification of FCBF whose objective is speeding up the selection

process preserving accuracy performances of FCBF.

MRMR

[85]

MRMR selects features according to maximum relevancy and minimum redundancy

criterion.

CIFE

[86]

CIFE maximizes the joint class-relevant information by reducing the class-

redundancies.

CNIM

[87]

CNIM assumes Conditional mutual information metric to select the features that

maximize the class mutual information.

ICAP

[88]

ICAP evaluates interaction information between attributes and labels for fast

context-dependent attribute selection

MIFS

[89]

MIFS performs a greedy selection of predictors by assessing the mutual information

between classes and other features.

DISR

[90]

A new information metric, Double Information Symmetrical Relevance, is used to

evaluate attributes for classification.

JMI

[91]
JMI uses Joint Mutual Information in order to reduce the data space.

MIN

[92]

MIN individually evaluates the importance of attributes using Mutual Information

Maximization approach.

Wrappers

[32]

We employed several performance metrics and learning algorithms to assess them

when they are input as unique predictor

4.5 Learning Algorithms

The objective of this section is briefly introducing the learning algorithms

analyzed in all experiments conforming this thesis. Amongst all these techniques,

there are basic learning algorithms, ensemble techniques, data-level methods and

advanced algorithms to deal with Class Imbalance.

Base classifier. The Decision Tree algorithm has shown as one of the most suitable

solutions for early NTC due to its excellent ratio between accuracy and latency [6],

[18], [23]. Although other learning algorithms (such as: SVMs or Logistic Regression)

were eventually employed in this research; we chose the CART Decision Tree as base

learning algorithm in the most of our experiments. Decision Tree model classification

problems via splitting the data space and evaluating a specific information-based

metric in order to create tree-shaped hierarchical rules describing data distributions.

The version of the algorithm used in our experiments employed GINI index as

objective function, whose formula for 𝑐 classes is Equation 1 and where 𝑝𝑖 denotes

classes probabilities. Note that GINI index tends to zero when a data region is

populated by only one class, meanwhile it will be one when class diversity of the

samples is higher.

 𝐺𝐼 = 1 − ∑ (𝑝𝑖)2𝑐
𝑖=1 (1)

Ensemble Algorithms. Ensemble Algorithms are learning techniques composed by

various base classifiers that interact to create complex models according to advanced

training and classification strategies. These algorithms have exhibited excellent

accuracy improvements compared to base estimators in numerous classification

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

29

problems. However, using ensembles leads to slower training and classification

times, which could be detrimental for early classification in high-speed Internet

networks. In [35], we analyze well-known ensemble algorithms focusing on

classification performances and latency and proposed a novel ensemble scheme (T-

DTC) for early NTC. Table 3 summarizes the algorithms employed for our

experiments.

Table 3. Ensemble Algorithms employed during this research
 Description

OneVsRest

[93]

One classifier is trained per each class and the predictions are performed according to

the maximum class posterior probability.

OneVsOne

[93]

One classifier is trained for each pair of classes and the final class is assigned

according to a majority voting strategy.

Error-Correcting

Output-code [94]

Binary codes are associated to each class and one classifier is trained for each bit;

finally, new samples are projected to the binary space and the closest label is assigned.

Adaptive Boosting

[95]

A set of classifiers are sequentially trained associating misclassification costs for

training samples. Then, new samples are classified according to weighted majority.

voting.
Bagging Algorithm

[95]

A set of classifiers are trained using different training sets randomly sampled from

the original dataset and labels are assigned by majority voting.

Random Forest

[96]

A set of trees are trained using different sets with different attributes and instances

sampled from the original dataset. Finally, classes are assigned by majority voting.

Extremely

Randomized Trees [97]

It is a version of Random Forest in which the splits generated trees during training

are completely random, instead of selecting the most discriminative thresholds.

Tailored Decision Tree

Chain [35]

Base classifiers are ordered and trained to distinguish only one class, such that each

classifier acts as sample filter for its successor.

Class Imbalance techniques. Class Imbalance in ML is a hot issue consisting in

model performance degradation due to imbalanced class distributions in training

datasets. The state-of-the-art learning algorithms assume that classes are equally

represented in datasets, leading to bias when this assumption is not fulfilled.

Performance deteriorations normally affect more severely the classes that have a low

representation in datasets, meanwhile majority classes are well-modeled. Due to the

nature of the Internet, service and application classes are highly imbalanced in NTC

datasets. This problem is addressed in the manuscript [37], in which a wide number

of solutions to Class Imbalance were analyzed. In the presented research, we studied

data-level algorithms, one cost-sensitive technique and advanced ensemble

algorithms combining boosting and resampling techniques. To the best of our

knowledge, some of the ensemble structures analyzed in this manuscript are applied

to a real-world imbalanced multiclassification problem for the first time.

Consequently, we had to develop strategies to adapt the algorithms preliminary

designed for binary problems to working with more classes. Table 4 contains the

algorithms to cope with Class Imbalance employed in our experiments, a more

detailed description is presented in [37].

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

30

Table 4. Algorithm to deal with Class Imbalance

Data-Level

Oversampling

Random OverSampling (ROS), Synthetic Minority Oversampling TEchnique

(SMOTE), ADAptive SYNthetic algorithm (ADASYNC)

Data-Level

Undersampling

Random UnderSampling (RUS), Near Miss (NM), Condensed Nearest Neighbor

(CNN), Tomek Link (TL), One Sided Selection (OSS), Edited Nearest Neighbor

(ENN), Neighborhood Cleaning Rule (NCR), Instance Hardness Threshold (IHT)

Data-Level

Hybrid Sampling
SMOTE-TL, SMOTE-ENN

Advanced Ensemble

Algorithms

Easy Ensemble (EE), Balance Cascade (BC), ROS+Boosting, SMOTE+Boosting,

RUS+Boosting. TL+Boosting

Cost-Sensitive

Approach
METAcost

4.6 Model Validation & Performance Metrics

This thesis is composed by various research manuscripts that have been

published in different journals and one international conference. During the

publication processes, expert reviewers’ feedbacks were gathered and considered in

fulfilling the methodological requirements. As a result, different model validation

approaches were assumed in the different experiments that compose this research.

In this regard, Model Validation in ML is an essential step consisting in estimating

classifier performances for future samples in the problem. The simplest validation

approach consists of splitting the original dataset in two subsets, one for training

and other for validation. However, different methodological considerations had to be

considered to adapt the experiments to Class Imbalance conditions [28], [98]. Table

5 presents the validation approaches used in this research. As part of Model

Validation, we also applied non-parametric statistical validation methods to assess

the validity of our observations when different learning algorithms were compared

for ML-based NTC. The statistical validation methods applied are the Friedman’s

Test and Holm’s Post-hoc correction method [99], [100].

Table 5. Model Validation Approaches

 Description

K-Fold Cross

Validation

The original dataset is randomly divided in 𝑘 folds without considering any data

information, and each fold is used for testing while rest for training.

K-Fold Stratified

Cross Validation

The original dataset is divided in 𝑘 folds preserving class distributions, and each

fold is used for validation in each iteration while rest for training.

Distributed Optimally-

Based Stratified CV

The 𝑘 folds are created preserving class and data distributions to reduce

covariance between folds.

Time-separated

validation

A dataset collected at certain date is used for training, meanwhile other data

traffic collected in the same network point but at different date for validation.

During the research presented here, classification performances were evaluated

according to different metrics. Although other metrics (such as F1 score) were

eventually employed in some experimental stage, below we introduce the most

relevant metrics assumed in this dissertation.

Overall Accuracy (OA). OA metric assesses the classification model performances

in terms of samples correctly labeled. Namely, OA is the percentage of samples

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

31

correctly classified as Equation 2 expresses, being 𝑇𝑃𝑖 the true positives for class 𝑖

and #𝑆𝑎𝑚𝑝𝑙𝑒𝑠 the number of samples in the dataset.

 𝑂𝐴 =
∑ 𝑇𝑃𝑖

#𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (2)

Byte Accuracy (BA). From a Network Management perspective, it is interesting to

quantify the amount of information that traffic classifiers detect precisely. Thus, we

assumed BA metric in our experiments, which is the percentage of bytes correctly

classified as Equation 3 shows.

 𝐵𝐴 =
𝐵𝑦𝑡𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑
 (3)

Geometric Mean (GM). In imbalanced classification, OA may not be a suitable

performance metric to evaluate model performances, since high accuracies in

majority classes can bind poor performances on minority ones. Therefore, we

employed GM on the accuracies computed for each individual class. Equation 4

presents the formula for GM for 𝑛 classes, in which 𝐴𝐶𝐶𝑖 represents the accuracy on

each class. In addition to the metrics presented, individual accuracies (𝐴𝐶𝐶𝑖) were

also reported in some of our manuscripts.

 𝐺𝑀 = √∏ 𝐴𝐶𝐶𝑖
𝑛

 (4)

AUC-ROC. The Receiver Operating Curve (ROC) was conceived with the aim of

precisely validating classifiers over Class Imbalance conditions. ROC is a graphical

representation of binary classifier specificity when the decision threshold varies. In

order to have a numerical indicator of this characteristic, the Area Under Curve

(AUC) is assumed as metric to evaluate the quality of ROCs. As this metric is defined

for binary problems, we aggregated each class AUC using the mean, but also

individual AUC-ROCs were reported in some of our experiments. Figure 6 depicts

several examples for different classification performances, where the black curve

represents the optimal behavior and the orange the ROC produced by a random

classifier.

Figure 6. AUC-ROCs for different model performances

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

32

4.7 Employed Tools

All the software implementations developed in this dissertation were coded

in Python2.7 programmed language. In order to fulfil the different necessities during

the research, several libraries were employed depending on their purposes. Table 6

presents the different libraries used.

Table 6. Software Libraries & Tools employed in this research

 Purpose Used for

Numpy

[101]
Scientific Programming

Scientific Data processing, Feature Extraction and

Algorithm Development

Pandas

[102]
Statistical Data Analysis Dataset Processing and Manipulation

Scapy

[103]

Network Traces

Processing

PCAP Network Traces Processing in Feature

Extraction

Scikit-learn

[104]

Machine Learning

Library
Learning Algorithms and Data Preprocessing

Imbalanced-learn

[105]
Imbalanced ML Library Resampling and Advanced Ensemble Algorithms

Scikit-feature

[106]
FS Library Integrate FS filters in our FS Framework

Table 7. Summary of the methodologies applied in our research articles

[32] Intelligent IoT Traffic Classification Using Novel Search Strategy for Fast Based-Correlation

Feature Selection in Industrial Environments

 Datasets Churn Prediction, KDD99, CNAE-9 and LSVT voice

 Model Validation K-fold Cross Validation (𝑘 = 10 & 𝑘 = 5)

 Performance Metrics AUC-ROCs and F1 Score

 Statistical Validation -

 Feature Selection FCBF, #FCBF and FCBFiP

 Learning Algorithms Support Vector Machines, Logistic Regression, CART Decision Tree

[35] Ensemble Network Traffic Classification: Algorithm Comparison and Novel Ensemble Scheme

Proposal
 Datasets ISP and HOST datasets

 Model Validation K-fold Stratified Cross Validation (𝑘 = 10)

 Performance Metrics OA, BA and 𝐴𝐶𝐶𝑖𝑠
 Statistical Validation Friedman’s Test and Holm’s post-hoc correction method
 Feature Selection FCBFiP

 Learning Algorithms CART Decision Tree and Ensemble Algorithms

[37] Exploratory Study on Class Imbalance and Solutions for Network Traffic Classification

 Datasets ISP and HOST datasets

 Model Validation Distributed Optimally-Based Stratified CV (𝑘 = 5)

 Performance Metrics OA, BA, GM, 𝐴𝐶𝐶𝑖𝑠 and AUC-ROCs

 Statistical Validation Friedman’s Test
 Feature Selection FCBFiP

 Learning Algorithms CART Decision Tree and Class Imbalance Techniques

[30] A Feature Selection Framework and a Predictors Study for Internet Traffic Classification
 Datasets ISP datasets

 Model Validation Time-Separated Validation

 Performance Metrics OA, BA and GM

 Statistical Validation -

 Feature Selection FCBF, #FCBF, FCBFiP, MRMR, CIFE, CNIM, ICAP, MIFS, DISR, JMI, MIN

and Wrappers Learning Algorithms CART Decision Tree and Ensemble Algorithms

https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/319009874_Ensemble_Network_Traffic_Classification_Algorithm_Comparison_and_Novel_Ensemble_Scheme_Proposal?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/319009874_Ensemble_Network_Traffic_Classification_Algorithm_Comparison_and_Novel_Ensemble_Scheme_Proposal?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/330863909_Exploratory_Study_on_Class_Imbalance_and_Solutions_for_Network_Traffic_Classification?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/331980147_A_Feature_Selection_Framework_and_a_Predictors_Study_for_Internet_Traffic_Classification?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

33

4.8 Summary of Methodologies

Through this dissertation numerous ML techniques and methods were

analyzed in the different experiments performed. As the main contributions of this

dissertation are presented in JCR-indexed journals, the methodologies applied

during this research work have been adapted to the feedback provided by expert

reviewers in ML and Internet Networks. Table 7 presents a summary of the methods

and materials assumed in each research article, including the conference article [30].

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

34

5. General Conclusions

In this research, we have addressed the problem of Internet NTC from a ML

perspective. Through the numerous experiments reported in the scientific

manuscripts composing this compendium, we have analyzed a wide number of

advanced learning techniques and proved that ML has promising prospects for

achieving efficient traffic classifiers. From a perspective of Computer Networks, ML-

based traffic classifiers are interesting alternatives to overcome the limitations of

traditional NTC approaches, since they accomplish similar classification

performances to DPI tools without privacy concerns. Thus, research efforts in

conducting advanced experimentation in ML-based NTC are required, and this

thesis aims at contributing in this direction.

This dissertation constitutes a case of study in which traffic data were successfully

collected, analyzed, processed and modelled from quite dissimilar network

environments. One of the network environments examined is a backbone in an ISP

network, which constitutes a real-world challenging problem. The network data

employed was collected recently, so that they are composed by the most current

Internet applications and protocols. The ground-truth creation was performed using

the most accurate open-source DPI tool, and the early NTC requirement was fulfilled

in our NTC models.

Regarding the research questions formulated in this dissertation (see Section 1.4),

we provide below the general observations.

Firstly, we designed a Collection of Attributes as input to our models and, then, we

proposed a FS filter to efficiently reduce the problem dimensionality. Our FS

proposal was preliminary compared to previous FS based on correlation using

classification datasets extracted from different problems, including a Network

Intrusion Detection dataset. The conducted experiments show that our proposal

outperformed the rest of algorithms and that it is able to reduce the data space

preserving, and even increasing, model performances. Later, the proposed FS

algorithm was applied to our NTC datasets showing that it provides excellent results

for this modeling task and confirming that our Collection of Attributes has

substantial predictive power for early NTC. Afterwards, a study on different kinds

of predictors was performed employing an important number of FS techniques, and

a FS Framework was proposed as a result. Through this analysis, we identified the

strengths and weaknesses of different IP-header parameters in modeling different

traffic classes and provided a subset producing excellent performances for

imbalanced datasets. Finally, we confirmed the risk of suffering performance losses

when port numbers are included in the classification models.

Regarding the second question formulated, we have experimented with advanced

models based on CART Decision Trees corroborating that ML classifiers can

accomplish similar performances to DPI approaches. Additionally, we have observed

numerous learning techniques and proposed novel algorithms to overcome the

limitations of the state-of-the-art ones. Our first experiments on NTC datasets

comprised an analysis of ensemble algorithms for early NTC in high-speed networks.

Through these experiments, we analyzed the most popular ensemble algorithms in

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

35

terms of model performances and latency, and a novel ensemble algorithm was

presented with the aim of preserving the accuracy improvements of ensemble

learning without significant latency costs. The proposed algorithm was statistically

compared to state-of-the-art techniques proving its excellent performances

respecting to the rest.

In order to address our last research question, we performed an exploratory study

on Class Imbalance for our NTC datasets. Internet traffic is highly imbalanced, since

some applications and services are much more consumed than others depending on

network environments. Considering two different networks, we were able to identify

and evaluate performance degradations on ML classifiers and link them to network

conditions and features. We found that some network scenarios are more susceptible

to Class Imbalance than others, and that imbalanced class distributions produce

performances losses in all environments to a greater or lesser extent. Additionally,

we experimented with advanced learning algorithms to compensate performance

losses produced by imbalanced class distributions, including techniques that were

never analyzed for real-world multiclass problems. Through the last scientific

manuscript, we found various benefits from applying different solutions to Class

Imbalance. For example, RUS was found quite useful for reducing the dataset size

and speeding experiments. Whilst, the best-performing algorithm in terms of

accuracy was the combination of TL and ensemble boosting techniques.

Generally, this thesis shows that ML constitutes a prominent solution to build

Internet traffic classifiers. Through the experiments reported here, we approached

all the processes necessary to provide accurate early NTC models, from network data

collection until classification model creation. The models reported in this research

exhibit competitive results comparing to the DPI approach used as baseline,

meanwhile performing a privacy-respectful and time-efficient traffic classification.

In terms of the applicability to next-generation networks, our findings contribute to

achieve efficient and privacy-respectful classifiers in high-demanding environments.

Emerging network paradigms rely on network monitoring mechanisms and,

therefore, accomplishing better performances in NTC improves the prospects of

these paradigms. Also, the effectiveness of the approaches presented here facilitate

its integration in hardware platforms, which is other interesting research line.

Although this dissertation constitutes an important piece of knowledge in pursuing

feasible traffic classifiers based on ML, this research also opens new research

questions and opportunities that are discussed in the next section.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

36

6. Future Research Opportunities

Despite the advances achieved during the years of research on ML-based

NTC, many experimentation lines are still open. As a result of the thorough

literature review performed, we identified interesting research opportunities that

are presented and discussed below.

Although several advanced techniques have been presented to get efficient traffic

classifiers, the reported results are very often limited to offline experimentation

without tests in real-time environments. This experimental deficiency is found in

numerous research works, including ours; therefore, it may be very worthwhile to

perform online experiments in real Internet networks via embedding the proposed

classification models into hardware devices.

The Internet is a very complex environment continuously evolving, since it supports

emerging traffic and changes its topology daily. This fact imposes the necessity of

self-learning traffic classifiers with the main capacities of detecting emerging traffic

and retraining itself to refit classification models when network conditions change.

In this regard, zero-day application detection and efficient retraining mechanisms

are demanded to expand the capacity of ML-based traffic classifiers.

When a supervised algorithm accomplishes its limits in terms of model

performances, a way of upgrading its predictive power is including more informative

predictors. Thus, advanced research on finding more effective predictors could be

also interesting and worthy for the research field. This research objective may be

achieved via Feature Engineering or examining new network-level attributes to

represent classification objects. Another research opportunity related to the flow

classification objects is the granularity in traffic class representations. In our

research we applied a label grouping to reduce the number of classes and this step

is commonly performed in other research works. Label grouping has the advantage

that learning algorithms model better the generated classes but, conversely, the

classification granularity is considerably decreased. Thus, finding ML mechanisms

to achieve a finer classification granularity would a great asset.

Furthermore, ML is fast evolving with the appearing of new learning mechanisms

that may be also very interesting for upgrading traffic classifiers. That is the case of

Multiview learning, in which classification objects are represented by different views

[107]. This learning mechanism has shown very successful in diverse research

problems, however the research work in NTC is quite scarce. Other novel learning

mechanism that could constitute a promising solution for ML-based NTC is MTL. In

MTL different close-related modeling tasks are solved using a common model for all

classification tasks [108]. This learning mechanisms could be very useful to improve

the granularity of traffic classification models based on ML.

Through the literature review performed in this dissertation (see Section 1.5), we

identified significant methodological differences in the reviewed works that hinder

the consistent comparison amongst approaches. For example, some researchers

focused their experiments only on TCP connections, and others altered the class

distributions. Furthermore, some authors assumed different validation approaches,

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

37

which skew the comparison between works. Therefore, standardizing some research

methods may facilitate the development of classifiers more and more advanced.

Finally, the convergence of different technologies using the Internet as

communication core opens new research stages. Thus, the research advances

accomplished through this dissertation could be extended to other problems in

Computer Networks, such as Mobile traffic modeling and IoT traffic detection.

List of References

[1] M. A. Khan, S. Peters, D. Sahinel, F. D. Pozo-pardo, and X. Dang,

“Understanding autonomic network management : A look into the past , a

solution for the future,” Comput. Commun., vol. 122, no. May 2017, pp. 93–

117, 2018.

[2] D. C. Verma, Principles of Computer Systems and Network Management.

Boston, MA: Springer US, 2009.

[3] A. Callado, J. Kelner, D. Sadok, C. Alberto Kamienski, and S. Fernandes,

“Better network traffic identification through the independent combination of

techniques,” J. Netw. Comput. Appl., vol. 33, no. 4, pp. 433–446, Jul. 2010.

[4] O. Courtois and C. Bardelay-Guyot, “Architectures and management of

submarine networks,” in Undersea Fiber Communication Systems, Elsevier,

2016, pp. 343–380.

[5] D. Naboulsi, M. Fiore, S. Ribot, and R. Stanica, “Mobile Traffic Analysis: a

Survey,” vol. 18, no. 1, pp. 1–38, 2015.

[6] T. Nguyen and G. Armitage, “A survey of techniques for internet traffic

classification using machine learning,” IEEE Commun. Surv. Tutorials, vol.

10, no. 4, pp. 56–76, 2008.

[7] A. Callado, A. Callado, C. K. Member, G. Szabó, B. Péter-gerö, and J. Kelner,

“A Survey on Internet Traffic Identification . A Survey on Internet Traf fi c

Identi fi cation,” vol. 11, no. November 2015, pp. 37–52, 2009.

[8] M. Finsterbusch, C. Richter, E. Rocha, J. A. Müller, and K. Hänßgen, “A

survey of payload-based traffic classification approaches,” IEEE Commun.

Surv. Tutorials, vol. 16, no. 2, pp. 1135–1156, 2014.

[9] A. Dainotti, A. Pescape, and K. Claffy, “Issues and future directions in traffic

classification,” IEEE Netw., vol. 26, no. 1, pp. 35–40, Jan. 2012.

[10] M. Dashevskiy and Z. Luo, “Network Traffic Classification and Demand

Prediction,” in Conformal Prediction for Reliable Machine Learning, Elsevier,

2014, pp. 231–259.

[11] “IANA, List of assigned port numbers.” [Online]. Available:

http://www.iana.org/assignments/port-numbers.

[12] R. Bendrath, “Global technology trends and national regulation: Explaining

Variation in the Governance of Deep Packet Inspection,” in International

Studies Annual Convention, 2009, vol. 15, no. 18.

[13] K. Yogo, R. Shinkuma, T. Konishi, S. Itaya, and S. Doi, “Coverage area

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

38

management for wireless sensor networks,” Int. J. Netw. Manag., no. 22, pp.

1–11, 2012.

[14] A. L. Samuel, “Some Studies in Machine Learning Using the Game of

Checkers,” IBM J. Res. Dev., vol. 3, no. 3, pp. 210–229, Jul. 1959.

[15] T. M. Mitchell, Machine learning. McGraw-Hill, 1997.

[16] A. Mcgregor, M. Hall, P. Lorier, and J. Brunskill, “Flow Clustering Using

Machine Learning Techniques,” pp. 205–214, 2004.

[17] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian

analysis techniques,” ACM SIGMETRICS Perform. Eval. Rev., vol. 33, no. 1,

p. 50, Jun. 2005.

[18] W. Li and A. W. Moore, “A Machine Learning Approach for Efficient Traffic

Classification,” in 2007 15th International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems, 2007, pp. 310–

317.

[19] W. Li, M. Canini, A. W. Moore, and R. Bolla, “Efficient application

identification and the temporal and spatial stability of classification schema,”

Comput. Networks, vol. 53, no. 6, pp. 790–809, 2009.

[20] H. Zhang, G. Lu, M. T. Qassrawi, Y. Zhang, and X. Yu, “Feature selection for

optimizing traffic classification,” Comput. Commun., vol. 35, no. 12, pp. 1457–

1471, 2012.

[21] L. Bernaille, R. Teixeira, I. Akodjenou, A. Soule, and K. Salamatian, “Traffic

classification on the fly,” ACM SIGCOMM Comput. Commun. Rev., vol. 36, no.

2, pp. 23–26, 2006.

[22] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application

identification,” Proc. 2006 ACM Conex. Conf., pp. 6:1--6:12, 2006.

[23] N. Williams, S. Zander, and G. Armitage, “A preliminary performance

comparison of five machine learning algorithms for practical IP traffic flow

classification,” ACM SIGCOMM Comput. Commun. Rev., vol. 36, no. 5, p. 5,

Oct. 2006.

[24] J. Erman, M. Arlitt, A. Mahanti, I. C. Methodologies, and P. Recognition,

“Traffic Classification Using Clustering Algorithms,” pp. 281–286.

[25] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian Neural Networks for Internet

Traffic Classification,” IEEE Trans. Neural Networks, vol. 18, no. 1, pp. 223–

239, Jan. 2007.

[26] I. Guyon, A. Elisseeff, and A. M. De, “An Introduction to Variable and Feature

Selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

[27] N. Japkowicz, “Assessment Metrics for Imbalanced Learning,” in Imbalanced

Learning, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013, pp. 187–206.

[28] V. López, A. Fernández, and F. Herrera, “On the importance of the validation

technique for classification with imbalanced datasets: Addressing covariate

shift when data is skewed,” Inf. Sci. (Ny)., vol. 257, pp. 1–13, 2014.

[29] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Network

Traffic Classifier with Convolutional and Recurrent Neural Networks for

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

39

Internet of Things,” IEEE Access, vol. 5, pp. 18042–18050, 2017.

[30] S. E. Gómez et al., “A Feature Selection Framework and a Predictors Study

for Internet Traffic Classification,” in First International Conference on

Advances in Signal Processing and Artificial Intelligence, 2019, no. March, pp.

20–22.

[31] S. E. Gómez, “GitHub - SantiagoEG,” 2018. [Online]. Available:

https://github.com/SantiagoEG?tab=overview&from=2018-02-01&to=2018-

02-28. [Accessed: 10-Jul-2019].

[32] S. Egea, A. Rego, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Intelligent

IoT Traffic Classification Using Novel Search Strategy for Fast Based-

Correlation Feature Selection in Industrial Environments,” IEEE Internet

Things J., 2018.

[33] B. Senliol, G. Gulgezen, L. Yu, and Z. Cataltepe, “Fast Correlation Based

Filter (FCBF) with a different search strategy,” 2008 23rd Int. Symp. Comput.

Inf. Sci. Isc. 2008, 2008.

[34] S. E. Gómez, “GitHub - SantiagoEG/FCBF module,” 2018. [Online]. Available:

https://github.com/SantiagoEG/FCBF_module. [Accessed: 10-Jul-2019].

[35] S. E. Gómez, B. C. Martínez, A. J. Sánchez-Esguevillas, and L. Hernández

Callejo, “Ensemble network traffic classification: Algorithm comparison and

novel ensemble scheme proposal,” Comput. Networks, vol. 127, pp. 68–80, Nov.

2017.

[36] S. E. Gómez, “GitHub - SantiagoEG/TEC module,” 2018. [Online]. Available:

https://github.com/SantiagoEG/TEC_module. [Accessed: 10-Jul-2019].

[37] S. E. Gómez, L. Hernández-Callejo, B. C. Martínez, and A. J. Sánchez-

Esguevillas, “Exploratory study on Class Imbalance and solutions for Network

Traffic Classification,” Neurocomputing, vol. 343, pp. 100–119, May 2019.

[38] S. E. Gómez, “GitHub - SantiagoEG/ImbalancedMulticlass,” 2018. [Online].

Available: https://github.com/SantiagoEG/ImbalancedMulticlass/tree/master.

[Accessed: 10-Jul-2019].

[39] N. Chawla, “Learning in the presence of class imbalance and concept drift,”

Neurocomputing, vol. 343, pp. 1–2, May 2019.

[40] A. Este, F. Gringoli, and L. Salgarelli, “Support Vector Machines for TCP

traffic classification,” Comput. Networks, vol. 53, no. 14, pp. 2476–2490, Sep.

2009.

[41] A. Este, F. Gringoli, and L. Salgarelli, “On the Stability of the Information

Carried by Traffic Flow Features at the Packet Level,” ACM SIGCOMM

Comput. Commun. Rev., vol. 39, no. 3, p. 13, 2009.

[42] R. Yuan, Z. Li, X. Guan, and L. Xu, “An SVM-based machine learning method

for accurate Internet traffic classification,” Inf. Syst. Front., vol. 12, no. 2, pp.

149–156, 2010.

[43] M. Soysal and E. G. Schmidt, “Machine learning algorithms for accurate flow-

based network traffic classification: Evaluation and comparison,” Perform.

Eval., vol. 67, no. 6, pp. 451–467, Jun. 2010.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

40

[44] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-Pareta,

“Analysis of the impact of sampling on NetFlow traffic classification,” Comput.

Networks, vol. 55, no. 5, pp. 1083–1099, Apr. 2011.

[45] T. T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely and

Continuous Machine-Learning-Based Classification for Interactive IP

Traffic,” IEEE/ACM Trans. Netw., vol. 20, no. 6, pp. 1880–1894, Dec. 2012.

[46] Q. Liu and Z. Liu, “A comparison of improving multi-class imbalance for

internet traffic classification,” Inf. Syst. Front., vol. 16, no. 3, pp. 509–521,

2014.

[47] J. Yang, J. Ma, G. Cheng, Y. Wang, L. Yuan, and C. Dong, “An Empirical

Investigation of Filter Attribute Selection Techniques for High-Speed

Network Traffic Flow Classification,” pp. 541–558, 2012.

[48] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang, “Internet traffic

classification by aggregating correlated naive bayes predictions,” IEEE Trans.

Inf. Forensics Secur., vol. 8, no. 1, pp. 5–15, 2013.

[49] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, “Network traffic

classification using correlation information,” IEEE Trans. Parallel Distrib.

Syst., vol. 24, no. 1, pp. 104–117, 2013.

[50] N. F. Huang, G. Y. Jai, H. C. Chao, Y. J. Tzang, and H. Y. Chang, “Application

traffic classification at the early stage by characterizing application rounds,”

Inf. Sci. (Ny)., vol. 232, no. 22, pp. 130–142, 2013.

[51] A. Fahad, Z. Tari, I. Khalil, I. Habib, and H. Alnuweiri, “Toward an efficient

and scalable feature selection approach for internet traffic classification,”

Comput. Networks, vol. 57, no. 9, pp. 2040–2057, 2013.

[52] A. Fahad, Z. Tari, I. Khalil, A. Almalawi, and A. Y. Zomaya, “An optimal and

stable feature selection approach for traffic classification based on multi-

criterion fusion,” Futur. Gener. Comput. Syst., vol. 36, pp. 156–169, 2014.

[53] J. Zhang, Y. Xiang, W. Zhou, and Y. Wang, “Unsupervised traffic classification

using flow statistical properties and IP packet payload,” J. Comput. Syst. Sci.,

vol. 79, no. 5, pp. 573–585, 2013.

[54] J. Camacho, P. Padilla, P. García-teodoro, and J. Díaz-verdejo, “A

generalizable dynamic flow pairing method for traffic classification,” Comput.

Networks, vol. 57, no. 14, pp. 2718–2732, 2013.

[55] D. Li, G. Hu, Y. Wang, and Z. Pan, “Network traffic classification via non-

convex multi-task feature learning,” Neurocomputing, vol. 152, pp. 322–332,

2015.

[56] L. Grimaudo and M. Mellia, “Self-learning classifier for Internet traffic,”

Infocom, 2013 …, 2013, vol. 11, no. 2, pp. 144–157, 2014.

[57] L. Peng, B. Yang, and Y. Chen, “Effective packet number for early stage

internet traffic identification,” Neurocomputing, vol. 156, pp. 252–267, 2015.

[58] Z. Liu, R. Wang, M. Tao, and X. Cai, “A class-oriented feature selection

approach for multi-class imbalanced network traffic datasets based on local

and global metrics fusion,” Neurocomputing, vol. 168, pp. 365–381, 2015.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

41

[59] V. Carela-Español, P. Barlet-Ros, O. Mula-Valls, and J. Solé-Pareta, “An

Autonomic Traffic Classification System for Network Operation and

Management,” J. Netw. Syst. Manag., vol. 23, no. 3, pp. 401–419, Jul. 2015.

[60] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust Network Traffic

Classification,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1257–1270, 2015.

[61] D. M. Divakaran, L. Su, Y. S. Liau, and V. L. Vrizlynn, “SLIC: Self-Learning

Intelligent Classifier for network traffic,” Comput. Networks, vol. 91, pp. 283–

297, 2015.

[62] A. Rizzi, A. Iacovazzi, A. Baiocchi, and S. Colabrese, “A low complexity real-

time Internet traffic flows neuro-fuzzy classifier,” Comput. Networks, vol. 91,

pp. 752–771, 2015.

[63] A. Hajjar, J. Khalife, and J. Díaz-Verdejo, “Network traffic application

identification based on message size analysis,” J. Netw. Comput. Appl., vol.

58, pp. 130–143, 2015.

[64] F. Iglesias and T. Zseby, “Time-activity footprints in IP traffic,” vol. 107, pp.

64–75, 2016.

[65] H. R. L. M. N. Marsono, “Online network traffic classification with

incremental learning,” Evol. Syst., vol. 7, no. 2, pp. 129–143, 2016.

[66] H. Shi, H. Li, D. Zhang, C. Cheng, and W. Wu, “Efficient and robust feature

extraction and selection for traffic classification,” Comput. Networks, vol. 119,

pp. 1–16, 2017.

[67] L. Ding, J. Liu, T. Qin, and H. Li, “Internet traffic classification based on

expanding vector of flow,” Comput. Networks, vol. 129, pp. 178–192, 2017.

[68] L. Peng, H. Zhang, Y. Chen, and B. Yang, “Imbalanced traffic identification

using an imbalanced data gravitation-based classification model,” Comput.

Commun., vol. 102, pp. 177–189, 2017.

[69] Y. Dong, J. Zhao, and J. Jin, “Novel feature selection and classification of

Internet video traffic based on a hierarchical scheme,” Comput. Networks, vol.

119, pp. 102–111, 2017.

[70] S. Dong and R. Li, “Traffic identification method based on multiple

probabilistic neural network model,” Neural Comput. Appl., 2017.

[71] F. Ertam and E. Avcı, “A new approach for internet traffic classification: GA-

WK-ELM,” Measurement, vol. 95, pp. 135–142, 2017.

[72] A. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-based

classification,” Queen Mary Westf. Coll. Dep. Comput. Sci., no. August, 2005.

[73] O. Article, “Hybrid multicriteria fuzzy classification of network traffic

patterns , anomalies , and protocols,” 2017.

[74] M. Shafiq, X. Yu, A. Kashif, B. Hassan, N. Chaudhry, and D. Wang, “A

machine learning approach for feature selection traffic classification using

security analysis,” J. Supercomput., 2018.

[75] H. Shi, H. Li, D. Zhang, C. Cheng, and X. Cao, “An efficient feature generation

approach based on deep learning and feature selection techniques for traffic

classification,” vol. 132, pp. 81–98, 2018.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

42

[76] A. Fahad, A. Almalawi, Z. Tari, K. Alharthi, F. S. Al Qahtani, and M. Cheriet,

“Semtra: A semi-supervised approach to traffic flow labeling with minimal

human effort,” Pattern Recognit., vol. 91, pp. 1–12, 2019.

[77] V. Carela-Español, T. Bujlow, and P. Barlet-Ros, “Is Our Ground-Truth for

Traffic Classification Reliable?,” 2014, pp. 98–108.

[78] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “Independent comparison of

popular DPI tools for traffic classification,” Comput. Networks, vol. 76, pp. 75–

89, Jan. 2015.

[79] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “nDPI: Open-source

high-speed deep packet inspection,” in 2014 International Wireless

Communications and Mobile Computing Conference (IWCMC), 2014, pp. 617–

622.

[80] R. Niculescu-mizil et al., “Winning the KDD Cup Orange Challenge with

Ensemble Selection.”

[81] “KDD Cup 1999 Data.” [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [Accessed: 29-Nov-

2017].

[82] A. Tsanas, M. A. Little, C. Fox, and L. O. Ramig, “Objective Automatic

Assessment of Rehabilitative Speech Treatment in Parkinson’s Disease,”

IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 1, pp. 181–190, Jan. 2014.

[83] P. M. Ciarelli and E. Oliveira, “Agglomeration and Elimination of Terms for

Dimensionality Reduction,” in 2009 Ninth International Conference on

Intelligent Systems Design and Applications, 2009, pp. 547–552.

[84] L. Yu and H. Liu, “Feature Selection for High-Dimensional Data: A Fast

Correlation-Based Filter Solution,” Int. Conf. Mach. Learn., pp. 1–8, 2003.

[85] Hanchuan Peng, Fuhui Long, and C. Ding, “Feature selection based on mutual

information criteria of max-dependency, max-relevance, and min-

redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226–

1238, Aug. 2005.

[86] D. Lin and X. Tang, “Conditional Infomax Learning: An Integrated

Framework for Feature Extraction and Fusion,” Springer, Berlin, Heidelberg,

2006, pp. 68–82.

[87] F. Fleuret, “Fast Binary Feature Selection with Conditional Mutual

Information,” J. Mach. Learn. Res., vol. 5, pp. 1531–1555, 2004.

[88] A. Jakulin, “Machine Learning Based on Attribute Interactions,” Thesis, pp.

1–252, 2005.

[89] R. Battiti, “Using Mutual Information for Selecting Features in Supervised

Neural-Net Learning,” Ieee Trans. Neural Networks, vol. 5, no. 4, pp. 537–550,

1994.

[90] P. E. Meyer, C. Schretter, and G. Bontempi, “Information-Theoretic Feature

Selection in Microarray Data Using Variable Complementarity,” IEEE J. Sel.

Top. Signal Process., vol. 2, no. 3, pp. 261–274, 2008.

[91] H. H. Yang and J. Moody, “Data Visualization and Feature Selection: New

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

43

Algorithms for Nongaussian Data,” Adv. Neural Inf. Process. Syst., vol. 12, no.

Mi, pp. 687–693, 1999.

[92] D. D. Lewis, “Feature Selection and Feature Extraction for Text

Categorization,” pp. 212–217, 1992.

[93] T. G. Dietterich, “An experimental comparison of three methods for

constructing ensembles of decision trees: Bagging, boosting, and

randomization,” Mach. Learn., vol. 40, no. 2, pp. 139–157, 2000.

[94] T. G. Dietterich and G. Bakiri, “Solving Multiclass Learning Problems via

Error-Correcting Output Codes,” Jouranal Artifical Intell. Res., vol. 2, pp.

263–286, 1995.

[95] E. Bauer and R. Kohavi, “An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants,” Mach. Learn., vol. 36, no. 1/2,

pp. 105–139, 1999.

[96] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.

[97] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach.

Learn., vol. 63, no. 1, pp. 3–42, 2006.

[98] J. G. Moreno-Torres, J. A. Saez, and F. Herrera, “Study on the Impact of

Partition-Induced Dataset Shift on K-Fold Cross-Validation,” {IEEE} Trans.

Neural Networks Learn. Syst., vol. 23, no. 8, pp. 1304–1312, 2012.

[99] S. García, A. Fernández, J. Luengo, and F. Herrera, “Advanced nonparametric

tests for multiple comparisons in the design of experiments in computational

intelligence and data mining: Experimental analysis of power,” Inf. Sci. (Ny).,

vol. 180, no. 10, pp. 2044–2064, 2010.

[100] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data Sets,”

J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

[101] “NumPy — NumPy.” [Online]. Available: https://www.numpy.org. [Accessed:

10-Jul-2019].

[102] “Pandas.” [Online]. Available: https://pandas.pydata.org/index.html.

[Accessed: 10-Jul-2019].

[103] “Scapy.” [Online]. Available: http://www.secdev.org/projects/scapy/. [Accessed:

10-Jul-2019].

[104] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach.

Learn. Res., vol. 12, pp. 2825–2830, 2012.

[105] G. Lemaitre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A Python

Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning,” J.

Mach. Learn. Res., vol. 18, no. 1, pp. 1–5, 2016.

[106] J. Li et al., “Feature Selection: A Data Perspective,” ACM Comput. Surv., vol.

50, no. 6, pp. 1–45, Jan. 2016.

[107] S. Sun, L. Mao, Z. Dong, and L. Wu, Multiview Machine Learning. Singapore:

Springer Singapore, 2019.

[108] Y. Zhang and Q. Yang, “A Survey on Multi-Task Learning,” Jul. 2017.

Application of Advanced Machine Learning Techniques to Early Network Traffic Classification

44

ANNEX 1

45

A.1 Journal Paper. Intelligent IoT Traffic Classification
Using Novel Search Strategy for Fast Based-Correlation
Feature Selection in Industrial Environments

Table A1. JCR-Indexed Paper Information

Title Intelligent IoT Traffic Classification Using Novel Search Strategy for Fast
Based-Correlation Feature Selection in Industrial Environments

Authors
Santiago Egea Gómez, Albert Rego Mañez, Belén Carro, Antonio Sánchez-
Esguevillas and Jaime Lloret

Journal IEEE Internet of Things Journal (IF: 9.515)

Volume Volume: 5, Issue: 3, June 2018

Publication Date 28 December 2017

DOI 10.1109/JIOT.2017.2787959

https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8375923
https://doi.org/10.1109/JIOT.2017.2787959

IEE
E P

ro
of

IEEE INTERNET OF THINGS JOURNAL 1

Intelligent IoT Traffic Classification Using Novel
Search Strategy for Fast-Based-Correlation Feature

Selection in Industrial Environments
Santiago Egea, Albert Rego Mañez, Belén Carro, Antonio Sánchez-Esguevillas, Senior Member, IEEE,

and Jaime Lloret , Senior Member, IEEE

Abstract—Internet of Things (IoT) can be combined with1

machine learning in order to provide intelligent applications2

to the network nodes. Furthermore, IoT expands these advan-3

tages and technologies to the industry. In this paper, we propose4

a modification of one of the most popular algorithms for fea-5

ture selection, fast-based-correlation feature (FCBF). The key6

idea is to split the feature space in fragments with the same7

size. By introducing this division, we can improve the correla-8

tion and, therefore, the machine learning applications that are9

operating on each node. This kind of IoT applications for indus-10

try allows us to separate and prioritize the sensor data from11

the multimedia-related traffic. With this separation, the sensors12

are able to detect efficiently emergency situations and avoid both13

material and human damage. The results show the performance14

of the three FCBF-based algorithms for different problems and15

different classifiers, confirming the improvements achieved by16

our approach in terms of model accuracy and execution time.17

Index Terms—Correlation-based methods, emergency detec-18

tion, feature selection, filter methods, industry, Internet of19

Things (IoT), machine learning, multimedia traffic.20

I. INTRODUCTION21

INTERNET of Things (IoT) pretends to extend sensor-22

ing, computation, and communications to every field and23

object. One of the most important fields where IoT can be24

applied is on industry. There are many advantages that indus-25

try can obtain from IoT, but also there are many challenges to26

Manuscript received September 18, 2017; revised December 21, 2017;
accepted December 24, 2017. This paper was supported in part by the
Ministerio de Economía y Competitividad del Gobierno de España and
the Fondo de Desarrollo Regional within the project Inteligencia dis-
tribuida para el control y adaptación de redes dinámicas definidas por
software under Grant TIN2014-57991-C3-2-P, in part by the Ministerio
de Economía y Competitividad in the Programa Estatal de Fomento de
la Investigación Científica y Técnica de Excelencia, Subprograma Estatal
de Generación de Conocimiento within the Project Distribucion inteligente
de servicios multimedia utilizando redes cognitivas adaptativas definidas
por software under Grant TIN2014-57991-C3-1-P, and in part by the
Ministerio de Educación, Cultura y Deporte, through the Ayudas para con-
tratos predoctorales de Formación del Profesorado Universitario FPU
(Convocatoria 2015) under Grant FPU15/06837. (Corresponding author:
Jaime Lloret.)

S. Egea, B. Carro, and A. Sánchez-Esguevillas are with the
Communications Systems and Networks Laboratory, Universidad
de Valladolid, 47011 Valladolid, Spain (e-mail: santiago.egea.gomez
@gmail.com; belcar@tel.uva.es; antoniojavier.sanchez@uva.es).AQ1

A. Rego Mañez and J. Lloret are with the Universitat Politecnica de
Valencia, 46022 Valencia, Spain (e-mail: alremae@teleco.upv.es;
jlloret@dcom.upv.es).

Digital Object Identifier 10.1109/JIOT.2017.2787959

resolve [1], [2]. However, when these challenges are solved, 27

the ubiquity that industry will obtain from IoT will lead to 28

significant improvements on its procedures. For instance, the 29

increase of hazard and emergency detection may currently save 30

millions of dollars wasted due to the losses produced by those 31

emergencies [3]. 32

One of the techniques that can be applied to IoT is machine 33

learning and artificial intelligence [4]–[6]. Machine learning 34

has become popular in the last decades for many fields, from 35

biology to telecommunications. Machine learning provides 36

predictive models that are able to predict or detect responses 37

to problems employing knowledge previously collected in 38

a dataset. Nowadays the learning algorithms are more power- 39

ful, and our computing tools are more sophisticated. Despite 40

of these facts, the industry poses new and more complex prob- 41

lems each day, with higher accuracy requirements. Applying 42

machine learning to IoT introduces new constraints like more 43

energy consumption or computation time. In other words, the 44

complexity of these challenges is increasing constantly. These 45

issues force scientists to pay attention, not only to learning 46

algorithm designing, but also to efficient information process- 47

ing. The majority of learning algorithms are able to model 48

problems more accurately when the input of the classifier is 49

optimal [7]. Thereby, removing useless features is a much rec- 50

ommended practice, and this task is carried out by feature 51

selection methods. 52

The effectiveness of feature selection has already been 53

proved in numerous works. In fact, these techniques are con- 54

sidered essential in data preprocessing stages [8]. Feature 55

selection consists of selecting the relevant features from the 56

original dataset and remove the rest that could be potentially 57

irrelevant or/and redundant for the problem [7]. 58

The advantages of performing feature selection are well- 59

known [9]: preventing the model from overfitting the training 60

set, thus increasing the accuracy over the test set; reducing 61

both storage requirement and needed computing resources; 62

improving the interpretability of predictive models, since fea- 63

ture selection mitigates the course of dimensionality; and 64

remaining a suitable tradeoff between number of instances and 65

number of features, as this relationship is crucial for some 66

learning algorithms. 67

According to the way in which the problem is tack- 68

led, feature selection methods are mainly split in three 69

groups [9]–[11]: 1) filter methods; 2) wrappers methods; and 70

2327-4662 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0862-0533

IEE
E P

ro
of

2 IEEE INTERNET OF THINGS JOURNAL

3) embedded methods. Filter methods use a relevance mea-71

surement in order to classify the features as useful or not,72

according to a threshold [9], [12]. Filter methods are computa-73

tionally very light and, also, they are scalable and independent74

of the learning algorithm employed in the problem. However,75

the subset resulted from filter methods is not the optimal76

one. Furthermore, a criterion has to be chosen for measur-77

ing the feature relevance. Therefore, lots of subgroups are78

included into this category. The other feature selection tech-79

nique includes the wrappers methods [9], [10], [12]. Their80

principles are based on the fact that machine learning algo-81

rithms are capable of scoring the features during the training82

process. Once the predictive model is built, we can get a sub-83

set for modeling tasks via observing the learning algorithm84

structure. These methods are slower; since they need to train85

a classifier and, additionally, the possible subsets have to be86

validated by cross validation or other validation technique.87

Furthermore, wrapper methods have difficulties in terms of88

scalability and have a high risk of overfitting the training set.89

But they usually produce more accurate subsets than filter90

methods for a specific classifier.91

The most modern techniques are the embedded methods.92

These techniques are implemented inside the learning algo-93

rithm and their search strategy is guided by the learning94

process. As embedded methods are optimized for a specific95

learning algorithm, they are faster than wrappers methods and96

achieve the best subsets; however, they are fully dependent on97

the used learning algorithm.98

The feature selection methods are formed by six properties99

or phases [10]: 1) initial state of search; 2) creating succes-100

sors; 3) search strategy; 4) feature evaluation method [13]; and101

5) stop criterion.102

This paper is focused on filter methods, and namely,103

on methods based on correlation measurements. The fast104

correlation-based filter [14] (FCBF) is the most popular of105

them. Later, a new strategy approach was introduced in [15],106

this algorithm is known as FCBF#.107

In this paper, we introduce a novel search strategy whose108

goal is to give a tuning parameter that allows users to con-109

trol both the algorithm computing time and the intercorrelation110

among the features contained in the resulting subset. With this111

proposal, we are able to create an optimal subset of features to112

classify the traffic propagated through an IoT network imple-113

mented in an industrial facility. Therefore, the detection of114

multimedia traffic is improved thanks to this proper selection115

of the features and can be separated in a better way from the116

sensor data, increasing the efficiency of the critical and priority117

use and management of that kind of data. Therefore, applica-118

tions using that critical data, such as emergency detection will119

increase their performance. This algorithm is called FCBF in120

pieces (FCBFiP).121

This paper is organized as follows. First of all, in Section II,122

a review of the current state of IoT and machine learning in123

the literature is presented. In Section III, we review the prior124

algorithms and explain our proposal. Next, in Section IV, we125

describe the experiments carried out to validate our proposal.126

In Section V, we show and discuss the results obtained for our127

algorithm and the prior ones by using four different datasets.128

Finally, in Section VI, we draw conclusions about the results 129

obtained. 130

II. RELATED WORK 131

In this section, some of the works related to IoT for industry 132

and machine learning are discussed. 133

Wan et al. [16] proposed and analyze a new entity for 134

production processes in industry called context-aware cloud 135

robotics (CACR). This new entity does an effective load bal- 136

ancing and provides context-aware services in factories. This 137

CACR improves the material handling. In this paper, the 138

architecture of CACR is shown, analyzed and discussed. The 139

results show that CACR, working with decision-making algo- 140

rithms, works in a more energy-efficient mode and increases 141

the cost-saving during the material handling. 142

An advantage related to the use of IoT for industry is the 143

reduction of energy-consumption during the production pro- 144

cess. These kind of energy-related issues are discussed in [17], 145

where sustainable development and green technologies are the 146

point for saving energy and reducing emissions. 147

Related to environment, Mehmood et al. [18] proposed an 148

artificial neural network in order to save energy and to make 149

the routing scheme more robust. This neural network, called 150

ELDC, has been designed for industry pollution monitoring 151

and increases the lifetime of the nodes by incorporating the 152

features of group-based protocols. The results show that the 153

lifetime of the nodes is increased over 40% compared against 154

other algorithms. 155

There are some published works related to pollution moni- 156

toring and energy saving. In [19], the increase of pollution and 157

carbon footprint problems are discussed and a solution given 158

in terms of routing protocol is proposed. This routing proto- 159

col, called secure and low-energy zone-based routing protocol 160

is designed in order to face two problems: 1) energy con- 161

sumption and 2) security. Taking some assumptions from the 162

features of wireless sensor networks (WSNs), the base station 163

divides the network into zones and clusters, reducing the num- 164

ber of messages. The results show an increase of around 400% 165

of network lifetime. Moreover, the wasted energy is reduced. 166

Traffic classification and filtering has been deeply applied 167

in several works and fields. A case study is realized by 168

Gupta and Muttoo [20], where the Internet traffic survellance 169

and network monitoring in India is studied. Under the con- 170

text of preventing terrorist attacks, India is working toward 171

the development of surveillance systems. One of this kind of 172

systems is NETRA, used by the Indian Government to search 173

suspicious keywords from messages in the network. In [20], 174

NETRA is compared against some other similar systems 175

like Dish Fire, Prism, or Echelon. Their work shows how 176

NETRA works and how it filters the messages and traffic. 177

Authors conclude that it shows only a bit weak in spying 178

the content. 179

This traffic monitoring and processing has been also applied 180

in IoT environments. Zheng et al. [21] introduced a nonintru- 181

sive traffic data collection for intelligent transportation systems 182

using WSNs. They placed magnetic sensor nodes on the road 183

to collect data from vehicles and obtain the vehicle flow data. 184

IEE
E P

ro
of

EGEA et al.: INTELLIGENT IoT TRAFFIC CLASSIFICATION USING NOVEL SEARCH STRATEGY FOR FCBF SELECTION 3

This data is sent to a control center using ZigBee protocol,185

where the final vehicle flow data is calculated by using fil-186

tering and decision-making algorithms. They provide some187

experiments in order to demonstrate that the method illustrated188

is reliable. This process is nonintrusive to the transportation189

systems.190

The traffic monitoring can be used to obtain some flows191

or patterns like it has been done in the previous reference.192

However, it can also be used for improving the performance193

of the network. Avvenuti et al. [22] proposed a MAC proto-194

col, an extension from B-MAC+ protocol, which reduces the195

energy consumption for communication in WSNs. This proto-196

col is adaptive and asynchronous. It adapts depending on the197

observed traffic load and changes its operational parameters.198

The duty cycle is either increased or decreased attending to the199

incoming packet number variation. The protocol is distributed200

into the nodes of the network. The performance evaluation201

is done through two different simulated scenarios. The results202

show that the adaptive B-MAC+ protocols achieves a network203

lifetime from 1.35 up to 2.8 times longer than the standard204

B-MAC+ protocol.205

Furthermore, the collection and analysis of the data are not206

only used to reduce the energy consumption with MAC-level207

protocols or to produce new data, but also are used to create208

a general view of the state of the network. Tang et al. [23]209

introduced a new congestion-aware routing scheme that is210

based on the traffic information given from the sensors in211

a WSN. Congestion is one of the most important prob-212

lems in data networks and the proposal consists on reducing213

the network delay by being aware of the produced conges-214

tion. Moreover, the throughput is also increased. The routing215

scheme described achieves its goals by using a geographic216

routing scheme. Therefore, the relay node is selected attend-217

ing to the sensor node location and the current congestion of218

the area. The traffic sent by that local area is analyzed and due219

to that traffic information the algorithm selects the next hope220

node in the path. The simulations presented in the work show221

that the end-to-end packets transmission delay is reduced by222

50% and the throughput of the network is doubled.223

Filter methods are vital to obtain a good performance when224

taking decisions. In [14], FCBF is presented. A new upgrade225

is described in [15]. This last method is called FCBF#. They226

are explained in detail in the next section.227

Concerning to the network traffic classification, correlation-228

based filters have been employed to this modeling task for229

several years ago. Williams et al. [24] provided a comparison230

between learning algorithms, but, additionally, they demon-231

strated that correlation-based filters are suitable for traffic232

classification.233

Many authors have provided solutions to select the most234

informative attributes to identify network traffic. In [25],235

a hybrid feature selection algorithm is presented for high-speed236

networks. The algorithm consists of two selection phases,237

the less relevant and most redundant attributes are prefiltered238

using a new metric called weighted symmetrical uncertainty239

at the first stage, and later, the final subset is provided train-240

ing different learning algorithms and evaluating the area under241

curve performance metric. The authors reported significant242

improvements in terms of true positive rate and false positive 243

rate. 244

More recently, Fahad et al. [26] proposed an novel feature 245

selection scheme to obtain optimal and stable subsets for traffic 246

classification. They discuss the traffic profiling changes, how 247

they affect the classifier performances and propose new met- 248

rics to assess the optimality and stability of subsets. In order to 249

avoid performance losses, they present a multicriterion feature 250

selection method called global optimization approach (GOA). 251

GOA combines well-known feature selection techniques to 252

filter out the irrelevant attributes and the resulting subset is 253

processed to extract the stable features based on information 254

theory measures. 255

The different works commented in this section seeks to 256

improve the performance of the WSN, either by reducing 257

energy consumption or delay or by increasing the through- 258

put and time alive. In order to achieve their goals, the authors 259

proposed new routing schemas, algorithms, or data processing. 260

In this paper, we work on improving the core of the 261

intelligent network decision. A new filter method based on 262

FCBF is proposed to improve the correlation of the features. 263

Therefore, the algorithms and machine learning tools that 264

make use of it will be able to increase their performance. 265

In other words, it will make the classification and detection 266

algorithms better. The method presented is intended to be 267

used for multimedia traffic classification in IoT for industries. 268

Specifically, in facilities where the data sensed are used for 269

emergency detection and are sent through the network beside 270

the multimedia traffic. The improvement of detection algo- 271

rithms and special processing of the sensor data will repercute 272

in reducing losses. 273

III. FAST CORRELATION-BASED FEATURE SELECTION 274

Many researchers have approached the feature selection 275

problem from different viewpoints. Filter methods are under- 276

pinned by mathematical and statistical concepts as entropy, 277

mutual information [13] or correlation measurements [27]. 278

Relief algorithm [28] measures the feature relevance, but it is 279

not capable of removing redundant features. Later, correlation- 280

based approaches have been used in order to mitigate fea- 281

tures redundancy, like CFS [27]. Afterward, Yu and Liu [14] 282

presented the FCBF algorithm, which speeds up the selection 283

process. FCBF algorithm has been tested in many modeling 284

problems, proving its excellent performance. In [15], the 285

search strategy of FCBF was improved and a stop criterion 286

was included. In our proposal, we implement new capabili- 287

ties for FCBF. The key idea is to split the feature space in 288

pieces with the same size, compute the redundancy of each 289

feature with a multivariate evaluation method and rank them. 290

Each piece is processed independently. According to the scores 291

assigned to the features and the number of features selected 292

for the resulting subset, the algorithm drops the worst features 293

and includes the rest into the model. The size of the pieces 294

is a design parameter which allows us to control the tradeoff 295

between execution time of the algorithm and intercorrelation 296

of the resulting subset. 297

IEE
E P

ro
of

4 IEEE INTERNET OF THINGS JOURNAL

A. FCBF Algorithm298

FCBF selection [14] uses the symmetrical uncertainty as299

evaluation method. The symmetrical uncertainty takes some300

advantages against other correlation measures: is normalized301

between 0 and 1; detects several kinds of correlations (not only302

linear correlation); and compensates for information gain’s303

bias.304

Symmetrical uncertainty uses the concept of entropy to mea-305

sure the correlation between features. Given a feature X that306

can take i different values (xi) with different occurrences, the307

entropy of X is defined as308

H(X) = −
∑

i

P(xi) log2(P(xi)) (1)309

where P(xi) is the probability of X to take xi. The entropy of310

X given other feature Y is called conditional entropy of X over311

Y , and is defined as312

H(X|Y) = −
∑

j

P
(
xj

) ∑

i

P
(
xi|yj

)
log2

(
P
(
xi|yj

))
. (2)313

Now, we define the information gain as314

IG(X|Y) = H(X) − H(X|Y). (3)315

Finally, the symmetrical uncertainty between X and Y is316

defined as317

SU(X, Y) = 2

[
IG(X|Y)

H(X) + H(Y)

]
. (4)318

Note that a value SU(X, Y) = 1 indicates a completely cor-319

relation between X and Y . Meanwhile SU(X, Y) = 0 indicates320

that variables are not correlated.321

The search strategy used by FCBF sorts the feature space322

based on the symmetrical uncertainty between each feature and323

the class. The overall complexity of FCBF is O(N log N) [14].324

And FCBF does not have stop criterion, so that it finishes the325

search when the whole feature space has been explored. This326

fact is a shortcoming, since FCBF removes features with no327

possibility of choosing the number of features desired for the328

model. Nevertheless, the FCBF efficiency has already been329

shown [14].330

B. FCBF#331

FBCF# tries to overcome the above issue, and also modifies332

the search strategy [15]. A stop criterion has been included in333

the algorithm by introducing a natural parameter k. When the334

subset has k features, the algorithm finishes the search and335

returns the subset. In addition, the search strategy has been336

changed, so that the process starts removing the irrelevant fea-337

tures during the first iterations. Unlike FCBF, Senliol et al. [15]338

have used a stop counter in their FCBF implementation in339

order to compare models with same number of features. The340

results prove that the change in the search strategy improves341

the model accuracy. However, the algorithm is slightly slower342

than FCBF.343

C. Our Proposal: FCBF in Pieces 344

Our algorithm, FCBFiP, includes two significant modifica- 345

tions with respect to the previous versions: the feature space 346

is divided in P pieces and the criterion to remove the features 347

is based on a scoring step. 348

Both FCBF and FCBF# consist of two steps. The first one 349

evaluates the relevance of each feature for predicting the target 350

class, and sorts them in descending order (sequence 1). This 351

step remains in our algorithm and the second one is modified 352

to avoid iterations which go over the whole feature space. At 353

the first step, when two or more correlated features exist, it is 354

expected that they have similar relevance for forecasting the 355

response. Thus, they have to be close in the ordered sequence 356

of features (sequence 1). Then, it is feasible to think that is 357

not necessary to evaluate the redundancy of a variable over 358

the whole feature space but, evaluating the redundancy on its 359

neighboring may be enough. The number of pieces defines the 360

size of the vicinities as 361

Vsize = N

P
(5) 362

where N is the number of features in the original dataset and 363

P the amount of selected pieces. 364

In this way, we can save up many operations if P is large. 365

On the other hand, the resulting subset could contain redundant 366

features, as the vicinity size is small. On the contrary, when P 367

is smaller, we will spend more time to process each piece and 368

the resulting subset will present lower intercorrelation among 369

the features included in it. To control the degree of redun- 370

dancy in the resulting subset may be beneficial depending 371

on the nature of the problem we are modeling. Other advan- 372

tage of splitting the feature space is that modern programming 373

languages offer tools to parallelize the computation, speeding 374

up the algorithm, since each piece can be processed indepen- 375

dently. This fact will be considered for future implementations 376

of FCBiP. 377

The evaluation method employed for determining the redun- 378

dancy of each feature is the computation of the mean 379

symmetrical uncertainty (6) between a given feature and its 380

neighbors 381

SU(Xi, V) = 1

Vsize − 1

∑

j=V;j�=i

SU
(
Xi, Xj

)
(6) 382

where V is the vicinity that contains the feature Xi. 383

In the scoring step, the aim is to classify the features 384

according to its relevance and redundancy into its piece. After 385

computing the mean symmetrical uncertainty for each feature, 386

they are sorted in ascending order (sequence 2). Next, the score 387

assigned to each feature is the sum of the position they occupy 388

in sequences 1 and 2. Finally, FCBFiP removes the features 389

with greater score until the subset contains k features. 390

The process to obtain the sequence 2 is described in Fig. 1. 391

First, we split the feature space in P fragments. Next, we com- 392

pute the SU for each feature into its vicinity. Finally, we order 393

the feature space in ascending SU order to get sequence 2. 394

This approach suffers a crucial limitation. The number 395

of pieces, P, has to be a divisor of N. Thus, when N is 396

IEE
E P

ro
of

EGEA et al.: INTELLIGENT IoT TRAFFIC CLASSIFICATION USING NOVEL SEARCH STRATEGY FOR FCBF SELECTION 5

Fig. 1. Description of the process used to obtain the sequence 2.

TABLE I
DATASET INFORMATION

a prime number or has few divisors, a feature preselection397

using FBCF# is the best solution.398

IV. METHODS399

In this section, we describe the experiments carried out.400

We have selected four datasets corresponding with different401

classification problems and related to areas that could be402

extrapolated for IoT. Then, we have preprocessed them in403

order to suit them to the algorithm inputs. These preprocessing404

steps differ among them, as the formats of the datasets also405

differ. The following sections go in depth in the experiment406

setting.407

A. Tools408

The tools used to perform the experiments were Python409

libraries. For building the model we used Sklearn [29]. All410

algorithms were programmed using Numpy [30].411

B. Datasets412

We chose four datasets. To make the results more general,413

we looked for datasets whose ratio between #Instances-414

#Features and origin differ. Also the number of classes to415

forecast differs. Table I summarizes the characteristics of each416

dataset.417

The Orange [31] dataset was purposed for the KDD cup418

Orange challenge. Several authors have written about this419

challenge (e.g., [32] and [33]). This dataset is highly com-420

plex, therefore we used a small version of the original dataset.421

Additionally, we simplified the problem to solve only the churn 422

prediction task, therefore, this problem is a binary classifica- 423

tion. In the IoT industry, numerous services are rising up and 424

providers of services will compete in an emerging market. 425

Thus, churn prediction also applies to IoT (as a matter of fact 426

many lines affected if a customer changes the provider). 427

The KDD99 [34] dataset consists of about 4 370 000 428

data flows represented by 41 features. And the aim is to iden- 429

tify whether each flow corresponds to a computer attack or 430

to a normal behavior. Other works have already been pub- 431

lished using this dataset (e.g., [35]). In this experiment, we 432

used a reduced version of this dataset that includes 10% of all 433

samples (437 000). There are 23 different attacks to predict. 434

Although 41 is prime, this is not a limitation, since the algo- 435

rithm is capable of detecting this situation and dropping the 436

less relevant feature. IoT traffic goes through network infras- 437

tructures to implement the communication between devices. 438

Therefore, the IoT sensors are as sensitive to cyber-attacks as 439

other devices, such as personal computers. Thereby, guarantee- 440

ing the security of IoT devices is a must to assure the services. 441

Attack detection via machine learning could be a promising 442

solution for IoT attacks. 443

The CNAE-9 [36] dataset is extracted from a text mining 444

problem. The dataset contains 1080 free text business descrip- 445

tions of Brazilian companies [37]. The goal is to classify these 446

descriptions in nine categories. The features are 856 word 447

frequency records. IoT customers are typically enterprises. 448

Therefore, its description is quite useful in order to classify 449

target customers. 450

The LSVT voice [38] dataset was used to predict 451

Parkinson’s disease evolution [39]. It is a binary problem, 452

since persons labeled with “1” are patients whose disease 453

evolution is positive, and “0” the opposite case. This dataset 454

has 309 features corresponding to 126 patients. Thus, the 455

ratio between #Instances-#Features is lesser than 1. Digital 456

home virtual assistants constitute an emerging category of IoT 457

devices. In this context, machine learning models could be 458

employed to monitor patients based on their voice inputs. 459

C. Preprocessing 460

Due to the differences between the datasets used in our 461

experiments, we preprocessed each dataset differently. 462

The small Orange dataset contains artificial variables intro- 463

duced by the promoters of the challenge. Thus, we have 464

removed the features that only take a value, as they do not 465

give useful information [32]. Also we filled the missing values 466

with the feature mean value in case of the numeric features. 467

This dataset is formed by 40 categorical variables. These vari- 468

ables were encoded with strings to ensure the anonymity of the 469

data. Thus, we have mapped these variables with integer val- 470

ues, including the missing values. Finally, the resulting dataset 471

had 212 variables. To suit the KDD99 dataset to our experi- 472

ments we randomly shuffled the samples several times, since 473

the instances were sorted by the class to predict. Furthermore, 474

this dataset has three categorical features and the class coded 475

as string. All of them were mapped with integer values. The 476

CNAE-9 dataset also had the instances ordered. Thus the 477

IEE
E P

ro
of

6 IEEE INTERNET OF THINGS JOURNAL

samples were shuffled randomly in the same way as the for-478

mer dataset. Besides, the dataset was normalized between 0479

and 1, as the classifier used for this dataset is sensitive to480

feature ranges. The LSVT voice dataset was also shuffled.481

Additionally, we normalized the dataset between 0 and 1, as482

the selected classifier requires. Finally, we have carried out483

a feature selection step, since the number 309 has only two484

divisors (3 and 103). To get more divisors, we applied the485

FCBF# algorithm with k = 306.486

D. Classifers Used487

For the Orange dataset, we chose a decision tree classifier488

because this kind of classifier needs less training time than489

others. To avoid overfitting the training set, the depth of the490

decision tree was limited to 6, and the minimum samples per491

leaf was set to 22.492

In the case of the KDD99 dataset, we also used a deci-493

sion tree with the same parameters as above to decrease the494

computing requirements for the experiments.495

For the CNAE-9 dataset, we modeled the problem by496

using support vector machines (SVMs). The regularization497

parameter, C, was fixed to 40.498

For the last dataset (LSVT voice), we observed that logis-499

tic linear regression slightly outperforms an SVM classifier.500

Thus, we used logistic regression to tackle this problem. The501

regularization parameter, C, was set to 1.502

For all multiclass problems (KDD99 and CNAE-9), the503

approach used to assign the final class to the samples was504

one-vs-the-rest strategy.505

E. Model Validation506

The measurements to assess the model validity were the507

F1 score for all problems, except for the Orange dataset. The508

F1 score was selected due to the fact that it gives information509

about the model precision and recall [40]. The F1 score is510

defined as511

F1 = 2
precision × recall

precision + recall
. (7)512

The AUC-ROC score was used for the Orange dataset,513

because it was the score proposed by the promoters of the514

challenge [32].515

As validation algorithm, we chose k-fold cross validation,516

since it is a low variance method. The folds were fixed to ten517

for all datasets; except for KDD99 dataset, we used fivefolds518

as the dataset contains enough number of samples. All experi-519

ments were repeated ten times, and we computed the mean of520

the resulting scores in order to rank the feature selection algo-521

rithms. For the multiclass problems, we computed the mean522

of the score over all possible classes.523

V. RESULTS524

Figs. 2–5 present the relevant results obtained from the525

experiments carried out, both model performance and execu-526

tion time are shown.527

Fig. 2 depicts the results obtained for the Orange dataset.528

FCBFiP did notably speed up the selection process when the529

Fig. 2. Performances obtained for Orange dataset.

feature space was divided in 106 and 53 pieces. However, they 530

did not get the highest AUC-ROC score, although, in most 531

cases, their performances are quite close to the other candi- 532

dates. Even, FCBFiP overcame FCBF# when models with 40 533

and 60 features were chosen. The FCBF algorithm returned 534

a subset with six features. For this subset size, the best results 535

were achieved by FCBFiP with P = 4, but the spent time 536

was significantly greater than the other algorithms. Note also 537

that, for a resulting subset with more than 120 features, it 538

was possible to obtain a model with similar performance that 539

FCBF#, but spending much less time. Finally, the global max- 540

imum performance was accomplished by FCBFiP with P = 2 541

for a model that included 180 features. However, the time 542

required was much higher than that for the FCBF# algorithm. 543

In the case of the KDD99 dataset, Fig. 3, we note 544

that FCBF# overcame its competitors when ten features are 545

selected in terms of accuracy. However, the FCBiP algorithm 546

obtained better performances than the other ones for models 547

with more than 10 features. FCBFiP with P = 10 achieved the 548

highest score for a model with 20 variables and the same hap- 549

pened with FCBFiP with P = 8 for 30 features. These results 550

reveal that the intercorrelation among features in a model may 551

be beneficial in specific cases. However, the time spent in these 552

cases was greater than the time spent by FCBF#. The best 553

results in terms of F1 score were obtained using FCBFiP with 554

P = 5 for a model with 12 features, but it lasted more time 555

than FCBF#. 556

Fig. 4 shows the results obtained modeling the CNAE-9 557

problem. Note that FCBF algorithm yielded a model with 558

47 features. In this case, the FCBF outperformed the other 559

candidates. The FCBF# and FCBFiP performances increased 560

as the number of features included in the model was gradually 561

IEE
E P

ro
of

EGEA et al.: INTELLIGENT IoT TRAFFIC CLASSIFICATION USING NOVEL SEARCH STRATEGY FOR FCBF SELECTION 7

Fig. 3. Performances obtained for KDD99 dataset.

Fig. 4. Performances obtained for CNAE-9 dataset.

raised. Also, the F1 scores obtained when applying FCBFiP562

differed considerably when the number of pieces varies for563

models with less than 500 features. In this case, the FCBFiP564

performances were very poor and were clearly overcome by565

FCBF and FCBF#. However, the best result was obtained by566

FCBFiP algorithm with P = 107 for a model with 500 fea-567

tures. It achieved higher score than FCBF# but lasting half568

Fig. 5. Performances obtained for LSVT-voice.

the time. These results show that penalizing the intercorrela- 569

tion between features may improve the accuracy of the model 570

for specific cases. 571

Fig. 5 shows the results obtained by modeling the LSVT 572

voice problem. As FCBFiP-2 and FCBFiP-6 obtained quite 573

high execution times to visualize the plot properly, both tem- 574

poral curves were excluded from the figure; the execution time 575

was around 145 s for FCBFiP-2 and 51 s in the instance of 576

FCBFiP-6. This dataset presents a ratio between #Instances- 577

#Features lower than 0.5. Note that FCBF returned a subset 578

with one feature. In this case, all algorithms converged in the 579

same solution. That fact may be due to the samples scarcity, 580

since it is related to the available information for the selec- 581

tion and modeling processes. Note that there are more cases 582

in which the different algorithms get the same results, for 583

example when a model with 15 features is selected. For 584

this experiment, the FCBFiP algorithm did not offer great 585

advantages in terms of execution time. Nonetheless, the most 586

accurate model resulted by using FCBFiP with P = 6 and 587

30 features. 588

VI. CONCLUSION 589

In this paper, we review some feature selection filters 590

based on correlation measurements, and we propose a novel 591

approach for providing new functionalities to the FCBF algo- 592

rithm in order to improve IoT-based intelligent networks in 593

industrial facilities. Our proposal consists of a modification of 594

the original FCBF algorithm, called FCBFiP, by changing the 595

evaluation method of the redundancy and including a scor- 596

ing process for ranking the variables. The new redundancy 597

evaluation was developed in two steps: first, by splitting the 598

IEE
E P

ro
of

8 IEEE INTERNET OF THINGS JOURNAL

feature space in P pieces with the same size; and second, by599

evaluating the feature redundancy in the piece that contains600

it with a multivariate correlation measurement. This evalua-601

tion method allows us to set the number of pieces in which602

to split the whole feature space, being this parameter able to603

control both the execution time and the redundancy penalty604

in the selection process. The scoring process is carried out by605

ordering the sequences of features according to their relevance606

and redundancy measurements; assigning the scores according607

to the position each feature occupies in these sequences; and608

removing the features that obtain the worst scores. We val-609

idated our proposal by comparing our FCBFiP method with610

the FCBF and FCBF# algorithms.611

The datasets selected for the experiments were very differ-612

ent from each other to make the results more generalizable.613

Additionally, we modeled the problems by using different614

learning methods for each dataset, namely: decision trees,615

SVM, and logistic linear regression. The global highest616

performance for each experiment was achieved by our algo-617

rithm in terms of F1 score. Note that best F1 score does not618

always imply less execution time, parameter for which our619

algorithm offers a clear advantage. It is possible to obtain620

a subset with similar performances than the obtained by FCBF621

or FCBF# but spending much less time. Therefore, we have622

accomplished a more flexible solution by tuning a new design623

parameter. Furthermore, we can conclude that a lesser redun-624

dancy penalty improved the accuracy of the model built for625

some of the cases under study. We have found that the ratio626

between #Instances and #Features actually affects the selection627

process.628

Further work can be done opening new lines for upgrad-629

ing the FCBFiP algorithm: mixing evaluation methods (e.g.,630

including mutual information scores) and parallelizing oper-631

ations to speed up the algorithm. Besides, performing more632

experiments using other datasets might complete and expand633

the conclusions. For this aim, the code of the algorithm634

has been published in Gómez [41]. Feedbacks and debug635

reports are welcome. Moreover, a first implementation can636

be tested in an IoT environment, using sensor nodes to col-637

lect data and FCBFiP algorithm to classify traffic in order638

to check the increment of performance in the entire IoT639

system. Nonetheless, this algorithm has already been applied640

to a network traffic classification task in [42], where we641

employed FCBF to build consistent subsets in order to identify642

Internet traffic in two different contexts.643

In our future work we will check if this new method of644

features selection can be used to improve some other typi-645

cal parameters in IoT networks, like energy consumption of646

routing decisions.647

REFERENCES648

[1] M. Garcia, D. Bri, S. Sendra, and J. Lloret, “Practical deployments of649

wireless sensor networks: A survey,” Int. J. Adv. Netw. Services, vol. 3,650

no. 1, pp. 170–185, 2010.651

[2] L. Da Xu, W. He, and S. Li, “Internet of Things in industries: A survey,”652

IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, Nov. 2014.653

[3] S. Mannan and F. P. Lees, Lees’ Loss Prevention in the Process654

Industries: Hazard Identification, Assessment, and Control. Amsterdam,655

The Netherlands: Butterworth-Heinemann, 2005.656

[4] D. Ventura et al., ARIIMA: A Real IoT Implementation of a Machine- 657

Learning Architecture for Reducing Energy Consumption. Cham, 658

Switzerland: Springer, 2014, pp. 444–451. AQ2659

[5] R. Xue, L. Wang, and J. Chen, “Using the IOT to construct ubiquitous 660

learning environment,” in Proc. 2nd Int. Conf. Mech. Autom. Control 661

Eng., Hohhot, China, 2011, pp. 7878–7880. 662

[6] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, “Machine learning 663

in wireless sensor networks: Algorithms, strategies, and applications,” 664

IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 1996–2018, 4th Quart., 665

2014. 666

[7] M. Dash and H. Liu, “Feature selection for classification,” Intell. Data 667

Anal., vol. 1, nos. 1–4, pp. 131–156, Jan. 1997. 668

[8] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset 669

selection problem,” in Proc. 11th. Int. Mach. Learn., pp. 121–129, 1994. 670

[9] I. Guyon, A. Elisseeff, and A. M. De, “An introduction to variable 671

and feature selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 672

Mar. 2003. 673

[10] L. C. Molina, L. Belanche, and A. Nebot, “Feature selection algorithms: 674

A survey and experimental evaluation,” in Proc. IEEE Int. Conf. Data 675

Min., Maebashi, Japan, 2002, pp. 306–313. 676

[11] H. Liu and L. Yu, “Toward integrating feature selection algorithms for 677

classification and clustering,” IEEE Trans. Knowl. Data Eng., vol. 17, 678

no. 4, pp. 491–502, Apr. 2005. 679

[12] A. L. Blum and P. Langley, “Selection of relevant features and exam- 680

ples in machine learning,” Artif. Intell., vol. 97, nos. 1–2, pp. 245–271, 681

Dec. 1997. 682

[13] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual 683

information criteria of max-dependency, max-relevance, and min- 684

redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, 685

pp. 1226–1238, Aug. 2005. 686

[14] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast 687

correlation-based filter solution,” in Proc. Int. Conf. Mach. Learn., 688

Washington, DC, USA, 2003, pp. 856–863. 689

[15] B. Senliol, G. Gulgezen, L. Yu, and Z. Cataltepe, “Fast correlation based 690

filter (FCBF) with a different search strategy,” in Proc. 23rd Int. Symp. 691

Comput. Inf. Sci. (ISC), Istanbul, Turkey, 2008, pp. 1–4. 692

[16] J. Wan et al., “Context-aware cloud robotics for material handling in 693

cognitive industrial Internet of Things,” IEEE Internet Things J., to be 694

published. AQ3695

[17] G. Han et al., “Recent advances in green industrial networking [guest 696

editorial],” IEEE Commun. Mag., vol. 54, no. 10, pp. 14–15, Oct. 2016. 697

[18] A. Mehmood, Z. Lv, J. Lloret, and M. M. Umar, “ELDC: An artificial 698

neural network based energy-efficient and robust routing scheme for 699

pollution monitoring in WSNs,” IEEE Trans. Emerg. Topics Comput., 700

to be published. 701

[19] A. Mehmood, J. Lloret, and S. Sendra, “A secure and low-energy 702

zone-based wireless sensor networks routing protocol for pollution 703

monitoring,” Wireless Commun. Mobile Comput., vol. 16, no. 17, 704

pp. 2869–2883, Dec. 2016. 705

[20] R. Gupta and S. K. Muttoo, “Internet traffic surveillance & 706

network monitoring in India: Case study of NETRA,” Netw. Protocols 707

Algorithms, vol. 8, no. 4, p. 1, Jan. 2017. 708

[21] J. Zheng et al., “Non-intrusive traffic data collection with wireless sensor 709

networks for intelligent transportation systems,” Ad Hoc Sensor Wireless 710

Netw., vol. 34, no. 1, pp. 41–57, 2016. 711

[22] M. Avvenuti, C. Bernardeschi, L. Cassano, and A. Vecchio, “Adapting 712

the duty cycle to traffic load in a preamble sampling MAC for WSNs: 713

Formal specification and performance evaluation,” Ad Hoc Sensor 714

Wireless Netw., vol. 31, nos. 1–4, pp. 101–129, 2016. 715

[23] D. Tang, T. Li, and J. Ren, “Congestion-aware routing scheme based on 716

traffic information in sensor networks,” Ad Hoc Sensor Wireless Netw., 717

vol. 35, nos. 3–4, pp. 281–300, 2017. 718

[24] N. Williams, S. Zander, and G. Armitage, “A preliminary performance 719

comparison of five machine learning algorithms for practical IP traffic 720

flow classification,” ACM SIGCOMM Comput. Commun. Rev., vol. 36, 721

no. 5, pp. 5–16, Oct. 2006. 722

[25] H. Zhang, G. Lu, M. T. Qassrawi, Y. Zhang, and X. Yu, “Feature selec- 723

tion for optimizing traffic classification,” Comput. Commun., vol. 35, 724

no. 12, pp. 1457–1471, 2012. 725

[26] A. Fahad, Z. Tari, I. Khalil, A. Almalawi, and A. Y. Zomaya, “An 726

optimal and stable feature selection approach for traffic classification 727

based on multi-criterion fusion,” Future Gener. Comput. Syst., vol. 36, 728

pp. 156–169, Jul. 2014. 729

[27] M. A. Hall, “Correlation-based feature selection for machine learn- 730

ing,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Waikato, Hamilton, 731

New Zealand, 1999. 732

IEE
E P

ro
of

EGEA et al.: INTELLIGENT IoT TRAFFIC CLASSIFICATION USING NOVEL SEARCH STRATEGY FOR FCBF SELECTION 9

[28] K. Kira and L. A. Rendell, “The feature selection problem: Traditional733

methods and a new algorithm,” in Proc. AAAI, San Jose, CA, USA,734

1992, pp. 129–134.735

[29] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.736

Learn. Res., vol. 12, pp. 2825–2830, Feb. 2012.737

[30] “NumPy—NumPy.”AQ4 738

[31] SIGKDD: KDD Cup 2009: Customer Relationship Prediction.739

Accessed: Nov. 29, 2017. [Online]. Available: http://www.kdd.org/kdd-740

cup/view/kdd-cup-2009741

[32] A. Niculescu-Mizil et al., “Winning the KDD cup orange challenge with742

ensemble selection,” in Proc. Int. Conf. KDD Cup, Paris, France, 2009,743

pp. 23–34.744

[33] U. Yabas and H. C. Cankaya, “Churn prediction in subscriber man-745

agement for mobile and wireless communications services,” in Proc.746

IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 2013,747

pp. 991–995.748

[34] KDD Cup 1999 Data. Accessed: Nov. 29, 2017. [Online]. Available:749

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html750

[35] M. K. Siddiqui and S. Naahid, “Analysis of KDD cup 99 dataset using751

clustering based data mining,” Int. J. Database Theory Appl., vol. 6,752

no. 5, pp. 23–34, 2013.753

[36] UCI Machine Learning Repository: CNAE-9 Data754

Set. Accessed: Nov. 29, 2017. [Online]. Available:755

https://archive.ics.uci.edu/ml/datasets/CNAE-9756

[37] P. M. Ciarelli and E. Oliveira, “Agglomeration and elimination of terms757

for dimensionality reduction,” in Proc. 9th Int. Conf. Intell. Syst. Design758

Appl., Pisa, Italy, 2009, pp. 547–552.759

[38] A. Tsanas. Athanasios Tsanas Personal Web. Accessed: Nov. 29, 2017.760

[Online]. Available: https://people.maths.ox.ac.uk/tsanas/data.html761

[39] A. Tsanas, M. A. Little, C. Fox, and L. O. Ramig, “Objective automatic762

assessment of rehabilitative speech treatment in parkinson’s disease,”763

IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 1, pp. 181–190,764

Jan. 2014.765

[40] C. Goutte and E. Gaussier, A Probabilistic Interpretation of Precision,766

Recall and F-Score, With Implication for Evaluation. Heidelberg,767

Germany: Springer, 2005, pp. 345–359.768

[41] S. E. Gómez. (2016). FCBF_Module. [Online]. Available:769

https://github.com/SantiagoEG/FCBF_module770

[42] S. E. Gómez, B. C. Martínez, A. J. Sánchez-Esguevillas, and771

L. Hernández Callejo, “Ensemble network traffic classification:772

Algorithm comparison and novel ensemble scheme proposal,” Comput.773

Netw., vol. 127, pp. 68–80, Nov. 2017.774

Santiago Egea received the Telecommunication Engineering degree from the775

Polythenique University of Cartagena, Murcia, Spain. He is currently pursuing776

the Ph.D. degree at the University of Valladolid, Valladolid, Spain.777

He is a member of the Communications Systems and Networks Laboratory,778

as a Technical Researcher involved with national projects in the areas of779

machine learning and network management. His current research interests780

include signal processing and machine learning specifically applied to781

telecommunication networks.782

Albert Rego Mañez received the bachelor’s degrees in computer science and783

telecommunications technology engineering and master’s degree in telecom-784

munications from the Polytechnic University of Valencia, Valencia, Spain, in785

2015 and 2016, respectively. He is currently pursuing the Ph.D. degree at the786

Polytechnic University of Valencia.787

He has authored several papers and participated in some international con-788

ferences, both by reviewing papers and being a part of committees. His current789

research interest includes software-defined networks.790

Mr. Rego Mañez was the recipient of an FPU national scholarship.791

Belén Carro received the Ph.D. degree in broadband access networks from 792

the University of Valladolid, Valladolid, Spain, in 2001. 793

She is a Professor with the Department of Signal Theory and 794

Communications and Telematics Engineering, University of Valladolid. She 795

is the Director of the Communications Systems and Networks Laboratory, 796

as a Technical Researcher and Research Manager involved with European 797

and national projects in the areas of service engineering and SOA systems, IP 798

broadband communications, NGN/IMS, VoIP/QoS, and machine learning. She 799

has supervised several Ph.D. students on topics related to personal communi- 800

cations, IMS, and machine learning. She has extensive research publications 801

experience as an Author, a Reviewer, and an Editor. 802

Antonio Sánchez-Esguevillas (SM’XX) received the Ph.D. degree (Hons.) in AQ5803

QoS for real time multimedia services over IP networks from the University 804

of Valladolid, Valladolid, Spain, in 2004. 805

He has been managing innovation with Telefonica (both at the 806

Telefonica I+D-Services line and at Telefonica Corporation), Madrid, Spain. 807

He has also been an Adjunct Professor and a Honorary Collaborator with the 808

University of Valladolid, supervising several Ph.D. students. He has coor- 809

dinated very large (in excess of 100 million) international research and 810

development projects in the field of personal communication services, particu- 811

larly related to voice over IP, and Internet Protocol multimedia subsystem. He 812

has over 50 international publications and several patents. His current research 813

interest includes digital services, including machine learning. 814

Dr. Sánchez-Esguevillas is the Editorial Board member of IEEE 815

Communications Magazine. 816

Jaime Lloret (M’07–SM’10) received the B.Sc. and M.Sc. degrees in physics 817

in 1997, the B.Sc. and M.Sc. degrees in electronic engineering in 2003, and 818

the Ph.D. degree in telecommunication engineering (Dr. Ing.) in 2006. 819

He is a Cisco Certified Network Professional Instructor. He was a Network 820

Designer and Administrator for several enterprises. He is currently an 821

Associate Professor with the Polytechnic University of Valencia, Valencia, 822

Spain. He is the Chair of the Integrated Management Coastal Research 823

Institute and Head of the active and collaborative techniques and use of tech- 824

nologic resources in the Education Innovation Group. He is the Director of 825

the University Diploma Redes y Comunicaciones de Ordenadores and was the 826

Director of the University Master Digital Post Production from 2012 to 2016. 827

He has authored 22 book chapters and has had over 380 research papers pub- 828

lished in national and international conferences, international journals (over 829

140 with ISI Thomson JCR). 830

Dr. Lloret was the Internet Technical Committee Chair (IEEE 831

Communications Society and Internet Society) from 2013 to 2015. He 832

has been the Co-Editor of 40 conference proceedings and a Guest Editor 833

of several international books and journals. He is the Editor-in-Chief of 834

Ad Hoc and Sensor Wireless Networks (with an ISI Thomson impact 835

factor), the International Journal of Networks Protocols and Algorithms, 836

and the International Journal of Multimedia Communications. He is an 837

IARIA Journals Board Chair (eight journals) and is (or has been) an Associate 838

Editor of 46 international journals (16 of them with an ISI Thomson impact 839

factor). He has been involved in over 400 Program Committees of interna- 840

tional conferences and over 150 Organization and Steering Committees. He 841

leads many national and international projects. He is currently the Chair of 842

the Working Group of the Standard IEEE 1907.1. He has been a General 843

Chair (or Co-Chair) of 38 International workshops and conferences. 844

ANNEX 2

46

A.2 Journal Paper. Ensemble network traffic classification:
Algorithm comparison and novel ensemble scheme
proposal

Table A2. JCR-Indexed Paper Information

Title Ensemble network traffic classification: Algorithm comparison and novel
ensemble scheme proposal

Authors
Santiago Egea Gómez, Belén Carro Martínez, Antonio Sánchez-Esguevillas
and Luis Hernández-Callejo

Journal Computer Networks (IF: 3.030)

Volume Volume: 127, 9 November 2017, Pages 68-80

Publication Date 9 August 2017

DOI 10.1016/j.comnet.2017.07.018

https://www.sciencedirect.com/science/journal/13891286/127/supp/C
https://doi.org/10.1016/j.comnet.2017.07.018

Ensemble Network Traffic Classification: Algorithm Comparison and
Novel Ensemble Scheme Proposal
Santiago Egea Gómez, Belén Carro Martínez, Antonio J. Sánchez-Esguevillas, Luis Hernández-Callejo

A R T I C L E I N F O

Article history:

A B S T R A C T

Network Traffic Classification (NTC) is a key piece for network monitoring, Quality-
of-Service management and network security. Machine Learning algorithms have
drawn the attention of many researchers during the last few years as a promising
solution for network traffic classification. In Machine Learning, ensemble algorithms
are classifiers formed by a set of base estimators that cooperate to build more complex
models according to given training and classification strategies. Resulting models
normally exhibit significant accuracy improvements compared to single estimators,
but also extra time cost, which may obstruct the application of these methods to
online NTC. This paper studies and compares the performance of seven popular
ensemble algorithms based on Decision Trees, focusing on model accuracy, byte
accuracy, and latency to determine whether ensemble learning can be properly
applied to this modeling task. We show that some of the studied algorithms overcome
single Decision Tree in terms of model accuracy and byte accuracy. However, the
notable latency increase hinders the application of these methods in real time
contexts. Additionally, we introduce a novel ensemble classifier that exploits the
imbalanced populations presented in traffic networks datasets to achieve faster
classifications. The experimental results show that our scheme retains the accuracy
improvements of ensemble methods but with low latency punishment, enhancing the
prospect of ensembles methods for online network traffic classification.

1. Introduction
In the age of the Internet, vast amounts of devices are interconnected continuously exchanging information through data networks. The
exponential growth of network traffic hinders Internet Services Providers (ISPs) to manage their infrastructures efficiently and Network Traffic
Classification (NTC) plays a crucial role for this task. Traffic monitoring has attracted the attention of many researchers, and Machine Learning
(ML) has shown to provide successful solutions in this area [1], [2]. NTC allows network administrators to reallocate resources (e.g.
underutilizing links capacity) and reconfigure network parameters (e.g. disable or enable firewall ports) to prevent Quality of Services (QoS)
decays or to react to malicious behaviors [1]. As inspecting all connection flows manually is certainly unfeasible, many researchers have
endeavored to develop techniques for effective NTC [2]. Network traffic classifiers aim to automatically identify traffic applications that are
being used at a given instant.
NTC has to be carried out accounting for several requirements, traffic classifiers must accurately identify connection flows but, in real time
conditions, there are other crucial aspects as:

• Scalability. Traffic classifiers will be implemented in network devices where huge amounts of packets from different users go through,
so scalable classifiers are needed to manage these amounts of information [2].

• Memory Resources. Due to memory limitations in network nodes, classifiers must only store the most relevant information to
classify applications correctly and drop variables that are not useful [2].

• Latency. Identification process must be as fast as possible to determine applications that correspond to each flow before it ends or an
anomaly event causes QoS flaws in the network [1].

• Privacy. Privacy policies force network traffic classifiers not to use sensitive information obtained from users. This fact limits
considerably the available information for NTC [1], [2].

Many research lines have arisen in NTC since this discipline emerged. The earliest traffic classifiers were based on the port number used by
each application [1], [2]. Since port-based tools only observe port numbers used by each connection flow without any information storage, they
are the simplest and fastest classifiers. However, emerging applications have no fixed ports or use different port numbers while they are running,
deteriorating the accuracy of port-based classifiers. Deep Packet Inspection (DPI) tools have appeared to overcome the former limitations [2].
DPI tools inspect packet payloads in order to check byte strings for matches with prefixed patterns. DPI based approaches give accurate results,
but they also have critical limitations. DPI tools need to store packet contents and inspect them, thereby their memory consumption and latency
increase excessively. Additionally, databases, which contain patterns associated with each application, must be maintained and updated with
zero-day applications. The maintenance of these databases is quite arduous owing to the vertiginous increase in the number of Internet protocols
and applications, and encrypted traffic also complicates pattern inspections. Finally, privacy policies constrain capacity of third parties to carry
out lawful deep packet inspection [1]. In this line, ML is opening the ways to develop sophisticated network traffic classifiers, which achieve an
acceptable tradeoff between computation complexity and accuracy respecting users’ privacy.
In ML, ensemble algorithms are complex structures formed by sets of single estimators, called base estimators, which cooperate with each other
according to training and classification strategies. A large number of studies have revealed the advantages of these methods in many diverse
areas and this paper aims to assess the suitability of these algorithms for NTC. Since Decision Tree algorithms are one of the most suitable
learning algorithm for online NTC [1], [3], [4], this work focuses on ensemble algorithms based on Decision Trees (DTs). Despite of their high
computational complexity compared to single estimators, ensemble methods may provide more accurate predictive models. As no study of clear
ensemble learning for online NTC has been provided yet, seven of the most popular ensemble algorithms are compared focusing on their
capabilities to be applied to this issue in this paper. We evaluate classification accuracy metrics, but also assess the computational load of each
candidate. The experimental results show that ensemble algorithms exhibit higher training and classification times than a single DT, which
could obstruct their implementation in real time classifiers. As possible solution, we introduce a novel ensemble scheme that consists of a
sequential chain of DTs, each DT acts as connection flow filter of its successor avoiding unnecessary and repetitive classifications to decrease
training and classification times.
The remainder of the article is organized as follows. Section 2 reviews relevant previous works in NTC. The methodology followed to perform
our experiments and our ensemble algorithm are described in Section 3. We present and discuss the results obtained in each experiment in
Section 4. Finally, the relevant conclusions of this work are presented in Section 5.

2. Related Work

The last trendy applications in NTC are based on ML algorithms. The fast-paced developments in ML have encouraged to research on these
techniques in a wide number of research areas, an illustrative case is the use of clustering algorithms and Neural Networks for forecasting
electricity demands [5], [6]. Although several challenging issues must be overcome yet to accomplish efficient network traffic classifiers [2], ML
provides promising results for online NTC. Internet traffic identification based on ML consists of various processes, learning algorithms are
trained using knowledge, which is previously acquired from captured network traces and recorded on a dataset. Dataset construction is a
complicated process that dramatically affects the accuracy of traffic classifiers and their computational complexity. In online contexts, packet
acquisition, training and classification times are prominent to get feasible classifiers. The main reasons why ML algorithms are excellent
candidates as core of modern NTC systems are their capability of identifying network traffic respecting users´ privacy rights, their ability to
handle encrypted traffic and also their capacity to be less computationally weighted than DPI tools retaining acceptable accuracies [1], [2].
Two leading learning approaches are distinguished in ML: supervised and unsupervised learning. The main difference between both approaches
is that supervised learning requires a labeling process using prior knowledge about the problem in order to establish a ground truths for each
connection flow; whereas training unsupervised algorithms do not need to assign application labels to each flow, and they are able to cluster
classes automatically. Some researchers have adopted one of these perspectives for NTC, but hybrid techniques, known as semi-supervised
approaches, have been also applied showing interesting results. This work focuses on supervised learning, namely in DTs-based algorithms.
The first relevant works in NTC [7], [8] demonstrated that application flows can be accurately identified by computing statistical attributes
using few packets when connection flows start, introducing the concept of early stage classification. The authors used the first packets of TCP
flows to compute instances, and they trained classifiers based on clustering methods. Although promising results were reported in terms of
accuracy, they did not assess training and classification speed of their proposals. More recently, [9] has studied the efficient number of packets
to perform early application identification. The authors used packet-size-based features extracted from bidirectional flows to train standard ML
algorithms, including some ensemble algorithms also considered in this work (ADA Boosting and Bagging algorithm). They concluded that the
optimal number of packets to correctly classify TCP flows is 5-7 and it depends on network environments. Also [4] studied how many packets
could be considered to classify internet applications. They used 12 features to identify encrypted flows and compared C4.5 DT to ADA Boosting
algorithm with C4.5 DT as base estimator, only one ensemble algorithm is considered in this work.
The earliest comparison among supervised learning algorithms for NTC was carried out by [3]. They compared performances between standard
algorithms: Bayesian Network, C4.5 decision tree, Naïve Bayes and Naïve Bayes Trees. Furthermore, they showed that Feature Selection (FS)
algorithms based on correlation measures, such as Consistency-based FS, are more suitable for NTC datasets than other approaches. Also, they
found that C4.5 Decision Trees exhibited the best performances in accuracy and classification speed. [3] is one of the earliest studies that
compares computational costs of ML algorithms for NTC. Later, [10] evaluates classifier performances focusing on Accuracy and Recall scores,
and also on classification rate and build time (or training time). Additionally, [10] observed the influence of the composition of training data
and the effect of configuring dynamic-port applications on algorithm accuracies. They trained Bayesian Networks and DT algorithms showing
that sample composition of training dataset affects considerably classifier performances. Finally, they discussed the importance of labeling
correctly connection flows.
Many authors have developed sophisticated ML classifiers to solve open issues in NTC. In [11], the authors combined weak learning algorithms
to get more accurate predictive models, this classifier is a clear example of ensemble algorithm. Furthermore, they showed that differences
among network scenarios affect classifier performances (type of applications and protocols detected, traffic distributions, link capacities and so
on). Another example of ensemble algorithm is presented in [12] exploiting Sub-Space Clustering, Evidence Accumulation and Hierarchical
Clustering concepts. In this work a semi-supervised approach is presented to create applications groups using clustering algorithms and assign
network services labels to unknown connections in a supervised fashion. In order to create robust application groups the authors combined
several clustering models using different partitions of the same dataset. A Flow-level ML classifier scheme is presented in [13], the authors
designed a modular architecture for High-speed links traffic classification using 𝑚𝑚 ensemble classifiers. Namely, they used OneVsRest strategy,
which is also considered in this paper, but they did not assess latency of their proposal. In [14], a Robust Network Traffic classifier is presented
whose main goal is to identify zero-day applications. The authors provided a parameter optimization process and compared their algorithm to
Random Forest, correlation-based classification, semi-supervised clustering and Support Vector Machines, showing that the Robust Traffic
Classifier overcomes other approaches. In [15], the authors proposed a self-learning classifier that starts with small number of training instances
and retrains itself to improve the model performances. They implemented a decision maker to extend the number of samples in training datasets
using Random Forest algorithm. Accuracy improvements were reported in each retraining iteration. Other important open topic in NTC is the
effect of subflow sampling over classifier performances, which is discussed in [16] and [17]. Additionally, Naïves Bayes, Bayesian Neural
Networks and Support Vector Machines algorithms are independently studied in [18], [19] and [20]. For a more general literature revision of
Internet Classification area we suggest [21] and [22]. In [21] the authors review operational aspect of traffic analysis and its state-of-the-art,
finally they discuss and compare relevant contributions for internet application identification, including DPI and port-based techniques; and
several classification approaches are reviewed and compared using seven different network traces in [22].
Although some previous works evaluated ensemble classifiers for NTC ([4], [11], [14], [15]), none of them has compared standard ensemble
methods focusing on both, accuracy and latency performances. This work tries to fill this gap by comparing ensemble schemes through several
experiments assessing accuracy and latency. Additionally to ensemble algorithms comparison, a novel ensemble scheme is presented to reduce
training and classification times while retaining accuracy improvements of ensemble learning respect to single DTs. For more generality, our
experiments have been performed using network traffic captured in two quite different environments, three traces were captured in an ISP
backbone network and the other three were captured in host computers simulating human behaviors. Below we present the methodology
followed in the experiments.

3. Methodology
This section describes the methodology used in the experiments and presents the ensemble algorithms considered (Section 3.4), as well as our
ensemble scheme (Section 3.5). All programs used in this paper were developed using Python2.7, the library Scikit-Learn implements the ML
algorithms studied and the network traffic traces were processed using Scapy. Scikit-Learn is a well-known ML library maintained by hundreds
of users and whose usage is spreading over numerous research communities. Although other tools are preferred in production due to their lesser
computational complexity, this library is a suitable choice for experimental and prototyping tasks as ours.

3.1. Datasets
For our experiments we have collected six network traces captured in two quite different environments. The Internet traffic that goes through
different networks differs notably between environments in the type of applications found and their distribution, it depends on the usage of
network services by users and on type of entity that is serviced (enterprises, educational institutions, private houses and so on). Imbalanced
label distributions in datasets significantly affect the performances of learning algorithms [23]. Thus, using several traffic traces extracted from
different network environments helps to get a better understanding of the performances of traffic classifiers. Next, we introduce the network
traces employed.

3.1.1. ISP traces
The ISP traces were shared by an organization that provides Internet connection to more than two millions of users across Spain. The network
traffic was captured at a node in the ISP network backbone where traffic rates of 7 GB/s are supported at high load hours. Tcpdump was
employed for capturing data through a port mirror for redirecting network packets and each trace lasts approximately five minutes. The
processing of these traces was performed respecting privacy rights of users in a server enabled for this purpose. These traces have been captured
recently, thus the presence of encrypted applications and the latest protocols is ensured. At the request of the traces providers, the name does
not appear explicitly in this work due to privacy concerns.

3.1.2. HOST traces

Privacy policies obstruct the possibility of sharing network traces with the application layer from institutions or ISPs, and traces without
application layers can be labeled exclusively using Port-Based tools with low trust. Due to the difficulty in getting appropriate network traffic
traces, we have used three network traces manually generated in three different hosts under a controlled environment. These traces have
already been used in others works to validate DPI tools [24]. The information about the network captures is shown in Table 1.

3.1.3. Attributes generation, Feature Selection and labeling process
An ad-hoc developed tool of our own was developed to extract the datasets to feed the ML algorithms from the network traces. Our software
takes as input network captures stored in pcap files and the number of packets to be considered to compute the statistical attributes. Our tool
is able to split initial pcap files in traces that contain packets associated with each bidirectional connection flow. Once each flow is completely
stored in its corresponding trace file, they are processed to compute instances with their associated application label. The output is a dataset
that contains 77 statistics regarding number of packets, packets sizes, inter-arrival packet times, TCP windows and so. The whole collection of
attributes is presented at the end of this paper in Annex 1 and it includes statistics accounting for outgoing, ingoing and both directions of flows.
In our experiments only the first five packets at the beginning of each flow were used to compute all statistical attributes. Because correlation-
based filters have proven to be a proper FS algorithms in NTC, we have applied one of these algorithms in order to reduce the attribute space
for all datasets.

For label assignment, we used a DPI tool called nDPI [25], publicly available in [26]. NDPI is able to handle encrypted traffic and is one of the
most accurate open source DPI applications [27]. This tool identifies web services, as YouTube or Google, along with an extended number of
protocols. However nDPI was not capable of labeling all flows in our traces and some flows were labeled as unknown. Unknown flows were
depreciated in this work, since applications marked as unknown could not be determined with certainty. In other cases, some encrypted flows
were identified as SSL, and port-based information was examined to distinguish between HTTPS traffic and others, as encrypted SSH
connections. Both, UDP and TCP flows, were employed in our experiments. Finally, different applications and protocols were detected among
the six network traces; and each application was mapped to an application group according to its protocol properties and purposes, except DNS
and NTP. The application grouping was carried out according to the following protocol types: P2P includes applications as eMule, BitTorrent or
eDonkey; WWW includes all HTTP and HTTPS queries to Google, Facebook, GMail and other websites; INT (INTeractive) includes protocols as
SSH, Telnet, RDP and so on; Services & Control (S/C) includes network control protocols and other services as NetBios, Radius, Kerberos and
so forth; Bulk includes FTP and similar protocols; Media traffic includes RTP, Skype and so on; and DB includes MsSQL, MySQL and more
database applications. Other applications, as email protocols, were detected and also depreciated from this study due to their low populations.

Table 2 shows the traffic distributions found in our datasets after label assignment. Note that the network traffics are highly imbalanced
according to the percentage of instances per class (%I) for the two network environments under study. In the instances of ISP-1,2 and 3, more
than 70% of the samples belong to WWW traffic, and the absence of P2P, Media and Bulk traffics may be due to its restricted used at educational
environments. Additionally, lower accuracy performances are expected for ISP traces owing to the point of capture. In the middle of networks,
packets statistics suffer from degradation due to multipath routing, packet loss and packet duplication. Also HOST datasets are highly
imbalanced, note that P2P, INT and DNS are the predominant application flows in ISP-1,2 and 3 respectively. Non-uniform sample
distributions, which generally characterized NTC datasets, are exploited by the novel ensemble scheme proposed in this work to achieve faster
classification and training times. Finally, note that the number of samples corresponding to Bulk and Media flows are scarce in HOST datasets,
nevertheless they have an important impact on network resources due to the bytes they produce to run.

The initial datasets were subjected to a Feature Selection (FS) process. Since correlation-based FS algorithms have found effective for NTC [3],
three versions of the Fast Correlation-Based Feature selection algorithm [28], [29] have been implemented for this process. As output the FS
algorithms return rankings of attributes ordered according its relevance for the modelling task. These algorithms have been made publicly
available in at [30]. Namely, we employed the FCBFiP version since it yielded the most accurate models in the preliminary results using the
lesser number of attributes.

As final step, the datasets generated were split in training and validation subsets via a stratified technique to preserve the percentages of class
populations in the training and validation phase. The 70% of the samples were used for training and the rest for validation. Next, parameters
of base estimators were set using 10-fold stratified cross validation excluding the validation samples from this process, and no resampling
techniques were employed avoiding to alter the class populations. This process was repeated for each iteration of the experiments.

Table 2. Datasets Information. %I denotes the percentage of instances in the dataset and %B the percentage of Bytes in the network capture

P2P WWW DNS INT S/C Bulk Media NTP DB

%I %B %I %B %I %B %I %B %I %B %I %B %I %B %I %B %I %B

ISP-1 0.17 <0.01 80.46 99.60 16.28 0.08 1.99 0.10 0.73 0.24 - - - - 0.37 <0.01 - -

 ISP-2 - - 75.30 99.60 21.50 0.10 2.52 0.12 0.35 0.18 - - - - 0.34 <0.01 - -

ISP-3 - - 71.70 99.60 24.98 0.11 2.66 0.12 0.37 0.22 - - - - 0.29 <0.01 - -

HOST-1 33.00 15.90 32.83 27.61 9.12 0.09 10.30 2.73 5.96 0.06 5.72 23.71 3.07 29.9 - - - -

HOST-2 14.30 7.90 17.10 11.80 7.21 0.04 55.40 67.1 1.06 0.01 3.43 6.22 1.50 6.93 - - - -

HOST-3 2.01 38.10 8.31 39.06 79.81 4.05 4.94 2.58 - - 0.68 6.01 0.42 9.38 3.73 0.79 0.10 0.03

3.2. Evaluation Environment
All experiments were performed in a workstation with 12GB of memory RAM and CPU AMD A10 6800K (4.1Ghz). Although the CPU has four
cores and Scikit-Learn allows to train models in parallel, we used only one for our experiments in order to isolate each experiment in a unique
processing core. As decision trees are sensitive to random initializations at the beginning of their learning phase, they suffer from variance

Table 1. Network Traffic Traces Information

Start date Duration Datasize # Packets # Flows

ISP-1 17/01/2017 298 seconds 12.12 GB 8863530 231137

ISP-2 25/01/2017 259 seconds 16.96 GB 12293836 266165

ISP-3 25/01/2017 280 seconds 17.64 GB 12966391 307605

HOST-1 25/02/2013 ~59 days 9438 MB 5062825 121293

HOST-2 25/02/2013 ~32 days 22 GB 21000000 245627

HOST-3 25/02/2013 ~65 days 7113 MB 7203000 744814

when they are trained. To diminish the effects of models variance, the experiments were repeated ten times and the mean of resulted metrics
is reported in Results section.

3.3. Performance Metrics & Statistical Validation
We have studied several metrics to compare the proposed algorithms and applied a statistical validation procedure over the results as we
describe below. Model performances were assessed isolating completely the validation datasets from the training processes.

3.3.1. Overall Accuracy
Overall Accuracy (OA) is the percentage of samples labeled correctly. In this way, OA is defined as

𝑂𝑂𝑂𝑂 = ∑𝑇𝑇𝑇𝑇𝑖𝑖
#𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(1)

Where 𝑇𝑇𝑇𝑇𝑖𝑖 denotes True Positives associated with the class 𝑖𝑖 and #Samples denotes the number of samples contained in the datasets.
3.3.2. Class Accuracies

Because OA is the percentage of samples correctly labeled and network traffic is highly imbalanced, great precisions over high populated traffic
will hide errors on application flows with low populations in the datasets (Table 2). Therefore we included the individual accuracy for each class.
Thus, we define the Accuracy for a given class 𝑖𝑖 as

𝐴𝐴𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑖𝑖
#𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖

(2)

Where #𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 is the number of samples associated with the class 𝑖𝑖.
3.3.3. Byte Accuracy

OA and Class Accuracies alone could be insufficient to assess model performances, it is interesting to study how many bytes have been accurately
labeled to appreciate more clearly algorithm reliabilities. Thus, as it is an insightful metric in NTC, we have included the Byte Accuracy metric
(BA) in our comparison, BA is defined as

𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(3)

3.3.4. Number of Features used in the models
As scalability and latency are important properties for online NTC classifiers, we have included in our results the number of statistical attributes
used by each algorithm. Furthermore, we provide a model complexity evaluation to determine if ensemble algorithms are able to equal or
overcome a single estimator performances using more reduced subsets, and thus, bringing computational benefits in the attribute computing
phase.

3.3.5. Training and Classification times
Finally, we measured Training and Classification times to quantify computational punishment of using different ensemble schemes. Although
Classification time is more prominent in online NTC, novel classifiers include retraining phases, therefore, Training times are also relevant in
our comparison.

3.3.6. Statistical Validation: Friedman´s Test
Since the average of measurements obtained from experiments using different datasets might sometimes be insufficient to validate general
observations, we conducted a statistical validation process to make our results more rigorous [31], [32]. After measuring the previous properties
for each algorithm over the six datasets studied, we have applied a well-known statistical method to compare multiple algorithms, the
Friedman´s test. The Friedman´s test is a non-parametric statistical method for detecting differences amongst more than two related
experiments. This procedure ranks the compared algorithms according to their results obtained for each dataset. The best scored algorithm is
assigned the value 1 and the worst scored gets the value 𝑘𝑘, being 𝑘𝑘 the number of compared algorithms. The Friedman´s test is computed by
equation (4), where 𝑅𝑅𝑗𝑗 is the average score for the algorithm 𝑗𝑗 over the 𝑁𝑁 datasets, with 𝑁𝑁 = 6 for this case.

𝜒𝜒2𝐹𝐹 = 12𝑁𝑁
𝑘𝑘∗(𝑘𝑘+1)

�∑ 𝑅𝑅𝑗𝑗2𝑗𝑗 − 0.25𝑘𝑘 ∗ (𝑘𝑘 + 1)2� (4)

Once 𝜒𝜒2𝐹𝐹 is computed, the p-value is obtained from a chi-squared random distribution with 𝑘𝑘 − 1 degrees of freedom. We have set the significance
threshold at 𝛼𝛼 = 0.05. Thereby if the p-value is lesser than 𝛼𝛼, the null hypothesis, which states that statistical difference amongst candidates
does not exist, is rejected.

In addition to the Friedman´s test, we have applied a post-hoc correction method called the Holm´s procedure [32]. This method uses the adjusted
p-values (APVs) to compare the performance of a control algorithm with respect to the rest, normally the control algorithm is the best scored in
the Friedman´s ranking. The algorithms are sorted according to their average scores 𝑅𝑅𝑗𝑗, and the associated APVs are computed as 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 =
𝛼𝛼 (𝑘𝑘 − 𝑝𝑝)⁄ where 𝑝𝑝 is the position of the algorithm 𝑗𝑗 in the ordered ranking. The value zj is computed for each algorithm using equation (5), where
𝑅𝑅𝑖𝑖 is the average score of the control algorithm in the Friedman´s test. The value 𝑧𝑧𝑗𝑗 follows a normal distribution and its associated probability
𝑝𝑝𝑗𝑗 can be obtained evaluating 𝑍𝑍�𝑧𝑧𝑗𝑗�. If 𝑝𝑝𝑗𝑗 < 𝐴𝐴𝐴𝐴𝐴𝐴𝐽𝐽, we conclude that a significant difference exists among the algorithm 𝑗𝑗 and the control algorithm.

𝑧𝑧𝑗𝑗 = �𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑗𝑗� �𝑘𝑘(𝑘𝑘+1)
6𝑛𝑛

� (5)

This statistical validation procedure is similar to the methods applied in [9]. For more information about these methods read [31] and [32].
3.4. Ensemble Classifiers

Ensemble classifiers are learning algorithms composed by multiple base estimators along with training and classification strategies to make
final decisions [33]–[39]. Since DTs yield satisfactory results in NTC ([1], [3], [4]), we have selected the CART DT algorithm, provided by the
Scikit-learn library, as base estimator for the ensemble structures. Ensemble algorithms can be distinguished according to the training and
classification strategies they employ. Scikit-learn library contains a wide number of popular ensemble algorithms, some of these algorithms
have been considered for the experiments presented in this paper. Below, we briefly describe the ensemble algorithms selected.

• OneVsRest. One classifier is built per class to distinguish one class from the rest [38], thereby one dataset is generated for each class
to train each base estimator. Finally, unknown samples are classified according to the estimate of the posterior probability for each
class: given an unknown sample, the class whose posterior probability is maximum is assigned to that sample.

• OneVsOne. One base estimator is trained to distinguish between two different classes excluding the rest from the training. Therefore,
𝑛𝑛(𝑛𝑛 − 1)/2 datasets and classifiers are built for 𝑛𝑛 classes. The final label is assigned by majority voting: the most voted class amongst
all classifiers is the class associated with the unknown sample [38].

• Error-Correcting Output-code (OutputCode). One binary code is associated with each class and one classifier is trained in
parallel per each bit. In classification, a new instance generates a code that is projected onto the binary space, and the closest label to
the projected point is assigned to the unknown sample [36]. The code size is a design parameter that determines the number of
classifiers in the model, 12 base estimators were used in this work.

• Adaboost classifier (ADA). This algorithm is composed by a set of weak estimators that are trained sequentially and a set of weights
associated with each class [33], [34]. In each training iteration, misclassified classes are awarded by increasing their associated
weights. In contrast, classes with less error rate are punished decreasing their weights. Adaboost implements training and reweighting
phases in its training process that speed it down considerably. Finally, Label assignment is performed via weighted majority voting.
The number of estimators were set to 20 for Adaboost in the experiments to reach a right tradeoff between latency and accuracy.

• Bagging algorithm. In this instance a large number of base estimators are trained in parallel using different datasets [33], [40].
Each dataset is generated applying bootstrap resampling and is used to train only one classifier. Majority voting strategy is used for
label assignment. We set the number of base estimators to 20, since including many estimators leads to low classification and training
speeds, whereas a low number of base estimators could lead to poor accuracy.

• Random Forest (RF). RF is a combination of several DTs, whose training process is based on the generation of random subsets from
the original dataset to feed each DT [34], [37]. Unlike Bagging, each subset is built by random selection of samples and attributes. The
final label assignment is based on majority voting. Such as ADA and Bagging, the number of trees in the forest were set to 20.

• Extremely Randomized Trees (ExtraTrees). This algorithm is very similar to Random Forest but with two differences: ExtraTrees
does not generate new training datasets but instead it uses the initial one; and also it does not choose the best splits, but chooses the
split randomly [39]. Such as the former algorithms, the number of trees were set to 20.

Finally, our proposed ensemble algorithm was considered for the comparison. We describe this novel proposal, called Tailored Decision Tree
Chain (T-DTC), in the following section.

3.5. Our proposal: Tailored Decision Tree Chain
As it is discussed in Section 3.1, network traffic is highly imbalanced (Table 2), e.g. DNS traffic is quite more populated than Bulk, S/C and
others in our datasets. This fact is not exclusive of the datasets used in this study, network traffic has been studied by several researchers
showing that traffic distributions are highly imbalanced in many environments [41], [42]. Furthermore, some type of flows are easier to identify
than others as our experimental results show. These facts could be exploited to reach more efficient ensemble classifiers for online NTC. Next,
a novel ensemble algorithm, called Tailored Decision Tree Chain (T-DTC), is introduced.

3.5.1. Ensemble Scheme & Classification process
Our proposal is based on the use of the fastest and most accurate DTs to classify and filter out samples avoiding repetitive classification of
instances that are easily identified. In our scheme, a set of classifiers are sequentially ordered as a chain and trained to distinguish one traffic
application from the rest, so that when T-DTC assigns an application label to an unknown sample, the connection flow is filtered out from the
classification process and it is not classified in later stages. On the contrary, when T-DTC assigns the label “other” to an unknown sample, the
instance passes to the ensuing classification stage to check if the sample corresponds to other application flow in the chain. This process is
redundant until an application is assigned to the unknown sample and, immediately after the flow is identified, it is output from the
classification process. Figure 1 depicts this idea for the classes contained in ISP-1 once an appropriate order of classifiers was determined by
the procedure described in next section. Note that more than 80% of the network traffic is classified by the first stage requiring being identified
only by one DT; above 95% of flows are identified in the following two stages and roughly the 2% of the instances reach the two last classifiers
passing through all classification stages. Note also that this scheme requires only 𝑛𝑛 − 1 classifiers (where 𝑛𝑛 is the number of application flows
to identify), since the last two classes share the same DT. This approach requires less classifiers than other strategies that are included in this
paper (e.g. OneVsRest is composed by 𝑛𝑛 classifiers, and OneVsOne uses ((𝑛𝑛 − 1) ∗ 𝑛𝑛/2)) consuming less memory resources than other ensemble
schemes. Next, we present the procedure followed to determine the proper order of DTs into T-DTC.

3.5.2. Ordering the classifiers
The order of the classifiers in the chain is crucial, since if inaccurate classifiers are put at the beginning of the chain, misclassified samples will
not reach their corresponding DT and accuracy performances will diminish drastically. Thus, the fastest and most accurate DT must be put in
the first classification stages. As the number of combinations grows exponentially as more type of applications to identify and testing all
combinations is computationally weighted, we have studied the error metrics amongst classes to correctly order the classifiers in our structure.
For that purpose, we trained a single DT and inspected the confusion matrix using only the training dataset for each network capture. This
process considerably reduces the number of combinations considered as proper orders resulting in a bound set of choices. Finally, the order of
the classifiers was chosen by assessing OA among the possibilities via cross validation.
The best order for the six datasets using this procedure were: WWW-DNS-NTP-INT-S/C-P2P for ISP-1 (as Fig 1 shows); WWW-DNS-NTP-INT-
S/C for ISP-2; WWW-DNS-INT-S/C-NTP for ISP-3; P2P-S/C-WWW-DNS-INT-Bulk-Media for HOST-1; INT-P2P-DNS-WWW-Bulk-Media-S/C
for HOST-2; and NTP-DNS-INT-P2P-WWW-DB-Bulk-Media for HOST-3.

Figure 1. Tailored Decission Tree Chain Structure for ISP-1 once the classifiers were ordered

3.5.3. Training process
Considering 𝑛𝑛 traffic applications, our algorithm generates 𝑛𝑛 − 1 datasets from the initial one to train each DT. For example, according to Fig 1
T-DTC needs to input the whole training dataset to the first classifier, but reassigning the labels different from WWW to “other”. In the instance
of the second classifier in the chain, as WWW traffic has been identified in the previous stage, the samples belonging to this traffic application
have to be removed from the dataset; and samples that do not belong to DNS traffic are labeled as “other”. This process is repeated until reaching
the last classifier, which do not need label reassignments. Once all datasets are generated, classifiers in chain were trained in similar way to
other schemes, as OneVsOne, OneVsRest or OutputCode.

4. Results
In this section, we discuss the experimental results obtained from comparing the ensemble algorithms, including our proposal, to a single DT.
In order to show a clearer comparison of the ensemble algorithms, we have remarked the model that provides the best OA score for each
algorithm varying the size of the subsets according to the attribute ranking provided by the FS algorithm. We present and discuss accuracy
metrics in Section 4.1, and computational time during training and classification phases in Section 4.2; and later, the results presented are
undergone to a statistical validation procedure in Section 4.3. Below, we discuss model complexity in terms of number of statistical attributes
that each classifier has to compute to accurately classify Internet traffic. In Section 4.4, we evaluate how many attributes at least each ensemble
algorithm need including in its training phase to outperform or equal the best DT models. Through this experiment, we find out the models that
provide better performances than DT using the less number of statistical attributes. Finally, we provide a summary of our results in Section
4.5.

4.1. Overall Accuracy and Byte Accuracy Evaluation
Table 3 contains the results obtained using the three datasets captured in the ISP backbone and Figure 2 depicts graphically the class accuracies
obtained for all network traces. Figure 2 is a colormap that represents the accuracies obtained for each traffic class detected in the six network
traces. The horizontal axis contains the applications found in each network traces, meanwhile each row of the vertical axis corresponds to each
algorithm. In the case of ISP-1, we observe that the best results in terms of Overall Accuracy (OA) were provided by T-DTC, followed by
OutputCode and OneVsRest. These three algorithms improve the accuracy for high populated traffic, WWW and DNS, resulting in higher OA
scores. Ensemble algorithms generally overcome a single DT with the exception of OneVsOne and ExtraTrees. Although ADA yields high
accuracy scores for WWW and DNS traffics, its performances over the rest of traffic applications are very poor affecting negatively the OA score.
Examining the Byte Accuracy scores (BA), we find that the highest performances are provided by T-DTC, Bagging and OutputCode. In general,
the learning algorithms yield similar results for the three ISP datasets, the three highest OA and BA for ISP-2 were provided by T-DTC,
OutputCode and OneVsRest. Finally, the most accurate models in terms of OA for ISP-3 were T-DTC, Outputcode and OneVsRest; and, in terms
of BA, OneVsRest outperforms OutputCode and T-DTC remains as the best score.

Table 4 shows the accuracy scores obtained for the network traffic captured simulating host activity artificially. The best algorithm for HOST-
1 in terms of OA was Random Forest, followed by Bagging and Extremely Randomized Trees. Observing Table 4 and Figure 2 we find that the
greater accuracies identifying the high populated classes (P2P, WWW and INT) compared to a single DT result in OA improvements for these
three algorithms. In general, the OA using a single DT is improved by most of ensemble algorithms, only ADA Boosting and OneVsOne got
worse OA for HOST-1. If we focus on BA the observations change, the winner algorithm is OneVsOne nearly followed by ExtraTrees and RF.
Finally, ADA and T-DTC yielded poor byte accuracies due to accuracy diminishing for Bulk and Media flows. In the instance of T-DTC, the
accuracy loss was caused by error propagation between classifiers in the chain, when an application flow is misclassified in the first stages, T-
DTC will yield low accuracy for that; error propagation is discussed below in this section. For HOST-2, the three most accurate models in terms
of OA were provided by ExtraTrees, RF and OutputCode, respectively; while ADA yielded very poor results as in the former network trace. The
accuracy improvements for the predominant application flows, especially WWW, result in the most of ensemble algorithms overcoming single
estimator OA. Observing Byte Accuracy, none of the ensemble methods overcomes a single DT, the only ensemble algorithm that provides Byte
Accuracy near to DT´s are T-DTC and OneVsOne for HOST-2. This BA reduction is owing to the fact that most of the ensemble methods yield
worse results than a DT for Bulk and Media traffic, whose impact over the byte distribution is decisive (see Table 2). In the case of T-DTC, the
accuracy loss over Bulk and Media is offset by a better interactive (INT) traffic identification. In the instance of HOST-3, we can observe that
the greatest OAs were provided by RF, OutputCode and T-DTC. Whereas the best BAs were resulted from training T-DTC, ExtraTrees and
OutputCode, respectively. Although in terms of OA the ensemble models do not seem to provide significant improvements for HOST-3, the BA
for these algorithms is notably better than DT´s.

Comparing the results obtained in the two network environments, we can observe that ensemble learning generally provides better results in
terms of Overall Accuracy and Byte Accuracy than a single DT for ISP and HOST traces. Only ADA algorithm exhibited worse performances
than a single DT for most of cases studied making its application to NTC not recommended. Also, we can observe that perfect ensemble algorithm
that performs clearly better than other candidates for all traces is not found. However, T-DTC performances are the best or very close to the
best for all traces except HOST-1. The excellent performances achieved in most cases is due to when the OA and Class Accuracies are higher
for a given dataset, less errors propagate from the first classification stages of T-DTC to following stages, meaning that consistency of labels
contained in datasets is a determinant fact for T-DTC. Unlike HOST-2,3 and ISP-1,2,3, T-DTC suffers from deterioration of BA when it is
trained with the dataset HOST-1. This performance decay is due to the poor Bulk and Media accuracies for this dataset, note that Bulk and
Media traffic populate an important percentage of Bytes in this network capture (see Table 2), and thus the errors committed over these traffic
flows have a major influence on the general performances of classifiers. Other remarkable observation is that when an application flow is more
populated in a NTC dataset, classifiers normally exhibit better performances on it than other traffics, being class distributions an important
fact for NTC. Finally, a substantial difference is found between the datasets obtained from a host (HOST-1,2,3) and datasets obtained from ISP
(ISP-1,2,3). Due to the fact that ISP-1,2,3 were captured at a point placed in the middle of the backbone, the statistical attributes have higher
variance hindering the general performances in terms of accuracy metrics, especially for P2P, DNS, S/C and INT flows. Note that high populated
classes in HOST and ISP traces, as WWW and DNS, are more resilient to high variance of the statistical attributes. Furthermore, ISP traces
are more cutting edge, and consequently, the presence of encrypted connections is higher than in HOST traces complicating the identification
of application flows, as WWW or INT, which permit the use of encryption protocols.

Figure 2. Class Accuracies for the algorithms and network traces studied

 Table 3. General performances for ISP traces after applying Feature
Selection

OA BA # Features

ISP-1

 DT 0,95685 0,99417 9

 OneVsRest 0,96502 0,99850 11

 OneVsOne 0,95680 0,99445 8

 RF 0,96081 0,99586 8

 Bagging 0,96122 0,99897 10

 ExtraTrees 0,95249 0,99336 27

 OuputCode 0,97011 0,99873 19

 ADA 0,95915 0,99698 6

 T-DTC 0,97400 0,99903 14

ISP-2

 DT 0,95310 0,93077 32

 OneVsRest 0,96681 0,95995 22

 OneVsOne 0,95384 0,95169 30

 RF 0,95962 0,95390 20

 Bagging 0,95467 0,95002 12

 ExtraTrees 0,95492 0,94860 25

 OuputCode 0,97396 0,96047 28

 ADA 0,95587 0,94488 13

 T-DTC 0,97604 0,97317 22

ISP-3

 DT 0,94817 0,95078 22

 OneVsRest 0,96697 0,97340 22

 OneVsOne 0,94845 0,95943 21

 RF 0,95434 0,96342 18

 Bagging 0,94889 0,95867 13

 ExtraTrees 0,95476 0,92762 14

 OuputCode 0,97003 0,97126 23

 ADA 0,95055 0,96480 13

 T-DTC 0,97603 0,97936 18

Table 4. General performances for HOST traces after applying Feature
Selection

OA BA # Features

HOST-1

 DT 0,98652 0,94162 30

 OneVsRest 0,98718 0,94407 22

 OneVsOne 0,98646 0,95824 30

 RF 0,99041 0,95611 30

 Bagging 0,99005 0,95502 29

 ExtraTrees 0,98986 0,95709 30

 OuputCode 0,98840 0,94910 30

 ADA 0,92842 0,59624 8

 T-DTC 0,98790 0,91688 43

HOST-2

 DT 0,99192 0,99452 32

 OneVsRest 0,99258 0,97969 20

 OneVsOne 0,99194 0,99357 16

 RF 0,99346 0,98962 12

 Bagging 0,99330 0,98419 12

 ExtraTrees 0,99348 0,98556 14

 OuputCode 0,99336 0,98118 22

 ADA 0,92842 0,89946 9

 T-DTC 0,99319 0,99447 38

HOST-3

 DT 0,99742 0,95806 38

 OneVsRest 0,99702 0,95518 42

 OneVsOne 0,99750 0,95263 42

 RF 0,99813 0,96934 42

 Bagging 0,99590 0,96492 43

 ExtraTrees 0,99363 0,97793 42

 OuputCode 0,99795 0,97057 30

 ADA 0,97526 0,87591 35

 T-DTC 0,99792 0,97832 21

4.2. Time Performance Comparison
Table 5 contains the results obtained from measuring the computational times in both, Training and Classification phases, for the models
included in Table 3 and 4. Since ADA yielded poor performances for OA and BA, it has been depreciated from this discussion. As expected, the
fastest algorithm is a single DT compared to ensemble classifiers for all traces due to its lesser complexity.

Table 5. Training and Classification time for the traces studied (in seconds)

ISP-1 ISP-2 ISP-3 HOST-1 HOST-2 HOST-3

Training
Time

Classificatio
n time

Training
Time

Classificatio
n time

Training
Time

Classificatio
n time

Training
Time

Classificatio
n time

Training
Time

Classificati
on time

Training
Time

Classificati
on time

DT 0.94330 0.02095 4.33370 0.03834 2.85369 0.03146 1.38806 0.01901 1.64008 0.03180 4.31513 0.08269

OneVsRes
t 5.55971 0.08686 10.55774 0.11443 10.99850 0.11432 4.65841 0.08323 5.36138 0.13081 37.53189 0.54066

OneVsOn
e 2.54106 0.37229 12.78923 0.52626 7.44010 0.36590 6.00742 0.52563 3.03271 0.74541 23.16181 3.45232

RF 2.51751 0.29148 7.81902 0.49980 5.71650 0.38325 3.47846 0.30827 2.63806 0.40228 13.88464 1.17011

Bagging 11.04407 0.35490 14.49463 0.42822 15.90904 0.39981 15.01821 0.37088 6.53809 0.40831 54.44654 2.02192

ExtraTre
es 3.14286 0.52690 4.26417 0.61417 3.20274 0.64590 2.24429 0.53985 1.74953 0.51918 9.03618 1.76928

OuputCo
de 17.09089 0.18528 23.63508 0.20806 20.17624 0.19767 16.95315 0.18262 10.46566 0.23858 35.89734 0.82363

T-DTC 1.52025 0.04099 3.87237 0.06602 3.21352 0.05421 1.95967 0.04057 1.76991 0.06958 4.38929 0.48791

In the case of ISP datasets, T-DTC provided the fastest ensemble model in classification and training, even T-DTC exhibited lesser training
time than a DT for ISP-2. OneVsRest and OutputCode are the second and third fastest ensemble algorithms in classification, although their

training phases are much longer than T-DTC´s. OneVsOne, RF, Bagging and ExtraTrees exhibited quite long classification times being more
than ten times slower than a single DT.

Focusing on HOST traces, the fastest ensemble algorithm is anew T-DTC for Training and Classification phases for the datasets HOST-1 and
HOST-3. In the instance of HOST-2, T-DTC is overcome by ExtraTrees in Training, although T-TDC remains providing the best Classification
Time. Although ExtraTrees retains a reasonable Training Time for HOST traces, its classification phase is quite more complex resulting in long
Classification Times. OneVsRest yielded the second fastest Classification Time for all HOST traces, however its training phase is longer than
other classifiers that provide more accurate models (see Table 4), as Random Forest, ExtraTrees and T-DTC. The slowest algorithms in Training
are Bagging and OutputCode, but in Classification they spend less time than OneVsOne and ExtraTrees.

The cost of employing ensemble algorithms in NTC is clear as it is shown in Table 5, all ensemble algorithms suffer a latency increase in
Training and Classification. Although the time punishment is higher if the network capture contains more connection flows, it is very different
among ensemble algorithms. Algorithms formed by a huge number of classifiers exhibited a significant increase in their times, this is the case
of OneVsOne, RF, Bagging and ExtraTrees; unlike them, OneVsRest and T-DTC do not suffer from huge time increases, since they are formed
by a fewer number of classifiers. Because they are composed by a similar number of base estimators (for 𝑛𝑛 classes OneVsRest trains 𝑛𝑛 estimators
and T-DTC trains 𝑛𝑛 − 1), they spend similar times in the classification task, being T-DTC always faster due to its classification strategy and
more accurate for the majority of the analyzed traces.

4.3. Statistical Validation
In this Section we present the results obtained from assessing the statistical significance of the performances presented in Table 4 and 5. Table
6 shows the Friedman´s test scores along with the p-values and APVs obtained by applying the Holm´s procedure. Note that statistical
differences exist between algorithms for almost all performances with less than 0.05 level of significance. Only Byte Accuracy obtained a p-value
greater than 𝛼𝛼. Although BA p-value is greater than 0.05, it is lesser than 0.1 thus retaining high relevant differences among algorithms.

For the Overall Accuracy, the three best performances are obtained by OutputCode, T-DTC and RF respectively. Setting OutputCode as control
algorithm for the Holm´s procedure, we find that no relevant statistical differences exist for OneVsRest, RF, Bagging, ExtraTrees and T-DTC;
meanwhile OutputCode OA differs considerably from DT, OnevsOne and ADA. Focusing on Byte Accuracy we observe that T-DTC is clearly the
best algorithm followed by OutputCode and RF, and that there are not big statistical differences between ensemble methods with the exception
of ADA algorithm. For the instance of Training Time, we note that DT is the fastest algorithm, as expected, and T-DTC ties with ADA and
ExtraTrees. Being DT the control algorithm, we can say that there are no differences between DT and RF, ExtraTrees, ADA or T-DTC. Finally,
DT is the fastest in classification, and T-DTC and OnevsRest are the second and third fastest algorithms. According to the Holm´s procedure
there are not relevant differences between the previous three algorithms and DT in classification.

Table 6. Friedman´s Test and Holm´s procedure results

Overall Accuracy (OA) Byte Accuracy (BA) Training Time Classification Time

Ranking p-values APVs Ranking p-values APVs Ranking p-values APVs Ranking p-values APVs

DT 7.50 0.001 0.006 6.50 0.008 0.007 1.66 - - 1.00 - -

OneVsRest 4.50 0.205 0.016 5.00 0.091 0.009 6.83 0.001 0.008 3.00 0.205 0.025

OneVsOne 7.17 0.003 0.008 5.00 0.091 0.009 6.00 0.006 0.010 7.83 < 0.001 0.007

RF 3.00 0.752 0.025 4.33 0.206 0.025 4.50 0.073 0.0125 5.83 0.002 0.012

Bagging 5.17 0.091 0.011 5.00 0.091 0.009 8.17 < 0.001 0.007 6.67 < 0.001 0.008

ExtraTrees 5.17 0.091 0.011 5.67 0.035 0.008 3.33 0.292 0.020 8.17 < 0.001 0.006

OuputCode 2.50 - - 3.83 0.348 0.050 8.67 < 0.001 0.006 4.00 0.058 0.017

ADA 7.33 0.002 0.007 7.33 0.002 0.006 3.33 0.291 0.02 6.50 < 0.001 0.010

T-DTC 2.67 0.916 0.050 2.33 - - 3.33 0.598 0.050 2.00 0.527 0.050

Friedman´s 25.91 0.001 - 13.64 0.091 - 40.80 < 0.001 - 43.02 < 0.001 -

4.4. Model Complexity Evaluation
We have already assessed the best models built by each ensemble algorithm. Before a connection flow is classified, the classifier has to compute
the statistics associated with it, and also it may be interesting to assess how many attributes we can drop to equal or overcome the best DT
performances for each ensemble algorithm. Although ensemble algorithms yield longer training and classification times, they could offer other
advantages by reducing the number of statistical attributes used for training predictive models. Table 7 contains the results obtained using the
best DT OA as baseline for each dataset. From Table 7, we can observe that RF, OutputCode and T-DTC provided models that overcome the
baseline OA using a reduced number of attributes for all dataset. RF got the best OA for HOST-1,2 in spite of using quite reduced subsets.
Although T-DTC yielded worse BA than the baseline for ISP-1 and HOST-2, its accuracy metrics were the best or almost the best using a lesser
number of attributes for ISP-2-3 and HOST-1-3. Bagging also exhibited good scores with a high subset reduction, and DT only got higher BA
than its competitors for ISP-2 using many more features. These experimental results show that ensemble learning algorithms are able to get
similar performances to DT´s using less statistical attributes. The most of ensemble algorithms equaled or overcame single DT performances
for almost all traces, only, ADA and OneVsOne achieved worse results than DT´s in four or more of the network traces. The subset reduction
could offset the training and classification time punishment discussed in Section 4.2.

Finally, we provide a rank of the most relevant features resulting from applying feature selection to our datasets. To appreciate the features
that more contribute to the predictive models, we have counted the number of times the features appeared in the models with less number of
attributes shown in Table 7; and Table 8 ranks the statistical attributes that are included in the different models at least two times. As Table
8 shows, none of the attributes in the datasets is used for the six analyzed datasets. The most employed attributes are maxTCPWin0 and
NPKT_128. Although three of the most relevant attributes depend on TCP windows, packet-size based attributes have a remarkable presence
as informative features. In Internet networks, Packet-size based features are more resilient to the operational status of networks (e.g. if the
network is congested) than TCP-windows based features, therefore packet-size based attributes are more interesting for NTC. More research
must be conducted to determine the optimal set of statistical attributes independently to network environments and operational status of
networks.

Table 7. First models in accomplishing the same Overall Accuracy (OA) as the best DT model. (BA = Byte Accuracy and # is the number of features used)

ISP-1 ISP-2 ISP-3 HOST-1 HOST-2 HOST-3

OA BA # OA BA # OA BA # OA BA # OA BA # OA BA #

DT 0.95685 0.99417 9 0.95310 0.93077 32 0.94817 0.95078 22 0.98652 0.94162 30 0.99192 0.99452 32 0.99742 0.95806 38

OneVsRes
t 0.96339 0.99456 5 0.96284 0.95744 6 0.95651 0.96294 4 0.98682 0.94251 19 0.99207 0.97957 19 - - -

OneVsOne - - - 0.95370 0.93042 28 - - - - - - - - - 0.99750 0.96185 42

RF 0.95859 0.99467 5 0.95632 0.93149 6 0.95204 0.96229 7 0.98656 0.95407 16 0.99260 0.97829 8 0.99799 0.97158 38

Bagging 0.95779 0.99502 5 0.95467 0.94032 12 0.94888 0.95901 12 0.98667 0.95639 20 0.99234 0.98068 9 - - -

ExtraTree
s - - - 0.95335 0.90746 17 0.94883 0.89486 10 0.98696 0.95333 16 0.99286 0.97556 9 - - -

OuputCod
e 0.96162 0.99487 5 0.96549 0.96035 6 0.95542 0.96053 5 0.98745 0.94172 17 0.99243 0.97917 10 0.99753 0.96852 13

ADA - - - - - - 0.94982 0.96480 12 - - - - - - - - -

T-DTC 0.95808 0.95615 3 0.97302 0.93900 6 0.96712 0.97109 4 0.98662 0.94648 11 0.99240 0.98093 12 0.99750 0.99205 12

Table 8. Ranking of the most relevant features used for all the datasets included in the experiments

Feature Name Description # of times
used

maxTCPWin0 Maximum TCP Windows used in flow packets considering outgoing direction. 4

NPKT_128 Number of packets whose applications bytes is higher than 64 and lesser than 128 bytes
considering both directions. 4

maxBytes0 Maximum number of bytes transferred in flow packets considering outgoing direction. 3

%Bytes0 Percentage of bytes transferred in flow packets considering outgoing direction over the total
number of bytes in whole flows. 3

minBytes0 Minimum number of bytes transferred in flow packets considering outgoing direction. 3

NPKT_64 Number of packets whose application bytes are higher than 32 and lesser than 64 bytes. 3

minTCPWin0 Minimum TCP Windows used in flow packets considering outgoing direction. 3

varBytes1 Variance of the bytes transferred in flow packets considering ingoing direction. 3

%Packets0 Percentage of the number packets transferred considering outgoing direction over the total
number of packets in whole flows. 2

varTCPWinT Variance of TCP Windows used in flow packets considering both directions. 2

maxBytesT Maximum number of bytes transferred in flow packets considering both directions. 2

4.5. Summary
Finally, Table 9 contains a summary of the results discussed in previous sections. Since we intend to compare only ensemble algorithm, we
exclude DT from this summary; and also ADA algorithm was excluded due to its poor performances.

Table 9. Summary of results

ISP-1 ISP-2 ISP-3 HOST-1 HOST-2 HOST-3

Overall Accuracy
(OA)

 Highest T-DTC T-DTC T-DTC RF ExtraTrees RF

 Lowest ExtraTrees OneVsOne OneVsOne OneVsOne OneVsOne ExtraTrees

Byte Accuracy (BA)

 Highest T-DTC T-DTC T-DTC OneVsOne T-DTC T-DTC

 Lowest ExtraTrees ExtraTrees ExtraTrees T-DTC OneVsRest OneVsOne

Training Time

 Fastest ExtraTrees T-DTC T-DTC T-DTC ExtraTrees T-DTC

 Slowest OuputCode OutputCode OutputCode OuputCode OuputCode Bagging

Classification Time

 Fastest T-DTC T-DTC T-DTC T-DTC T-DTC T-DTC

 Slowest ExtraTrees ExtraTrees ExtraTrees ExtraTrees OneVsOne OneVsOne

As Table 9 reveals, T-DTC is the fastest ensemble scheme in classification for all datasets studied. Also T-DTC speeds up notably the training
phase getting the fastest times for four datasets and the second fastest for the others. Finally, T-DTC exhibits the highest BA for all ISP traces
and two of the three HOST traces; and, in terms of OA, T-DTC yielded the best or very close to the best scores. The experimental results obtained
validate our proposal for our datasets, improving the prospects of ensemble learning in real time NTC.
5. Conclusions
This work compares the performance of seven popular DT-based ensemble algorithms along with a single base estimator (DT) and a novel
proposed ensemble scheme in order to assess the suitability of ensemble learning in real time NTC. Although some ML algorithms have

previously been studied in related works for this problem, they lack of a clear and detailed comparison among ensemble algorithms assessing
both accuracy metrics and computational costs. Our experimental results show that most of the ensemble algorithms improve the performance
metrics of a single estimator for our datasets, but, as expected, extra time costs are found in classification and training phases. All ensemble
algorithms analyzed in this paper exhibit a notable classification-time increase that hinders the use of these techniques in real time contexts.
Also we have shown that some ensemble schemes are able to equal or overcome a single DT using a reduced subset of attributes, leading to
computational savings, which could offset classification and training time punishments. Therefore, the performance improvements and attribute
reduction of some ensemble algorithms could justify their implementation in some contexts, such as small networks or environments where the
computational capacity of network devices is not a crucial limitation.

With the intention of boosting ensemble learning in online NTC, a novel ensemble method, called T-DTC, is proposed. T-DTC exploits imbalanced
traffic distributions in NTC datasets to significantly speed up Training and Classification phases. T-DTC achieves time savings by ordering
CART Decision Trees in a sequential chain in which each base estimator is trained to distinguish only one traffic application from the rest.
Thereby, each classifier filters out samples that are assigned to an application group and feeds following classifiers with samples whose
application is not detected, avoiding repetitive classifications of classes that are easily and accurately identified.

In this paper, we show that our ensemble scheme clearly outperforms other ensemble algorithms in terms of latency, but also retaining the
essential performance metrics (such as Overall Accuracy and Byte Accuracy) improvements of ensemble learning respect to a single Decision
Tree. Our proposal has been evaluated for two contexts with quite different operational features, showing that T-DTC is one of the best algorithm
for both network environments. In conclusion, our proposed algorithm definitely enhances the prospects of ensemble learning to be applied to
real time NTC.

Acknowledgments

This work has been partially funded by the Ministerio de Economía y Competitividad del Gobierno de España and the Fondo de Desarrollo
Regional (FEDER) within the project "Inteligencia distribuida para el control y adaptación de redes dinámicas definidas por software, Ref:
TIN2014-57991-C3-2-P", in the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia, Subprograma Estatal de
Generación de Conocimiento. Additionally, we would like to thank the Broadband Communications Research Group belonging to UPC
BarcelonaTech, especially Valentín Carela-Español for providing the network traces we have used in our work. Finally, we would like to thank
the ISP for the real network traffic captures and the resources shared with us for this work.

References

[1] T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification using machine learning,” IEEE Commun. Surv.
Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[2] A. Dainotti, A. Pescape, and K. Claffy, “Issues and future directions in traffic classification,” IEEE Netw., vol. 26, no. 1, pp. 35–40,
Jan. 2012.

[3] N. Williams, S. Zander, and G. Armitage, “A preliminary performance comparison of five machine learning algorithms for practical IP
traffic flow classification,” ACM SIGCOMM Comput. Commun. Rev., vol. 36, no. 5, p. 5, Oct. 2006.

[4] W. Li and A. W. Moore, “A Machine Learning Approach for Efficient Traffic Classification,” in 2007 15th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 2007, pp. 310–317.

[5] L. Hernández, C. Baladrón, J. Aguiar, B. Carro, and A. Sánchez-Esguevillas, “Classification and Clustering of Electricity Demand
Patterns in Industrial Parks,” Energies, vol. 5, no. 12, pp. 5215–5228, Dec. 2012.

[6] L. Hernández, C. Baladrón, J. M. Aguiar, B. Carro, A. Sánchez-Esguevillas, and J. Lloret, “Artificial neural networks for short-term
load forecasting in microgrids environment,” Energy, vol. 75, pp. 252–264, Oct. 2014.

[7] L. Bernaille, R. Teixeira, I. Akodjenou, A. Soule, and K. Salamatian, “Traffic classification on the fly,” ACM SIGCOMM Comput.
Commun. Rev., vol. 36, no. 2, pp. 23–26, 2006.

[8] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identification,” Proc. 2006 ACM Conex. Conf., p. 6:1--6:12, 2006.

[9] L. Peng, B. Yang, and Y. Chen, “Effective packet number for early stage internet traffic identification,” Neurocomputing, vol. 156, pp.
252–267, 2015.

[10] M. Soysal and E. G. Schmidt, “Machine learning algorithms for accurate flow-based network traffic classification: Evaluation and
comparison,” Perform. Eval., vol. 67, no. 6, pp. 451–467, Jun. 2010.

[11] A. Callado, J. Kelner, D. Sadok, C. Alberto Kamienski, and S. Fernandes, “Better network traffic identification through the
independent combination of techniques,” J. Netw. Comput. Appl., vol. 33, no. 4, pp. 433–446, Jul. 2010.

[12] P. Casas, J. Mazel, and P. Owezarski, “MINETRAC : Mining Flows for Unsupervised Analysis & Semi-Supervised Classification.”

[13] Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z.-L. Zhang, “A Modular Machine Learning System for Flow-Level Traffic
Classification in Large Networks,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, pp. 1–34, Mar. 2012.

[14] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust Network Traffic Classification,” IEEE/ACM Trans. Netw., vol. 23, no. 4,
pp. 1257–1270, 2015.

[15] D. M. Divakaran, L. Su, Y. S. Liau, and V. L. Vrizlynn, “SLIC: Self-Learning Intelligent Classifier for network traffic,” Comput.
Networks, vol. 91, pp. 283–297, 2015.

[16] T. T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely and Continuous Machine-Learning-Based Classification for
Interactive IP Traffic,” IEEE/ACM Trans. Netw., vol. 20, no. 6, pp. 1880–1894, Dec. 2012.

[17] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-Pareta, “Analysis of the impact of sampling on NetFlow traffic
classification,” Comput. Networks, vol. 55, no. 5, pp. 1083–1099, Apr. 2011.

[18] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian analysis techniques,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 33, no. 1, p. 50, Jun. 2005.

[19] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian Neural Networks for Internet Traffic Classification,” IEEE Trans. Neural Networks,
vol. 18, no. 1, pp. 223–239, Jan. 2007.

[20] A. Este, F. Gringoli, and L. Salgarelli, “Support Vector Machines for TCP traffic classification,” Comput. Networks, vol. 53, no. 14, pp.
2476–2490, Sep. 2009.

[21] A. Callado et al., “A survey on internet traffic identification,” IEEE Commun. Surv. Tutorials, vol. 11, no. 3, pp. 37–52, 2009.

[22] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Y. Lee, “Internet traffic classification demystified: myths, caveats,

and the best practices,” Traffic, vol. 50, no. 4, pp. 1–12, 2008.

[23] R. Barandela, J. S. Sánchez, V. García, and E. Rangel, “Strategies for learning in class imbalance problems,” Pattern Recognit., vol.
36, pp. 849–851, 2003.

[24] V. Carela-Español, T. Bujlow, and P. Barlet-Ros, “Is Our Ground-Truth for Traffic Classification Reliable?,” 2014, pp. 98–108.

[25] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “nDPI: Open-source high-speed deep packet inspection,” in 2014 International
Wireless Communications and Mobile Computing Conference (IWCMC), 2014, pp. 617–622.

[26] “nDPI.” .

[27] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “Independent comparison of popular DPI tools for traffic classification,” Comput.
Networks, vol. 76, pp. 75–89, 2015.

[28] L. Yu and H. Liu, “Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution,” Int. Conf. Mach. Learn.,
pp. 1–8, 2003.

[29] B. Senliol, G. Gulgezen, L. Yu, and Z. Cataltepe, “Fast Correlation Based Filter (FCBF) with a different search strategy,” 2008 23rd
Int. Symp. Comput. Inf. Sci. Isc. 2008, 2008.

[30] S. E. Gómez, “FCBF_module,” 2016. [Online]. Available: https://github.com/SantiagoEG/FCBF_module.

[31] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

[32] S. García, A. Fernández, J. Luengo, and F. Herrera, “Advanced nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining: Experimental analysis of power,” Inf. Sci. (Ny)., vol. 180, no. 10, pp.
2044–2064, 2010.

[33] E. Bauer and R. Kohavi, “An empirical comparison of voting classification algorithms: Bagging, boosting, and variants,” Mach.
Learn., vol. 36, no. 1/2, pp. 105–139, 1999.

[34] T. G. Dietterich, “An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and
randomization,” Mach. Learn., vol. 40, no. 2, pp. 139–157, 2000.

[35] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “A Comparison of Decision Tree Ensemble Creation Techniques,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 173–180, Jan. 2007.

[36] T. G. Dietterich and G. Bakiri, “Solving Multiclass Learning Problems via Error-Correcting Output Codes,” Jouranal Artifical Intell.
Res., vol. 2, pp. 263–286, 1995.

[37] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.

[38] J. Milgram, M. Cheriet, and R. Sabourin, “‘One Against One’ or ‘One Against All’: Which One is Better for Handwriting Recognition
with SVMs?,” Tenth Int. Work. Front. Handwrit. Recognit., pp. 1–6, 2006.

[39] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn., vol. 63, no. 1, pp. 3–42, 2006.

[40] T. G. Dietterich, “Ensemble Methods in Machine Learning,” 2000, pp. 1–15.

[41] K. C. Lan and J. Heidemann, “A measurement study of correlations of Internet flow characteristics,” Comput. Networks, vol. 50, no. 1,
pp. 46–62, 2006.

[42] P. Carvalho, P. Solis, B. Queiroz, B. Carneiro, and M. Deus, “A Traffic Analysis per Application in real IP/MPLS Service Provider
Network,” in 2007 2nd IEEE/IFIP International Workshop on Broadband Convergence Networks, 2007, pp. 1–5.

Annex 1: Collection of Statistical Attributes

Table A1 contains the whole collection of statistical attributes used in this work along with a brief description of each one. Note that many
statistics have been computed accounting for only one flow direction or both, “direction 0” denotes the way in which first packets of flow
connections were detected and vice versa for “direction 1”. The datasets are publicly available at []. This collection of statistics attributes could
be improved adding new and more informative attributes extracted from IP and Transport layers.

Table A1. Collection of statistics employed for the experiments presented in this work
Feature Name Description

%Packet0 Percentage of packets transferred in the direction 0

%Packet1 Percentage of packets transferred in the direction 1

%Bytes0 Percentage of bytes transferred over number of packets in the direction 0

%Bytes1 Percentage of bytes transferred over number of packets in the direction 1

meanBytes0 Mean of bytes transferred over number of packets in the direction 0

meanBytes1 Mean of bytes transferred over number of packets in the direction 1

meanBytesT Mean of bytes transferred over number of packets in both directions

varBytes0 Variance of bytes transferred over number of packets in the direction 0

varBytes1 Variance of bytes transferred over number of packets in the direction 1

varBytesT Variance of bytes transferred over number of packets in both directions

rmsBytes0 Root mean square of bytes transferred over number of packets in the direction 0

rmsBytes1 Root mean square of bytes transferred over number of packets in the direction 1

rmsBytesT Root mean square of bytes transferred over number of packets in both directions

maxBytes0 Maximum number of bytes transferred in the direction 0

maxBytes1 Maximum number of bytes transferred in the direction 1

maxBytesT Maximum number of bytes transferred in both directions

minBytes0 Minimum number of bytes transferred in the direction 0

minBytes1 Minimum number of bytes transferred in the direction 1

minBytesT Minimum number of bytes transferred in both directions

meanInterArrivalTime0 Mean of interarrival time over number of packets in the direction 0

meanInterArrivalTime1 Mean of interarrival time over number of packets in the direction 1

meanInterArrivalTimeT Mean of interarrival time over number of packets in both directions

varInterArrivalTime0 Variance of interarrival time over number of packets in the direction 0

varInterArrivalTime1 Variance of interarrival time over number of packets in the direction 1

varInterArrivalTimeT Variance of interarrival time over number of packets in both directions

rmsInterArrivalTime0 Root mean square of interarrival time over number of packets in the direction 0

rmsInterArrivalTime1 Root mean square of interarrival time over number of packets in the direction 1

rmsInterArrivalTimeT Root mean square of interarrival time over number of packets in both directions

maxInterArrivalTime0 Maximum number of interarrival time in one packet in the direction 0

maxInterArrivalTime1 Maximum number of interarrival time in one packet in the direction 1

maxInterArrivalTimeT Maximum number of interarrival time in one packet in both directions

minInterArrivalTime0 Minimum number of interarrival time in one packet in the direction 0

minInterArrivalTime1 Minimum number of interarrival time in one packet in the direction 1

minInterArrivalTimeT Minimum number of interarrival time in one packet in both directions

meanTCPWin0 Mean of TCP window sizes over number of packets in the direction 0

meanTCPWin1 Mean of TCP window sizes over number of packets in the direction 1

meanTCPWinT Mean of TCP window sizes over number of packets in both directions

varTCPWin0 Variance of TCP window sizes over number of packets in the direction 0

varTCPWin1 Variance of TCP window sizes over number of packets in the direction 1

varTCPWinT Variance of TCP window sizes over number of packets in both directions

rmsTCPWin0 Root mean square of TCP window sizes over number of packets in the direction 0

rmsTCPWin1 Root mean square of TCP window sizes over number of packets in the direction 1

rmsTCPWinT Root mean square of TCP window sizes over number of packets in both directions

maxTCPWin0 Maximum number of TCP window in one packet in the direction 0

maxTCPWin1 Maximum number of TCP window sizes in one packet in the direction 1

maxTCPWinT Maximum number of TCP window sizes in one packet in both directions

minTCPWin0 Minimum number of TCP window sizes in one packet in the direction 0

minTCPWin1 Minimum number of TCP window sizes in one packet in the direction 1

minTCPWinT Minimum number of TCP window sizes in one packet in both directions

flowDurationT Flow duration accounting for packets in both directions

flowDuration0 Flow duration accounting for packets in the direction 0

flowDuration1 Flow duration accounting for packets in the direction 1

flowSize Total flow size in bytes accounting for bytes transferred in both directions

meanBytes/Time0 Mean of bytes transferred over flow duration in the direction 0

meanBytes/Time1 Mean of bytes transferred over flow duration in the direction 1

meanBytes/TimeT Mean of bytes transferred over flow duration in both directions

varBytes/Time0 Variance of bytes transferred over flow duration in the direction 0

varBytes/Time1 Variance of bytes transferred over flow duration in the direction 1

varBytes/TimeT Variance of bytes transferred over flow duration in both directions

rmsBytes/Time0 Root mean square of bytes transferred over flow duration in the direction 0

rmsBytes/Time1 Root mean square of bytes transferred over flow duration in the direction 1

rmsBytes/TimeT Root mean square of bytes transferred over flow duration in both directions

meanTCPWin/Time0 Mean of TCP window sizes over flow duration in the direction 0

meanTCPWin/Time1 Mean of TCP window sizes over flow duration in the direction 1

meanTCPWin/TimeT Mean of TCP window sizes over flow duration in both directions

varTCPWin/Time0 Variance of TCP window sizes over flow duration in the direction 0

varTCPWin/Time1 Variance of TCP window sizes over flow duration in the direction 1

varTCPWin/TimeT Variance of TCP window sizes over flow duration in both directions

rmsTCPWin/Time0 Root mean square of TCP window sizes over flow duration in the direction 0

rmsTCPWin/Time1 Root mean square of TCP window sizes over flow duration in the direction 1

rmsTCPWin/TimeT Root mean square of TCP window sizes over flow duration in both directions

NPKT_64 Number of packets with equal or less than 64 bytes in both directions

NPKT_128 Number of packets with equal or less than 128 bytes in both directions

NPKT_256 Number of packets with equal or less than 256 bytes in both directions

NPKT_512 Number of packets with equal or less than 512 bytes in both directions

NPKT_1024 Number of packets with equal or less than 1024 bytes in both directions

NPKT_MORE Number of packets with more than 1024 bytes in both directions

ANNEX 3

47

A.3 Journal Paper. Exploratory Study on Class Imbalance
and Solutions for Network Traffic Classification

Table A3. JCR-Indexed Paper Information

Title
Exploratory Study on Class Imbalance and Solutions for Network Traffic
Classification

Authors
Santiago Egea Gómez, Luis Hernández-Callejo, Belén Carro Martínez and
Antonio Sánchez-Esguevillas

Journal Neurocomputing (IF: 4.072)

Volume Volume 343, 28 May 2019, Pages 100-119

Publication Date 4 February 2019

DOI 10.1016/j.neucom.2018.07.091

https://www.sciencedirect.com/science/journal/09252312/343/supp/C
https://doi.org/10.1016/j.neucom.2018.07.091

*Corresponding author.

E-mail address: santiago.egea@alumnos.uva.es

Exploratory Study on Class Imbalance and Solutions for Network Traffic

Classification

Santiago Egea Gómeza*, Luis Hernández-Callejoa, Belén Carro Martíneza, Antonio J. Sánchez-

Esguevillasa

a Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid 47011, Spain

A R T I C L E I N F O

Article history:

A B S T R A C T

Network Traffic Classification is a fundamental component in network

management, and the fast-paced advances in Machine Learning have motivated

the application of learning techniques to identify network traffic. The intrinsic

features of Internet networks lead to imbalanced class distributions when

datasets are conformed, phenomena called Class Imbalance and that is attaching

an increasing attention in many research fields. In spite of performance losses

due to Class Imbalance, this issue has not been thoroughly studied in Network

Traffic Classification and some previous works are limited to few solutions and/or

assumed misleading methodological approaches. In this article, we deal with

Class Imbalance in Network Traffic Classification, studying the presence of this

phenomenon and analyzing a wide number of solutions in two different Internet

environments: a lab network and a high-speed backbone. Namely, we

experimented with 21 data-level algorithms, six ensemble methods and one cost-

level approach. Throughout the experiments performed, we have applied the most

recent methodological aspects for imbalanced problems, such as: DOB-SCV

validation approach or the performance metrics assumed. And last but not least,

the strategies to tune parameters and our algorithm implementations to adapt

binary methods to multiclass problems are presented and shared with the

research community, including two ensemble techniques used for the first time

in Machine Learning to the best of our knowledge. Our experimental results

reveal that some techniques mitigated Class Imbalance with interesting benefit

for traffic classification models. More specifically, some algorithms reached

increases greater than 8% in overall accuracy and greater than 4% in AUC-ROC

for the most challenging network scenario.

Keywords: Machine Learning; Network management; Class Imbalance; Network Traffic Classification

1. Introduction
Internet network administrators often confront vast amounts of traffic and fast events happening in different points of Internet

networks. Controlling and managing network resources can be an arduous task considering the fast increase of interconnected

devices and the complexity of underlying network topologies. Due to the former facts, the provision of automatic tools to facilitate

the network administrators' work is crucial and urgent. Network Traffic Classification (NTC) is a fundamental functionality of

network management systems, since many cyber-attacks and network flaws can be easily detected via monitoring the network

traffic. Thereby, researchers have shown an increasing interest in NTC recently [1].

Machine Learning (ML) has opened up promising future prospects for NTC and the number of published articles proposing

traffic classifiers based on ML is increasing continuously [1]–[10]. The application of ML to NTC brings important advantages

over previous approaches; however new challenges have risen up and they must be solved to accomplish feasible classifiers.

Port-based classifiers [11] are the earliest and simplest techniques to characterize Internet traffic. This kind of classifiers relies

on port numbers into IP headers to associate protocols and applications with flow connections according to the well-known ports

defined by the IANA [12]. Unfortunately, emerging applications (predominantly peer-to-peer) that dynamically use different

ports and/or deliberately mask their communications behind IANA ports impose an unresolved obstacle for port-based

classifiers. This handicap motivated researchers to develop more sophisticated techniques, gaining a relevant relevance an

approach known as Deep Packet Inspection (DPI). DPI tools [13] inspect binary information found in the application layer of

network packets in order to seek matches between inspected packets and prefixed signatures. Although network hardware is

fast evolving and, thus, the perspective of DPI tools are improving in some network scenarios, these techniques have major

drawbacks to be implemented in network devices with scarce memory and computation resources. DPI approaches are pretty

computationally weighted complicating their scalability, and additionally signature databases are quite difficult to maintain

due to zero-day protocols and software updates. But the most limiting issue from the point of view of Internet Service Providers

(ISPs) is users' privacy violation. DPI tools unceasingly extract information from the application layer accessing to personal

information about network users. The above reasons are being motivating the advanced research on ML-based NTC, since ML

essentially provides accurate and fast classifiers respecting users’ privacy [1]–[3].

ML provides a wide number of preprocessing techniques and learning algorithms enabling highly accurate classifiers. Learning

algorithms are able to process the knowledge contained in training datasets and generate predictive models describing the

structure of data. The resulting models are afterwards used to reproduce the response for incoming unknown samples. If training

datasets include the response to predict, we are solving a supervised learning task; otherwise, it is an unsupervised problem.

Regarding the type of response, the modeling task is a classification problem if the response is categorical; whereas the

regression problems cover cases in which the responses take continuous values.

NTC is a multiclass classification problem, since traffic classifiers aim to categorize objects (Internet connection flows) in

different classes or traffic categories (protocols or applications). The most extended approach in ML-based NTC is flow-based

level in which all packets associated with a connection are aggregated and jointly processed to create classification objects. Both

supervised and unsupervised approaches [14] have been proposed over recent years evidencing the potential of ML for NTC.

Although unsupervised learning techniques have interesting advantages, such as the no necessity of a labeling process [1],

supervised algorithms have outperformed unsupervised techniques in terms of accuracy. Furthermore, semi-supervised

techniques [5] have also been studied with promising results. In this work we approach flow-based NTC from a supervised

perspective.

Network environments impose important challenges when ML is employed. One of the main challenges is Class Imbalance,

phenomena that is being actively studied in numerous research fields in which ML is applied [15] (such as: Banking Fraud [16],

Computer Vision [17] and Medical Diagnosis [18]). A classification problem is categorized as imbalanced when one or various

classes are overrepresented comparing to the others. In almost all network environments some services are more often consumed

than others, which turns out non-uniform class distributions when NTC datasets are conformed [8], [19]–[22]. Class Imbalance

is a key topic in recent ML research, since imbalanced class distributions negatively affect learning algorithm performances

awarding the most populated classes and punishing the underrepresented ones.

In this work, we provide a thoroughly study on a wide number of solutions to Class Imbalance for data traffic extracted from

different network environments and dates, which present dissimilar levels of imbalance. The most challenging traces was

captured recently from an ISP backbone; meanwhile, the rest of datasets were extracted from a lab network in which users´

activities were manually simulated. Between the algorithms studied here to confront Class Imbalance, we include: six ensemble

algorithms that include resampling during their training being two of them original contributions of this work; 21 well-known

resampling algorithms and one well-known cost-sensitive approach. Throughout our experiments, we have applied novel

methodological aspects that are gaining a special relevance due to their goodness for imbalanced problems, and they have not

been employed in ML-based NTC yet, such as: the validation approach DOB-SCV or the performance metrics assumed. As an

extra contribution of our research, we make publicly available our algorithm implementations in order to share them with other

researchers. Some authors have already studied some solutions to Class Imbalance for NTC datasets [8], [21]–[23]; however,

none of them employed a suitable cross-validation approach to minimize covariate shift between samples in validation folds.

Furthermore, many of them employed outdated data, did not assume an early NTC approach and/or only considered TCP flows

and excluded UDP traffic. To the best of our knowledge, the most of techniques considered in our experiments have not been

explored for early ML-based NTC.

This article is structured as follows. Section 2 introduces Class Imbalance and reviews the most recent NTC literature. The

methodological aspects applied in our experiments are presented at Section 2 along with a discussion on Class Imbalance for

our datasets. During our experiments we have assessed both global and per-class performance metrics, and a novel ML

validation approach (DOB-SCV) have been used to validate our results. Section 4 presents and discusses the results obtained

from the experiments we have carried out. Firstly, we show and discuss the effect of the imbalanced class distributions on a

base estimator, which is afterwards selected as baseline for the algorithm comparison. Secondly, we have compared a wide

number of techniques for Class Imbalance evaluating their performances in terms of global metrics and statistically validating

the outcomes. Thirdly, the most interesting algorithms are selected in order to thoroughly analyze their performances for each

individual traffic class. Finally, Section 5 states the conclusions of this work and presents future work lines.

2. Previous work
As aforementioned, many research efforts have been focused on addressing the problem of Class Imbalance for ML problems.

Through this section, we firstly provide an introductory view of Class Imbalance, and afterwards we briefly review the recent

advances in ML-based NTC to state an illustrative background.

2.1 Confronting Class Imbalance
A wide number of real-world problems addressed with supervised learning fulfill the condition to be categorized as imbalanced

problems, which has motivated the research on solutions to evade Class Imbalance [15]–[18], [23]. A two-class dataset is denoted

as imbalanced when a class (majority class) has more instances than the other (minority class). Standard learning algorithms

were designed under the assumption that labels are equally distributed in training datasets biasing the classifier performances

towards the majority class. Different solutions have been proposed in order to correct the negative effects of Class Imbalance, a

thorough study on many of them is provided in [24]. V. López et al. examined Class Imbalance focusing on useful performance

metrics and the reasons that lead to performance losses in imbalanced scenarios (overlapping regions, small disjuncts, noisy

data, …). Additionally, the authors carried out several experiments to assess the existing solutions on different binary datasets.

As Fig 1 shows, the existing techniques to confront Class Imbalance are categorized in three main levels according to how they

address the problem:

Data Level: Data-Level methods address Class Imbalance via modifying class distributions before training, they are also known

as resampling algorithms. In order to offset the class populations they create new minority samples and/or remove the existing

majority ones from the original dataset. In the first case we refer to oversampling methods [25]–[27], meanwhile the techniques

that reduce the number of majority samples are known as undersampling algorithms [28]–[34]. Also hybrid algorithms, which

combine oversampling and undersampling, have been proposed [35], [36].

Algorithm Level: This approach includes learning algorithms that are able to award the minority class and punish the majority

while training. In this instance, modified versions of learning algorithms have been proposed to tackle imbalanced distributions.

Some algorithm-level approaches gaining in prominence are the ensemble techniques that incorporate a resampling phase while

creating ensembles [37]–[39].

Cost-sensitive Level: In this approach the algorithms learn taking into account for costs associated with the different classes

[40]. Thereby, a high misclassification cost is assigned to the minority class strengthening its importance in the learning process;

on the contrary, the majority class is weakened. The human perception of the problem is essential for assigning classification

costs in this approach, which could lead to human errors in some cases. There mainly exist two approaches to cost-sensitive

learning: (1) Direct Methods use costs directly associated with each class; meanwhile, (2) Meta-learning employs pre-processing

(usually data-level techniques) and/or post-processing steps during algorithm training.

Some authors have compared some of the former solutions in their respective areas. For example, O. Loyola-González et al. [23]

recently studied how resampling methods affect pattern-based classifier performances. The authors advertised about misleading

results when global accuracy is employed as performance metric, and also they proved the advantages of resampling algorithms.

Fig. 1. Categorization of solutions to Class Imbalance

An emerging discussion in Class Imbalance is how to adapt the proposed solutions, which have been primarily designed for

binary problems, to multiclass problems [30], [41], [42]. The difficulty of dealing with multiclass imbalanced problems is quite

superior to learning from imbalanced binary datasets as it is shown in [43]. Decomposition techniques have attached a relevant

prominence in order to adapt two-class algorithms to multiclass problems. These data preprocessing techniques transform the

multiclass problem in several binary sub-problems and once the problem has been simplified, algorithms are employed in all of

the sub-problems to offset Multiclass Imbalance. The most popular approaches to decompose a multiclass problem are One-

versus-One (OvO) [44] and One-versus-All (OvA) [45].

Both decomposition methods have been studied by several authors. An extended analysis of imbalanced multiclass problems is

provided in [41]. The authors studied the multi-minority and multi-majority effects over different performance metrics using

artificial datasets and Decision Tree as base learner. Additionally, Wang et al. compared some data-level and algorithm-level

techniques for 12 real-world datasets. A comparison between well-known oversampling and undersampling algorithms along

with a cost-sensitive approach was carried out in [42]. The authors evaluated three state-of-art ML classifiers (Support Vector

Machines, Decision Trees and K-Nearest Neighbors) in terms of average per-class accuracies and applying both OvO and OvA

decomposition methods over 20 real-world problems. The obtained results reveal that oversampling techniques often provide

better results than undersampling, and confirmed the advantages of applying decomposition techniques to Multiclass

Imbalance. Charte et al. studied several resampling methods over different multilabel datasets in [30]. They combined simple

random undersampling and oversampling along with a complex minority and majority search schemes. Furthermore, they

presented measures to quantify Class Imbalance in multilabel datasets.

Another active discussion in Class Imbalance is how to validate predictive models correctly. An interesting review on

performance metrics to validate classifiers in imbalanced problems is provided in [46]. Regarding the validation approach, some

traditional methods have shown to be inefficient to validate classifiers under imbalanced conditions as it was pointed out in the

work [47], in which J. G. Moreno-Torres et al. analyzed different traditional cross-validation approaches for imbalanced

problems. In addition, the authors proposed a novel validation approach called DOB-SCV (Distribution Optimally Balanced

Stratified Cross Validation), which is more resilient to covariate shift due to random selections. The advantages of employing

DOB-SCV was afterwards confirmed in [48] through several experiments over different learning algorithms and datasets

extracted from different research fields. Thus, we have assumed this validation approach for our experiments.

The particular characteristics of Internet networks lead to a high level of Class Imbalance when NTC datasets are constructed

as we discuss for two different scenarios at Section 3.3.2. In this work, we study a wide number of techniques to boost algorithm

performances in imbalanced NTC, including 21 data-level techniques, six ensembles techniques and one cost-sensitive approach.

Amongst these algorithms, two new ensemble techniques are analyzed based on the combination of Tomek Links and ROS with

boosting learning (Section 3.4). Additionally, this work constitutes a real-world case of study in which several novel methodology

aspects are applied at first time in NTC. Below, we briefly review some relevant works on ML-based NTC to introduce readers

to the state of the art.

2.2 Recent Advances in ML-based NTC
As aforementioned, ML has opened promising prospects in NTC and a wide number of researchers have attached their attention

on this approach. One of the most important contributors to ML-based NTC was Bernialle at el. with their manuscripts [49],

[50]. They presented the concept of early traffic identification, which consists in flow-based classification processing only a few

number of packets at the beginning of TCP connections. The proposed classification approach accomplished satisfactory

accuracies using only five packets per flow and clustering-based algorithms. Another work that discusses the effective number

of packets to consider for accurate early classification is [6]. L. Peng et al. built their datasets using ordered sequence of packet

sizes considering only TCP bidirectional flows. The authors reported accuracies greater than 90% using only the first 5-7 packet-

sizes as predictors. W. Li and A.W. Moore [51] also experimented varying the number of packets employed to conform their

datasets. They not only measured the performances of classifiers based on accuracy, but also they studied the latency in training

and classification. The C4.5 Decision Tree algorithm was reported as a promising technique for NTC due to its low latency and

its high accuracy.

Other authors have compared different state-of-the-art algorithms for NTC datasets. The earliest comparative study amongst

ML algorithms was presented in [52]. Williams et al. confirmed the observations provided in [44], which reported Decision Trees

as one of the most suitable learning algorithms for real-time NTC. Furthermore, they studied the behavior of correlation-based

feature selection algorithms on their datasets showing that reducing the number of predictive attributes speeds up learning and

classification without significant performances losses. Soysal and Schmidt [53] also provided a comparison between different

ML algorithms confirming that Decision Trees outperform other approaches in terms of per-class precision and recall. As an

additional contribution of their work, the authors studied how class distributions and errors in labeling connection flows affect

classifier performances. Also, we carried out a comparison amongst ensemble algorithms using Decision Tree as base estimator

in [54]. We assessed several popular ensemble algorithms showing their advantages in terms of accuracy but, also, their

penalties in latency. To address the latency degradation, we presented a novel ensemble structure called T-DTC, which consists

in a sequential chain of estimators acting as filters of their respective successors. T-DTC exhibited promising performances in

terms of latency and accuracy over datasets extracted from two different network environments. Other authors have proposed

other traffic classification approaches using different state-of-the-art learning algorithms, such as: Naïve Bayes classifier in

[55]; Bayesian Neural Networks in [56]; and Support Vector Machines in [9], [57].

A current tendency in ML-based NTC is contributing to open research lines proposing ad-hoc classifiers. In the instance of [5],

the authors faced the problem of detecting zero-day applications and proposed a classification approach able to detect emerging

traffic and retrain itself to classify it. The proposed algorithm is composed essentially by three modules, an Unknown Discovery

module, a Bag-of-Flows based classifier and a System Update module. Another classification approach with the capacity of self-

learning, called Self-Learning Intelligent Classifier (SLIC), was presented in [58]. SLIC dynamically builds a training dataset

and retrains a predictive model based on K-Nearest Neighbors when a new sample is introduced in the dataset. The results

reported show how classification accuracy increases in each retraining iteration. The issue of performance deterioration over

distant-based classifiers due to Internet dynamic conditions is analyzed in [59]. J. Camacho et al. assessed the generalization

ability of 1-Nearest Neighbor in dynamic contexts, and proposed a flow pairing technique for traffic classification based on a

similarity function to address this issue. Furthermore, the authors extended their experiments for P2P traffic identification.

Concerning Class Imbalance, some authors have tried to provide solutions for imbalanced NTC datasets. A class-oriented feature

selection (COFS) and an ensemble learning approach are proposed in [7] to cope with non-uniform traffic distributions. COFS

combines local and global metrics to remove redundant and irrelevant features outperforming traditional feature selection

techniques. The presented ensemble scheme is composed by several base learners per traffic class and a subsequent weighted

voting. Two simple data-level algorithms and one cost-sensitive approach (MetaCost) were compared in [22] for datasets

extracted from network traces captured between 2003-2007. The authors applied Random Undersampling and Oversampling

using a new strategy in order to detect minority and majority classes and set the ratios between classes. In the instance of

MetaCost, the cost coefficients were adjusted according to a strategy based on flow-ratio. The reported results show how

resampling algorithms can be very effective when there are insufficient training samples and cost-sensitive when there are

enough number of samples. Finally, undersampling provided other interesting advantages, such as fast execution and training

times. Wei H. et al. [21] also tackled the problem of class imbalanced for real-time NTC comparing several ensemble techniques

that combine data sampling algorithms with boosting. The authors also proposed a hybrid approach called BalancedBoost, which

is quite similar to other ensemble algorithms considered in this work. BalancedBoost outperformed the rest of algorithms using

the UNIBS datasets, which is composed by traffic generated only by target hosts. Recently a cost-sensitive algorithm based on

data gravitation-based classifier (IDGC) has been proposed in [8] to mitigate Class Imbalance in NTC. IDGC is a modification

of the algorithm DGC proposed in [60], which introduce sensitiveness to imbalanced class distributions via applying a weighting

phase using ratios between classes. Peng et al. showed that IDGC overcomes other ensemble and cost-sensitive methods

focusing only on TCP connections and transforming multiclass NTC in simpler two-class datasets. Finally, we suggest reading

the surveys [1]–[4] to get a more general view of NTC.

A large proportion of the above articles reported about imbalanced distributions in NTC datasets, however the works that tackle

this issue are scarce. Throughout this article, we discuss Class Imbalance over real-world NTC datasets in order to insightfully

analyze this problem. Additionally, the absence of studies conducting experiments to assess the benefits of solutions to Class

Imbalance in early NTC encourages us to provide a uniform comparison among a wide number of these algorithms. The

experiments presented below were conducted employing the most sophisticated validation approach and performance metrics

for imbalanced problems up to date. The experiments were conducted employing different datasets composed by TCP and UDP

traffic and extracted from two different environments, which present dissimilar Class Imbalance conditions. The classification

task is faced a multiclass perspective, so that we had to adapt techniques preliminary designed for two-class problems to

multiclass datasets. As part of the contributions of this work, we make our implementations available for the research

community.

3. Material and Methods
The methodology followed in our experiments is described in detail through this section. Figure 2 depicts the methodology

overview applied to all our NTC datasets. During dataset creation, the network traces were processed to generate a collection

of 77 statistical attributes over each Internet connection assuming a flow-based classification approach. A detailed description

of this process is provided at Section 3.3 along with a discussion on Class Imbalance in our datasets. After creating the NTC

datasets, we applied the DOB-SCV approach to generate folds of instances that were used to train and validate the traffic

classifiers, and the same folds were employed for all algorithms studied. As it was discussed in [47] and [48], traditional

validation approaches, which rely on naïve random selection of samples, normally present a high covariate shift in the generated

validation folds. Instead of a random selection, DOB-SCV exploits more information keeping the data distributions quite similar

between folds, and thus minimizing covariate shift among folds. We generated five folds so that one fold was used to train the

algorithms and the rest to validate the predictive model generated during each validation epoch. All results reported in Section

4 are the average scores obtained over the five validation folds.

Fig. 2 Methodology Overview

Only Fold 1 was supplied to a Feature Selection (FS) algorithm in order to rank the most relevant predictors for our problem.

The FS algorithm employed, called FCBFiP, is a modified version of the popular Fast Correlation Based Feature Selection

algorithm, which speeds up the selection process via modifying the search strategy. We presented this algorithm and validated

it against several datasets in [61]. Additionally, this algorithm was previously used in our work [54] and it is publicly available

in [62]. Through FS, we generated a ranking of predictors that was applied to each fold so as to reduce the attribute space. For

our experiments, we considered subset sizes from 2 to 20 with steps of 2 features in order to assess the solutions to Class

Imbalance against different subset sizes.

Our main contributions are achieved essentially through two experiments. Firstly, we employed a base estimator (described at

Section 3.1) to generate a baseline and compare all techniques to it. The same base estimator was afterwards employed during

the comparison of solutions to Class Imbalance as Figure 2 illustrates. In the case of data-level algorithms, each fold was

resampled before being used to train the base estimator, meanwhile the rest of folds were kept unaltered for validation. For

ensemble and Cost-Sensitive algorithms, the base estimator was the core of the learning process. After obtaining the results,

we analyzed algorithm performances according to several global performance metrics and statistically validated the outcomes

to extract general observations over all datasets (Section 4.2). Finally, we observe per-class metrics for the most promising

techniques on the most challenging dataset at Section 4.3 so as to confirm that the studied solutions reinforce the predictiveness

on minority classes.

The algorithms to deal with Class Imbalance were collected from different sources. The data-level and two of the ensemble

techniques studied are available in the Python Library imbalance-learn [63]. The boosting ensemble approaches employed are

adapted versions to multiclass problems of some algorithms provided by a third party. In order to make these algorithms suitable

for multiclass problems, we have designed different strategies to assist the learning process in managing ratios between classes.

In total we have compared 21 Data-Level algorithms, six ensemble algorithms and one Cost-Level approach; we make accessible

our implementations to the research community in [64], which constitutes an additional contribution of this work. A more

detailed description of all techniques and the strategies assumed to adjust class ratios, associate classification costs with classes

and assist the ensemble learning process is provided at Section 3.4. The algorithm comparison was performed in terms of several

global and per-class performance metrics, which are introduced and described in Section 3.2.

3.1 Estimator choice: CART Decision Tree
During the first years of research on ML-based NTC many researchers focused on learning algorithm comparisons to find out

which are the most effective learning approaches. Decision Tree has shown as one of the most suitable algorithms for online

NTC due to the fact that it retains an excellent ratio between classification performances and latency [2], [51], [52]. In these

works the authors shown how Decision Trees outperformed other learning approaches, such as SVM, Neural Networks and

Naïve Bayes.

CART Decision tree is a learning algorithm that iteratively creates decision rules by splitting the attributes space according to

an information-based criterion, normally trying to minimize metrics such as Information Gain or GINI Impurity. When Decision

Trees are trained, their internal structures implement a hierarchical set of rules that looks like a tree, as Figure 3 shows for

two different cases. Each level in the tree is a conditional split that describes decision regions to classify unknown samples. New

unknown samples go through this hierarchical set of heuristics until they reach the final leaf, in which they are finally classified.

The final class is assigned according to the classes that mostly populates the decision region. Figure 2 depicts the structure of

two trained CART Decision Trees in two different conditions of Class Imbalance. In Figure 2-a, the training dataset kept an

almost uniform class distribution, on the contrary, the tree (b) was trained under high Class Imbalance. Observing the bottom

levels of the tree (a), we find that 127 C1 samples were correctly modeled of a total of 170, 104 C2 samples of 167, and 142 C3

samples of a total of 163. In the instance of tree (b), none of the C1 samples were correctly modeled, and only three C2 samples

of a total of 26 did, whereas 453 C3 samples from a total of 462 were accurately modeled.

(a)

(b)

Fig. 3. Internal set of decision rules implemented by Decision Tree. The classes to predict are C1, C2 and C3; and the predictors are X1, X2 and X3

In spite of Class Imbalance sensitivity, Decision Tree algorithms have been widely employed in NTC research, and consequently

we have chosen the CART Decision Tree algorithm implemented in [65] as base estimator. The CART decision Tree we have

employed in our experiments tries to minimize the Gini Impurity. Gini Impurity is defined by Equation 1, where 𝑝𝑖 is the

probability for each class and 𝐶 is the number of classes.

 𝐼𝐺 = 1 − ∑ 𝑝𝑖
2𝐶

𝑖=1 (1)

This measure is quite sensitive to Class distributions, since 𝐼𝐺 is computed using the square root of class probabilities found in

the training dataset. Therefore, if the initial dataset is highly imbalanced, this metric will bias towards the most populated

classes. The Class Imbalance sensitivity of CART Decision Tree makes it a good base estimator to assess the enhancements

provided by the techniques studied.

3.2 Performance Metrics:
Which performance metrics use when an imbalanced problem is faced is already an open research topic in ML. Traditional

metrics that measure the overall classifier performances were designed without considering Class Imbalance. Thus, no every

assessment metric is appropriate for validating learning systems in this context [46]. In order to consistently compare the

performances of the different solutions to Class Imbalance, both global and per-class metrics are assumed. We consider global

metrics quite worthy to figure out the performances of classifiers on the whole network traffic. Additionally, per-class metrics

describe the behavior of the algorithms on individual classes so that they are very insightful to know if minority classes are

really strengthened. Below, the per-class and global metrics used for our comparison are introduced. Finally, we introduce other

measures to assess the level of Class Imbalance in our datasets, and the statistical approach used so as to validate the results

obtained in the comparison.

3.2.1 Per-class Metrics: Class Accuracies and AUC-ROC
The techniques to mitigate Class Imbalance are expected to reinforce the predictive power on minority classes and, eventually,

weaken the majority classes. Therefore, it is crucial to evaluate the classifiers in terms of metrics that describe the performances

on individual classes. To this aim, we assume per-class accuracies and AUC-ROCs (Area Under Curve – Receiving Operating

Characteristics). The former is a general metric and it is defined by Equation 2, where 𝑇𝑃𝑖 denotes the true positives on samples

belonging to class 𝑖 (note that 𝐴𝐶𝐶𝑖 is similar to per-class recall [46]). The latter is a scalar metric computed from the ROC curve.

ROC curve is a graphical representation of binary classifier performances in terms of true positives and false positives. We have

extended this binary metric to multiclass problems using One-versus-All approach. AUC-ROC method is quite interesting for

imbalanced datasets, since it measures the quality of classifiers irrespective of class distributions.

 𝐴𝐶𝐶𝑖 =
𝑇𝑃𝑖

#𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠 𝑖
 (2)

In order not to collapse the result section due to the high number of algorithms considered, we only present and discuss the per-

class metrics for the base estimator (Section 4.1) and the most interesting algorithms (Section 4.3).

3.2.2 Overall Metrics: Overall, Byte, Average Accuracies & Multiclass AUC-ROC
Global performances for classifiers are often assessed by Overall Accuracy (OA), OA measures the percentage of samples

correctly labeled as Equation 3 describes. 𝑇𝑃𝑖 denotes the number of true positives on class 𝑖 and #𝑆𝑎𝑚𝑝𝑙𝑒𝑠 the total number of

instances contained in the dataset. Since flow-level classification is assumed, OA can be considered as flow accuracy.

 𝑂𝐴 =
∑ 𝑇𝑃𝑖

#𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (3)

Other interesting performance is the Byte Accuracy (BA) defined by Equation 4. Each Internet connection consumes network

resources in terms of duration, bytes and number of packets transferred. From a network management perspective, measuring

the quantity of bytes correctly classified is quite reveling to figure out the quality of traffic classifiers. Thus, we report the BA

score in the result section, which is the percentage of bytes accurately classified over the total number of bytes contained in

network traces.

 𝐵𝐴 =
𝐵𝑦𝑡𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑
 (4)

Both OA and BA metrics are quite sensitive to Class Imbalance. If a class accumulates the most of instances and/or the most of

bytes transferred, OA and BA are not representative metrics for the rest of minority classes. Satisfactory accuracies on majority

classes could mask poor classification rates on the minorities. To avoid misleading observations, we have evaluated two

additional well-known metrics that accurately describe the quality of classifiers for imbalanced problems. A reveling metric for

imbalanced problems is G-mean (GM), which is the geometric mean of all per-class accuracies (or recalls [46]). GM for a problem

comprising 𝑛 classes is defined in Equation 5. One strategy to extend per-class metrics to multiclass metrics that summarize

them is the macro averaging. The Macro-Average is the arithmetic mean of metrics partially computed for each individual class.

This metric has shown more proper for imbalanced datasets than other global scores, since the impacts of minority and majority

classes over the final score are the same. Therefore, we assume the Multiclass AUC (MAUC), which is defined by Equation 6 for

𝑛 classes.

 𝐺𝑀 = √∏ 𝐴𝐶𝐶𝑖
𝑛

 (5)

 𝑀𝐴𝑈𝐶 =
∑ 𝐴𝑈𝐶𝑖

𝑛
 (6)

3.2.3 Measuring the imbalance level: imbalance ratio per label
An assessment approach to measure the level of Class Imbalance in multilabel datasets was presented in [30]. This approach is

based on the imbalance ratio per label (IRLbl) defined by Equation 7, which is the ratio between the number of majority samples

and the number of samples belonging to a given class 𝑖. Thereby, IRLbl for the majority class will be 1, meanwhile it will be

larger for minority classes.

 𝐼𝑅𝐿𝑏𝑙(𝑖) =
#𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠

#𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
 (7)

Once the IRLbl has been computed for each class, the mean and variance of all IRLbl values are computed to get general

information about Class Imbalance in the whole dataset. The larger the mean of IRLbl, the higher the level of imbalance in the

dataset; and the larger the variance, the higher the difference among class populations. We assume these metrics so as to figure

out the level of difficulty imposed by imbalanced class distributions in our datasets.

3.2.4 Statistical Validation
In our second experiment we compare a wide number of resampling algorithms according to several global metrics over four

datasets. When algorithms are compared using different datasets, the statistical significance must be verified to assure that the

obtained results are consistent [66]. A well-known method to compare a set of algorithms against different datasets is Friedman's

Test. Friedman's Test is a non-parametric statistical method, which sets as null hypothesis that all algorithms involved in the

comparison achieve the same performances: in short, no statistical differences exist between them. In order to confirm or reject

the null hypothesis, algorithms are ranked for each dataset according to their performances, and the position that each

algorithm occupies in the ranking is assigned as scores. Then, Friedman's score is computed as Equation 8 describes, being 𝑘

the number of algorithms in comparison, 𝑁 the number of datasets and 𝑅𝑗 the score obtained by each algorithm for the dataset

𝑗.

 𝜒2
𝐹 =

12𝑁

𝑘∗(𝑘+1)
[∑ 𝑅𝑗

2
𝑗 − 0.25𝑘 ∗ (𝑘 + 1)2] (8)

Once 𝜒2
𝐹 is computed, the associated p-value is obtained from a chi-squared random distribution with 𝑘 − 1 degrees of freedom.

The lesser the resulting p-value, the greater the probability that statistical significance exists between the algorithms.

3.3 Datasets: Network Environments, Feature Extraction & Level of Class Imbalance
Internet networks environments normally differ each other in many features, such as: the kind of traffic observed, the quantity

of connections belonging to each application, the topologies and traffic rates. These facts considerably affect the predictors

contained in NTC datasets. Traffic rates could affect predictors related to Inter-Arrival Times, and network topologies may carry

packet losses or multipath effect that influence the values of NTC predictors. Consequently, it is highly recommended to validate

ML-based traffic classifiers in several network scenarios. We have selected four network traffic captures collected from two

different network environments: a lab network and ISP backbone network. Table 1 includes relevant information about the

network traces employed in our experiments.

Privacy policies normally hinder the possibility of getting third-party real network traces. To evade this constraint, the CBA

research group of UPC BarcelonaTech generated network traffic for research purposes in their lab. They manually simulated

host activities for a long term and captured the network traffic generated in the hosts to assess DPI tools [67]. The datasets

resulted from processing these network captures have been called HOST datasets in this work.

In addition to HOST data, we have included datasets collected from a much more challenging scenario. An Internet Service

Provider, which provide Internet to more than two million of users across Spain, has cooperated in this research sharing real

network traffic with research purposes. The network traffic was captured recently in a node of their backbone network where

traffic rates of 7 GB/s are supported. These datasets have been called ISP traces in our result section. The name of the ISP is

omitted in this work due to security concerns.

3.3.1 Feature Extraction: Statistical Attributes & Labeling
The datasets involved in our experiments include 77 statistical attributes processing only five packets at the beginning of each

Internet connection. Computing the attributes using a limited number of packets assures that our classifiers fulfil the early

classification requirement presented in [49]. The classification objects considered are bidirectional flows, therefore each flow

sample contains information about ingoing and outgoing packets. The complete list of predictors is available at an Annex in our

previous article [54].

As we are assuming a supervised approach for our classification problem, we need to consistently associate each connection flow

to the application that generates it. There are several fashions to label instances for NTC datasets, but it is highly recommended

to employ a DPI approach due to their high accuracy. Since the tool nDPI [13], publicly available at [68], has shown as one of

the most accurate open source DPI tool and it is able to handle encrypted traffic [69], we used it to label our datasets.

The tool nDPI classifies application flows with an excessive fine granularity, which turns out datasets with an unmanageable

number of classes. Evaluating Class Imbalance solutions on a high number of classes leads to too heavy execution times and a

major challenge when ratios between classes are adjusted for resampling techniques. Additionally, some learning algorithms

are pretty sensitive to the number of classes, hindering classifiers performances when they deal with a vast number of classes

to predict. In order to avoid the former constraints, we have assumed an application grouping strategy, in which applications

and protocols that share similar features are clustered in more general descriptive objects. Application grouping was introduced

in [70], and this strategy has been commonly applied in numerous relevant ML-based NTC works [7], [10], [22], [51], [55], [56],

[71].

Table 1. Network Traffic Traces Information. 𝐼𝑅𝐿𝑏𝐿̅̅ ̅̅ ̅̅ ̅̅ denotes the mean of IRLbl metric and

𝜎(𝐼𝑅𝐿𝑏𝐿) denotes its variance

 Start date Duration Datasize # Packets # Flows 𝑰𝑹𝑳𝒃𝑳̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈(𝑰𝑹𝑳𝒃𝑳)

ISP-1 17/01/2017 298 seconds 12.12 GB 8863530 231137 38.50 35.79

ISP-2 23/03/2017 600 seconds 35.62 GB 33156082 627898 91.22 107.45

HOST-1 25/02/2013 ~59 days 9438 MB 5062825 121293 4.42 3.15

HOST-2 25/02/2013 ~32 days 22 GB 21000000 245627 17.29 18.28

Table 2. Network Application distribution for our datasets. %I denotes the percentage of instances belonging to each class and %B denotes the percentage of

bytes transferred by each application in the network captures.

 P2P WWW DNS INT S/C BULK Media E/C QUIC

 %I %B %I %B %I %B %I %B %I %B %I %B %I %B %I %B %I %B

ISP-1 - - 72.60 91.30 21.00 0.09 2.45 0.11 0.66 0.16 - - - - 1.59 0.44 1.70 8.10

 ISP-2 0.25 <0.01 70.20 85.70 21.90 0.21 2.57 0.41 0.90 0.24 - - 0.26 0.10 1.59 0.25 2.33 13.40

HOST-1 33.00 15.90 32.83 27.61 9.12 0.09 10.30 2.73 5.96 0.06 5.72 23.71 3.07 29.9 - - - -

HOST-2 14.30 7.90 17.10 11.80 7.21 0.04 55.40 67.1 1.06 0.01 3.43 6.22 1.50 6.93 - - - -

The WWW class is composed by HTTP and HTTPS queries towards many diverse websites. The DPI tool employed to label the

dataset is able to directly detect connections to the most popular web services (such Google, YouTube, Facebook and so on),

however some HTTPS connections were labeled as SSL on port 443. These instances were also mapped to the WWW class. Other

website queries are represented by QUIC class, QUIC is a recent transport protocol implemented by the browser Google Chrome

whose presence in the ISP traces is quite relevant. The eDonkey, Torrent and other peer-to-peer traffic have been grouped into

P2P class. DNS protocol has been found with a notable presence in HOST and ISP data, thereby this protocol was considered as

an independent class. Media groups applications and protocols as RTP and Skype. Remote control protocols as SSH, Telnet and

others were represented by the class interactive (INT). The network service protocols (such as NetBios, Radius, Kerberos and

so on) have been grouped in the class Service/Control (S/C). The Email/Chat class includes applications as WhatsApp, email

services and so on. Finally, Bulk traffic groups File transfer protocols, such as FTP. NDPI reported some connection flows as

unknown, so that we used the port numbers (IANA) to assign the final application class in these cases. If it was not possible to

identify the application for any flow, these samples were excluded from the datasets. Other applications groups, as database

queries and online games, were found in our traffic data; however, we excluded them from our experiments due to their hugely

weak presence in the datasets. The datasets used in our experiments are accessible to the research community via emailing the

authors. Table 2 contains the populations found in the datasets.

3.3.2 Level of Class Imbalance in our datasets
Table 2 contains the class distributions found in our datasets in terms of number of flows and the bytes consumed by each group

of applications. In the instance of ISP traces, the majority classes are WWW and DNS, which accumulate more than 90% of the

samples contained in both datasets. On the contrary, we found that the minorities are INT, S/C, E/C and QUIC for both, and

also MEDIA and P2P in the case of ISP-2. In spite of the different capture durations and dates (Table 1), the distributions of

classes are very similar to each other, but with the main difference that P2P and Media traffic emerged in ISP-2 with a quite

low sample representation. This fact affects the metrics used to assess the level of Class Imbalance, note that 𝐼𝑅𝐿𝑏𝐿̅̅ ̅̅ ̅̅ ̅̅ and 𝜎(𝐼𝑅𝐿𝑏𝐿)

for ISP-2 are much larger than the ISP-1 (Table 1). Focusing on the byte populations for ISP traces, we found that QUIC takes

an important relevance. Although QUIC has a weak presence in terms of %I, it consumed more than the 8% of bytes for ISP-1

and more than the 13% for ISP-2. However, WWW is remaining being the most byte-consuming for both datasets. Regarding

HOST datasets, we find that they present a lesser degree of imbalance than the ISP traces. This fact is caused by the differences

between network environments, since ISP traffic aggregates connections flows coming from many users, meanwhile HOST

traces were captured in host computers.

The level of Class Imbalance in HOST-1 is much lower than HOST-2 as can be noted observing 𝐼𝑅𝐿𝑏𝐿̅̅ ̅̅ ̅̅ ̅̅ and 𝜎(𝐼𝑅𝐿𝑏𝐿) from Table

1. In the instance of HOST-1, P2P and WWW are the majority classes summing up more than the 60% of the samples, meanwhile

MEDIA is the lowest populated class with only the 3.07% of samples, followed by S/C and BULK with a percentage of samples

close to 6% each one. Note that, although MEDIA and BULK flows do not have a relevant presence in HOST-1 in terms of

samples, these applications accumulate near the 60% of bytes. For this network trace, P2P and WWW also consumed an

important percentage of bytes, meanwhile DNS, INT and S/C consumed much less. In the case of HOST-2, INT is remarkably

the most populated class having more than 55% of samples. Contrary, the most underrepresented classes in terms of instances

for HOST-2 are S/C and INT with a 1.06% and 1.5% of instances respectively. The high differences between the majority and

the minority classes cause that HOST-2 presents a greater level of Class Imbalance than HOST-1. In terms of percentage of

bytes for HOST-2, INT is the most byte-consuming application with more than the 67% followed by WWW, P2P, MEDIA and

BULK, which add more than 30% of bytes. DNS and S/C are very light in terms of bytes captured in the network trace.

As we have noted, Class Imbalance have an important presence in our datasets presenting multi-majority and multi-minority

classes. Below, we introduce the algorithms studied and the multiclass strategies to confront Class Imbalance.

3.4 Algorithms & Strategies to confront Class Imbalance
In this section we introduce the algorithms employed in our experiments and the strategies assumed to tune their parameters.

Table 3 contains a brief description of each algorithm and Figure 4 shows the strategies applied. As part of the contributions

provided in this work, the algorithms we have implemented are accessible to the research community in [64].

We have collected several techniques from different approaches to confront Class Imbalance: 21 data-level algorithms, including

undersampling, oversampling and hybrid approaches; 6 algorithm-level techniques and one well-known cost-sensitive approach.

All data-level techniques along with Easy Ensemble and Balance Cascade algorithms are implemented in the Python library

imbalanced-learn [63]. The other ensemble schemes are two-fold contributions from a third party and ours. The algorithms

SMOTEboost and RUSboost were collected from the algorithm repository [72]. These algorithms were not adapted to multiclass

problems, so that we had to upgrade the implementations to deal with multiclass problems. Furthermore, we have implemented

two unexplored boosting algorithms: TLboost and ROSboost, which have already not been applied to ML to the best of our

knowledge. The maximum number of estimators were set to 10 for all ensemble structures, since more estimators did not yielded

better results for our datasets.

Finally, we have implemented the cost-sensitive approach MetaCOST [40]. Preliminarily, we tested the strategy presented in

[22] to compute the classification costs for MetaCOST, however majority classes were strongly punished due to the huge

differences between the number of samples for different classes. In order to mitigate this fact, we have applied Equation 9 to

compute classification costs. Thereby, the cost associated with misclassifying a sample belonging to class 𝑖 as class 𝑗 is 𝐶𝑜𝑠𝑡𝑖,𝑗,

where 𝐶𝑖 denotes the number of samples for class 𝑖.

 𝐶𝑜𝑠𝑡𝑖,𝑗 = {
𝑙𝑜𝑔10(𝐶𝑖) 𝑙𝑜𝑔10(𝐶𝑗) ⁄ 𝑖 ≠ 𝑗

0 𝑖 = 𝑗
 (9)

NTC is a multi-minority and multi-majority problem, thus tuning manually the ratio of each class for resampling methods is a

quite arduous and time-consuming task. Additionally, the boosting algorithms need a procedure to set the resampling ratios

between classes for each learning iteration. Consequently, we have designed different strategies to set the former parameters

during our experiments (Figure 4). In the case of Data-Level Undersampling, majority classes are considered classes whose

number of samples are greater than the mean of all populations (Nmean), and majority classes are undersampled until reaching

Nmean so as to avoid excessive information removal. Regarding Data-Level Oversampling, minority classes are considered all

classes with a lesser population than the majority class (Nmaj), so that all minority classes are oversampled until equaling the

majority class. In the instance of hybrid approaches, the classes with a number of samples lesser than Nmean were oversampled

and the classes with greater populations were undersampled until reaching Nmean.

In the instance of ensemble algorithms, EE and BC are ensemble algorithms based on creating bags of estimators trained using

balanced datasets. These algorithms state that the minorities classes resampled until equaling the most majority class.

However, boosting algorithms need to implement a resampling strategy to adjust the number of classes employed in each

boosting iteration. In the case of algorithms that combine boosting and undersampling (UnderBoosting), all classes with more

than Nmean are undersampling until Nmean. Meanwhile, in the case of OverBoosting algorithms, majority classes are considered

the classes whose number of samples are lesser than Nmaj, and they are resampled until reaching Nmaj. For both, Under and

OverBoosting, the minority and majority classes are proportionally resampled until accomplishing the corresponding sample

populations.

Table 3. Algorithm selected to deal with Class Imbalance in our NTC datasets. The strategies presented in Figure 4 were applied to the

algorithms marked with an asterisk

 Algorithm Description

OVERSAMPLING

Random OverSampling

(ROS*)

The minority class is resampled by replicating samples randomly selected. This algorithm is the simplest oversampling

technique.

Synthetic Minority Oversampling

TEchnique (SMOTE*)

Synthetic data are generated for the minority class [25]. 𝐾 minority nearest neighbors are selected for each minority sample,

one of these neighbors is randomly chosen and one new sample is generated at a random point in the segment that joins the

neighbors. This process is repeated until accomplish the desired number of new minority samples.

 SMOTE with Borderline 1 and 2

(SMOTE-B1* & B2*)

This modification of SMOTE assumes that only minority samples placed near the borderline between classes are important

for learning [26]. This SMOTE version detects borderline examples and strengthens them according to two strategies. In

borderline 1 only 𝑘 nearest neighbors belonging to minority class are oversampled, meanwhile both majority and minority,

borderline samples are generated in SMOTE-B2.

ADAptive SYNthetic algorithm

(ADASYN*)

ADASYN adaptively resamples the minority class according to the level of difficulty in the learning process [27], so as that

more synthetic samples are generated for classes difficult to predict. In the generation process the algorithm randomly

selects the 𝑘 nearest neighbors around minority samples and estimate the distribution of the data. Finally, new samples are

generated in middle points between minority samples and one of their neighbors randomly chosen.

UNDERSAMPLING

Random UnderSampling

(RUS*)

RUS randomly selects samples belonging to the majority classes and removes them from original datasets. RUS is the

simplest approach to apply undersampling to imbalanced datasets.

Near Miss

(NM-1*, 2* & 3)

Near-miss samples are defined as the majority samples that are located in minority class nearby. NM-1, 2 & 3 remove the

near-miss samples according to a KNN strategy. Three strategies were developed to determine if a given sample is near-

miss, all of them are described in [29].

Condensed Nearest Neighbor

(CNN)

CNN iteratively finds a consistent subset with the minimal number of initial samples. CNN employs the Nearest Neighbor

rule to determine if a sample will be retained or discarded.

Tomek Links

(TL)

A Tomek Link consists of a pair of samples that are nearest neighbors but each one belongs to a different class [34]. TL

detects and removes Tomek Links from the initial dataset.

One Sided Selection

(OSS)

OSS intelligently removes the majority samples in two phases: (1) a 1-KNN classifier selects a representative subset of

majority samples, and (2) the majority samples that participate in Tomek Links are removed.

Edited Nearest Neighbor

(ENN)

ENN removes samples that are misclassified by a k-NN classifier [31]. The purpose of this technique is to remove outliers

and overlapped samples between different classes.

Neighborhood Cleaning Rule

(NCR)

NCR [32] removes noisy examples in two steps essentially: (1) NCR employs the ENN rule to identify noisy samples, and (2)

noisy samples with 3 of their 5 nearest neighbors belonging to different classes are removed.

Instance Hardness Threshold

(IHT)

IHT is a recent data reduction technique that trains a base classifier, estimates sample probabilities and removes the

training samples whit weak probabilities [33]. We employed decision tree as base estimator for our experiments.

HYBRID SAMPLING

SMOTE+Undersampling

(SMOTE-TL*, SMOTE-ENN*)

SMOTE-TL [35] firstly oversamples minority samples using SMOTE and, afterwards, removes the TL links. Meanwhile,

SMOTE-ENN [36] cleans the oversampled dataset applying ENN rule.

ENSEMBLE ALGORITHMS

EasyEsemble

(EE)

EE creates a bag of balanced datasets using ROS to train a set of base estimators, whose predictions are aggregated according

majority voting [37].

BalanceCascade

(BC)

BC is a supervised version of EE. BC creates a bag of balanced datasets, which are refined using a base estimator. [37]

OverBoosting

(ROSboost*, SMOTEboost*)

OverBoosting oversamples minority classes in each boosting iteration. ROSboost employs ROS during learning, meanwhile

SMOTEBoost oversamples the dataset using SMOTE [39].

 UnderBoosting

(RUSboost*, TLboost)

UnderBoosting undersamples majority classes in each boosting iteration. RUSboost [38] employs RUS during learning,

meanwhile TLboost removes Tomek links in each iteration.

COST-SENSITIVE

MetaCOST

(MetaCOST)

MetaCOST is a well-established cost-sensitive technique independent from the learning algorithm employed [40].

MetaCOST creates a set of estimator trained using resampled datasets, which estimates the post-probabilities of training

samples and applies classification costs to relabel the initial training set.

Fig. 4. Strategies to adjust resampling ratios. C1, C2, C3 and C4 denote arbitrary classes, Nmin the minimum population, Nmaj the maximum population and Nmean the mean of all

populations

4. Experimental Results
Through this section we present and discuss the results obtained during our experiments. Firstly, we analyze the effect of Class

Imbalance on the global and per-class metrics for our datasets using the base estimator and with the aim of establishing the

baselines to compare the algorithms under study. Secondly, we compare the techniques introduced in Section 3.4 in terms of the

global metrics in order to figure out which algorithms are the most proper for imbalanced NTC. Additionally, a statistical

procedure is employed to extract general observations on algorithm performances over all our NTC datasets. Finally, we validate

the most promising techniques in terms of per-class metrics for the most challenging dataset so as to assure that minority classes

are really strengthened.

4.1 Preliminary results: Assessing Class Imbalance & Baseline
In this experiment, a CART Decision Tree was trained using the datasets presented in Section 3.3 and varying the subset sizes

after reducing the attribute space. Through this evaluation, we assess the negative effect of Class Imbalance on the global and

per-class metrics and establish the baselines for the subsequent algorithm comparison. Table 4 presents the global metrics

resulting from this preliminary experiment, and Table 5 contains the per-class metrics.

From Table 4, it is apparent that notable differences exist between the global metrics obtained for different network scenarios.

Generally, the predictive models produced for ISP datasets achieved lower performances than HOSTs. For example, the best

OA for ISP-1 reached 92%, meanwhile the highest OA for HOST-1 overcame 98%. Note from Table 5 that per-class metrics for

HOST datasets are also greater than for ISP datasets. These clear differences in performances suggest that ISP network

environment comprises a more challenging traffic classification task than HOST. As aforementioned in Section 3.3, the ISP

traces were captured in the middle of a high-speed backbone, where traffic is much more susceptible to packet losses and packets

out of order.

Focusing on ISP traces, we find that the differences between ISP-1 and ISP-2 are not as large as the observed between network

environments. However, the observations change depending on the performance metric we focus on. In the instance of GM, the

predictive model trained with ISP-2 generally overcame ISP-1, on contrast to OA, BA and MAUC, which were slightly greater

for ISP-1 than for ISP-2. Note also that there are points in which all global metrics notably increased for both datasets when

the subset sizes vary, and that the performances smoothly fluctuated without high variations after those points. The abrupt

performance increases happened when 6 and 8 predictors were selected for ISP-1 and ISP-2 respectively. These sharp raises are

strongly related to the high improvements on WWW and DNS traffic detection, but also on other applications with lesser impacts

on the class distributions, such as S/C for ISP-1 or Media and E/C for ISP-2. Another remarkable observation is that the OA and

BA losses are more significant for ISP-2 than for ISP-1 when insufficient attributes were selected. This fact is directly connected

to important differences in WWW per-class metrics (Table 5) amongst ISP traces, which reveals the high impact of this traffic

class over OA and BA. The best models in terms of GM and MAUC were achieved using 8 and 14 predictors for ISP-1 and ISP-

2 respectively. Furthermore, the best OA and BA were achieved using 16 and 18 features for ISP-1, meanwhile the subset with

18 attributes produced the best models in terms of OA and BA for ISP-2.

Regarding HOST datasets, we find that all global metrics (Table 4) fast boosted when 4 and 2 predictors were selected for HOST-

1 and HOST-2 respectively. After that point, the global metrics linearly grew up until reaching a point in which they fluctuated

with smooth variations when subset sizes change. In the case of HOST-1, we find from Table 5 that P2P, WWW, S/C and BULK

samples were poorly detected when two predictors were selected for training. Note also that the same happened for HOST-2,

but with weaker per-class metric deteriorations. In the instance of HOST-1, the best models in terms of OA and BA were

produced with 18 and 14 attributes, whereas the maximum MAUC and GM were accomplished selecting 18 and 20 predictors.

While on HOST-2, the maximum OA resulted from selecting 12 or 14 features and the best BA from selecting 10. Respecting

MAUC and GM for HOST-2, the former reached its maximum at 16 and the latter at 12, 14 or 18 features.

Table 4. Global metrics obtained varying the subset sizes and employing the base estimator as learner. The results are expressed in %

 ISP-1 ISP-2 HOST-1 HOST-2

#Fe

a

OA BA MAUC GM OA BA MAUC GM OA BA MAUC GM OA BA MAUC GM

2 74.13 75.11 77.56 42.01 44.27 45.90 78.63 58.40 77.72 81.95 87.47 77.18 95.86 94.48 94.79 89.97

4 76.97 78.67 78.49 43.22 53.54 55.80 80.21 70.15 94.39 98.25 95.47 91.53 98.20 98.41 97.47 95.14

6 90.45 91.47 91.60 84.97 63.97 66.76 83.63 74.82 95.30 96.99 96.21 92.86 99.00 99.18 98.45 97.02

8 90.94 92.11 91.95 85.57 87.86 88.35 90.46 86.53 95.43 98.27 96.26 92.94 99.01 99.17 98.42 96.96

10 91.93 93.01 91.87 85.21 87.74 88.55 90.75 87.22 96.37 98.23 96.81 94.07 99.16 99.21 98.61 97.38

12 91.73 92.44 91.85 85.00 87.90 88.84 90.87 87.54 98.21 99.24 98.60 97.43 99.23 99.00 98.80 97.68

14 91.63 92.62 91.86 85.18 88.09 88.69 91.35 88.38 98.20 99.51 98.61 97.43 99.23 99.20 98.80 97.64

16 92.42 93.19 91.83 84.91 88.23 88.73 91.23 88.07 98.39 99.43 98.69 97.62 99.20 99.06 98.78 97.69

18 92.47 93.10 91.86 85.12 88.59 89.10 91.27 87.95 98.48 99.19 98.73 97.65 99.22 98.93 98.80 97.66

20 92.36 92.85 91.84 85.28 88.54 89.10 91.30 88.13 98.46 99.46 98.72 97.68 99.22 99.19 98.77 97.63

Table 5. Per-class metrics obtained varying the subset sizes and employing the base estimator as learner. The results are expressed in %

 P2P WWW DNS INT S/C BULK MEDIA E/C QUIC

 ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC
ISP-1

2 -/- 87.23/91.83 29.59/64.56 74.96/85.89 4.35/52.13 -/- -/- 69.20/81.79 94.35/89.14

4 -/- 90.91/93.65 29.96/64.74 78.24/87.85 4.64/52.30 -/- -/- 69.87/83.09 94.35/89.29

6 -/- 91.94/94.50 87.60/93.50 83.02/90.75 84.70/91.31 -/- -/- 73.88/85.09 89.94/94.42

8 -/- 91.90/94.45 90.04/94.73 83.50/90.99 86.32/92.18 -/- -/- 73.24/84.76 89.90/94.60

10 -/- 93.48/95.14 90.27/94.83 82.93/90.66 87.30/92.50 -/- -/- 69.65/83.79 89.94/94.63

12 -/- 92.81/94.82 90.12/94.76 83.86/91.11 86.78/92.23 -/- -/- 68.64/83.04 90.24/94.77

14 -/- 93.05/94.94 90.06/94.73 83.09/90.73 86.96/92.31 -/- -/- 70.11/83.85 89.99/94.65

16 -/- 93.24/94.86 92.51/95.98 82.41/90.44 85.86/91.91 -/- -/- 67.34/82.47 91.22/95.41

18 -/- 93.36/94.97 92.50/95.95 82.22/90.33 86.14/92.06 -/- -/- 68.40/83.05 90.90/95.25

20 -/- 93.25/94.96 92.85/96.12 82.64/90.59 85.91/91.98 -/- -/- 68.62/83.09 91.18/95.39

ISP-2

2 90.45/94.24 33.02/65.48 69.02/82.68 95.48/77.57 85.10/91.49 -/- 26.63/62.38 38.18/67.77 79.44/87.46

4 89.36/93.85 43.90/70.42 77.58/87.03 85.08/78.95 85.01/91.71 -/- 35.14/63.41 36.76/67.28 80.82/89.07

6 89.68/94.10 57.61/77.69 78.94/87.87 93.84/84.76 85.55/92.17 -/- 38.60/68.11 47.87/72.77 84.99/91.55

8 90.19/94.56 89.81/93.45 83.16/91.24 86.95/91.99 88.31/93.68 -/- 64.98/81.64 70.08/83.48 88.43/93.67

10 90.64/94.77 89.44/93.37 83.58/91.45 86.59/91.80 88.12/93.60 -/- 66.32/82.24 73.13/84.97 88.57/93.76

12 90.32/94.63 89.60/93.42 83.80/91.57 86.10/91.58 88.85/93.96 -/- 67.36/82.74 73.58/85.24 88.61/93.79

14 90.45/94.70 89.68/93.58 83.92/91.64 87.65/92.22 88.92/94.01 -/- 68.75/83.46 77.17/87.19 89.03/94.00

16 90.77/94.86 89.89/93.65 84.04/91.69 87.43/92.20 88.64/93.88 -/- 68.15/83.11 76.17/86.72 88.54/93.76

18 90.58/94.76 90.28/93.85 84.39/91.85 87.76/92.49 89.10/94.12 -/- 67.23/82.71 75.72/86.50 88.76/93.87

20 90.32/94.61 90.38/93.90 83.78/91.55 87.90/92.59 89.03/94.06 -/- 68.21/83.16 75.85/86.59 88.94/93.96

HOST-1

2 62.19/79.67 82.61/84.30 90.67/95.06 94.45/94.65 98.79/99.40 70.07/82.71 53.58/76.49 -/- -/-

4 97.24/97.30 93.38/96.36 90.68/95.07 99.30/99.55 98.89/99.44 89.93/94.49 74.01/86.05 -/- -/-

6 96.19/97.65 93.31/96.44 98.33/98.43 99.34/99.58 98.85/99.42 90.13/94.78 76.25/87.17 -/- -/-

8 96.40/97.74 93.52/96.55 98.34/98.43 99.37/99.65 98.86/99.43 90.10/94.78 76.33/87.23 -/- -/-

10 88.42/93.99 96.53/98.04 98.32/98.42 99.37/99.67 98.89/99.44 91.99/95.66 85.91/91.17 -/- -/-

12 99.19/99.48 96.73/98.13 99.59/99.77 99.42/99.69 99.07/99.53 97.41/98.46 90.93/95.12 -/- -/-

14 99.01/99.39 96.70/98.11 99.55/99.75 99.39/99.68 99.07/99.53 97.49/98.49 91.12/95.18 -/- -/-

16 99.24/99.50 97.33/98.45 99.60/99.78 99.41/99.69 99.07/99.53 97.43/98.51 91.52/95.46 -/- -/-

18 99.09/99.44 97.44/98.49 99.61/99.78 99.43/99.70 99.07/99.53 97.49/98.54 91.66/95.51 -/- -/-

20 99.33/99.55 97.34/98.45 99.51/99.73 99.44/99.71 99.07/99.53 97.37/98.48 91.96/95.69 -/- -/-

HOST-2

2 88.76/94.01 92.48/95.40 94.96/97.26 99.78/99.39 95.81/97.82 85.45/92.50 74.93/87.16 -/- -/-

4 98.26/99.05 96.26/97.86 96.94/98.30 99.67/99.81 96.62/98.25 89.14/94.38 89.65/94.63 -/- -/-

6 99.02/99.47 96.83/98.24 99.11/99.53 99.83/99.89 96.96/98.46 95.94/97.90 91.68/95.66 -/- -/-

8 99.07/99.50 96.92/98.28 99.09/99.51 99.82/99.88 96.96/98.46 95.95/97.90 91.19/95.42 -/- -/-

10 99.21/99.56 97.40/98.59 99.11/99.52 99.90/99.92 96.96/98.46 96.67/98.27 92.60/96.15 -/- -/-

12 99.28/99.60 97.45/98.64 99.09/99.51 99.90/99.92 96.92/98.44 97.70/98.74 93.55/96.67 -/- -/-

14 99.22/99.56 97.39/98.61 99.04/99.49 99.90/99.92 96.92/98.44 97.77/98.77 93.41/96.60 -/- -/-

16 99.25/99.58 97.21/98.53 99.10/99.52 99.88/99.92 97.04/98.50 97.75/98.76 93.71/96.74 -/- -/-

18 99.28/99.59 97.27/98.55 99.07/99.51 99.88/99.92 96.96/98.46 97.90/98.83 93.39/96.58 -/- -/-

20 99.32/99.61 97.24/98.54 99.10/99.52 99.90/99.93 96.96/98.46 97.72/98.74 93.36/96.57 -/- -/-

Interestingly, we find that P2P and QUIC traffic presented similar detection rates for ISP traces in spite of having quite

dissimilar numbers of samples in the datasets (Table 2). The same happened for HOST traffic, DNS obtained high per-class

metrics in spite of the fact that this class populated only the 9.12% and 7.21% of samples for HOST-1 and HOST-2. This fact

indicates that the difficulty of detecting some kinds of application is not directly related to the class populations and there may

exist other causes of performance degradation, such as: overlapping samples in the attribute space.

In order to compare the solutions to Class Imbalance in terms of performance increases or decreases with respect to the base

estimator, we had to establish a baseline for each dataset. As this study is focused on Class Imbalance, we selected the models

that produced the best results in terms of MAUC and/or GM to set the baselines. Thus, we have selected the model with 8 and

14 attributes for ISP-1 and ISP-2 respectively. We set the model with 18 attributes as baseline in the case of HOST-1, as it

yielded the highest MAUC and OA. Finally, we chose the model including 12 predictors for HOST-2, since it produced the highest

MAUC and BA accomplishing also the second best GM.

4.2 Addressing Class Imbalance: Algorithm comparison
In this section we present the comparison between the algorithms chosen to confront Class Imbalance in our NTC datasets. The

comparison is firstly carried out in terms of global metrics, and per-class metrics are thoroughly explored for the most interesting

techniques in Section 4.3. The results discussed correspond to the best-performing models in terms of MAUC, and they are

presented as performance differences between each algorithm and the baselines set at Section 4.1. Firstly, we present the results

obtained from experimenting with ISP traffic (Table 6) and secondly we focus on HOST network environment (Table 7). Finally,

we statistically validate the results and present general remarks about the outcomes at Section 4.2.3.

4.2.1 ISP Network Environment
Table 6 shows the results for ISP-1 and ISP-2. Regarding oversampling on ISP-1, we find that all the algorithms generally

performed well improving the scores obtained by the baseline. The best-performing algorithm in terms of OA and BA was

SMOTE-B1, which increased the baseline by 4.92% and 3.8% respectively, meanwhile SMOTE yielded the second highest OA

and BA. If we observe MAUC and GM, ROS obtains the best scores overcoming the baseline in 5.05% and 9.48%. When ISP-2

was oversampled, we observe that ROS remained to be the best method in terms of MAUC and GM, with increases of 4.08% and

8.05%. However, the observations on OA and BA change comparing to ISP-1. In this instance, the highest OA and BA were

yielded by ADASYNC, which boosted both metrics in more than 6%. Interestingly, SMOTE-B1, SMOTE-B2 and ADASYNC

produced quite negative impacts on MAUC and GM, evidencing that they did not clearly solve Class Imbalance for ISP-2. As

the differences in performances between ISP traces reveal, the ISP-2 imposed a more difficult challenge than ISP-1 for

oversampling. Note also that the size increase for ISP-1 was larger than ISP-2 due to the fact that ISP-2 present two minority

classes more than ISP-1 (see Table 2).

When undersampling techniques were employed on ISP-1, TL obtained the best MAUC and GM with increases of 5.08% and

9.53% nearly followed by ENN, NCR and OSS. These algorithms also obtained the highest OAs and BAs amongst all the

undersampling techniques, and ENN and NCR exactly yielded the same results for all global metrics. Note also that TL, ENN,

NCR and OSS removed a low number of samples compared to other approaches. Other algorithms that notably overcame the

baseline in terms of MAUC and GM were RUS and IHT, but getting weaker increases. In the case of RUS, these improvements

were coupled with loose OA and BA increases and with a considerable training subset size reduction (more than 60% of samples

were removed). Unlike RUS, IHT did not achieve improvements in terms of MAUC and GM. Furthermore, we find that there

are some algorithms that dramatically worsened all global metrics evidencing that they are not recommendable choices for this

network trace, they are: NM-1, NM-2, NM-3 and CNN. The abrupt performance decays are due to the fact that these algorithms

removed a significant number of instances leading to important information losses (CNN and NM-3 removed more than 90% of

the original samples). In the instance of ISP-2, the bad results obtained by NM-1, NM-2, NM-3 and CNN confirm the detrimental

effect of these algorithms for ISP traffic. These techniques strongly lessened all global metrics, being the decrease more abrupt

for OA and BA metrics. The best-performing algorithms were NCR, ENN and TL when ISP-2 was undersampled. NCR and ENN

anew obtained pretty similar global metrics with increases close to 1.8% for OA and BA, and increases of 4.1% and 8.11% for

MAUC and GM respectively. In the case of IHT, we observe that MAUC and GM metrics were reinforced, but it also yielded

important losses in terms of OA and BA. In the case of OSS and RUS, they significantly overcame the baseline in terms of

MAUC and GM, however they got weak enhancements for OA and BA. The main difference between both techniques is that

RUS notably reduced the size of the training dataset, meanwhile OSS only removed the 1.49% of samples. Similarly to

oversampling, ISP-2 poses a greater challenge than ISP-1 for undersampling algorithms.

When hybrid techniques are applied to ISP-1, we find that all algorithms overcame the baseline for all global metrics. Among

all the hybrid algorithms, SMOTE-TL yielded the highest MAUC and GM with increases of 4.56% and 8.43% respectively, so

that it is the best hybrid method at confronting Class Imbalance for ISP-1. Additionally, SMOTE-B1-TL and SMOTE-B2-TL

achieved also really positive results, meanwhile the methods that combine SMOTE and ENN provided very weak improvements

for MAUC and GM. While on OA and BA, we observe from Table 6 that SMOTE-B1-TL improved the baseline in 4.64% and

3.88% respectively, being the best-performing for these metrics. Another hybrid techniques that notably increased OA and BA

were SMOTE-ENN, SMOTE-TL and SMOTE-B2-TL. Conversely, the slightest increases in terms of OA and BA were exhibited

by SMOTE-B2-ENN and SMOTE-B1-ENN. In the case of ISP-2, SMOTE-TL is anew the technique that most improved the

baseline in terms of MAUC and GM, it increased MAUC by 3.29% and GM by 6.39%. SMOTE-B1-TL, SMOTE-B2-TL and

SMOTE-ENN also outperformed the baseline for MAUC and GM, but their enhancements were not as significant as SMOTE-

TL. Focusing on OA and BA, the best OA and BA were obtained by SMOTE-B1-ENN followed by SMOTE-ENN, however the

former negatively affected MAUC and GM. In general, all hybrid algorithms produced positive outcomes for all global metrics

but, on the contrary, SMOTE-B1-ENN and SMOTE-B2-ENN worsened MAUC and GM. In the case of applying hybrid

approaches to ISP traces, these techniques also provided better results for ISP-1 than ISP-2.

In the case of training ensemble algorithms with ISP-1, RUSboost and TLboost tied for MAUC and GM yielding the highest

enhancements with increases of 5.02% and 9.88% respectively. Furthermore, EE also obtained pretty relevant increases

according to MAUC and GM, being the third scored ensemble method. Generally, all ensemble techniques provided quite

remarkable enhancements for these metrics, achieving also important increases for OA and BA in specific cases. That is the

case of ROSboost and SMOTEboost, which yielded quite beneficial results for all global metrics accomplishing the two highest

OAs and BAs amongst all ensemble techniques. According to these performance metrics, the rest of algorithms did not achieve

results as significant as ROSboost and SMOTEboost, and even BC loosely underperformed the baseline in terms of BA. Focusing

on ISP-2, we observe similar outcomes to the ISP-1. The best ensemble algorithms at dealing with Class Imbalance for ISP-2

were RUSboost, EE and TLboost achieving increases superior to 4% for MAUC and superior to 8% for GM. The rest of algorithms

also got positive outcomes for these metrics, however they were inferior to the former techniques. Regarding OA and BA, we

find that ROSboost and SMOTEboost obtained the highest performances incrementing OA in more than 8.1% and in more than

7.5% respectively. Although the other techniques did not perform as well as ROSboost and SMOTEboost, they also overcame

the baseline in terms of OA and BA with the exception of BC. Surprisingly, ensemble algorithms yielded higher enhancements

for ISP-2 than ISP-1 in contrast to the data-levels algorithm previously discussed.

When MetaCOST was employed on ISP-1, we observe that it achieved to compensate Class Imbalance improving MAUC and

GM in 4.41% and 9.13% respectively. On the contrary, MetaCOST weakened OA and BA with decreases of -1.48% and -1.19%.

The same happened when MetaCOST was used to apply cost-sensitive to ISP-2, MAUC and GM were greatly strengthened, in

contrast to OA and BA that deteriorated. In this case, the improvements on ISP-1 were more significant than ISP-2.

Table 6. Global metrics obtained for ISP network environment. The results are expressed as percentage increments or decrements respecting with the baseline

 ISP-1 ISP-2

 OA BA MAUC GM % #F OA BA MAUC GM % #F

OVERSAMPLING

ROS 3.31 2.53 5.05 9.48 335.75 16 1.69 1.98 4.08 8.05 461.65 18

SMOTE 4.01 3.26 4.55 8.41 335.75 16 2.41 2.58 3.16 6.15 461.65 20

SMOTE-B1 4.92 3.84 3.48 6.10 335.75 18 2.26 2.37 -2.84 -6.88 461.65 14

SMOTE-B2 3.57 2.84 3.23 5.84 335.75 18 1.45 1.06 -2.55 -6.26 461.65 16

ADASYNC 3.41 2.82 0.57 0.53 336.18 12 6.77 6.19 -2.61 -6.92 461.74 18

UNDERSAMPLING

RUS 2.1 1.14 4.82 9.23 -60.25 20 0.16 0.52 3.85 7.79 -67.08 18

CNN -38.25 -39.17 -5.46 -7.35 -91.62 10 -63.6 -61.07 -8.46 -19.69 -91.29 10

TL 3.38 2.29 5.08 9.53 -0.73 18 1.44 1.42 4.06 -0.55 8.04 18

NM-1 -36.34 -38.73 -4.01 -4.58 -60.25 20 -52.02 -52.16 -5.76 -10.76 -67.08 12

NM-2 -50.42 -53.29 -6.39 -11.32 -60.25 20 -55.78 -56.24 -5.95 -12.5 -67.08 16

NM-3 -61.96 -62.09 -11.32 -21.93 -92.8 8 -72.95 -72.66 -10.28 -31.22 -91.91 8

OSS 2.99 2.04 4.99 9.42 -1.63 16 0.5 0.45 3.83 -1.49 7.68 10

ENN 3.09 2.24 5 9.43 -2.44 16 1.78 1.82 4.1 8.11 -3.8 20

NCR 3.09 2.24 5 9.43 -3.17 18 1.79 1.84 4.1 8.11 -3.8 20

IHT -5.35 -5.93 3.44 7.42 -16.41 16 -11.25 -10.38 2.02 4.73 -27.75 20

HYBRID SAMPLING

SMOTE-TL 3.95 3.29 4.56 8.43 57.61 18 2.55 2.59 3.29 6.39

64.48 16

SMOTE-B1-TL 4.64 3.88 4.06 7.31 58.08 20 3.83 3.38 2.11 3.68

65.22

18

SMOTE-B2-TL 3.91 2.99 3.86 7.04 53.09 20 3.62 2.95 1.78 3.04

58.63

18

SMOTE-ENN 4.05 3.1 2.9 5.22 31.57 20 4.5 4.08 0.78 1.17

34.55

14

SMOTE-B1-ENN 3.51 2.77 2.39 4.23 40.65 16 5.13 4.9 -0.09 -1.14

42.76

14

SMOTE-B2-ENN 2.78 2.07 1.25 2.04 14.81 10 2.51 2.1 -2.4 -5.98 11.67 12

ENSEMBLE ALGORITHMS

EE 0.9 1.18 4.96 9.87 - 20 1.62 1.89 4.12 8.14 - 18

BC 0.29 -0.03 4.69 9.46 - 18 -0.01 -0.43 3.84 7.78 - 18

ROSboost 5.48 5.22 5 9.21 - 16 8.16 7.56 3.52 6.12 - 18

SMOTEboost 5.6 5.48 4.59 8.38 - 16 8.11 7.67 3.02 5.06 - 16

RUSboost 1.7 1.61 5.02 9.88 - 18 2.29 2.65 4.21 8.23 - 20

TLboost 1.99 1.6 5.05 9.88 - 18 1.56 1.9 4.1 8.11 - 20

COST-SENSITIVE

MetaCOST

-1.48 -1.19 4.41 9.13 - 16 -2.36 -2.2 3.42 7.04 - 16

4.2.2 HOST Network Environment
Table 7 contains the results obtained via applying the different techniques to solve Class Imbalance for HOST datasets. When

oversampling techniques were applied to HOST-1, ROS and SMOTE produced the best MAUCs and GMs with increases

exceeding 0.55% and 1% respectively, so that they are the two best oversampling methods at solving Class Imbalance for HOST-

1. Although SMOTE-B1 & B2 and ADASYNC overcame the baseline for all global metrics, they provided weak increases for

MAUC and GM compared to ROS and SMOTE. Focusing exclusively on OA and BA, we find that ADASYNC achieved the

highest increases, 0.7% for OA and 0.63% for BA. In addition, ROS and SMOTE also yielded very remarkable improvements in

terms of OA. When HOST-2 was oversampled, we find that ROS was anew the best method in terms of MAUC and GM,

increasing MAUC by 0.55% and MAUC by 1.07%. These increases were also accompanied by significant improvements in terms

of OA and BA, being ROS the best-performing techniques for OA. Additionally, SMOTE and ADASYNC also overcame the

baseline for OA and BA, and even ADASYNC provided the highest BA. In the instance of SMOTE, this algorithm accomplished

the second best MAUC and GM followed by ADASYNC. Unlike other oversampling algorithms, SMOTE-B1 and SMOTE-B2

negatively affected the predictive power of the models decreasing all global metrics when they were applied to HOST-2. In this

case, the outcomes obtained for HOST-2 were slightly poorer than HOST-1.

Table 7. Global metrics obtained for HOST network environment. The results are expressed as percentage increments or decrements respecting with the baseline

 HOST-1 HOST-2

 OA BA MAUC GM % #F OA BA MAUC GM % #F

OVERSAMPLING

ROS 0.59 0.49 0.66 1.26 131.16 20 0.32 0.45 0.55 1.07 287.62 14

SMOTE 0.67 0.47 0.56 1.05 131.16 16 0.3 0.42 0.47 0.92 287.62 18

SMOTE-B1 0.10 0.58 0.10 0.18 131.16 14 -0.44 -0.23 -0.64 -1.31 287.62 14

SMOTE-B2 0.40 0.60 0.17 0.29 131.16 18 -0.91 -0.92 -0.85 -1.61 287.61 18

ADASYNC 0.70 0.63 0.23 0.36 130.87 18 0.3 0.54 0.13 0.21 287.55 18

UNDERSAMPLING

RUS 0.38 0.40 0.60 1.16 -32.21 20 0.25 0.29 0.57 1.11 -41.14 12

CNN -11.9 -4.99 -4.80 -8.52 -73.03 20 -2.77 -5.05 -1.78 -3.29 -69.52 12

TL 0.52 0.43 0.64 1.23 -0.21 20 0.26 0.3 0.57 1.11 -0.03 12

NM-1 -14.1 -14.85 -3.88 -6.41 -32.21 20 0.26 0.3 0.56 1.09 -41.14 20

NM-2 -21.23 -5.31 -6.36 -11.09 -32.21 12 0.12 0.19 0.37 0.75 -41.14 10

NM-3 -26.77 -14.98 -9.28 -15.97 -73.29 20 -9.35 -9.43 -5.83 -13.1 -69.65 12

OSS 0.10 0.37 0.49 0.99 -3.06 12 -1.73 -2.4 0.13 0.56 -45.06 16

ENN 0.36 0.47 0.60 1.16 -1 20 0.25 0.33 0.56 1.09 -0.15 14

NCR 0.36 0.47 0.60 1.16 -1 20 0.25 0.33 0.56 1.09 -0.15 14

IHT -4.53 -3.07 -0.85 -1.08 -9.93 18 0.02 0.15 0.51 1.04 -1.02 12

HYBRID SAMPLING

SMOTE-TL 0.6 0.38 0.53 0.99 31.44 16 0.25 0.25 0.46 0.90 40.86 12

SMOTE-B1-TL -0.49 -0.21 -0.27 -0.52 30.36 18 -0.35 -0.23 -0.61 -1.24 40.29 18

SMOTE-B2-TL -0.26 -0.18 -0.24 -0.51 27.84 18 -0.2 -0.12 -0.34 -0.72 36.55 20

SMOTE-ENN 0.34 0.5 -0.03 -0.09 26.49 20 -0.19 -0.11 -0.09 -0.15 37.35 10

SMOTE-B1-ENN -0.24 0.55 -0.18 -0.33 15.86 18 -0.69 -0.46 -1.04 -2.11 34.12 20

SMOTE-B2-ENN -0.46 0.42 -0.51 -0.99 11.07 18 -0.52 -0.2 -1.06 -2.24 20.56 18

ENSEMBLE ALGORITHMS

EE 0.55 -0.01 0.65 1.23 - 16 0.28 0.37 0.58 1.12 - 12

BC 0.33 -0.25 0.58 1.12 - 16 0.28 0.37 0.58 1.12 - 12

ROSboost 0.5 -1.23 0.47 0.89 - 18 0.17 0.41 0.52 1.02 - 12

SMOTEboost 0.49 0.23 0.44 0.82 - 18 -0.27 -0.21 0.18 0.43 - 14

RUSboost 0.17 -0.29 0.54 1.06 - 20 0.24 0.32 0.56 1.10 - 12

TLboost 0.54 0.06 0.65 1.23 - 20 0.3 0.38 0.58 1.12 - 12

COST-SENSITIVE

MetaCOST

0.46 0.07 0.6 1.13 - 18 0.26 0.36 0.54 1.04 - 14

When HOST-1 was undersampled, we find from Table 7 that TL is the best algorithm at confronting Class Imbalance for this

dataset, improving the baseline in 0.64% for MAUC and 1.23 for GM. Additionally, RUS, ENN and NCR also achieved positive

results obtaining the same performances in terms of BA, MAUC and GM overcoming the baseline in 0.47%, 0.6% and 1.16%

respectively. While on OA, TL got the highest OA with an increase of 0.52%, and RUS slightly outperformed ENN and NCR.

Another algorithm that more loosely overcame the baseline for all global metrics was OSS, but its enhancements are not as

remarkable as the former techniques. As it happened for ISP datasets (Table 6), CNN, NM-1, NM-2 and NM-3 had huge negative

impacts on HOST-1. Surprisingly, IHT did not achieve overcoming the baseline for any metrics explored in contrast to ISP

datasets. In the case of undersampling HOST-2, RUS and TL provided the highest increases in terms of MAUC and GM, nearly

followed by NM-1, ENN and NCR. The main differences between the algorithms RUS, NM-1 and TL, ENN, NCR is the sample

reduction rate, since the former techniques removed more than 40% of samples and the latter less than 0.20%. Among all

undersampling techniques, the highest OAs were obtained by TL and NM-1; meanwhile, ENN and NCR outperformed the rest

of algorithms for BA. Another algorithms that improved all global metrics comparing to the baseline were NM-2 and IHT.

Surprisingly, the performances exhibited by NM-1 and NM-2 on HOST-2 notably differ from the observed for the rest of datasets,

in this case all global metrics were reinforced. Observing the outcomes provided by OSS, we find that OA and BA were worsened

comparing to baseline, in contrast to MAUC and GM that were loosely strengthened. Unlike for other datasets, the only two

undersampling algorithms that reported negative impacts on all global metrics were CNN and NM-3.

When hybrid sampling was applied to HOST-1, the best-performing technique to confront Class Imbalance was SMOTE-TL

according to MAUC and GM. This method was the only hybrid approach that enhanced all global metrics with respect to the

baseline. Additionally, SMOTE-ENN also increased some performance metrics comparing to baseline, specifically the metrics

that are sensitive to Class Imbalance (OA and BA). The highest BA was accomplished by SMOTE-B1-ENN, which accurately

classified 0.55% of bytes more than the base estimator. Combining SMOTE-B1 or B2 with TL or ENN leaded to performance

degradations with the exception of BA for SMOTE-B1-ENN and SMOTE-B2-ENN. Focusing on HOST-2, we find that the only

hybrid algorithm that overcame the baseline for all global metrics was anew SMOTE-TL. This technique achieved increases of

0.25% for both OA and BA, and increases of 0.46% and 0.90% for MAUC and GM respectively. The rest of approaches obtained

negative results for all global metrics when they are employed on HOST-2. The most unsatisfactory results in terms of OA and

BA were obtained by SMOTE-B1-ENN, whereas SMOTE-B2-ENN yielded the poorest MAUC and GM with decreases of -1.06%

and -2.11% respectively.

As Table 7 shows, ensemble algorithms that include resampling while learning comprise interesting solutions to deal with Class

Imbalance. When these algorithms were trained with HOST-1, the best results in terms of MAUC and GM were achieved by EE

and TLboost, which increased MAUC by 0.65% and GM by 1.23%. All ensemble algorithms outperformed the baseline for these

metrics, and namely that BC and RUSboost obtained also very positive result. While on OA, EE obtained the highest score

overcoming TLboost slightly, in contrast to BA for which the latter improved the baseline and the former underperformed it.

The highest BA was obtained by SMOTEboost with an increase of 0.23%, and the rest of ensemble algorithms yielded BA decays

with the exception of TLboost. Namely, ROSboost decreased BA with respect to the baseline by -1.23%. When ensemble

algorithms were employed on HOST-2, we find that three algorithm tied in terms of MAUC and GM. EE, BC and TLboost

obtained the best results for these performance metrics improving the baseline by 0.58% for MAUC and 1.12% for GM.

Furthermore, the rest of algorithms also overcame the baseline for MAUC and GM achieving positive results, especially

RUSboost and ROSboost. Regarding OA, TLboost yielded the best outcomes increasing the baseline by 0.3%, nearly followed by

EE, BC and RUSboost. Among all the six ensemble algorithms, ROSboost yielded the best results in terms of BA, and other

algorithms that produced positive results for this metric are: TLboost, EE, BC and RUSboost. Furthermore, ROSboost also

improved the baseline in terms of BA, whereas OA and BA deteriorated when SMOTEboost was applied to HOST-2.

In the case of the cost-sensitive approach studied, we observe from Table 7 that MetaCOST improved all global metrics for both

dataset (HOST-1 and HOST-2). When MetaCOST was applied to HOST-1, we find that OA and BA increased by 0.46% and

0.06% respectively; meanwhile, MAUC and GM improved in 0.6% and 1.13%. In the case of HOST-2, the performance increases

were loosely lower than for HOST-1 with the exception of BA, which increased by 0.36%.

4.2.3 Statistical Validation & General Remarks
In the previous section we compared different type of solutions to Class Imbalance discussing their strengths and weakness in

terms of all global metrics for the best models after applying FS. Through this section we pretend to confirm the previous

observations validating statistically the results and to discuss more general remarks about the analyzed techniques. Table 8

contains the outcomes from applying the statistical approach presented at Section 3.3.4, which enables algorithm comparison

against different datasets.

From Table 8, we find that some algorithms are fairly discarded as suitable solutions to confront Class Imbalance for our NTC

dataset. The Friedman's scores obtained by these techniques are quite high revealing that they do not provide benefits for any

global metric, or even they produced detrimental performances. These algorithms are: NM-3, CNN, NM-2, NM-1, IHT, OSS,

SMOTE-B2, SMOTE-B1, SMOTE-B1-ENN and SMOTE-B2-ENN.

Other algorithms achieved reinforce metrics insensitive to imbalanced class distributions (MAUC and GM), but also they yielded

very weak enhancements in terms of OA and BA. For example, the ensemble algorithms EE, BC, RUSboost and TLboost

produced great improvements for MAUC and GM, and even TLboost and EE were the two best scored algorithms for these

metrics. On the contrary, they obtained poor Friedman's scores for OA and BA. In addition, the data-level algorithms RUS, TL,

ENN and NCR, SMOTE-TL, SMOTE-B1-TL, SMOTE-B2-TL and SMOTE-ENN also provided positive results for metrics

insensitive to Class Imbalance. Note that ENN and NCR obtained the same Friedman's scores and that they were the best

undersampling methods at mitigating Class Imbalance for our NTC datasets. Interestingly, we find that the best-performing

techniques that employ undersampling tended to improve MAUC and GM notably, meanwhile they did not obtained so

optimistic outcomes for OA and BA. In the case of MetaCOST, it did not obtained remarkable results for any of all the global

metrics.

When ROSboost, SMOTEBoost, ADASYNC, ROS were applied to our datasets, we find that they notably strengthened OA and

BA. Whereas they did not get so positive increases in terms of MAUC and GM. Among all the algorithms studied, ADASYNC

was fairly the best-performing in terms of OA and BA for our datasets followed SMOTE. However, they did not yield so

significant improvements for MAUC and GM. While on ROS, it achieved to improve all global metrics preserving a quite

interesting tradeoff among metrics that are sensitive to Class Imbalance and the metrics that are not. ROSboost was the best

ranked ensemble algorithm in terms of OA and BA followed by SMOTEboost, however they did not produce so notable

improvements for the rest of metrics.

In short, the findings observed up to this point can be summarized in the following brief remarks:

• The algorithms that involve oversampling tend to reinforce the metrics that are sensitive to Class Imbalance (OA and

BA). As we will show at Section 4.3, these improvements are directly related to increases in the individual accuracy of

majority classes. Interestingly, ROS was able to provide benefits for both minority and majority traffic applications

achieving quite positive outcomes in terms of GM and MAUC.

• The algorithms that include undersampling are prone to solve Class Imbalance and not to reinforce majority classes

uniquely. Although some of them provided quite detrimental outcomes due to an excessive information removal, there

are also some undersampling methods that constitute an interesting solution to imbalanced NTC. And particularly,

RUS achieved to improve MAUC and GM with a significant sample reduction in spite of its simplicity, leading to faster

training times.

• The Hybrid approaches considered did not provide significant benefits for imbalanced NTC comparing to other data-

level approaches. And more specifically, the combination of SMOTE and TL generally outperformed the techniques that

combine SMOTE with ENN.

• Regarding ensemble algorithms, we find that some of them confronted Class Imbalance effectively. EE jointly with the

methods that included undersampling with boosting (TLboost and RUSboost) notably improved MAUC and GM, and

oppositely the methods combining oversampling and boosting were prone to boost OA and BA more clearly than MAUC

and GM.

• The cost-sensitive approach assumed achieved to increase MAUC and GM, however it produced losses in terms of OA

and BA. However, further experimentation could be performed to study other more effective ways for computing

classification costs.

• Through the experimentation on different datasets extracted from two network scenarios presenting quite dissimilar

conditions, we find that some techniques present a more stable behavior than others. A clear example of a stable

technique is TLboost, which performed uniformly on the different datasets. In the opposite side we find SMOTE-B1

and OSS, which produced quite dissimilar outcomes for different datasets.

• Accordingly to the metrics explored in our experiments, we find quite interesting to assess global metrics that are

sensitive to Class Imbalance jointly to metrics that are not. As we have probed in previous sections, tradeoffs between

performance metrics could exist and monitoring several of them is highly recommendable.

• Finally, network environments could present different Class Imbalance properties among them. In our work, the ISP

environment constitutes the most challenging network scenario presenting a higher level of Class Imbalance.

Interestingly, we find that performance losses are not exclusively related to class distributions, so that poor accuracies

could also be related to other facts, such as: packet losses, packets out of order, overlapping regions and/or outliers.

In the following section we pretend to analyze individual accuracies for majority and minority classes. We focus the discussion

on the most interesting methods explored with the purpose of validating their outcomes for the most challenging NTC dataset.

Table 8. Friedman´s Test. 𝑅𝑗 denotes the scores obtained by each algorithm

 OA BA MAUC GM
OVERSAMPLING

ROS 8.25 8.25 4.87 5.50

SMOTE 5.08 6.16 13.00 12.50

SMOTE-B1 13.87 10.12 20.75 20.75

SMOTE-B2 15.75 13.75 20.75 20.75

ADASYNC 4.33 3.75 20.37 20.75

UNDERSAMPLING

RUS 14.31 16.75 6.56 6.45

CNN 26.25 26.25 26.50 26.50

TL 10.91 13.37 4.12 7.20

NM-1 20.41 22.37 19.81 20.16

NM-2 24.00 23.75 24.00 24.00

NM-3 28.00 28.00 28.00 28.00

OSS 20.12 19.50 12.37 14.62

ENN 12.06 11.66 3.83 5.12

NCR 11.81 11.41 3.83 5.12

IHT 22.25 22.25 18.25 16.37

HYBRID SAMPLING

SMOTE-TL 6.06 10.50 13.25 12.62

SMOTE-B1-TL 13.50 12.87 19.00 19.00

SMOTE-B2-TL 13.75 13.25 19.25 19.00

SMOTE-ENN 10.75 8.75 19.75 19.25

SMOTE-B1-ENN 14.50 10.75 21.75 21.50

SMOTE-B2-ENN 17.75 14.75 23.25 23.25

ENSEMBLE ALGORITHMS

EE 11.87 14.87 3.79 2.25

BC 16.37 17.87 7.66 6.16

ROSboost 6.50 7.75 10.33 12.50

SMOTEboost 8.00 9.50 14.75 15.25

RUSboost 15.50 14.75 5.06 4.62

TLboost 11.08 13.75 2.41 2.12

COST-SENSITIVE

MetaCOST 15.41 17.50 10.43 10.12

p-value 0.0015 0.0011 <0.0001 <0.0001

4.3 Analysis of per-class metrics
Up to this point, a wide number of solutions to Class Imbalance were compared analyzing their strengths and weaknesses in

terms of global metrics. We found that the effectiveness of each technique depends on the metrics observed and also on the

network environments. Through this section, we analyze in more detail the ability of reinforcement minority classes for some

algorithms aiming to confirm the suitability of them to be applied to imbalanced NTC. In order to not collapse the article with

redundant results, we focus uniquely on the most remarkable algorithms and the most challenging dataset according to the

results previously discussed. As aforementioned, ISP-2 constitutes the most challenging dataset, thus we report the per-class

metrics obtained for this dataset. Regarding the algorithms discussed in this section, we have selected at least one algorithm

from each approach considered. While on oversampling techniques, ROS has been selected due to the fact that it is the best-

performing oversampling method in terms of MAUC and GM. Additionally, ADASYNC obtained the best Friedman's scores for

OA and BA between all the algorithms studied, and also it has been included in this section. NCR and SMOTE-TL are also

studied, since they obtained the highest MAUC and GM for their respective resampling approaches according to Table 8.

Regarding ensemble algorithms, as TLboost was the most remarkable method between all the comparison algorithms, we have

selected it for this section. Finally, we have included MetaCOST. Thereby, Table 9 contains the per-class accuracies obtained

over ISP-2, the results are presented as increases or decreases comparing to the best model produced by the base estimator. As

useful information for the subsequent discussion, we remember that the best-performing and that the minority classes for this

dataset are (Table 4): P2P, INT, S/C, MEDIA, E/C and QUIC.

Regarding the metrics exhibited by ROS, per-class enhancements were not so positive when six or less predictors were chosen.

This fact could likely be caused by the low predictive power of these subsets, since these subset sizes also produced negative

outcomes when the base estimator was trained (Table 4). Although the best model in terms of MAUC was produced with 18

attributes (Table 7), significant enhancements on per-class metrics were observed with less features. For example, when models

with more than eight predictors were selected, we find that the most of classes benefit from applying this oversampling

technique. In general, the performance improvements of minority classes were very significant, and even the majority classes

were also strengthened with the exception of DNS for specific subset sizes. Namely, ROS increased ACC and AUC for MEDIA

(which was the most punished class by the base estimator, see Table 5) by more than 20% and 10% respectively and, similarly,

E/C got important performance increases.

While on ADASYNC, we find that all minority classes were negatively affected for all subset sizes studied, being P2P the most

damaged class with decreases that reached -47.89% and -23.47% for ACC and AUC respectively. On the contrary, WWW and

DNS metrics were notably improved accomplishing the most significant increases for these classes between all the algorithms

discussed through this section. Specifically, ACCs for WWW and DNS were increased by more than 7% and 10% when more

than 10 attributes were selected. Due to this fact, ADASYNC obtained the best results in terms of OA and BA, meanwhile it

exhibited quite detrimental performances for GM and MAUC.

Something similar to ROS happened when NCR was applied to undersample ISP-2, no evident improvements were observed on

all classes when subset sizes equal or lesser than six were selected. In the case of selecting six predictors, some classes were

strengthened, however the most of them were significantly punished. After that point, almost all per-class performances

increased with the exception of WWW and DNS for certain subset sizes. The classes that exhibited the worst performances for

the baseline were significantly improved, but with weaker increases than ROS. Conversely, other minority classes exhibited

greater performances than using ROS, which contributed to the fact that NCR achieved better MAUCs and GMs than ROS, on

contrast to OA and BA. The best model from employing NCR on ISP-2 were produced with 20 features, obtaining notable

increases for all classes with the exception of DNS whose metrics were slightly worsened.

Regarding SMOTE-TL and similarly to ROS and NCR, we find that the most per-class metrics were worsened when less than

eight attributes were selected. After that point, SMOTE-TL exhibited inferior improvements on minority classes to ROS and

NCR, however the enhancements were also quite remarkable. While on majority classes, both WWW and DNS were reinforced

with increases greater than 2.1% and 1.1% for their ACCs and AUCs. The performance increases exhibited on majority classes

leaded SMOTE-TL to get better scores for OA than ROS and NCR (Table 8), but without reaching as significant increases as

ADASYNC.

Among all the comparison algorithms, the best method at solving Class Imbalance was the ensemble technique TLboost, which

is an original contribution of this work. Although significant increases on the most classes were observed for subset sizes greater

than six, the best model was produced using 20 attributes. Note that per-class metrics for this subset size were generally greater

than the obtained by ROS and NCR, with the exception of WWW, E/C and QUIC traffic.

Focusing on MetaCOST, we find a pretty different behavior from the previous algorithms. We find that majority classes are

dramatically worsened comparing to baseline for all subset sizes considered, meanwhile minority classes were significantly

improved when more than six predictors were selected. There are essentially one likely cause for this fact, remember that

MetaCOST uses post-probability estimates and applies classification cost for relabeling the original training set. We

experimented with several functions to compute classification costs, and finally the costs were computed according to Equation

9. The penalty on majority classes is strongly dependent on the cost computation, so that more optimal cost could conduct to

better performance for MetaCOST. Finally, note that MetaCOST obtained the highest improvements on most of the minority

classes amongst all methods discussed in this section, being the best model at improving QUIC, INT and S/C. Conversely,

MEDIA, E/C and P2P obtained similar increases to TLboost.

Table 9. Per-class metrics produced by the selected techniques on ISP-2. The baseline corresponds with the model formed by 14 features

 P2P WWW DNS INT S/C MEDIA E/C QUIC

 ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC
ROS

2 4.42/1.74 -57.11/-27.83 -15.23/-8.94 8.73/-14.2 2.28/0.43 -28.39/-14.4 -30.19/-14.9 -3.10/-3.41

4 7.05/3.16 -45.77/-22.41 -6.08/-4.31 -1.06/-12.51 4.07/1.74 -15.68/-11.11 -26.76/-13.04 1.46/-0.12

6 6.60/3.06 -32.04/-15.15 -4.48/-3.51 8.32/-6.35 4.28/2.03 -10.03/-5.35 -13.68/-6.54 1.84/0.57

8 7.18/3.56 0.89/1.19 -0.68/-0.28 7.09/3.79 5.75/2.88 21.10/10.57 14.96/7.50 3.16/1.58

10 7.11/3.52 0.47/1.07 -0.22/-0.02 7.33/3.87 5.85/2.94 21.22/10.57 15.64/7.79 3.56/1.81

12 6.79/3.38 0.51/1.08 -0.03/0.07 7.24/3.75 5.60/2.82 20.92/10.44 15.59/7.84 3.81/1.94

14 6.41/3.21 0.46/1.01 0.83/0.51 7.27/3.80 5.80/2.91 20.37/10.07 15.47/7.89 3.78/1.92

16 6.60/3.28 0.62/1.09 0.28/0.24 7.43/3.85 5.53/2.82 21.10/10.42 15.61/7.99 3.51/1.79

18 6.60/3.29 1.39/1.51 0.26/0.21 7.64/4.12 5.66/2.85 21.10/10.58 15.94/8.14 3.83/1.95

20 6.60/3.26 1.37/1.50 -0.25/-0.05 7.66/4.20 5.66/2.83 21.10/10.55 15.98/8.13 3.59/1.81

ADASYNC

2 -44.68/-22.14 -50.98/-26.9 2.91/-0.78 -69.55/-33.25 -15.27/-7.79 -4.19/-21.69 -51.74/-24.93 -29.64/-14.95

4 -46.67/-22.97 -31.67/-17.82 4.60/0.38 -9.11/-16.28 -12.93/-6.95 -55.25/-26.81 -49.01/-23.21 -16.3/-8.12

6 -14.62/-6.91 4.78/-3.61 6.38/1.57 -70.38/-33.66 -10.79/-5.34 -45.28/-21.93 -37.11/-17.43 -10.0/-4.78

8 -36.86/-18.64 4.07/1.15 6.64/3.07 -17.07/-7.86 -8.19/-4.00 -25.71/-12.32 -9.73/-4.02 -7.26/-3.42

10 -6.99/-3.12 6.26/1.92 10.82/5.17 -17.12/-7.48 -6.92/-3.35 -31.49/-15.08 -12.96/-5.53 -5.54/-2.45

12 -12.89/-6.00 7.33/2.31 11.38/5.49 -18.47/-7.98 -6.21/-2.91 -20.48/-9.55 -15.06/-6.50 -5.72/-2.53

14 -13.46/-6.29 7.14/2.34 11.83/5.70 -15.59/-6.50 -6.23/-2.91 -27.66/-13.28 -11.97/-4.91 -5.56/-2.38

16 -13.78/-6.53 4.70/1.08 11.48/4.74 -22.25/-9.95 -6.33/-2.97 -24.49/-11.57 -15.36/-6.85 -5.08/-2.21

18 -15.9/-7.51 7.54/2.81 10.04/4.83 -12.24/-4.93 -4.69/-2.34 -17.75/-8.10 -8.11/-2.97 -6.19/-2.71

20 -47.89/-23.47 7.11/2.53 11.89/5.68 -14.20/-5.86 -8.12/-3.87 -22.12/-10.3 -7.01/-2.59 -6.08/-2.68

NCR

2 3.20/1.40 -51.11/-27.23 -22.19/-12.02 8.65/-14.19 1.82/0.55 -29.05/-14.29 -31.28/-15.43 -3.86/-3.16

4 6.86/3.11 -46.10/-23.04 -9.03/-5.53 -0.57/-12.35 4.46/1.68 -15.92/-11.28 -26.61/-13.03 1.38/-0.26

6 7.18/3.29 -31.01/-16.42 -10.98/-6.05 8.55/-6.30 4.30/1.99 -10.33/-5.47 -13.80/-6.67 2.37/0.67

8 7.11/3.54 0.50/0.85 -0.73/-0.30 7.20/3.84 5.64/2.84 20.61/10.39 15.28/7.51 3.21/1.60

10 7.18/3.55 -0.04/0.52 -1.19/-0.45 7.07/3.65 5.85/2.93 20.61/10.30 15.35/7.50 3.56/1.78

12 6.86/3.42 -0.22/0.58 -0.14/0.03 7.48/3.74 5.62/2.83 20.61/10.31 15.57/7.70 3.85/1.94

14 6.60/3.31 0.27/0.72 -0.53/-0.13 7.19/3.71 5.66/2.84 20.55/10.28 15.45/7.68 3.91/1.94

16 6.73/3.36 0.71/0.94 -0.61/-0.21 7.37/3.86 5.83/2.93 21.10/10.55 15.63/7.85 3.41/1.74

18 6.73/3.36 -0.06/0.68 -0.63/-0.24 8.88/4.03 6.00/3.00 20.61/10.41 15.86/8.18 3.42/1.76

20 7.18/3.56 1.68/1.43 -0.32/-0.03 7.84/4.21 6.21/3.11 20.73/10.48 15.83/8.12 3.81/1.94

SMOTE-TL

2 1.34/0.34 -54.93/-27.05 -12.95/-8.40

 8.16/-14.44 -1.37/-1.06

 -35.19/-17.54

 -33.38/-16.38

 -6.72/-4.62

 4 2.05/0.90 -44.26/-21.96 -3.82/-3.57

 -1.56/-12.71 -0.39/-0.35

 -25.22/-15.84

 -31.03/-14.88

 -3.25/-2.20

 6 3.14/1.48 -30.59/-14.75 -2.97/-2.85

 7.87/-6.57 1.00/0.48 -18.78/-9.50

 -17.24/-8.21

 -0.19/-0.27

 8 4.42/2.26 1.52/1.35 1.78/0.92 5.29/2.94 3.30/1.74 16.36/8.34 10.90/5.56 2.38/1.24

10 4.36/2.24 1.13/1.16 1.55/0.81 5.04/2.76 4.25/2.19 16.23/8.31 10.95/5.47 2.77/1.43

12 4.04/2.08 1.09/1.08 1.71/0.92 5.03/2.66 4.01/2.09 15.14/7.79 10.95/5.49 2.90/1.52

14 4.04/2.07 2.14/1.72 2.07/1.08 5.99/3.39 3.48/1.83 15.99/8.10 12.50/6.57 2.86/1.49

16 4.17/2.14 2.23/1.77 2.15/1.12 6.18/3.47 3.69/1.94 15.02/7.64 12.845/6.75 2.83/1.48

18 4.23/2.16 2.04/1.65 2.11/1.10 5.82/3.29 4.10/2.14 15.26/7.71 12.59/6.60 2.73/1.44

20 4.36/2.24 2.12/1.69 2.67/1.38 5.69/3.25 4.00/2.08 14.84/7.60 12.65/6.60 2.71/1.42

TLboost

2 4.16/1.70 -57.16/-27.86 -15.04/-8.92 8.74/-14.20 2.16/0.43 -28.26/-14.41 -30.22/-14.92 -3.16/-3.45

4 6.92/3.10 -45.80/-22.48 -6.26/-4.41 -0.97/-12.49 4.05/1.66 -15.74/-11.10 -26.60/-12.97 1.20/-0.23

6 6.60/3.10 -31.90/-15.12 -4.69/-3.58 8.33/-6.32 4.21/1.99 -9.97/-5.34 -13.73/-6.63 1.88/0.62

8 7.11/3.54 0.78/1.11 -0.44/-0.15 7.04/3.77 5.49/2.77 21.16/10.60 15.16/7.54 3.11/1.58

10 7.05/3.50 0.09/0.84 -0.29/-0.05 7.15/3.75 5.74/2.90 21.34/10.65 15.48/7.57 3.59/1.82

12 6.79/3.39 0.35/0.96 -0.19/-0.01 7.20/3.77 5.75/2.88 20.91/10.47 15.59/7.71 3.81/1.93

14 7.05/3.50 0.52/1.03 -0.18/0.00 7.13/3.69 5.85/2.94 21.10/10.53 15.52/7.81 3.66/1.87

16 6.86/3.41 0.78/1.18 0.03/0.10 7.46/3.90 5.87/2.96 21.16/10.58 15.79/7.98 3.50/1.79

18 6.86/3.41 1.25/1.41 0.28/0.22 7.68/4.13 5.89/2.96 21.16/10.62 15.88/8.07 3.45/1.78

20 6.86/3.42 1.16/1.36 0.36/0.26 7.70/4.13 5.91/2.96 21.34/10.70 15.86/8.06 3.69/1.90

MetaCOST

2 3.46/0.56 -59.99/-29.07 -22.76/-12.43 -63.89/-30.77 2.16/-0.08 13.44/-14.02 -29.87/-15.26 -4.84/-4.38

 4 6.28/2.61 -54.93/-26.55 -13.90/-7.99 -63.44/-30.38 5.17/1.81 18.12/-11.06 -26.31/-13.13 3.43/0.53

6 5.77/2.40 -37.02/-17.53 -14.01/-7.79 -15.09/-14.15 4.84/1.67 -0.97/-6.36 -13.64/-6.90 3.16/0.71

8 6.15/2.97 -2.64/-0.33 -7.78/-3.74 7.71/3.27 6.53/2.95 20.24/9.87 14.99/7.13 4.86/2.15

10 7.18/3.48 -3.41/-0.69 -7.41/-3.56 6.28/2.59 6.62/3.02 21.03/10.22 15.08/6.90 4.90/2.21

12 6.60/3.21 -3.19/-0.57 -7.54/-3.62 6.86/2.90 6.66/3.06 21.16/10.23 15.37/7.13 5.64/2.56

14 6.86/3.32 -2.20/-0.08 -7.05/-3.37 8.34/3.60 6.89/3.21 21.28/10.22 15.74/7.83 5.61/2.55

16 6.79/3.31 -2.19/-0.06 -7.15/-3.42 8.39/3.61 6.98/3.21 21.34/10.31 15.66/7.77 5.78/2.63

18 6.60/3.19 -1.76/0.14 -7.12/-3.41 8.34/3.68 6.69/3.09 20.98/10.14 15.77/7.87 5.41/2.45

20 5.83/2.77 -1.92/0.06 -7.70/-3.71 8.26/3.64 6.33/2.89 20.55/9.95 15.68/7.75 5.28/2.37

The observations provided through this section confirm trade-offs between metrics sensitive to Class Imbalance and other that

are not. Some algorithms strengthened minority classes, and eventually, these performance increases were accompanied also

with improvements on the majority classes. Other interesting observation is that most of the techniques obtaining positive

outcomes for MAUC and GM using less predictors than the best models provided as baseline. This fact leads to attributes

savings, which could be an interesting feature for fast early NTC.

5. Conclusions and Future Work
Through this paper, 28 techniques to solve Class Imbalanced were analyzed and compared for our NTC datasets. To the best of

our knowledge, this work constitutes the first study that analyzes an important number of solutions to Class Imbalance for

multiclass NTC. Previous works limited the analysis to few methods or faced the problem simplifying it to binary subproblems.

Our algorithm comparison involved: 21 data-level solutions, six ensemble techniques and one cost-sensitive approach. The

selected techniques were tested on two different network environments evaluating several performance metrics to find out the

strengths and weakness of each method. Among the algorithms studied, we presented two boosting algorithms that include

data-level methods during learning, they are: ROSboost and TLboost. Additionally, some algorithms had to be adapted to

multiclass problems using our own strategies to adjust the required parameters (Section 3.4). We make publicly available all

algorithms and strategies implemented at [64], and encourage other authors to test them in their respective research fields.

As result of our comparison, we find that many of the techniques explored are able to benefit traffic classification models

compensating performance losses due to Class Imbalance. Regarding metrics sensitive to imbalanced class distributions, we

find that methods involving oversampling provided substantial improvements, being the algorithms that involve ROS and

SMOTE the most promising approaches. Conversely, the algorithms that employ undersampling produced the best

improvements for metrics insensitive to Class Imbalance, being our algorithm TLboost the best-performing for these metrics.

However, they leaded to weak enhancements for OA and BA, being RUS the only undersampling algorithm that keep an

interesting tradeoff between metrics sensitive and insensitive to imbalanced traffic distributions. As it has been reported in our

result section, hybrid resampling did not get so positive results comparing to other solutions, and the same happened for

MetaCOST. Furthermore, we have confirmed that minority classes are significantly benefit from applying the most relevant

algorithms and that important enhancements can be achieved using less features than the baseline. The latter fact could

constitute an interesting advantage for fast early NTC.

In order to extend and improve the contributions provided here, several research lines are envisioned as future work. Although

we have considered several algorithm-level and one cost-sensitive approaches, there exists novel algorithms based on decision

trees that could provide interesting enhancements for Class Imbalance. The lack of implementations of these algorithms was

the decisive fact to not include them for our experiments. With respect to the cost-sensitive approach studied, we found that it

produced negative outcomes for majority classes, so that experimenting with more sophisticated ways to compute classification

cost may lead to more optimistic improvements. Furthermore, the comparison carried out in this work may be extended to other

emerging knowledge areas such as: IoT and Smart Cities. Finally, studying these solutions with a finer classification granularity

might constitute also an interesting future research line.

Acknowledgments

This work has been partially funded by the Ministerio de Economía y Competitividad del Gobierno de España and the Fondo de

Desarrollo Regional (FEDER) within the project "Inteligencia distribuida para el control y adaptación de redes dinámicas

definidas por software, Ref: TIN2014-57991-C3-2-P", in the Programa Estatal de Fomento de la Investigación Científica y

Técnica de Excelencia, Subprograma Estatal de Generación de Conocimiento. Additionally, we would like to thank the

Broadband Communications Research Group belonging to UPC BarcelonaTech, especially Valentín Carela-Español for

providing the network traces we have used in our work. Furthermore, we would like to thank the ISP for the real network traffic

captures and the resources shared with us for this work. And finally, we would like to thank the reviewers of Neurocomputing

for the feedback provided, which has been very useful to upgrade our manuscript.

References

[1] J. Khalife, A. Hajjar, and J. Diaz-verdejo, “A multilevel taxonomy and requirements for an optimal traf fi c-classi fi

cation model,” no. January, pp. 101–120, 2014.

[2] A. Callado et al., “A survey on internet traffic identification,” IEEE Commun. Surv. Tutorials, vol. 11, no. 3, pp. 37–

52, 2009.

[3] T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification using machine learning,” IEEE

Commun. Surv. Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[4] A. Dainotti, A. Pescape, and K. Claffy, “Issues and future directions in traffic classification,” IEEE Netw., vol. 26, no.

1, pp. 35–40, Jan. 2012.

[5] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust Network Traffic Classification,” IEEE/ACM Trans. Netw.,

vol. 23, no. 4, pp. 1257–1270, 2015.

[6] L. Peng, B. Yang, and Y. Chen, “Effective packet number for early stage internet traffic identification,”

Neurocomputing, vol. 156, pp. 252–267, 2015.

[7] Z. Liu, R. Wang, M. Tao, and X. Cai, “A class-oriented feature selection approach for multi-class imbalanced network

traffic datasets based on local and global metrics fusion,” Neurocomputing, vol. 168, pp. 365–381, 2015.

[8] L. Peng, H. Zhang, Y. Chen, and B. Yang, “Imbalanced traffic identification using an imbalanced data gravitation-

based classification model,” Comput. Commun., vol. 102, pp. 177–189, 2017.

[9] H. Shi, H. Li, D. Zhang, C. Cheng, and W. Wu, “Efficient and robust feature extraction and selection for traffic

classification,” Comput. Networks, vol. 119, pp. 1–16, 2017.

[10] S. E. Gómez, B. C. Martínez, A. J. Sánchez-Esguevillas, and L. Hernández Callejo, “Ensemble network traffic

classification: Algorithm comparison and novel ensemble scheme proposal,” Comput. Networks, vol. 127, pp. 68–80, Nov. 2017.

[11] CAIDA, “CoralReef Software Suite,” 1999. [Online]. Available: http://www.caida.org/tools/measurement/coralreef/.

[Accessed: 06-Jun-2018].

[12] “IANA, List of assigned port numbers.” [Online]. Available: http://www.iana.org/assignments/port-numbers.

[13] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “nDPI: Open-source high-speed deep packet inspection,” in 2014

International Wireless Communications and Mobile Computing Conference (IWCMC), 2014, pp. 617–622.

[14] J. Zhang, Y. Xiang, W. Zhou, and Y. Wang, “Unsupervised traffic classification using flow statistical properties and IP

packet payload,” J. Comput. Syst. Sci., vol. 79, no. 5, pp. 573–585, 2013.

[15] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, “Learning from class-imbalanced data:

Review of methods and applications,” Expert Syst. Appl., vol. 73, pp. 220–239, 2017.

[16] W. Wei, J. Li, L. Cao, Y. Ou, and J. Chen, “Effective detection of sophisticated online banking fraud on extremely

imbalanced data,” World Wide Web, vol. 16, no. 4, pp. 449–475, 2013.

[17] Y. Wang, X. Li, and X. Ding, “Probabilistic framework of visual anomaly detection for unbalanced data,”

Neurocomputing, vol. 201, pp. 12–18, Aug. 2016.

[18] S. Shilaskar, A. Ghatol, and P. Chatur, “Medical decision support system for extremely imbalanced datasets,” Inf. Sci.

(Ny)., vol. 384, pp. 205–219, Apr. 2017.

[19] J. Erman, A. Mahanti, and M. Arlitt, “Byte me: a case for byte accuracy in traffic classification,” Proc. 3rd Annu. ACM

…, pp. 35–37, 2007.

[20] T. Qin, L. Wang, Z. Liu, and X. Guan, “Robust application identification methods for P2P and VoIP traffic

classification in backbone networks,” Knowledge-Based Syst., vol. 82, pp. 152–162, 2015.

[21] H. Wei and B. Sun, “BalancedBoost : A Hybrid Approach for Real-time Network Traffic Classification,” 2014.

[22] Q. Liu and Z. Liu, “A comparison of improving multi-class imbalance for internet traffic classification,” Inf. Syst.

Front., vol. 16, no. 3, pp. 509–521, 2014.

[23] O. Loyola-González, J. F. Martínez-Trinidad, J. A. Carrasco-Ochoa, and M. García-Borroto, “Study of the impact of

resampling methods for contrast pattern based classifiers in imbalanced databases,” Neurocomputing, vol. 175, pp. 935–947,

2016.

[24] V. López, A. Fernández, S. García, V. Palade, and F. Herrera, “An insight into classification with imbalanced data :

Empirical results and current trends on using data intrinsic characteristics,” Inf. Sci. (Ny)., vol. 250, pp. 113–141, 2013.

[25] N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE : Synthetic Minority Over-sampling

Technique,” vol. 16, pp. 321–357, 2002.

[26] H. Han, W. Wang, and B. Mao, “Borderline-SMOTE : A New Over-Sampling Method in,” pp. 878–887, 2005.

[27] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning,”

no. 3, pp. 1322–1328, 2008.

[28] P. Hart, “The condensed nearest neighbor rule (Corresp.),” IEEE Trans. Inf. Theory, vol. 14, no. 3, pp. 515–516, May

1968.

[29] J. Zhang and I. Mani, “kNN Approach to Unbalanced Data Distributions: A Case Study involving Information

Extraction,” Work. Learn. from Imbalanced Datasets II ICML Washingt. DC 2003, pp. 42–48, 2003.

[30] F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera, “Addressing imbalance in multilabel classification: Measures

and random resampling algorithms,” Neurocomputing, vol. 163, pp. 3–16, 2015.

[31] D. L. Wilson, “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data,” IEEE Trans. Syst. Man Cybern.,

vol. 2, no. 3, pp. 408–421, 1972.

[32] J. Laurikkala, “Improving identification of difficult small classes by balancing class distribution,” Proc. 8th Conf. AI

Med. Eur. Artif. Intell. Med., pp. 63–66, 2001.

[33] M. R. Smith, T. Martinez, and C. Giraud-Carrier, “An instance level analysis of data complexity,” Mach. Learn., vol.

95, no. 2, pp. 225–256, 2014.

[34] I. Tomek, “Two Modifications of CNN,” IEEE Trans. Syst. Man. Cybern., vol. SMC-6, no. 11, pp. 769–772, Nov. 1976.

[35] G. E. A. P. A. Batista, A. L. C. Bazzan, and M. C. Monard, “Balancing Training Data for Automated Annotation of

Keywords: a Case Study,” Proc. Second Brazilian Work. Bioinforma., pp. 35–43, 2003.

[36] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A Study of the Behavior of Several Methods for Balancing

Machine Learning Training Data,” SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 20–29, 2004.

[37] X. Liu, J. Wu, and Z. Zhou, “Exploratory Under-Sampling for Class-Imbalance Learning,” 2006.

[38] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and a. Napolitano, “RUSBoost: Improving classification performance

when training data is skewed,” 2008 19th Int. Conf. Pattern Recognit., no. March 2016, pp. 8–11, 2008.

[39] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “SMOTEBoost: Improving Prediction of the Minority Class

in Boosting,” pp. 107–119, 2003.

[40] P. Domingos, “MetaCost: a general method for making classifiers cost-sensitive,” in Proceedings of the fifth ACM

SIGKDD international conference on Knowledge discovery and data mining - KDD ’99, 1999, pp. 155–164.

[41] S. Wang and X. Yao, “Multiclass Imbalance Problems : Analysis and Potential Solutions,” vol. 42, no. 4, pp. 1119–

1130, 2012.

[42] A. Fernández, V. López, M. Galar, M. José, and F. Herrera, “Analysing the classification of imbalanced data-sets with

multiple classes : Binarization techniques and ad-hoc approaches,” Knowledge-Based Syst., vol. 42, pp. 97–110, 2013.

[43] Z. H. Zhou and X. Y. Liu, “Training cost-sensitive neural networks with methods addressing the class imbalance

problem,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 1, pp. 63–77, 2006.

[44] T. Hastie and R. Tibshirani, “Classification by pairwise coupling,” Ann. Stat., vol. 26, no. 2, pp. 451–471, 1998.

[45] R. Ryan and A. Klautau, “In Defense of One-Vs-All Classification,” Notes, vol. 7, pp. 101–141, 2004.

[46] N. Japkowicz, “Assessment Metrics for Imbalanced Learning,” in Imbalanced Learning, Hoboken, NJ, USA: John

Wiley & Sons, Inc., 2013, pp. 187–206.

[47] J. G. Moreno-Torres, J. A. Saez, and F. Herrera, “Study on the Impact of Partition-Induced Dataset Shift on K-Fold

Cross-Validation,” {IEEE} Trans. Neural Networks Learn. Syst., vol. 23, no. 8, pp. 1304–1312, 2012.

[48] V. López, A. Fernández, and F. Herrera, “On the importance of the validation technique for classification with

imbalanced datasets: Addressing covariate shift when data is skewed,” Inf. Sci. (Ny)., vol. 257, pp. 1–13, 2014.

[49] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identification,” Proc. 2006 ACM Conex. Conf., p. 6:1--

6:12, 2006.

[50] L. Bernaille, R. Teixeira, I. Akodjenou, A. Soule, and K. Salamatian, “Traffic classification on the fly,” ACM

SIGCOMM Comput. Commun. Rev., vol. 36, no. 2, pp. 23–26, 2006.

[51] W. Li and A. W. Moore, “A Machine Learning Approach for Efficient Traffic Classification,” in 2007 15th International

Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 2007, pp. 310–317.

[52] N. Williams, S. Zander, and G. Armitage, “A preliminary performance comparison of five machine learning algorithms

for practical IP traffic flow classification,” ACM SIGCOMM Comput. Commun. Rev., vol. 36, no. 5, p. 5, Oct. 2006.

[53] M. Soysal and E. G. Schmidt, “Machine learning algorithms for accurate flow-based network traffic classification:

Evaluation and comparison,” Perform. Eval., vol. 67, no. 6, pp. 451–467, Jun. 2010.

[54] S. E. Gómez, B. C. Martínez, A. J. Sánchez-Esguevillas, and L. Hernández Callejo, “Ensemble network traffic

classification: Algorithm comparison and novel ensemble scheme proposal,” Comput. Networks, vol. 127, pp. 68–80, 2017.

[55] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian analysis techniques,” ACM SIGMETRICS

Perform. Eval. Rev., vol. 33, no. 1, p. 50, Jun. 2005.

[56] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian Neural Networks for Internet Traffic Classification,” IEEE Trans.

Neural Networks, vol. 18, no. 1, pp. 223–239, Jan. 2007.

[57] A. Este, F. Gringoli, and L. Salgarelli, “Support Vector Machines for TCP traffic classification,” Comput. Networks,

vol. 53, no. 14, pp. 2476–2490, Sep. 2009.

[58] D. M. Divakaran, L. Su, Y. S. Liau, and V. L. Vrizlynn, “SLIC: Self-Learning Intelligent Classifier for network traffic,”

Comput. Networks, vol. 91, pp. 283–297, 2015.

[59] J. Camacho, P. Padilla, P. García-teodoro, and J. Díaz-verdejo, “A generalizable dynamic flow pairing method for

traffic classification,” Comput. Networks, vol. 57, no. 14, pp. 2718–2732, 2013.

[60] L. Peng, B. Yang, Y. Chen, and A. Abraham, “Data gravitation based classification,” Inf. Sci. (Ny)., vol. 179, no. 6, pp.

809–819, Mar. 2009.

[61] S. Egea, A. Rego, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Intelligent IoT Traffic Classification Using Novel

Search Strategy for Fast Based-Correlation Feature Selection in Industrial Environments,” IEEE Internet Things J., 2018.

[62] S. E. Gómez, “FCBF module,” 2018. [Online]. Available: https://github.com/SantiagoEG/FCBF_module. [Accessed: 23-

May-2018].

[63] G. Lemaitre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced

Datasets in Machine Learning,” CoRR, vol. abs/1609.0, pp. 1–5, 2016.

[64] Santiago Egea Gómez, “GitHub - SantiagoEG/ImbalancedMulticlass,” 2018. [Online]. Available:

https://github.com/SantiagoEG/ImbalancedMulticlass/tree/master. [Accessed: 06-Jun-2018].

[65] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2012.

[66] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30,

2006.

[67] V. Carela-Español, T. Bujlow, and P. Barlet-Ros, “Is Our Ground-Truth for Traffic Classification Reliable?,” 2014, pp.

98–108.

[68] “nDPI – ntop.” [Online]. Available: https://www.ntop.org/products/deep-packet-inspection/ndpi/. [Accessed: 15-Feb-

2018].

[69] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “Independent comparison of popular DPI tools for traffic

classification,” Comput. Networks, vol. 76, pp. 75–89, 2015.

[70] A. W. Moore and K. Papagiannaki, “Toward the Accurate Identification of Network Applications,” Springer, Berlin,

Heidelberg, 2005, pp. 41–54.

[71] A. Callado, J. Kelner, D. Sadok, C. Alberto Kamienski, and S. Fernandes, “Better network traffic identification

through the independent combination of techniques,” J. Netw. Comput. Appl., vol. 33, no. 4, pp. 433–446, Jul. 2010.

[72] R. Jhonson, “imbalanced-algorithms,” 2017. [Online]. Available: https://github.com/dialnd/imbalanced-algorithms.

[Accessed: 23-May-2018].

View publication statsView publication stats

https://www.researchgate.net/publication/330863909

ANNEX 4

48

A.4 Conference Paper. Exploratory Study on Class
Imbalance and Solutions for Network Traffic Classification

Table A3. JCR-Indexed Paper Information

Title A Feature Selection Framework and a Predictors Study for Internet Traffic
Classification

Authors
Santiago Egea Gómez, Luis Hernández-Callejo, Belén Carro Martínez and
Antonio Sánchez-Esguevillas

Conference ASPAI-2019

Conference Date 20-22 March 2019

1st International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2019),
20-22 March 2019, Barcelona, Spain

Oral Topic: <please select the mail topic from the
ASPAI’ 2018 Conference’s Call for Paeprs>

A Feature Selection Framework and a Predictors Study for Internet Traffic

Classification

Santiago Egea Gómez1, Luis Hernández-Callejo2, Belén Carro Martínez1 and Antonio
Sánchez-Esguevillas

1 University of Valladolid, Castilla y León, Valladolid, Spain
2 University of Valladolid, Campus Universitario Duques de Soria, Soria, Spain

Tel.: + 34 983423980
E-mail: santiago.egea@alumnos.uva.es

Summary: Network traffic classification (NTC) has attached attention due to its relevance for traffic control in enabling
technologies, taking a significant prominence approaches based on Machine Learning (ML). Being Feature Selection (FS) an
essential for ML classification, a new FS framework is presented here for efficient early NTC. Our proposal combines filter
and wrapper methods to increase the diversity in attribute selection, these strategies independently produce predictor rankings
that are used in a final subset selection. The proposal is tested against datasets extracted from a quite challenging network
scenario. The proposal was validated against different NTC datasets extracted from various data sources contained in packet
headers. The presented results probe that our FS method is effective in reducing the problem dimensionality preserving or even
improving classifier performances. Furthermore, we discuss the predictive power of different sets of predictors for early NTC.
Finally, we performed a minor experiment to assess the effect of port evasion when port numbers are included in the predictive
model.

Keywords: Machine Learning, Feature Selection, Network Traffic Classification, Supervised Learning, Network managent

1. Introduction

Enabling technologies rely on underlying Internet
networks as means of communication. Smart Cities
and Internet of Things envision facilities (such as:
control of critical infrastructures, assistance in
emergencies and smart transportation) requiring traffic
control for availability, privacy and security [1]. In this
vein, NTC constitutes a key piece to detect service
decays and cyber threats.

ML has attached a relevant prominence for NTC,
since it enables accurate traffic classification evading
the handicaps of previous approaches [2]. An essential
in ML is FS. Through FS, the best predictors are
selected for training, meanwhile irrelevant ones are
discarded leading to efficient classification models.
Three FS approaches exist according to their selection
schemes: (1) Filter methods, which assume an
information metric to assess the quality of predictors;
(2) Wrapper methods, which evaluate the importance
of attributes using learning algorithms; and (3)
Embedded methods, which are integrated in learning
algorithms while training. In this paper, an FS
framework is proposed for efficient NTC. The
predictors are separately ranked by several filter and
wrapper strategies, and afterwards the rankings are
combined to select the final subset. Furthermore, we
analyze several sets of predictors from different raw
information contained in packet headers.

This article is structured as follows. Section 2
reviews previous works in FS for NTC. Section 3
describes the methodology followed and presents our
FS framework. The experimental results are presented

and discussed in Section 4, and finally we draw the
conclusions.

2. Previous Works

FS for efficient ML-based NTC is not unexplored,
and many authors have proposed their solutions. In [3],
A. Fahad et al. presented an FS method called Global
Optimization Approach (GOA) to find a stable set of
predictors over time. GOA combines a preselection
phase based on filters and a subsequent wrapper
scheme based on Random Forest. A class-oriented FS
algorithm (COFS) and an ensemble classifier were
proposed in [4]. First, COFS selects a preliminary
subset of attributes for each class, and redundant
attributes are removed according to Weighted
Symmetric Uncertainty (WSU).

A feature extraction and selection approach were
presented in [5]. Feature extraction is based on
Wavelet Multifractal transformation on raw packet-
header information. As for attribute selection,
Principal Component Analysis (PCA) is used to filter
out the irrelevant components, and K-Means to cluster
the features that are optimal or redundant. M. Shafiq et
al. [6] presented a wrapper method to select the best
predictors for imbalanced NTC. The proposed method
filters out the irrelevant attributes using Weighted
Mutual Information metric, and a learning algorithm is
used to assess the AUC-ROC for each predictor.

Finally, Efficient Feature Optimization Approach
(EFOA) is proposed [7] to confront Class Imbalance
and concept of drift in NTC. This proposal includes

1st International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2019),
20-22 March 2019, Barcelona, Spain

feature generation using Deep Belief Networks and a
subsequent selection based on WSU.

Our FS framework presents relevant differences
respecting previous approaches, since we combine
several information metrics and performance metrics
to improve the diversity for predictor selection.

3. Methods and Materials
3.1. Network Environment and Datasets

The traffic data employed here was captured in a
backbone at an ISP network, which constitutes a
challenging scenario. The traffic was sniffed in a high-
speed link supporting transmission rates up to 7Gbps,
where connections are susceptible to packet losses and
multipath effect. We have employed two different
datasets for training and validating the NTC models.
The tranining data comprises 12Gb collected on
17/1/2017 for 5 minutes, meanwhile the validation
consists of 35.62GB captured for almost 10 minutes on
23/3/2017.

The first five packet-headers were processed for
each flow to create the classification objects and
following the concept of early NTC [8]. There are
mainly four information sources available in IP and
transport layers: packet sizes, timestamps, window
sizes and others parameters (duration, directions, ports
and so on). For the three first of them, a set of 47
predictors were computed and merged with the
original raw information, as Fig. 1 illustrates. The
collection of predictors includes statistics (means,
maximum and minimum values, …) and FFT
transform components. In the case of “Others”
predictors, we considered ports, directions, % of
packets in each direction and packet counts. Finally,
we merged all those datasets resulting in a whole
dataset with a total of 172 attributes. The different
datasets are denoted as follows: SIZES, IATS,
WINSIZES, OTHERS and WHOLE.

Fig. 1. Collection of attributes and datasets employed for

our experiments

3.2. FS Framework based on rankings

Fig. 2 presents the proposed FS framework. As it is
shown, three phases are involved: (1) Filter, (2)
Wrapper, and (3) Final Ranking. During (1), several
independent attribute rankings are computed using
different filters, meanwhile wrapper strategies rank
predictors in (2). The more relevant the attribute, the
topper the position it occupies in the rankings, so that
the attribute positions are used as scores and combined
in means to select the final subset in (3).

Through combining filters, the attributes are
assessed against different information-based metrics,
therefore increasing the diversity in the selection. In
(2), several learning algorithms and performance
metrics are assumed leading to more rich selection
criteria. This framework follows a flexible design that
allow extending it including more selection strategies.

For our experiment, we selected the following nine
filter methods using different information metrics:
MRMR [9], CIFE [10], CMIN [11], ICAP [12], MIFS
[13], DISR [14], JMI [15] and MIM [16]. The most of
the filters selected are implemented in the Python
library, with the exception of FCBFiP, which was used
in [17] and is available in [18]. Regarding Wrapper
Ranking, we have evaluated three performance metrics
for three learning algorithms. As Decision Tree
algorithms have shown as a promising approach for
NTC due to its excellent ratio amongst precision and
speed, we have selected the CART Decision Tree and
two ensemble algorithms implemented in Scikit-learn
[19]. The OutputCode and Bagging algorithms were
the ensemble techniques considered in wrapper
ranking. In (2), our FS framework ranks the attributes
according to the performance metrics they produce
when they are used as unique predictor for each
learning algorithm. The selected performance metrics
in this phase are: Overall Accuracy (OA), Byte
Accuracy (BA) and geometric mean (GM).

Fig. 2. FS Framework based on rankings.

4. Experimental results

In this section, we present and discuss the results
obtained from applying our FS framework to the
different datasets. Firstly, we present a preliminary
experiment to assess predictive power of the different
sets of predictors (SIZES, IATS, WINSIZES and
OTHERS) and confirm the efficiency of our selection
approach. In a second experiment, we applied our FS
framework to the WHOLE dataset to assess which are
the most relevant attributes when several information
sources are combined. Furthermore, we performed a
minor experiment to evaluate how port evasion may
affect to performance metrics when port numbers are
included as attributes in traffic classifiers.

1st International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2019),
20-22 March 2019, Barcelona, Spain

4.1. Preliminary Results

Through this experiment, we pretend to validate
our FS framework and study which family of
predictors are the most relevant for early NTC. The
final ranking for each dataset is employed to
sequentially vary the number of attributes selected, and
a Decision Tree is trained to evaluate the model
performances according to OA, BA and GM. Figure 3
presents the results obtained for the different models,
and the top ten attributes are shown in Table 2 for each
case.

From Figure 3, we find that the best-performing
attributes in terms of OA are OTHERS, with which we
were able to identify more than 82% of connections.
Conversely, the WINSIZES and SIZES obtained OAs
around 58% and 51% respectively. While on BA,
SIZES clearly outperformed the other sets of
predictors accomplishing BAs up to 94.7%. The rest of
datasets did not produced as positive BAs as SIZES,
and the second best BAs were obtained by WINSIZES
with values around 80%. Focusing on GM, we observe
that OTHERS is anew the set of attributes producing
the best results reaching GMs greater than 65% for
certain subset sizes. In the case of SIZES, the GM
overcame 23% for 7 and 8 predictors; on contrast to
IATs and WINSIZES datasets that yielded null GMs.
OTHERS and IATS produced quite weak results for
this performance metric. Note also that the subsets
computed by our FS framework accomplished similar
performances to that using all predictors for each
datasets, which confirms the effectiveness of our
proposal in reducing the dimensinality space without
performance decays.

If we observe Table 2, we find that only there is one
FFT component (8th) amongst the best ten features for
SIZES. On the contrary, raw packet sizes (2nd, 7th and
9th) and statistical components (such as: means root
mean square and maximum values) have a notable
presence in the selected subset (1st, 3rd, 4th, 5th, 6th and
10th). While on IATS, FFT-related predictors (such as
module and phase of FFT components) were selected
(1st, 6th, 7th, 9th and 10th) jointly with an important

number of statistics (2nd, 3rd, 4th and 5th), meanwhile
only one raw attribute was selected (8th). Focusing on
WINSIZES, we observe that two raw predictors (2nd
and 8th) and two FFT phases (4th and 10th) were
selected for the final subset, in contrast to statistical
attributes that mainly composed the top ten subset (1st,
3rd, 5th, 6th, 7th and 9th). Unlike the previous datasets,
OTHERS dataset contains predictors of other nature.
Interestingly, we find that source and destination ports
(1st and 2nd) have an important impact on the final
subset resulting from our FS framework. Furthermore,
we find that packet-size counts exhibited notable
predictive power for NTC according to their positions
in the ranking (3rd, 4th, 5th, 6th and 10th). Conversely,
packet directions (6th and 8th) and percentage of
exchanged packets (7th and 9th) were not as important
as the former attributes.

Generally, the poor performances exhibited by
IATS for all metrics considered might be caused by the
instability of this family of predictors. IATS are quite
susceptible to the operation phase of the Internet
network. When the workload is very high packet
forward slows down, which produces variations in
these types of attribute leading to performance losses.

In the case of WINSIZES, something similar might
happen. TCP window sizes are variable parameters
that protocols adjust depending on the network
workload, so that attributes related to this parameter
could vary on time. Another important handicap of
these kinds of attribute is that window sizes are not
useful for UDP connections.

As its high GM reveals, OTHERS attributes
provided predictiveness to identify different types of
application. However, port numbers had an important
role for this collection of predictors. As port numbers
are configurable parameters, models including these
parameters are quite susceptible to port evasion, which
is a severe handicap.

 In the case of SIZES, these attributes are
independent from the transport protocol. Similarly to
OTHERS, the GM obtained for SIZES indicates that
this type of attributes are useful to identify different
family of applications, in contrast to the rest of datasets
that obtained almost null GMs.

Fig. 3. Performances for different subet sizes

1st International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2019),
20-22 March 2019, Barcelona, Spain

Table 1. Top ten predictors for the different datasets
 Top ten predictors
SIZES

 1st Root Mean Square of packet sizes in both directions.
 2nd Size of the 1st packet exchanged.
 3rd Maximum packet size in the 1st direction.
 4th Root Mean Square of packet sizes in the 1st direction.
 5th Maximum packet size in both directions.
 6th Mean of packet sizes in the 1st direction.
 7th Size of the 2nd packet exchanged.
 8th Phase of the 1st FFT component on sizes in the 1st direction
 9th Size of the 5th packet exchanged.
 10th Mean of packet sizes in both directions.
IATS
 1st Phase of the 1st FFT component on IATs in both directions.
 2nd Percentage of IATs in the 1st direction.
 3rd Maximum IAT in both directions.
 4th Root Mean Square of IATs in both directions.
 5th Root Mean Square of IATs in the 1st direction.
 6th Module of the 5th FFT component on IATs in both directions.
 7th Phase of the 1st FFT component on IATs in both directions.
 8th IAT of the 2nd packet.
 9th Module of the 3rd FFT component on IATs in the 1st direction.
 10th Module of the 2nd FFT component on IATs in the 1st direction.
WINSIZES

1st Root Mean Square of window sizes in both directions.
 2nd Window size of the 1st packet exchanged.
 3rd Mean of window sizes in the 1st direction.
 4th Phase of the 1st FFT component on Window sizes in the 1st direction.
 5th Maximum window size in the 1st direction.
 6th Maximum window size in both directions.
 7th Root Mean Square of window sizes in the 1st direction.
 8th Window size of the 2nd packet exchanged.
 9th Percentage of window sizes in the 1st direction
 10th Phase of the 3rd FFT component on Window sizes in the 1st direction.
OTHERS
 1st Destination port number.
 2nd Source port number.
 3rd Number of packets with packet sizes between 128 and 64 bytes.
 4th Number of packets with packet sizes between 10 and 20 kilobytes.
 5th Number of packets with packet sizes greater than 64 bytes.
 6th Direction of the 5th packet.
 7th Percentage of packets in the 1st direction.
 8th Direction of the 2nd packet.
 9th Percentage of packets in 1st direction.
 10th Number of packets with packet sizes greater than 20 kilobytes.

4.2. Final subset

In this section we present and discuss the results
obtained from applying our FS framework to the
WHOLE dataset. Table 3 contains the top ten
predictors selected by our FS method, and the
performance metrics obtained when a Decision Tree is
trained including each one.

Observing Table 3, we find that the five top
predictors yielded better outcomes that the original
dataset according to OA and GM, on contrast to BA
that was slightly lower than using all attributes. The
highest OA was reached when the 9th predictor was

included in the predictive model identifying accurately
the 98.5% of connection flows. In the instance of BA,
the best value was obtained when eight attributes are
selected, although subsets achieved the same BA as the
whole dataset when more than five predictors were
selected. While on GM, the best performance was
achieved when six or seven attributes are selected for
training. GM accomplished 84% for these subset sizes,
meanwhile the whole datasets got a score of 73.5%.
The notable increase in this performance metric
reveals that a smaller dataset better identifies a range
of diverse applications, providing better outcomes in
presence of Class Imbalance.

1st International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2019),
20-22 March 2019, Barcelona, Spain

Table 2. The ten best-scored predictors and performance metrics for the WHOLE dataset
Top ten predictors OA BA GM
1st Destination port number. .265 .209 .539
2nd Size of the 1st packet exchanged. .829 .848 .607
3rd Source port number. .961 .969 .697
4th Maximum packet size in the 1st direction. .956 .989 .720
5th Window size of the 1st packet exchanged. .983 .995 .824
6th Root Mean Square of packet sizes in both directions. .981 .996 .840
7th Phase of the 1st FFT component on packet sizes in the 1st direction. .981 .996 .840
8th Maximum packet size in both directions. .980 .997 .817
9th Phase of the 1st FFT component on Window sizes in the 1st direction. .985 .996 .820
10th Maximum window size in both directions. .984 .996 .811
Whole dataset .979 .996 .735

Through this experiment, we have probed that our
FS framework is able to reduce the training subsets
increasing some performance metrics for early NTC.
We also found that the combination of predictors
computed using different parameters from packet
headers yielded much better results than independently
using them. Note that the collection of top ten
predictors (Table 3) includes source and destination
port numbers (1st and 3rd). As aforementioned, these
parameters are susceptible to evasion, since port
numbers are a configurable parameter by users or
applications. Below, we present the results of an
experiment during which port evasion was simulated
to assess performance losses due to this effect. In
addition to port numbers, the top ten subset contains
five predictors computed from packet sizes (2nd, 4th, 6th,
7th and 8th) and three Window-size related attributes
(5th, 9th and 10th).

Masking connections behind random port

numbers

Finally, we provide a minor experiment to probe

that ML-based traffic classifiers are susceptible to port
evasion when port numbers are included in the
predictive model. For this purpose, we have selected
the subset with six features from Table 3, and port
evasion was simulated by randomly modifying the
source and destination port numbers for specific
percentage of samples. Fig. 4 contains the results
obtained in this experiment.

Generally, all performance metrics are negatively
affected when the connections are masked behind
other ports. When the percentage of masked
connections increases, the performances of the
classifier notably decreases. In the case of masking the
5%, all metrics decreased in around 4%. Through this
simple experiments, we have probed as port evasion
can decrease the performance of ML-based traffic
classifiers when port numbers are included in the
predictive model.

5. Conclusions

Through this work, we have presented an FS

framework for selecting a reduced dataset for early
NTC. Our framework combines two parallel ranking
phases in which filter methods and wrapper strategies
are employed to independently rank predictors
according to their relevance in the predictive model.
We have validated our FS scheme on different NTC
datasets containing predictors computed from the
different parameters in packet headers (such as: packet
sizes, inter-arrival times, window sizes and so on).

As a result of our experiments, we have found that
our FS framework is able to notably reduce the
attribute space preserving and even improving the
performances of the classifier. Additionally, we have
analyzed the different collections of attributes to find
out the predictive power of each one for NTC. Finally,
we have applied our FS framework to a whole dataset
that combines the former datasets. As result, we found
that combining predictors computed from different
network parameters provides better results than
employing them separately. As source and destination
port numbers were ranked as one of the most relevant
attributes, we performed a minor experiment to assess
the effect of port evasion on classifier performances.
Our results reveal that port evasion decreases the
classifier accuracy, and it should be considered when
port numbers are included in the predictive model.

Acknowledgements

This work has been partially funded by the

Ministerio de Economía y Competitividad del
Gobierno de España and the Fondo de Desarrollo
Regional (FEDER) within the project "Inteligencia
distribuida para el control y adaptación de redes
dinámicas definidas por software, Ref: TIN2014-
57991-C3-2-P", in the Programa Estatal de Fomento
de la Investigación Científica y Técnica de Excelencia,
Subprograma Estatal de Generación de Conocimiento.
Finally, we would like to thank the ISP for the real
network traffic captures and the resources shared with
us for this work.

1st International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2019),
20-22 March 2019, Barcelona, Spain

Fig. 4. Effect of Port evasion on model performances

References

[1] T. K. L. Hui, R. S. Sherratt, and D. Díaz, “Major

requirements for building Smart Homes in Smart
Cities based on Internet of Things technologies,”
Futur. Gener. Comput. Syst., vol. 76, pp. 358–369,
2017.

[2] T. Nguyen and G. Armitage, “A survey of
techniques for internet traffic classification using
machine learning,” IEEE Commun. Surv. Tutorials,
vol. 10, no. 4, pp. 56–76, 2008.

[3] A. Fahad, Z. Tari, I. Khalil, A. Almalawi, and A. Y.
Zomaya, “An optimal and stable feature selection
approach for traffic classification based on multi-
criterion fusion,” Futur. Gener. Comput. Syst., vol.
36, pp. 156–169, 2014.

[4] Z. Liu, R. Wang, M. Tao, and X. Cai, “A class-
oriented feature selection approach for multi-class
imbalanced network traffic datasets based on local
and global metrics fusion,” Neurocomputing, vol.
168, pp. 365–381, 2015.

[5] H. Shi, H. Li, D. Zhang, C. Cheng, and W. Wu,
“Efficient and robust feature extraction and
selection for traffic classification,” Comput.
Networks, vol. 119, pp. 1–16, 2017.

[6] M. Shafiq, X. Yu, A. Kashif, B. Hassan, N.
Chaudhry, and D. Wang, “A machine learning
approach for feature selection traffic classification
using security analysis,” J. Supercomput., 2018.

[7] H. Shi, H. Li, D. Zhang, C. Cheng, and X. Cao, “An
efficient feature generation approach based on deep
learning and feature selection techniques for traffic
classification,” vol. 132, pp. 81–98, 2018.

[8] L. Bernaille, R. Teixeira, and K. Salamatian, “Early
application identification,” Proc. 2006 ACM Conex.
Conf., p. 6:1--6:12, 2006.

[9] Hanchuan Peng, Fuhui Long, and C. Ding, “Feature

selection based on mutual information criteria of
max-dependency, max-relevance, and min-
redundancy,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 27, no. 8, pp. 1226–1238, Aug. 2005.

[10] D. Lin and X. Tang, “Conditional Infomax
Learning: An Integrated Framework for Feature
Extraction and Fusion,” Springer, Berlin,
Heidelberg, 2006, pp. 68–82.

[11] F. Fleuret, “Fast Binary Feature Selection with
Conditional Mutual Information,” J. Mach. Learn.
Res., vol. 5, pp. 1531–1555, 2004.

[12] A. Jakulin, “Machine Learning Based on Attribute
Interactions,” Thesis, pp. 1–252, 2005.

[13] R. Battiti, “Using Mutual Information for Selecting
Features in Supervised Neural-Net Learning,” Ieee
Trans. Neural Networks, vol. 5, no. 4, pp. 537–550,
1994.

[14] P. E. Meyer, C. Schretter, and G. Bontempi,
“Information-Theoretic Feature Selection in
Microarray Data Using Variable
Complementarity,” IEEE J. Sel. Top. Signal
Process., vol. 2, no. 3, pp. 261–274, 2008.

[15] H. H. Yang and J. Moody, “Data Visualization and
Feature Selection: New Algorithms for
Nongaussian Data,” Adv. Neural Inf. Process. Syst.,
vol. 12, no. Mi, pp. 687–693, 1999.

[16] D. D. Lewis, “Feature Selection and Feature
Extraction for Text Categorization,” pp. 212–217,
1992.

[17] S. E. Gómez, B. C. Martínez, A. J. Sánchez-
Esguevillas, and L. Hernández Callejo, “Ensemble
network traffic classification: Algorithm
comparison and novel ensemble scheme proposal,”
Comput. Networks, vol. 127, pp. 68–80, 2017.

[18] S. E. Gómez, “FCBF module,” 2018. [Online].
Available:
https://github.com/SantiagoEG/FCBF_module.
[Accessed: 23-May-2018].

	ABSTRACT
	RESUMEN
	1. Introduction
	1.1. Traffic Classification for Network Management
	1.2. Network traffic classification based on Machine Learning
	1.3. Methodology in ML
	1.4. Research Motivation & Objectives
	1.5. Research Methodology
	1.6. Thesis Organization

	2. Thesis Framework & Contributions
	2.1. Minor contributions
	2.2. Major contributions
	2.3. Paper Rationale and Research Questions

	3. State of the Art
	4. Thesis Methodology
	4.1 Network Environments
	4.2 Feature Extraction
	4.3 Extra Datasets Used in this Research
	4.4 Feature Selection Techniques
	4.5 Learning Algorithms
	4.6 Model Validation & Performance Metrics
	4.7 Employed Tools
	4.8 Summary of Methodologies

	5. General Conclusions
	6. Future Research Opportunities
	List of References
	A.1 Journal Paper. Intelligent IoT Traffic Classification Using Novel Search Strategy for Fast Based-Correlation Feature Selection in Industrial Environments
	A.2 Journal Paper. Ensemble network traffic classification: Algorithm comparison and novel ensemble scheme proposal
	A.3 Journal Paper. Exploratory Study on Class Imbalance and Solutions for Network Traffic Classification
	A.4 Conference Paper. Exploratory Study on Class Imbalance and Solutions for Network Traffic Classification
	[ASPAI'19] A Feature Selection Framework and a Predictors Study for Internet Traffic Classification.pdf
	A Feature Selection Framework and a Predictors Study for Internet Traffic Classification

	SantiagoEgea_ComNet_preprint.pdf
	1. Introduction
	2. Related Work
	3. Methodology
	3.1. Datasets
	3.1.1. ISP traces
	3.1.2. HOST traces
	3.1.3. Attributes generation, Feature Selection and labeling process
	3.2. Evaluation Environment
	3.3. Performance Metrics & Statistical Validation
	3.3.1. Overall Accuracy
	3.3.2. Class Accuracies
	3.3.3. Byte Accuracy
	3.3.4. Number of Features used in the models
	3.3.5. Training and Classification times
	3.3.6. Statistical Validation: Friedman´s Test
	3.4. Ensemble Classifiers
	3.5. Our proposal: Tailored Decision Tree Chain
	3.5.1. Ensemble Scheme & Classification process
	3.5.2. Ordering the classifiers
	3.5.3. Training process
	4. Results
	4.1. Overall Accuracy and Byte Accuracy Evaluation
	4.2. Time Performance Comparison
	4.3. Statistical Validation
	4.4. Model Complexity Evaluation
	4.5. Summary
	5. Conclusions

