
PROGRAMA DE DOCTORADO EN TECNOLOGÍAS DE LA 
INFORMACIÓN Y LAS COMUNICACIONES  

TESIS DOCTORAL: 

APPLICATION OF ADVANCED MACHINE 
LEARNING TECHNIQUES TO EARLY NETWORK 

TRAFFIC CLASSIFICATION 

Presentada por Santiago Egea Gómez para optar al 
grado de  

Doctor/a por la Universidad de Valladolid 

Dirigida por: 
Belén Carro Martínez, Luis Hernández Callejo y Antonio 

Javier Sánchez Esguevillas  



 



 
 
 
 
 
Acknowledgements  
 

… to who inspired this research. 

… to who unconditionally backed me during this long adventure. 

… to who has contributed to this research. 

… to my supervisors and the people involved in this challenging journey. 

… to my true friends and genuine relatives. 

… to who they are not already in this world, but always are with me. 

… they know who they are.  



 



Table of Contents 
 

ABSTRACT ............................................................................................................................... 4 

RESUMEN ................................................................................................................................ 5 

1. Introduction .................................................................................................................... 6 

1.1. Traffic Classification for Network Management ..................................... 7 

1.2. Network traffic classification based on Machine Learning ............... 9 

1.3. Methodology in ML ............................................................................................. 10 

1.4. Research Motivation & Objectives .............................................................. 12 

1.5. Research Methodology ..................................................................................... 13 

1.6. Thesis Organization ........................................................................................... 14 

2. Thesis Framework & Contributions ................................................................... 15 

2.1. Minor contributions ........................................................................................... 15 

2.2. Major contributions ........................................................................................... 16 

2.3. Paper Rationale and Research Questions ................................................ 17 

3. State of the Art ............................................................................................................. 19 

4. Thesis Methodology ................................................................................................... 25 

4.1 Network Environments ......................................................................................... 25 

4.2 Feature Extraction .................................................................................................. 26 

4.3 Extra Datasets Used in this Research ............................................................. 27 

4.4 Feature Selection Techniques ............................................................................ 27 

4.5 Learning Algorithms ............................................................................................... 28 

4.6 Model Validation & Performance Metrics ..................................................... 30 

4.7 Employed Tools ......................................................................................................... 32 

4.8 Summary of Methodologies ................................................................................. 33 

5. General Conclusions .................................................................................................. 34 

6. Future Research Opportunities ............................................................................ 36 

List of References ............................................................................................................... 37 

A.1 Journal Paper. Intelligent IoT Traffic Classification Using Novel Search 

Strategy for Fast Based-Correlation Feature Selection in Industrial 

Environments ....................................................................................................................... 45 

A.2 Journal Paper. Ensemble network traffic classification: Algorithm 

comparison and novel ensemble scheme proposal ............................................... 46 

A.3 Journal Paper. Exploratory Study on Class Imbalance and Solutions for 

Network Traffic Classification ...................................................................................... 47 



Application of Advanced Machine Learning Techniques to Early Network Traffic Classification  

2 
 

A.4 Conference Paper. Exploratory Study on Class Imbalance and Solutions 

for Network Traffic Classification ............................................................................... 48 

 

 

List of Figures 

Figure 1. General Methods & Materials in ML ......................................................... 11 

Figure 2. Research Methodology ................................................................................ 13 

Figure 3. Minor and Major Contributions of this dissertation ................................. 15 

Figure 4. Scientific Manuscripts and their Connections to Research Questions .... 18 

Figure 5. Processes in the Feature Extractor ............................................................ 26 

Figure 6. AUC-ROCs for different model performances ........................................... 31 

 

 

List of Tables 

Table 1. Extra Datasets used in this dissertation ..................................................... 27 

Table 2. Feature Selection Algorithms employed during this research ................... 28 

Table 3. Ensemble Algorithms employed during this research ................................ 29 

Table 4. Algorithm to deal with Class Imbalance ..................................................... 30 

Table 5. Model Validation Approaches ...................................................................... 30 

Table 6. Software Libraries & Tools employed in this research ............................... 32 

Table 7. Summary of the methodologies applied in our research articles ............... 32 

 
  



Application of Advanced Machine Learning Techniques to Early Network Traffic Classification  

3 
 

List of Acronyms 
    

ADASYNC ADAptive SYNthetic algorithm  IoT  Internet of Things 

AUC Area Under Curve IP  Internet Protocol 

BA  Byte Accuracy ISP  Internet Service Provider 

BC  Balance Cascade JMI  Joint Mutual Information 

BoF  Bag of Flows KELM  Kernel-based Extreme Learning Machine 

CART  Classification And Regression Tree LOA  Local Optimization Approach 

CIFE  Conditional Infomax Feature Extractio MIFS  Mutual Interformation Feature Selection 

CMIM  
CoNditional Mutual Information 

Maximization 
MIM Mutual Information Maximization 

CNN  Condensed Nearest Neighbor MRMR  
Minimum-Redundancy Maximum-

Relevance 

CV  Cross Validation NCR  Neighborhood Cleaning Rule 

DBSCAN  
Density-Based Spatial Clustering 

Application with Noise 
NM  Near Miss  

DPI  Deep Packet Inspection OA  Overal Accuracy 

EE  Easy Ensemble OSS  One Sided Selection 

EFOA  Efficient Feature Optimization Approach P2P  Peer to Peer 

EL  Extreme Learning PCA  Principal Component Analysis 

ENN  Edited Nearest Neighbor PCAP  Packet CAPture 

FCBF  Fast Correlation Based Filter PNN  Probabilistic Neural Networks 

FCBF#  
Fast Correlation Based Filter with a 

different search strategy 
ROC  Receiver Operating Characteristic 

FCBFiP  Fast Correlation Based Filter in Pieces ROS  Random OverSampling 

FFT  Fast Fourier Transform RUS  Random UnderSampling 

FS  Feature Selecion SLIC  Self Learning Intelligent Classifier  

FTP  File Transfer Protocol SMOTE  
Synthetic Minority Oversampling 

TEchnique 

GA  Genetic Algorithm SSH  Secure SHel  

GM  Geometric Mean SVM  Support Vector Machine 

GMM  Gaussian Mixture Model TCEV  
Traffic Classifier based on Expanding 

Vectors  

GOA  Global Optimization Approach TCP  Transport Congestion Protocol 

HTTP  HyperText Transfer Protocol T-DTC  Tailored Decision Tree Chain 

IANA  Internet Assigned Numbers Authority TL  Tomek Link 

ICAP  Interaction CAPping  UDP  User Datagram Protocol 

IDGB  
Imbalanced Data Gravitation Based 

Classifier 
WMI  Weighted Mutual Information 

IHT  Instance Hardness Threshold WSU  Weighted Symmetrical Uncertainty 

 

  



Application of Advanced Machine Learning Techniques to Early Network Traffic Classification  

4 
 

ABSTRACT 

The fast-paced evolution of the Internet is drawing a complex context which 

imposes demanding requirements to assure end-to-end Quality of Service. The 

development of advanced intelligent approaches in networking is envisioning 

features that include autonomous resource allocation, fast reaction against 

unexpected network events and so on. Internet Network Traffic Classification 

constitutes a crucial source of information for Network Management, being decisive 

in assisting the emerging network control paradigms. Monitoring traffic flowing 

through network devices support tasks such as: network orchestration, traffic 

prioritization, network arbitration and cyberthreats detection, amongst others. 

The traditional traffic classifiers became obsolete owing to the rapid Internet 

evolution. Port-based classifiers suffer from significant accuracy losses due to port 

masking, meanwhile Deep Packet Inspection approaches have severe user-privacy 

limitations. The advent of Machine Learning has propelled the application of 

advanced algorithms in diverse research areas, and some learning approaches have 

proved as an interesting alternative to the classic traffic classification approaches. 

Addressing Network Traffic Classification from a Machine Learning perspective 

implies numerous challenges demanding research efforts to achieve feasible 

classifiers. In this dissertation, we endeavor to formulate and solve important 

research questions in Machine-Learning-based Network Traffic Classification. As a 

result of numerous experiments, the knowledge provided in this research constitutes 

an engaging case of study in which network traffic data from two different 

environments are successfully collected, processed and modeled.  

Firstly, we approached the Feature Extraction and Selection processes providing our 

own contributions. A Feature Extractor was designed to create Machine-Learning 

ready datasets from real traffic data, and a Feature Selection Filter based on fast 

correlation is proposed and tested in several classification datasets. Then, the 

original Network Traffic Classification datasets are reduced using our Selection 

Filter to provide efficient classification models. Many classification models based on 

CART Decision Trees were analyzed exhibiting excellent outcomes in identifying 

various Internet applications. The experiments presented in this research comprise 

a comparison amongst ensemble learning schemes, an exploratory study on Class 

Imbalance and solutions; and an analysis of IP-header predictors for early traffic 

classification. This thesis is presented in the form of compendium of JCR-indexed 

scientific manuscripts and, furthermore, one conference paper is included.  

In the present work we study a wide number of learning approaches employing the 

most advance methodology in Machine Learning. As a result, we identify the 

strengths and weaknesses of these algorithms, providing our own solutions to 

overcome the observed limitations. Shortly, this thesis proves that Machine 

Learning offers interesting advanced techniques that open prominent prospects in 

Internet Network Traffic Classification.  
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RESUMEN 

La imparable evolución de Internet está dibujando un complejo entorno que 

impone numerosos requisitos para asegurar la Calidad de Servicio. La aparición de 

nuevos paradigmas de red inteligentes proyecta en los dispositivos de red 

capacidades como: la gestión automática de los recursos de la red, la reacción 

instantánea ante eventos inesperados, etc. La Clasificación de Tráfico de Red 

constituye una fuente de información esencial para el Gestión de Redes, siendo 

manifiesta su gran importancia para los nuevos paradigmas de red. Monitorizar el 

tráfico que circula por ciertos dispositivos de red conlleva importantes beneficios 

para tareas como: la orquestación de redes, priorización de tráfico, arbitraje en la 

utilización de la red y detección de ciber amenazas, entre otros. 

Los clasificadores de tráfico tradicionales han quedado obsoletos debido a la rápida 

evolución de Internet. Los clasificadores basados en puertos sufren importantes 

pérdidas de precisión debido al enmascaramiento de puertos, mientras que los 

enfoques de Inspección Profunda de Paquetes están limitados debido a problemas de 

privacidad. La aparición de técnicas de Aprendizaje Automático ha abierto nuevas 

posibilidades en numerosos problemas, y se ha demostrado que algunas de ellas son 

una alternativa interesante para la Clasificación de Tráfico de Internet. Abordar este 

problema usando Aprendizaje Automático implica numerosos retos de investigación 

con el fin de lograr clasificadores eficientes. Esta tesis trata de formular y responder 

preguntas de investigación cruciales en esta área de investigación. Como resultado 

de numerosos experimentos, el conocimiento aportado en este trabajo constituye un 

valioso caso de estudio en el que tráfico proveniente de distintos entornos de red es 

recolectado, procesado y modelado con éxito.  

Para empezar, se abordó el problema de recolección y selección de atributos 

aportando nuestras propias soluciones. Se diseñó un Extractor de Atributos para 

generar conjuntos de datos de Aprendizaje Automático a partir de tráfico de red; 

también se presentó un algoritmo de Selección de Atributos basado en medidas de 

correlación, cuyo rendimiento fue probado en varios problemas de clasificación. A 

continuación, se utilizó dicho algoritmo para reducir el número de atributos en 

nuestros conjuntos de datos de Clasificación de Tráfico buscando mejorar la 

eficiencia de nuestros modelos predictivos. Más adelante, se analizaron numerosos 

modelos de clasificación basados en Árboles de Decisión, produciendo excelentes 

resultados en la identificación de tráfico de red. Los experimentos presentados en 

esta tesis incluyen un análisis de algoritmos ensamblados, un estudio del problema 

de Clases Desequilibradas y soluciones para éste; y un análisis de distintos 

parámetros extraídos de cabeceras IP usados como atributos. Esta tesis se presenta 

como un compendio de artículos científicos publicados en revistas JCR indexadas, 

además de un artículo de conferencia.  

En la presente investigación, se han estudiado un amplio número de técnicas de 

aprendizaje asumiendo las metodologías más avanzadas en Aprendizaje Automático. 

Como resultado, se identificaron las ventajas y desventajas de estos algoritmos, 

aportando también nuestras propias soluciones para solucionar las limitaciones 

observadas. En resumen, esta tesis demuestra que las técnicas avanzadas en 

Aprendizaje Automático tienen unas prometedoras perspectivas en la Clasificación 

de Tráfico de Internet.     
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1. Introduction 

The World of the Internet is composed of millions of users around the world, 

millions of server computers providing a wide range of online facilities and a global 

infrastructure that interconnects countless local networks. Internet networks 

require innovating their infrastructures and control mechanisms to provide support 

to emerging services continuously growing and evolving [1]. Currently, the Internet 

provides communication to numerous public and private institutions that are 

unceasingly transferring sensitive information about their customers, products and 

facilities. Therefore, a communication disruption might bring important information 

leakages and huge economic losses obstructing the activity of industries and even 

governments [2]. Furthermore, the control and surveillance of certain critical 

infrastructures (such as dams and reservoirs, nuclear and energy stations, transport 

infrastructure and so forth) rely on Internet networks, which evidently imposes the 

necessity of implementing secure and trustworthy communications. Finally, the 

Internet is also used to perform bank transactions, consume multimedia services and 

share personal information in the instance of home networks. 

Efficiently monitoring and administrating Internet networks assure that the 

communications are not under risk of sabotage by malicious users or of disruptions 

due to service collapses. In this regard, network administrators daily cope with vast 

amounts of traffic flowing through network devices corresponding to thousands of 

different services, online applications and users. As network topologies tend to be 

more and more complex and fast events unexpectedly happen at any instant, 

Network Management is a non-trivial task comprising diverse mechanisms 

including Traffic Analysis and Active/Passive Network Probing, amongst others [2]. 

The development of tools that automatically diagnose the status of network devices 

has been assisting network operators’ work for last decades; however, the dynamicity 

of the Internet imposes arising challenges that need to be addressed. Some of the 

reasons that make the Internet a challenging scenario for management are: 

- The characteristics of topologies and supported traffic vary depending on 

network environments, locations and even dates [3]. For example, a traffic 

classifier must be robust to packet losses and multipath effect when it is 

deployed in a node in the middle of a backbone network, unlike simple home 

networks. And, evidently, the Internet traffic supported in a home 

environment considerably differs from the consumed in an enterprise. 

Additionally, the amount of traffic generated in enterprises during regular 

dates is not the same as in holiday seasons. 

- The emergence of novel services, applications and encryption techniques also 

imposes obstacles for network managers. Network resource utilization varies 

depending on the kind of services and applications consumed by users, and 

demanding applications are regularly launched to the market providing new 

products and facilities, such as online TV. This fact forces the innovation of 

Network Management systems to fulfil the emerging demands.  

- The Internet is a dynamic worldwide communication infrastructure that is 

daily increasing the number of interconnected devices. The architecture of the 

Internet is substantially complex, comprising different transport technologies 
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(such as, optical and submarine links) that interconnect continents to serve 

millions of users [4]. 

- Emerging networking paradigms envision intelligent architectures enabling 

autonomous Network Management and automatic resource allocation. In the 

case of the paradigms of Cognitive Networks and Self-Organizing Networks, 

environment perception is defined as a crucial component for these cutting-

edge paradigms [1].  

- Finally, the convergence of different communication technologies, such 

satellite and mobile networks [5], with the Internet is drawing a context with 

diverse demands to satisfy Quality-of-Service (QoS) of the different 

technologies. This fact is also the case of the Internet of Things (IoT), which 

is envisioned as one of the most trending paradigms for remote sensing in the 

future intelligent cities and Smart Cities. 

Network Traffic Classification (NTC) is a key information source to monitor the 

network activity and/or early detect threats that could jeopardize both regular and 

critical communications [6]–[9]. This dissertation is focused on NTC based on 

Machine Learning (ML) techniques, which are attaching a relevant research interest 

due to their promising outcomes producing efficient classification models. Through 

this section, we pretend to introduce relevant concepts and bring the readers into 

the two main research areas that are linked in this thesis: (1) Network Traffic 

Classification and (2) Machine Learning. Therefore, Section 1.1 briefly introduces 

NTC along with other important concepts and discusses its relevance for Network 

Management. Later, NTC based on ML and its essentials are introduced in Section 

1.2, meanwhile general methodological aspects in ML are described in Section 1.3. 

The research motivation and objectives pursued in this dissertation are presented in 

Section 1.4. The research methodology followed to identify the research questions is 

presented in Section 1.5 and, finally, Section 1.6 presents the organization of this 

dissertation. 

  

1.1. Traffic Classification for Network Management 

NTC aims at associating Internet flows with the applications or protocols that 

generate them. It constitutes an important source of information for Network 

Management and dynamic resource allocation [10], since many events can be 

efficiently detected via monitoring the traffic supported in network nodes (i.e. 

Denial-of-Services attacks or Internet link disruptions). Furthermore, NTC can 

assist in other relevant networking tasks and mechanisms that are quite interesting 

for Internet Service Providers (ISPs), such as: service arbitration, traffic 

prioritization, infrastructure planning and so on.   

The basic classification objects in NTC are Internet connection flows, which have 

been defined in different ways during years of Network Management development. 

Internet connection flows essentially represent information exchanges between 

tuples origin-destination, typically a client and a server. In this work, we consider 

Internet flows as the IP packets that transport the messages of a communication in 

both directions, that is client to server and vice versa. Thus, the packets sharing the 

same four tuples <Source IP, Source Port, Destination IP and Destination Port> 

during a fixed temporal window are considered belonging to the same connection 



Application of Advanced Machine Learning Techniques to Early Network Traffic Classification  

8 
 

flow. As we consider bidirectional connections in this research, the source and 

destination fields are exchangeable depending on packet directions.   

The earliest traffic classification techniques were based on the communication port 

numbers contained in the transport layer of the OSI model. Under the assumption 

that numerous applications and protocols use standard and predefined port numbers 

(e.g. HTTP in port 80, SSH in 22, ftp in 21 and so on), Port-based approaches identify 

flows via inspecting port numbers and associating them with applications according 

to the well-known ports defined by the Internet Assignment Number Authority 

(IANA) [11]. However, the port numbers are parameters that can be configured by 

users, constituting an important handicap for Port-based Classification. Thus, 

certain users and applications can easily evade this control mechanism masking 

Internet connections beyond port numbers used by other well-known services. In 

fact, port evasion is very often performed by Peer-to-Peer (P2P) applications to avoid 

being detected. Additionally, P2P applications are quite resource-consuming, since 

their communication scheme is employed by very demanding services, such as: video 

streaming and data sharing applications. These facts caused that Port-based 

classification became obsolete during last decades.  

In order to provide a more accurate classification, Deep Packet Inspection (DPI) 

approach arose as one of the most prominent solutions [8]. DPI tools examine the 

data contained into IP application layers seeking fixed binary patterns. This 

approach assumes that some information patterns are signature for certain 

applications (i.e. the string “HTTP GET” for HTTP queries), so that application data 

is inspected and compared to a database containing prefixed application signatures. 

These approaches have produced outstanding improvements in accuracy respecting 

Port-based tools; but, conversely, several constraints appeared for DPI. Firstly, the 

use of encryption techniques; as the pointed data are scrambled, pattern seeking 

turns out challenging for encrypted connections. Secondly, high-speed networks 

normally support millions of connections per second with vast amounts of packets at 

single nodes, so that inspecting all packets for all connection flows is very complex 

and computationally prohibitive. Although novel DPI approaches are increasing 

notably their capacities in terms of encryption robustness and computational 

efficiency, there exists other important issue to overcome yet. In this regard, the 

most limiting obstacle for DPI is privacy violation, since application layers contain 

personal, sensitive information about users that is lawful protected [12]. 

The former NTC methods are not the only approaches proposed in the recent years, 

alternative traffic classification techniques are: Decoding Protocols [7] and Traffic 

Identification based on Statistical Patterns [13]. In the first case, certain protocols 

are assumed to implement their communications according to repetitive message 

exchange patterns between clients and servers; therefore, they can be detected via 

observing these patterns. In the instance of NTC based on Statistical Patterns, 

several indicators (such as: number of packets, time of life or bytes transferred) are 

observed and statistically modeled, and inferring methods are used to identify 

incoming unknown connections. Next section introduces NTC based on ML and 

discusses important methodological considerations about ML that underpin some of 

the advanced methodological techniques applied in this dissertation.  
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1.2. Network traffic classification based on Machine 

Learning 

One of the most remarkable pioneers in ML research was Arthur Samuel in 

1959 [14], who defined ML as: “the field of study that gives computers the ability to 

learn with being programmed in an explicit manner”. The fast-paced development of 

intelligent techniques and algorithms providing computers with the capacity of 

learning from experience has opened numerous lines of application to solve problems 

in diverse research areas [15]. 

Nowadays, ML provides a wide, varied number of tools that enable processing 

information at several levels to achieve the final goal of modeling a system, 

phenomena or problem. These techniques cover from data preprocessing methods to 

learning algorithms, which can learn from the internal knowledge contained in 

training data samples. In short, given a system that reacts with a response to certain 

inputs, ML aims at modeling the internal system behavior via supplying learning 

algorithms with representative examples about the problem.  

There exist two main learning paradigms according to the nature of the addressed 

problem and the availability of the response to predict: supervised and unsupervised 

learning. Whether the response is known and is measurable during data acquisition, 

the problem can be solved from a supervised perspective, in which human 

intervention is needed to create a ground truth. On the contrary, unsupervised 

learning assists in solving problems in which the response is unknown and/or 

unmeasurable. Finally, some problems can be approached from a semi-supervised 

perspective, which combine assumptions from the two former paradigms.  

Regarding the nature of the response to predict, three main problems can be solved 

using ML: (1) Regression, (2) Classification problems and (3) 

Clustering/Segmentation. In the instance of regression problems, the response to 

model is continuous and can take infinite values (numerical measures, such as 

prices, temperature and so on); meanwhile, the response takes categorical and 

discrete values in classification problems (i.e. categorizing objects in an image, 

identification of types of genes, etc.). Finally, clustering refers to problems in which 

the aim is to identify groups of samples according to their similarities (this is the 

case of marketing segmentation applications). Although NTC can be also solved from 

a semi-supervised perspective, we assume it as a supervised classification problem 

with the objective of associating connection flows to their generating applications, 

whose ground truth is established via alternative accurate means.  

Regarding NTC based on ML, the first researchers that experimented with ML on 

network traffic were A. McGregor et al. and A.W. Moore and D. Zuev. The former 

presented in April of 2004 an approach based on the Expectation Maximization 

clustering algorithm to categorize Internet connections [16]. The objective of this 

approach is not to classify flows according to Internet applications, but cluster them 

regarding their network properties (packet size, duration, inter-arrival time and so 

on). A few months later, A.W. Moore and D. Zuev presented a supervised approach 

to classify complete TCP connections according to their applications in [17]. The 

authors trained the Naïve Bayes algorithm using a dataset with 248 features. This 
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dataset has become very popular, being used by many other authors to experiment 

with [18]–[20]. 

In 2006, L. Bernaille et al. presented the concept of Early NTC in [21], consisting in 

classifying connections flows using the minimal number of packets as possible. The 

authors employed the distant-based clustering algorithm K-Means to identify 

Internet applications using the few first packets at beginning of TCP connections. 

This research work was afterwards extended in [22] testing more clustering 

algorithms and including features based on inter-arrival times, jitter and packet 

sizes. The classification models presented in these works exhibited promising 

accuracies greater than 90%. 

Then, N. Williams et al. experimented with different supervised algorithms [23], 

including: Bayesian Net, C4.5 Decision Tree, Naïve Bayes and Naïve Bayes Tree. 

The dataset employed in this work was composed by 22 predictors and the models 

were trained after applying Correlation-based Feature Selection (FS). In [24], J. 

Erman et al. compared two clustering algorithms (K-Means and DBSCAN) to other 

previous approaches. Later, T. Auld et al. [25] proposed an approach based on 

Bayesian Neural Networks and compared it to the Naïve Bayes and multi-layer 

perceptron classification algorithms. Although substantial advances in ML-based 

NTC must be performed to achieve feasible classification models, the earliest 

research shown that ML constitutes a promising solution for accurate, efficient and 

privacy-respectful NTC. 

In this section we have reviewed the most pioneering research that constitutes the 

advent of this field, and a more extensive revision of the most recent works is 

provided in subsequent sections of this dissertation. Below, we present the general 

and most relevant methodological aspects when a problem is approached from an 

ML perspective.  

 

1.3. Methodology in ML 

When a classification problem is formulated from an ML perspective, 

unavoidable methodological steps must be considered to successfully solve it. Figure 

1 presents the most essential methods and materials in ML, from the problem 

statement until the final predictive model is built. In Figure 1, different colors are 

employed to differentiate between methodological processes and the materials they 

produce. 

The first and one of the most crucial steps is Problem Definition. Through Problem 

Definition, both inputs and outputs (Predictors & Responses) of classification objects 

(instances or samples) must be identified and clearly defined. The predictors and 

responses contain the basic knowledge about classification objects, which will be 

processed by ML algorithms to generate the sought predictive models. This step also 

defines how to collect and process the Metadata of the system or problem to model. 

In this dissertation, each classification object represents a bidirectional connection 

flow consisting in a tuple <x, y>, including the statistical attributes used as inputs 

and the responses, which are the protocols and applications that generate the 

connection flows.  
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Figure 1. General Methods & Materials in ML 

Feature Extraction takes as inputs the collected Metadata from the problem, which 

is processed in order to adequate the information to be computerized according to 

the guidelines defined in Problem Definition. A critical phase in Feature Extraction 

is ground-truth creation, which consists of assigning the actual response (classes or 

labels) to each instance. Feature Extraction must be efficient and accurate, since 

issues in this phase could alter the representation of classification objects leading to 

inaccurate models. Furthermore, data collection and processing may be very time-

consuming depending on the approached problem. As a result of Feature Extraction, 

a Dataset ready to be fed to ML techniques and Learning Algorithms is yielded.  

In some cases, Data Preprocessing is needed to adapt the classification objects to 

suitable format to be processed by Learning Algorithms. This process can include 

encoding literal features to numerical formats, transforming or processing predictors 

to generate new attributes (Feature Engineering), data normalization and 

resampling techniques, amongst others.  

Feature Selection (FS) is a relevant step in ML, which enables more efficient and 

accurate predictive models. When Metadata collection is performed, it is very 

common to include features or attributes that could result irrelevant or redundant 

for the modeling task. Optimizing the inputs to learning algorithms normally results 

in much better models, since redundant and irrelevant attributes detriment the 

learning process inputting noise and leading to overfitting on certain classes [26]. 

Thereby, FS produces Subsets from the original dataset. Another important 

advantage of FS is that reducing the number of predictors speeds up training and 

classification processes, turning out faster and more interpretable models.  

Through Model Validation, the different Subsets selected in FS are assessed 

according to a validation strategy and to one or more performance metrics [27]. The 

validation approach defines how the dataset is used to train and evaluate the 

performance of classifiers. The simplest validation approach is randomly selecting 

two datasets, one used for training and the other to assess predictive model 

performances. However, we have employed more sophisticated validation methods 

so as to adapt our experiments to arising methodological considerations in ML [28] 

(such as: Class Imbalance or Concept Drift). 

Note that the workflow depicted in Figure 1 is not strict, the phases presented can 

be altered and some phases could be performed in different orders. Additionally, 

solving a problem using ML necessarily requires a two-fold knowledge on ML and 

the specific domain of the addressed problem. Through Section 4 “Thesis 
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Methodology”, we describe in detail the methods applied during this dissertation. 

Having a preliminary view of the general methodology in ML, we present the 

research motivation and objectives pursued in this thesis below.  

 

1.4. Research Motivation & Objectives 

The last advances in ML have propelled the application of these algorithms 

in order to solve complex problems. ML is being constantly developed via identifying 

emerging methodology concerns, proposing novel algorithms or spreading out its 

application domains. Focusing on classification problems, one of the most 

challenging research lines is how to improve model performances when classes are 

not equally distributed in datasets. This phenomenon is known as Class Imbalance, 

and it is also an intrinsic feature in NTC. The appearing of novel and complex 

learning algorithms, such as ensemble and cost-sensitive algorithms, has opened 

research opportunities in different problems.  

Regarding NTC, a crucial open issue is defining consistent and efficient classifiers 

to achieve real-time traffic identification, as the Internet imposes demanding 

requirements in terms of accuracy, but also of latency and classification speed. High-

speed networks normally support very high transmission rates, what requires 

optimal classification models. Also, enhancements in FS and Extraction algorithms 

are a hot research line in ML-based NTC, since providing optimal subsets conduct to 

more efficient traffic classifiers with a stronger robustness against Class Imbalance. 

Finally, never seen before technological advances in communication system envision 

a technology convergence that will have a significant impact on the observed traffic. 

That is the case of paradigms as the Internet of Things (IoT), that connects 

thousands of sensors through regular Internet networks. Thus, proposed network 

classifiers have to be tested in modern and demanding network environments and 

data. 

Accordingly, we define the following research objectives and questions to be solved 

in this dissertation: 

Regarding model creation for NTC, defining a consistent set of attributes providing 

the enough knowledge to obtain accurate and fast classification models is crucial. 

Considering the former, we formulate the following questions:  

Q1. What attributes are the most informative and relevant for early NTC? 

How can it efficiently perform Feature Selection on NTC dataset to achieve 

effective models?  

Focusing on learning algorithms, ensemble techniques have exhibited better 

performances compared to single estimators for many classification problems, 

however they were not exhaustively analyzed for ML based NTC. Accordingly, 

several insightful research lines arise:  

Q2. Can ML approaches accomplish similar classification performances to 

previous NTC approaches? Can ensemble algorithms efficiently perform 

early NTC according to the accuracy and latency requirements in high-

speed networks?  
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Finally, considering that traffic distributions are notably different between Internet 

applications, the following questions about Class Imbalance in NTC can be 

formulated:  

Q3. How does Class Imbalance affect Internet traffic classifier 

performances? How does Class Imbalance vary amongst different network 

environments? Is it possible to solve Class Imbalance in NTC using 

advanced ML techniques (such as: data-level resampling, advanced 

ensemble structures and cost-sensitive algorithms)? 

All the present research questions are addressed and answered through this 

dissertation. As major outcomes of the experiments performed, three scientific 

manuscripts have been published in top-tier journals in the field and extra 

contributions interesting for the research community have produced in form of 

software, analysis and materials (Collection of Attributes, NTC datasets, etc.). All 

the contributions resulting from this research are thoroughly presented and 

discussed in subsequent sections and the research articles produced. 

 

1.5. Research Methodology 

Regarding the research methodology, we briefly present in Figure 2 the main 

steps applied to identify Research Questions and contribute in solving them.  

 

Figure 2. Research Methodology 

Literature Review. Through this phase, we have reviewed the latest and most 

relevant literature in ML-based NTC in order to identify open research lines and 

gather methodological considerations. This process has required a two-folded 

knowledge acquisition, reviewing literature specific for both ML and NTC. As a 

result, the Research Questions to solve during through this dissertation are 

formulated.  

Software Development. During this phase, the necessary software was designed 

and developed with the aim of solving the Research Questions formulated. This 

software derived from coping with the different methodological steps in ML (see 

Section 1.3), from Problem Definition to classification Model Validation. 

Experimentation. This phase consists of experimenting with state-of-art 

algorithms and our own algorithm proposals. During the performed experiments, we 

have assumed different methodologies comprising from dataset creation to several 

model validation schemes. The resulting observations leaded to worthy asset 
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observations to solve the Research Questions. The whole process was iteratively 

performed in order to contribute to different problems in this research area.  

After presenting the general research workflow followed, we present the structure of 

this dissertation.  

 

1.6. Thesis Organization 

The present dissertation is structured as follows: Section 2 “Thesis 

Framework & Contributions” provides an overall view on the contributions achieved 

and relates them to the ML workflow; Section 3 “State of the Art” reviews the latest 

research work in ML-based NTC; Section 4 “Thesis Methodology” describes the 

different methodological aspects applied in this research, and the general 

conclusions and future research are presented in Section 5 & 6, respectively. Finally, 

the research manuscripts composing the publication compendium are annexed at the 

end of this dissertation. 
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2. Thesis Framework & Contributions  

The modality of this dissertation is the compendium of publications in JCR-

indexed journals in the field of Computer Science. Through this research, three 

manuscripts have been published in top-tier journals, and additional asset were 

produced in form of different contributions that could be interesting for the research 

community.  

After presenting the ML methodology and the research questions, the contributions 

of this dissertation are presented and related to the different ML steps in Figure 2. 

Accordingly, there exist two types of contributions (Figure 3): (1) Major 

Contributions that are highlighted with thicker squares, and (2) Minor Contributions 

represented by narrower squares. Major Contributions compose the main asset 

produced in this research, meanwhile Minor Contributions are worthy original 

materials shared with the research community.  

Since this original research addresses ML-based NTC from Problem Definition to 

Learning Algorithms, the derived contributions are closely related to the ML 

workflow and comprise different elements: Scientific Manuscripts, Generated 

Knowledge, Software and NTC datasets. Below, we describe in detail all Minor and 

Major Contributions and the connections between them.  

 

Figure 3. Minor and Major Contributions of this dissertation 

 

2.1. Minor contributions 

The Minor Contributions compose the generated materials that are 

interesting for the research community in ML-based NTC, but without constituting 

the most relevant output presented in the compendium of articles.  

When a ML classification problem is approached, the first crucial step is consistently 

defining the input predictors and the output response (Section 1.3). As result of an 

exhaustive literature revision, potential predictors from IP headers were identified 

and compiled in a Collection of Attributes. The provided Collection of Attributes was 
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used and extended in subsequent research stages. Finally, the classification 

granularity was also defined in this phase to conform the final classification objects. 

After defining the classification objects for our problem, a Feature Extractor was 

implemented to create early NTC Datasets from traffic data contained in PCAP 

network traces. As the studied network environments presented different privacy 

requirements, several versions of this software were developed. Due to the scarcity 

of available NTC datasets for scientific experimentation, our NTC Datasets are 

shared with other researchers via emailing the authors to facilitate model 

comparison and innovation. Finally, an extra version of the Feature Extractor was 

developed to generate time-series NTC datasets that were used in a third-party 

research [29]. 

In addition to the three scientific manuscripts that compose the publication 

compendium, a conference paper [30] was presented and published in the First 

International Conference on Advances in Signal Processing and Artificial 

Intelligence (ASPAI' 2019). Through this article titled “A Feature Selection 

Framework and a Predictors Study for Internet Traffic Classification”, we observe 

different kind of predictors for early NTC and provide a FS Framework. 

Furthermore, we discuss in this manuscript which are the best attributes for this 

classification task and relate their performances to network features. To this end, 

the preliminary NTC Datasets were extended to include more predictors, including 

raw attributes, statistics and Fast Fourier Transform (FFT) components. As result 

of the application of our FS method to the Extended NTC Datasets, a reduced Subset 

of Attributes for Efficient Early NTC is provided. Finally, an Analysis of Port 

Masking is carried out to assess this detrimental effect when port numbers are 

included as predictors in the classification model. 

The presented Minor Contributions constituted essential and worthwhile materials 

to carry out the experimentation that produced the Major Contributions presented 

below. The most of those materials are made available to the research community 

through emailing the authors or in the GitHub repository [31]. 

 

2.2. Major contributions  

 The Major Contributions yielded through this thesis have been materialized 

in three scientific manuscripts published in top-tier Computer Science journals.  

In the first paper titled “Intelligent IoT Traffic Classification Using Novel Search 

Strategy for Fast Based-Correlation Feature Selection in Industrial Environments” 

[32], the FS stage is approached via proposing a novel search scheme as modification 

of the well-known Fast Correlation Based Filter algorithm [33] (FCBF). The novel 

FS algorithm, called FCBF in Pieces (FCBFiP), was tested in different classification 

datasets from diverse research areas (including Anomaly Detection in Internet 

networks) and its applicability to emerging Internet Traffic Classification was 

discussed. The results show that the proposed search strategy significantly speeds 

up the selection process preserving similar performances to the previous versions of 

FCBF [33]. Our FS filter is afterwards employed in subsequent experimentation 

stages to generate optimal models for ML-based NTC. We make the implementation 

of FCBFiP available in [34]. 

https://www.researchgate.net/publication/331980147_A_Feature_Selection_Framework_and_a_Predictors_Study_for_Internet_Traffic_Classification?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/331980147_A_Feature_Selection_Framework_and_a_Predictors_Study_for_Internet_Traffic_Classification?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
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As second Major Contribution presented in the paper “Ensemble Network Traffic 

Classification: Algorithm Comparison and Novel Ensemble Scheme Proposal” [35], 

we provide an original comparative analysis of well-known ensemble algorithms for 

early NTC and propose a new ensemble scheme called Tailored Decision Tree Chain 

(T-DTC). During this research, more than nine learning algorithms are compared in 

terms of accuracy and latency for different network environments after applying 

FCBFiP, showing that T-DTC exhibits the best performances for early NTC. The 

implementation of the proposed ensemble scheme is available in [36]. Furthermore, 

the Collection of Attributes is presented and described in this manuscript.  

The third Major Contribution comprises an exhaustive study on Class Imbalance 

and solutions for our NTC Datasets, and it is presented in the article “Exploratory 

Study on Class Imbalance and Solutions for Network Traffic Classification” [37]. 

Through this Exploratory Study on Imbalanced NTC and Solutions, we discuss and 

characterize the Class Imbalance issue relating it to network conditions and 

performances for ML-based traffic classifiers. Several approaches to deal with 

imbalanced class distributions are compared for different NTC datasets, including: 

21 data-level techniques, advanced ensemble algorithms and cost-sensitive 

solutions. Furthermore, this is the first time that some data-level algorithms are 

mixed with Boosting training schemes to compensate Class Imbalance in 

multiclassification problems to the best of our knowledge. Consequently, the 

proposed combination of Tomek Link and Boosting yielded the best results for 

imbalanced early NTC. Finally, this manuscript describes methodological 

considerations that must be considered in Class Imbalance contexts, and that have 

been ignored by the ML-based NTC community up to now. As additional output of 

this experimental stage, we provide strategies to extend binary Class Imbalance 

solutions to multiclassification and the learning algorithm implementations in [38].  

As summary of all contributions achieved in this dissertation, the following section 

relates all of them to each other and to the research questions previously formulated.  

 

2.3. Paper Rationale and Research Questions 

  This section is focused on the relation between the research articles produced 

in this thesis and the Research Questions formulated in Section 1.4 (Figure 4).  

The first paper written is [32] and it is directly related to Q1. This paper was 

published in IEEE Internet of Things Journal addressing the problem of FS for 

multiclassification problems. And the application of the proposed FS algorithm to 

the Internet of Things traffic classification is discussed. 

Later, [35] was published in the Journal Elsevier Computer Networks. This 

manuscript answers Q1 and Q2 through observing and comparing several ensemble 

algorithms assessing both model performances and latency. Additionally, a novel 

ensemble scheme is proposed to preserve a proper ratio between accuracy and 

classification time.  

 

https://www.researchgate.net/publication/319009874_Ensemble_Network_Traffic_Classification_Algorithm_Comparison_and_Novel_Ensemble_Scheme_Proposal?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/319009874_Ensemble_Network_Traffic_Classification_Algorithm_Comparison_and_Novel_Ensemble_Scheme_Proposal?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/330863909_Exploratory_Study_on_Class_Imbalance_and_Solutions_for_Network_Traffic_Classification?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/330863909_Exploratory_Study_on_Class_Imbalance_and_Solutions_for_Network_Traffic_Classification?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
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Figure 4. Scientific Manuscripts and their Connections to Research Questions 

In the instance of [37], it was accepted in the Special Issue “Learning in the presence 

of class imbalance and concept drift” [39] published in the Journal Elsevier 

Neurocomputing. This paper copes with Q2 and Q3 assessing numerous solutions to 

Class Imbalance in NTC, including advanced ensemble algorithms. 

Finally, [30] addresses the questions Q1 and Q3 providing a Feature Selection 

Framework and discussing the capacities of different IP header parameters for early 

imbalanced NTC. This manuscript was accepted as conference article in ASPAI’19.  

All the manuscripts presented in this section are annexed in subsequent sections of 

this dissertation. Overall, more than 30 predictive models based on the CART 

Decision Tree algorithm were generated for NTC for two quite different networks 

scenarios in numerous experiments. The ML techniques considered include 

preprocessing steps (such as: 21 resampling techniques and FFT attribute 

generation), 15 ensemble algorithms, one cost-sensitive technique, three model 

validation approaches and six performance metrics according to several 

methodological factors from Computer Networks and ML perspective. In the 

following section, we go in depth into the latest and most advanced literature about 

ML-based NTC. 
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3. State of the Art 

In Section 1.2, we reviewed the most pioneering works in ML-based NTC from 

which the essentials of this research field derive. These essentials underpin the most 

advanced research conducted during the recent years, and that is revisited through 

this section. As each research manuscript composing the compendium summarizes 

previous research works, we focus here on the literature that we consider the most 

relevant. 

In [19], a comparison of different NTC approaches was conducted. The methods 

under comparison included Port-based classification, a DPI tool and two ML 

algorithms: C4.5 Decision Tree and Naïve Bayes. In this case, UDP and TCP flow 

identification was separately studied focusing on classifiers stability for traffic 

collected in different dates and locations. The results reported show that C4.5 

Decision Tree was the best-performing algorithm preserving an excellent ratio 

between classification performances and latency.  

A. Este et al. approached TCP flow identification using Support Vector Machines 

(SVMs) in [40]. The presented algorithm exhibited accuracies of 95% for fine-grained 

classification of specific Internet applications. As extension of their work, A. Este et 

al. [41] studied packet-level attributes for TCP application classification based on 

ML. The authors experimented with two supervised (Naïve Bayes and Multilayer 

Perceptron) and two semi-supervised (K-Nearest Neighbors and Gaussian Mixture 

Model) learning algorithms probing the predictive power of packet-size related 

predictors. Other SVM-based classification scheme was presented in [42] for real-

time traffic identification. In this instance, R. Yuan et al. studied different kernel 

functions using a collection of 19 attributes. Radial Basis Function kernel exhibited 

the best performances; however, the author did not assume the early-NTC 

predictors.  

In [43], several experiments were conducted with the objective of comparing different 

ML approaches for NTC. The algorithms compared were Bayesian Neural Networks, 

Decision Trees and Multilayer Perceptron using NetFlow-based features. According 

to the reported results, Decision Tree was anew found as the most promising 

approach. Other learning algorithms comparison was performed by Collado et al. [3] 

including six learning algorithms and various different network environments. The 

authors demonstrated that network conditions may considerably affect ML-based 

performances. Additionally, the authors proposed four combination strategies to 

ensemble different predictive models and boost classification performances. 

The effect of packet sampling on traffic classifiers was analyzed in [44] when 

NetFlow predictors are assumed. The authors employed C4.5 Decision Trees as 

learning model and extracted ten attributes under different sampling rates proving 

that packet sampling is detrimental for ML-based NTC. Finally, a new approach to 

compensate the performance losses was presented exhibiting the best robustness 

against packet sampling.   

T.T.T. Nguyen et al. [45] proposed a technique based on C4.5 Decision Tree and 

Naïve Bayes for continuous interactive flow classification (namely, VoIP and online 
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game traffic). A sliding window of 25 packets was used to compute statistical 

attributes at different points of flow connections enabling tracking the interactive 

connections. Additionally, two preprocessing techniques were proposed for 

augmenting model performances.  

While on FS for imbalanced NTC datasets, a wrapper FS algorithm, called WSU-

AUC, was presented in [20]. The authors used Weighted Symmetrical Uncertainty 

(WSU) information metric to preselect the predictors and AUC-ROC metric along 

with a base learning algorithm to evaluate subset performances. This research was 

focused on TCP connections, thus discarding UDP protocols.  

One of the first works assessing standard solutions to Class Imbalance in ML-based 

NTC is [46]. Two data-level and one cost-sensitive technique were compared using 

Decision Tree as base estimator. Sixteen datasets collected from three different 

network locations were analyzed considering only TCP connections. The results show 

different advantages depending on the technique employed, for example Random 

UnderSampling was found the most beneficial in terms of training time savings; 

meanwhile, MetaCOST obtained the best results when training data size is large 

enough. 

In [47], the authors analyzed FS filters using data traffic collected from the Internet 

of China. The authors trained separate classification models for TCP and UDP and 

proposed a FS algorithm using information gain and information gain ratio.  

J. Zang et al. presented the concept of Bag-of-Flows (BoF) in [48], which exploits 

correlated flow predictions to boost traffic classifiers. The authors trained Naïve 

Bayes classifiers using full unidirectional flows and posterior probabilities were 

aggregated to identify connection flows. The new approach was compared to state-

of-the-art ML algorithms exhibiting promising results. Later, this research was 

extended in [49], in which BoF was used to improve 1-Nearest Neighbor 

performances. 

A new classification approach based on server-client interactions was presented in 

[50]. The main difference respecting others is that the predictors extracted describe 

information exchange patterns between both sides of connections. Accordingly, six 

ML algorithm were analyzed using these attributes, proving that Decision Tree was 

the best-performing algorithm.  

In [51], the FS problem for TCP traffic classification was addressed via proposing an 

algorithm called Local Optimization Approach (LOA). LOA was conceived as result 

of experimenting with six FS techniques and assessing their stability and goodness 

using Naïve Bayes as base estimator. Then, A. Fahad et al. presented the Global 

Optimization Approach (GOA) in their posterior research [52], which combines 

several FS filters to preselect predictors and wrapper techniques to get the final 

subset.  

With the aim of identifying unknown flows, Zhang et al. [53] proposed a new learning 

approach that exploits the concepts of Bag of Words and Latent Semantic Analysis. 

The applications are clustered using k-Nearest Neighbor algorithm, and resulting 

clusters are merged using statistical and payload-based information. This approach 

exhibited very prominent performances using protected, sensitive user information, 

though.  
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In [54], J. Camacho et al. presented a traffic classifier that uses flow pairing for 

stable flow and P2P traffic classification. Distant-based algorithms were studied 

focusing on statistical validation and generalization ability for dynamic traffic. 

Finally, the authors presented a similarity function, which classifies connections 

employing IP addresses, port numbers and timestamps.  

In [55], D. Li et al. proposed a NTC approach able to rank predictors and provide 

classification models exploiting the concept of Multi-Task Learning (MTL). The 

authors compared their proposal to other MTL techniques and ML algorithms for 

binary classification.  

A self-learning approach classification, called SeLeCT, was presented in [56] to 

model emerging Internet applications using semi-supervised learning. In this case, 

K-Means algorithm was upgraded with the ability of interactively creating new 

clusters to represent new traffic classes. The algorithm was tested for TCP long-live 

connections yielding superior performances than basic K-Means algorithm.  

In [57], L. Peng et al. studied the optimal number of packets to perform early TCP 

flow classification. The datasets were constructed only using packet lengths 

extracted from IP headers after TCP handshake phase, and several predictive 

models based on different supervised models were examined. After statistically 

validate their results, the authors concluded that 5-7 packets are enough for effective 

TCP flow classification.  

Other FS technique for imbalanced NTC was presented in [58]. The algorithm, called 

Class-Oriented FS, reduces training datasets in two phases. Firstly, the algorithm 

searches the optimal features for each individual class, and the final subset is 

selected according to WSU information metric. Additionally, an ensemble scheme 

was proposed consisting in different models for each class and a weighted 

classification strategy.  

In [59], Valentín Carela et al. presented a classification system composed by three 

different classification mechanisms, including a Decision Tree model trained with 

NetFlow predictors. In order to assure the classifier stability on time, an Automatic 

Retraining System is proposed showing that the proposed system is able to preserve 

classification accuracy with time. 

The identification of zero-day applications was also addressed in [60]. The authors 

proposed a semi-supervised technique based on K-Means, Random Forest and BoFs 

to detect new traffic applications. This system has numerous tuning parameters; 

thus, the authors also presented a procedure for selecting the input parameters. 

D. M. Divakaran et al. [61] proposed an intelligent classifier called Self Learning 

Intelligent Classifier (SLIC), able to retrain itself via exploiting the concept of BoFs. 

SLIC rebuilds its classification model using an internal dataset that is grown with 

samples that are consistently identified. The proposed approach was compared to 

other techniques producing the best outcomes. 

A low complexity traffic classifier based on fuzzy nets was proposed in [62]. The 

classification model uses a 3-layer neuro-fuzzy network and was compared to other 

state-of-the-art ML algorithms. The reported results prove that the proposed 

classifier can accomplish similar performances to other algorithms while reducing 
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considerably the computational complexity. Finally, the authors presented an 

implementation for hardware platforms.  

In [63], a new classification approach based on Markov Models using sequence of 

messages sizes was proposed for NTC. Naïve Bayes classifiers were used to model 

each state in application Markov chains and a GMM estimates posterior 

probabilities to decide the final class. The authors employed Expectation 

Maximization Clustering to reduce the number of application classes, and the 

proposal was tested for TCP and UDP connections.  

The temporal behaviors of Internet connections were examined in [64], including a 

clustering analysis. Unlike previous reviewed manuscripts, the aim of this research 

is analyzing temporal signatures in data traffic. The presented analysis was 

performed employing flow-level statistics as inputs, fuzzy Gustafson-Kessel method 

to detect flow patterns and K-Means to classify the different traffic patterns.  

A self-adaptive online classifier was presented in [65], the proposed algorithm uses 

K-Means as estimator and a cluster refinement technique to remove meaningfulness 

application clusters. The model was retrained using its own predictions, which are 

selected for retraining according to an inter-cluster conflicts criterion. The algorithm 

was also tested for network intrusion detection datasets. 

Feature Extraction and Selection for optimal and robust traffic classification was 

approached in [66]. The authors presented a method to extract predictors based on 

Wavelet Multifractal transformation, and an FS algorithm, called PCABFS, was also 

proposed. PCABFS essentially uses Principal Component Analysis (PCA) to filter 

usefulness features according to variance ratios for the resulting components. The 

authors compared their proposal to other approaches reporting quite positive 

outcomes for TCP and UDP traffic.   

In order to reduce the number of packets processed for classification, a new approach 

based on expanding vectors was developed in [67]. Traffic Classifier based on 

Expanding Vectors (TCEV) examines relationships amongst connections regarding 

the four tuples <IPsrc, PORTsrc, IPdst, PORTdst> to detect three levels of relation. 

Then, expanding vectors are computed for a time windows employing the relation 

between connections, and several well-known ML algorithms were trained using 

these expanding vectors.  

A novel classification algorithm, called Imbalanced Data Gravitation Based 

Classifier (IDGB), was studied in [68] for traffic classification under Class Imbalance 

conditions. This technique uses weights to deal with imbalanced class distributions 

strengthening minority class detection. IDGB model was compared to classic ML 

algorithms and solutions to Class Imbalance for binary traffic classification (such as 

cost-sensitive and data-level techniques). 

The identification of Internet video applications was addressed in [69]. Y. Dong et al. 

presented a two-phase classification approach, which firstly distinguishes 

symmetrical and unsymmetrical connections and then identifies video applications 

based on K-Nearest Neighbors models. The authors shown that their proposal 

outperforms other similar approaches for video application detection. 
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An ensemble algorithm using Probabilistic Neural Networks (PNN) was presented 

in [70] pursuing efficiency and flexibility for traffic classifiers. One PNN is trained 

to identify one type of traffic class, and heuristics rules are applied for final 

classification according to posterior probability estimates. The authors compared 

their proposal to other ML approaches showing that multiclassification PNNs are 

more efficient and robust against dataset size variations than the rest.  

The concept of Extreme-Learning (EL) is exploited in the classification approach 

presented in [71]. The Kernel Extreme Learning Machine (KELM) with a wavelet 

transform kernel was employed to train the traffic classification model, and a 

Genetic Algorithm (GA) was also proposed to automatically tune the kernel 

parameters. The proposed approach produced positive results when it was trained 

with a balanced version of the dataset used in [72]. 

Several Deep Learning approaches based on Recurrent and Convolutional Neural 

Networks were tested for time-series NTC in [29]. The datasets used were extracted 

from some data traffic employed in this dissertation using 20 packets at the 

beginning of each connection. The authors conducted several experiments assessing 

different neural network settings, dataset sizes and lengths for the time-series 

dataset.   

In [73], Decision Trees and a fuzzy multicriteria technique were combined for NTC 

and Network Anomaly Detection in order to complement the strengths and weakness 

of both techniques. The new approach, named PROAFTN, extracts fuzzy decision 

patterns from a Decision Tree model to create the final classification model.    

Other FS wrapper method to select optimal subsets for imbalanced NTC was 

proposed in [74]. The presented technique preselects the most informative predictors 

using Weighted Mutual Information (WMI) metric, and then the final subset is built 

training a learning model and evaluating the AUC-ROC performance metric. The 

presented FS algorithm was validated using 11 well-known learning algorithms and, 

additionally, a Robust Selection method was proposed to obtain robust and stable 

subsets. 

In [75], an Efficient Feature Optimization Approach (EFOA) is proposed consisting 

in Feature Generation and Selection methods. The Feature Generation is based on 

Deep Learning using Deep Belief Networks to generate new predictors from a 

preselected subset. The synthetized features are afterwards reduced using WSU. 

EFOA approach was compared to previous FS approaches yielding the best scores 

using several learning algorithms as base estimator on two well-known data traffic. 

A semi-supervised approach with the capacity of self-training was presented in [76]. 

The proposed classification approach exploits the concept of multi-view ML via 

creating different sample representations using three component projections 

techniques: Isomap, Random Projection and Kernel-based PCA. The generated 

components are used to train different clustering models based on K-Means. The 

decided clusters are mapped to actual Internet applications using advanced 

agreement functions. A mechanism using SVMs was employed to refine decision 

boundaries and interactively retrain the classification models. The presented 

algorithm was compared to other semi-supervised approaches for Network Intrusion 

Detection and NTC datasets.  
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From literature review, several research gaps were found according to the research 

methodology presented in Section 1.5.  

Although it is well-known that ensemble algorithms can significantly boost model 

performances, we noted that there is not a uniform comparison amongst these 

techniques providing clear observations on their capacities. As aforementioned, 

high-speed networks are demanding scenarios support high transmission rates, 

thereby assessing advance learning algorithms considering both accuracy and 

latency requirements may be very worthy.  

The Class Imbalance problem is a hot research topic in general ML and in ML-based 

NTC. Numerous techniques have been proposed to compensate the detrimental 

effect of imbalanced traffic class distributions. But, although several authors coped 

with imbalanced NTC, a consistent analysis of Class Imbalance in NTC datasets and 

existing solutions is necessary. Also, assuming the most advanced research methods 

is mandatory to precisely assess the considered techniques. 

Additionally, due to the relevance of Feature Extraction and Selection for ML 

problems, we also consider an important asset contributing to these two processes. 

That is the reason why we approached the research experiments addressing all 

phases in the ML workflow, from Problem Definition until providing the Predictive 

Models (see Section 1.3). Regarding the former, we designed our own collection of 

attributes and proposed an FS algorithm to reduce it, producing quite positive 

results as the results presented in our manuscripts reveal. 

Finally, we detected that performed research tend to be skewed due to some 

experimental concerns. In this regard, many researchers focused their research only 

on certain applications or transport layer, typically TCP, altering dataset 

compositions. In our research, we have considered the importance of detecting the 

most diverse range of applications, and not to notably modify the composition of our 

datasets. In subsequent sections, we present all the methodological aspects assumed 

in our experiments.  
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4. Thesis Methodology 

Through this section, we present the most important methodological aspects 

assumed during the different experimental stages of this dissertation. As the 

scientific manuscripts that compose this thesis present descriptive sections dealing 

with the methodologies assumed, this section focuses on the most essential and 

general aspects. 

As aforementioned, several essential steps must be followed when an ML 

classification problem is addressed. The contributions of this thesis comprise diverse 

artifacts, including software and NTC datasets that are also presented here. 

However, the most relevant contributions are presented and discussed in the three 

research articles conforming the compendium of publications. Consequently, the 

methods and materials assumed in our experiments have been refined according to 

the feedbacks provided by expert reviewers during the publication processes. Here, 

we describe common methodological steps and present the derived contributions.  

 

4.1 Network Environments  

After defining the response and predictors for the traffic classification model, 

the metadata extracted from the pointed network environments must be processed 

to build the training datasets. In our case, the metadata are network traces that 

contain the activity of a network device or a host at packet level; thus, the collected 

traffic data are PCAP files containing IP packets.  

It is well-known that Internet traffic can notably differ amongst network 

environments and validating ML classifiers using data extracted from different 

dates and locations is highly recommended. Therefore, we have considered two quite 

network scenarios with dissimilar network conditions for experimentation.  

Host environment. In this instance, the traffic traces were shared by the CBA 

research group of UPC BarcelonaTech. The network activity was manually 

simulated and collected in host computers located in research labs at University of 

Catalunya. Three network traces were studied corresponding with different 

computers and collected during periods of time between February and April of 2008. 

These traffic data were previously employed in the NTC research [44], [77], [78]. 

These datasets are denoted as “HOST” in the rest of this dissertation and our 

research articles.  

Internet Service Provider (ISP) environment. An ISP has cooperated with this 

research sharing real network traffic collected at their backbone network between 

January and March of 2017. This ISP provides Internet connection to public and 

educational institutions reaching millions of users around Spain. Additionally, the 

node in which the traffic was collected supports transmission rates close to 7 GB/s. 

So that this environment constitutes a challenging case of study due to the 

characteristics of the network. Due to privacy and security concerns, the name of the 

ISP is omitted through this dissertation, and these datasets are denoted as ISP in 

our papers.  
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These network environments constitute two quite diverse cases of study in NTC 

based on ML, enabling the validation of traffic classifiers under different traffic 

profiles and network conditions. Note that the ISP network traces are very 

susceptible of suffering packet losses and multipath effect; meanwhile, these 

conditions are much weaker for HOST traffic. Additionally, the diversity in the 

Internet applications also differs between environments, since the applications 

detected in HOST datasets were manually selected in contrast to ISP network traffic 

that is composed by actual traffic. Further considerations about traffic compositions 

of the considered network traces are described in detail in our papers.  

 

4.2 Feature Extraction  

In order to build our NTC datasets, we have compiled a list of potential 

predictors for early NTC, and a Feature Extractor software was developed to process 

the network traces. The Feature Extractor takes as input standard PCAP files and 

provides a dataset in which each instance is associated to a connection flow. 

Although the number of attributes was extended in [32], the preliminary set of 

predictors comprises a collection of 77 statistical attributes along with the 

application ground truth and it was presented in [35]. According to [21], informative 

and relevant predictors can be computed processing a few numbers of packets at the 

beginning of each connection. Consequently, we have computed the collection of 

statistical attributes using only five packets at the beginning of connections flows to 

fulfill the early NTC requirement. Although some research focuses only on TCP or 

UDP connections, we considered both in this dissertation. Figure 5 describes the 

different modules and processes that compose our Feature Extractor, in which each 

color corresponds to different Internet connections. 

 

Figure 5. Processes in the Feature Extractor 

As Figure 5 shows, the input to the Feature Extractor is packet-level traffic that can 

suffer packet duplications, out-of-order packets and packet losses. In the first step, 

the Traffic Data is transformed to Flow Data, consisting in PCAP files that contain 
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all packets belonging to a same connection. As aforementioned, we consider 

bidirectional Internet flows and they are defined for a specific lifetime. Thus, when 

the lifetime expires without observing new packets for a given connection, the 

incoming packets with the same source-destination information are considered 

belonging to a new flow. The flow lifetime was set to 60 seconds for our experiments.  

As DPI tools are highly recommended for ground-truth creation due to their 

precision, Flow Data instances are labelled using nDPI [79]. We selected nDPI 

because it has probed as one of the most accurate open-source DPI engines [78]. As 

some of the connection flows were not correctly identified or were identified as 

“unknown”, we performed a second labeling stage based on port numbers.  

In the case of ISP datasets, the traffic data was processed in an external server 

deployed with the aim of preserving users’ privacy. Thus, the preliminary software 

features were extended to include trace anonymization and remote processing. While 

on HOST datasets, we processed the network traces in a regular personal computer. 

Finally, the software was upgraded to create the time-series NTC datasets used in 

[29] and to expand the initial collection of attributes [30]. The datasets employed in 

this research have been made available for researchers, which is a worthy resource 

considering the scarcity of NTC datasets. 

 

4.3 Extra Datasets Used in this Research  

Although this research copes with NTC, the FS technique FCBFiP was tested 

for extra datasets. Table 1 describes the additional datasets employed in [32]. 

Table 1. Extra Datasets used in this dissertation 

  Description 

Orange Churn 

Prediction [80] 

Orange dataset is a collection of information about costumer churn in a telecom 

company.  

KDD99 

[81] 

KDD99 is a well-known dataset in network anomaly detection. The dataset contains 

instances representing normal and attack connections. 

LSVT Voice 

[82] 

LSVT Voice is a dataset employed in Parkinson diagnosis via voice signals. The 

dataset records voice signal indicator and the evolution of the patient to predict. 

CNAE-9 

[83] 

CNAE-9 dataset contains text information about the activity of Brazilian companies 

with the objective of categorizing their activity.  

  

4.4 Feature Selection Techniques 

During this research, numerous FS methods were considered for ML-based 

NTC. Although one of our contributions is a FS algorithm (FCFBiP), we have also 

employed additional methods including wrapper and filter algorithms. FS filters 

assume information-based metrics to evaluate the importance of each attribute, 

meanwhile wrapper methods score predictors employing classification performance 

metrics and learning algorithms. The description of FCBFiP is detailed in [32], and 

it was applied in the other articles conforming the compendium. Whilst the rest of 

algorithms were integrated in the FS Framework presented in [30]. Table 2 contains 

all FS techniques employed in this dissertation.  
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Table 2. Feature Selection Algorithms employed during this research 
 Description 

FCBF 

[84] 

FCBF uses the correlation metric Symmetrical Uncertainty to assess the relevance 

and redundancy in datasets. 

FCBF# 

[33] 

FCBF# modifies the search strategy of FCBF to achieve a more accurate attribute 

selection. 

FCBFiP 

[32] 

FCBFiP is a modification of FCBF whose objective is speeding up the selection 

process preserving accuracy performances of FCBF. 

MRMR 

[85] 

MRMR selects features according to maximum relevancy and minimum redundancy 

criterion. 

CIFE 

[86] 

CIFE maximizes the joint class-relevant information by reducing the class- 

redundancies. 

CNIM 

[87] 

CNIM assumes Conditional mutual information metric to select the features that 

maximize the class mutual information. 

ICAP 

[88] 

ICAP evaluates interaction information between attributes and labels for fast 

context-dependent attribute selection 

MIFS 

[89] 

MIFS performs a greedy selection of predictors by assessing the mutual information 

between classes and other features. 

DISR 

[90] 

A new information metric, Double Information Symmetrical Relevance, is used to 

evaluate attributes for classification. 

JMI 

[91] 
JMI uses Joint Mutual Information in order to reduce the data space.  

MIN 

[92] 

MIN individually evaluates the importance of attributes using Mutual Information 

Maximization approach. 

Wrappers 

[32] 

We employed several performance metrics and learning algorithms to assess them 

when they are input as unique predictor 

 

 

4.5 Learning Algorithms 

The objective of this section is briefly introducing the learning algorithms 

analyzed in all experiments conforming this thesis. Amongst all these techniques, 

there are basic learning algorithms, ensemble techniques, data-level methods and 

advanced algorithms to deal with Class Imbalance.  

Base classifier. The Decision Tree algorithm has shown as one of the most suitable 

solutions for early NTC due to its excellent ratio between accuracy and latency [6], 

[18], [23]. Although other learning algorithms (such as: SVMs or Logistic Regression) 

were eventually employed in this research; we chose the CART Decision Tree as base 

learning algorithm in the most of our experiments. Decision Tree model classification 

problems via splitting the data space and evaluating a specific information-based 

metric in order to create tree-shaped hierarchical rules describing data distributions. 

The version of the algorithm used in our experiments employed GINI index as 

objective function, whose formula for 𝑐 classes is Equation 1 and where 𝑝𝑖 denotes 

classes probabilities. Note that GINI index tends to zero when a data region is 

populated by only one class, meanwhile it will be one when class diversity of the 

samples is higher.  

 𝐺𝐼 = 1 − ∑ (𝑝𝑖)2𝑐
𝑖=1  (1) 

 

Ensemble Algorithms. Ensemble Algorithms are learning techniques composed by 

various base classifiers that interact to create complex models according to advanced 

training and classification strategies. These algorithms have exhibited excellent 

accuracy improvements compared to base estimators in numerous classification 
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problems. However, using ensembles leads to slower training and classification 

times, which could be detrimental for early classification in high-speed Internet 

networks. In [35], we analyze well-known ensemble algorithms focusing on 

classification performances and latency and proposed a novel ensemble scheme (T-

DTC) for early NTC. Table 3 summarizes the algorithms employed for our 

experiments. 

Table 3. Ensemble Algorithms employed during this research 
 Description 

OneVsRest 

[93] 

One classifier is trained per each class and the predictions are performed according to 

the maximum class posterior probability. 

OneVsOne 

[93]  

One classifier is trained for each pair of classes and the final class is assigned 

according to a majority voting strategy. 

Error-Correcting 

Output-code [94] 

Binary codes are associated to each class and one classifier is trained for each bit; 

finally, new samples are projected to the binary space and the closest label is assigned. 

Adaptive Boosting 

[95]  

A set of classifiers are sequentially trained associating misclassification costs for 

training samples. Then, new samples are classified according to weighted majority. 

voting. 
Bagging Algorithm 

[95] 

A set of classifiers are trained using different training sets randomly sampled from 

the original dataset and labels are assigned by majority voting. 

Random Forest 

[96] 

A set of trees are trained using different sets with different attributes and instances 

sampled from the original dataset. Finally, classes are assigned by majority voting. 

Extremely 

Randomized Trees [97] 

It is a version of Random Forest in which the splits generated trees during training 

are completely random, instead of selecting the most discriminative thresholds. 

Tailored Decision Tree 

Chain [35] 

Base classifiers are ordered and trained to distinguish only one class, such that each 

classifier acts as sample filter for its successor.  

 

Class Imbalance techniques. Class Imbalance in ML is a hot issue consisting in 

model performance degradation due to imbalanced class distributions in training 

datasets. The state-of-the-art learning algorithms assume that classes are equally 

represented in datasets, leading to bias when this assumption is not fulfilled. 

Performance deteriorations normally affect more severely the classes that have a low 

representation in datasets, meanwhile majority classes are well-modeled. Due to the 

nature of the Internet, service and application classes are highly imbalanced in NTC 

datasets. This problem is addressed in the manuscript [37], in which a wide number 

of solutions to Class Imbalance were analyzed. In the presented research, we studied 

data-level algorithms, one cost-sensitive technique and advanced ensemble 

algorithms combining boosting and resampling techniques. To the best of our 

knowledge, some of the ensemble structures analyzed in this manuscript are applied 

to a real-world imbalanced multiclassification problem for the first time. 

Consequently, we had to develop strategies to adapt the algorithms preliminary 

designed for binary problems to working with more classes. Table 4 contains the 

algorithms to cope with Class Imbalance employed in our experiments, a more 

detailed description is presented in [37]. 
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Table 4. Algorithm to deal with Class Imbalance 

 
Data-Level  

Oversampling 

Random OverSampling (ROS), Synthetic Minority Oversampling TEchnique 

(SMOTE), ADAptive SYNthetic algorithm (ADASYNC)   

Data-Level  

Undersampling 

Random UnderSampling (RUS), Near Miss (NM), Condensed Nearest Neighbor 

(CNN), Tomek Link (TL), One Sided Selection (OSS), Edited Nearest Neighbor 

(ENN), Neighborhood Cleaning Rule (NCR), Instance Hardness Threshold (IHT) 

 

Data-Level  

Hybrid Sampling 
SMOTE-TL, SMOTE-ENN 

Advanced Ensemble 

Algorithms 

Easy Ensemble (EE), Balance Cascade (BC), ROS+Boosting, SMOTE+Boosting, 

RUS+Boosting. TL+Boosting 

Cost-Sensitive 

Approach 
METAcost 

 

4.6 Model Validation & Performance Metrics 

This thesis is composed by various research manuscripts that have been 

published in different journals and one international conference. During the 

publication processes, expert reviewers’ feedbacks were gathered and considered in 

fulfilling the methodological requirements. As a result, different model validation 

approaches were assumed in the different experiments that compose this research. 

In this regard, Model Validation in ML is an essential step consisting in estimating 

classifier performances for future samples in the problem. The simplest validation 

approach consists of splitting the original dataset in two subsets, one for training 

and other for validation. However, different methodological considerations had to be 

considered to adapt the experiments to Class Imbalance conditions [28], [98]. Table 

5 presents the validation approaches used in this research. As part of Model 

Validation, we also applied non-parametric statistical validation methods to assess 

the validity of our observations when different learning algorithms were compared 

for ML-based NTC. The statistical validation methods applied are the Friedman’s 

Test and Holm’s Post-hoc correction method [99], [100].   

Table 5. Model Validation Approaches 

 Description 

K-Fold Cross 

Validation 

The original dataset is randomly divided in 𝑘 folds without considering any data 

information, and each fold is used for testing while rest for training.  

K-Fold Stratified 

Cross Validation  

The original dataset is divided in 𝑘 folds preserving class distributions, and each 

fold is used for validation in each iteration while rest for training. 

Distributed Optimally-

Based Stratified CV 

The 𝑘 folds are created preserving class and data distributions to reduce 

covariance between folds.  

Time-separated 

validation  

A dataset collected at certain date is used for training, meanwhile other data 

traffic collected in the same network point but at different date for validation. 

 

During the research presented here, classification performances were evaluated 

according to different metrics. Although other metrics (such as F1 score) were 

eventually employed in some experimental stage, below we introduce the most 

relevant metrics assumed in this dissertation.  

Overall Accuracy (OA). OA metric assesses the classification model performances 

in terms of samples correctly labeled. Namely, OA is the percentage of samples 
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correctly classified as Equation 2 expresses, being 𝑇𝑃𝑖 the true positives for class 𝑖 

and #𝑆𝑎𝑚𝑝𝑙𝑒𝑠 the number of samples in the dataset. 

 𝑂𝐴 =
∑ 𝑇𝑃𝑖

#𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (2) 

 

Byte Accuracy (BA). From a Network Management perspective, it is interesting to 

quantify the amount of information that traffic classifiers detect precisely. Thus, we 

assumed BA metric in our experiments, which is the percentage of bytes correctly 

classified as Equation 3 shows.  

 𝐵𝐴 =
𝐵𝑦𝑡𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑
 (3) 

 

Geometric Mean (GM). In imbalanced classification, OA may not be a suitable 

performance metric to evaluate model performances, since high accuracies in 

majority classes can bind poor performances on minority ones. Therefore, we 

employed GM on the accuracies computed for each individual class. Equation 4 

presents the formula for GM for 𝑛 classes, in which 𝐴𝐶𝐶𝑖 represents the accuracy on 

each class. In addition to the metrics presented, individual accuracies (𝐴𝐶𝐶𝑖) were 

also reported in some of our manuscripts.  

 𝐺𝑀 = √∏ 𝐴𝐶𝐶𝑖
𝑛

 (4) 

 

AUC-ROC. The Receiver Operating Curve (ROC) was conceived with the aim of 

precisely validating classifiers over Class Imbalance conditions. ROC is a graphical 

representation of binary classifier specificity when the decision threshold varies. In 

order to have a numerical indicator of this characteristic, the Area Under Curve 

(AUC) is assumed as metric to evaluate the quality of ROCs. As this metric is defined 

for binary problems, we aggregated each class AUC using the mean, but also 

individual AUC-ROCs were reported in some of our experiments. Figure 6 depicts 

several examples for different classification performances, where the black curve 

represents the optimal behavior and the orange the ROC produced by a random 

classifier.  

 

Figure 6. AUC-ROCs for different model performances 
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4.7 Employed Tools 

All the software implementations developed in this dissertation were coded 

in Python2.7 programmed language. In order to fulfil the different necessities during 

the research, several libraries were employed depending on their purposes. Table 6 

presents the different libraries used.  

Table 6. Software Libraries & Tools employed in this research 

 Purpose Used for 

Numpy  

[101]  
Scientific Programming 

Scientific Data processing, Feature Extraction and 

Algorithm Development 

Pandas  

[102]  
Statistical Data Analysis Dataset Processing and Manipulation  

Scapy  

[103]  

Network Traces 

Processing 

PCAP Network Traces Processing in Feature 

Extraction 

Scikit-learn  

[104] 

Machine Learning 

Library 
Learning Algorithms and Data Preprocessing 

Imbalanced-learn  

[105] 
Imbalanced ML Library Resampling and Advanced Ensemble Algorithms 

Scikit-feature  

[106]  
FS Library Integrate FS filters in our FS Framework 

 

Table 7. Summary of the methodologies applied in our research articles 
 

[32] Intelligent IoT Traffic Classification Using Novel Search Strategy for Fast Based-Correlation 

Feature Selection in Industrial Environments  

 Datasets Churn Prediction, KDD99, CNAE-9 and LSVT voice 

 Model Validation K-fold Cross Validation (𝑘 =  10 & 𝑘 =  5) 

 Performance Metrics AUC-ROCs and F1 Score 

 Statistical Validation - 

 Feature Selection FCBF, #FCBF and FCBFiP 

 Learning Algorithms Support Vector Machines, Logistic Regression, CART Decision Tree 
      

[35] Ensemble Network Traffic Classification: Algorithm Comparison and Novel Ensemble Scheme 

Proposal  
 Datasets ISP and HOST datasets 

 Model Validation K-fold Stratified Cross Validation (𝑘 =  10) 

 Performance Metrics OA, BA and 𝐴𝐶𝐶𝑖𝑠 
 Statistical Validation Friedman’s Test and Holm’s post-hoc correction method 
 Feature Selection FCBFiP 

 Learning Algorithms CART Decision Tree and Ensemble Algorithms 
      

[37] Exploratory Study on Class Imbalance and Solutions for Network Traffic Classification  

 Datasets ISP and HOST datasets 

 Model Validation Distributed Optimally-Based Stratified CV (𝑘 =  5) 

 Performance Metrics OA, BA, GM, 𝐴𝐶𝐶𝑖𝑠 and AUC-ROCs 

 Statistical Validation Friedman’s Test 
 Feature Selection FCBFiP 

 Learning Algorithms CART Decision Tree and Class Imbalance Techniques 
      

[30] A Feature Selection Framework and a Predictors Study for Internet Traffic Classification 
 Datasets ISP datasets 

 Model Validation Time-Separated Validation 

 Performance Metrics OA, BA and GM 

 Statistical Validation - 

 Feature Selection FCBF, #FCBF, FCBFiP, MRMR, CIFE, CNIM, ICAP, MIFS, DISR, JMI, MIN 

and Wrappers  Learning Algorithms CART Decision Tree and Ensemble Algorithms 
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4.8 Summary of Methodologies  

Through this dissertation numerous ML techniques and methods were 

analyzed in the different experiments performed. As the main contributions of this 

dissertation are presented in JCR-indexed journals, the methodologies applied 

during this research work have been adapted to the feedback provided by expert 

reviewers in ML and Internet Networks. Table 7 presents a summary of the methods 

and materials assumed in each research article, including the conference article [30]. 
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5. General Conclusions 

In this research, we have addressed the problem of Internet NTC from a ML 

perspective. Through the numerous experiments reported in the scientific 

manuscripts composing this compendium, we have analyzed a wide number of 

advanced learning techniques and proved that ML has promising prospects for 

achieving efficient traffic classifiers. From a perspective of Computer Networks, ML-

based traffic classifiers are interesting alternatives to overcome the limitations of 

traditional NTC approaches, since they accomplish similar classification 

performances to DPI tools without privacy concerns. Thus, research efforts in 

conducting advanced experimentation in ML-based NTC are required, and this 

thesis aims at contributing in this direction.  

This dissertation constitutes a case of study in which traffic data were successfully 

collected, analyzed, processed and modelled from quite dissimilar network 

environments. One of the network environments examined is a backbone in an ISP 

network, which constitutes a real-world challenging problem. The network data 

employed was collected recently, so that they are composed by the most current 

Internet applications and protocols. The ground-truth creation was performed using 

the most accurate open-source DPI tool, and the early NTC requirement was fulfilled 

in our NTC models.  

Regarding the research questions formulated in this dissertation (see Section 1.4), 

we provide below the general observations.  

Firstly, we designed a Collection of Attributes as input to our models and, then, we 

proposed a FS filter to efficiently reduce the problem dimensionality. Our FS 

proposal was preliminary compared to previous FS based on correlation using 

classification datasets extracted from different problems, including a Network 

Intrusion Detection dataset. The conducted experiments show that our proposal 

outperformed the rest of algorithms and that it is able to reduce the data space 

preserving, and even increasing, model performances. Later, the proposed FS 

algorithm was applied to our NTC datasets showing that it provides excellent results 

for this modeling task and confirming that our Collection of Attributes has 

substantial predictive power for early NTC. Afterwards, a study on different kinds 

of predictors was performed employing an important number of FS techniques, and 

a FS Framework was proposed as a result. Through this analysis, we identified the 

strengths and weaknesses of different IP-header parameters in modeling different 

traffic classes and provided a subset producing excellent performances for 

imbalanced datasets. Finally, we confirmed the risk of suffering performance losses 

when port numbers are included in the classification models.  

Regarding the second question formulated, we have experimented with advanced 

models based on CART Decision Trees corroborating that ML classifiers can 

accomplish similar performances to DPI approaches. Additionally, we have observed 

numerous learning techniques and proposed novel algorithms to overcome the 

limitations of the state-of-the-art ones. Our first experiments on NTC datasets 

comprised an analysis of ensemble algorithms for early NTC in high-speed networks. 

Through these experiments, we analyzed the most popular ensemble algorithms in 
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terms of model performances and latency, and a novel ensemble algorithm was 

presented with the aim of preserving the accuracy improvements of ensemble 

learning without significant latency costs. The proposed algorithm was statistically 

compared to state-of-the-art techniques proving its excellent performances 

respecting to the rest. 

In order to address our last research question, we performed an exploratory study 

on Class Imbalance for our NTC datasets. Internet traffic is highly imbalanced, since 

some applications and services are much more consumed than others depending on 

network environments. Considering two different networks, we were able to identify 

and evaluate performance degradations on ML classifiers and link them to network 

conditions and features. We found that some network scenarios are more susceptible 

to Class Imbalance than others, and that imbalanced class distributions produce 

performances losses in all environments to a greater or lesser extent. Additionally, 

we experimented with advanced learning algorithms to compensate performance 

losses produced by imbalanced class distributions, including techniques that were 

never analyzed for real-world multiclass problems. Through the last scientific 

manuscript, we found various benefits from applying different solutions to Class 

Imbalance. For example, RUS was found quite useful for reducing the dataset size 

and speeding experiments. Whilst, the best-performing algorithm in terms of 

accuracy was the combination of TL and ensemble boosting techniques. 

Generally, this thesis shows that ML constitutes a prominent solution to build 

Internet traffic classifiers. Through the experiments reported here, we approached 

all the processes necessary to provide accurate early NTC models, from network data 

collection until classification model creation. The models reported in this research 

exhibit competitive results comparing to the DPI approach used as baseline, 

meanwhile performing a privacy-respectful and time-efficient traffic classification. 

In terms of the applicability to next-generation networks, our findings contribute to 

achieve efficient and privacy-respectful classifiers in high-demanding environments. 

Emerging network paradigms rely on network monitoring mechanisms and, 

therefore, accomplishing better performances in NTC improves the prospects of 

these paradigms. Also, the effectiveness of the approaches presented here facilitate 

its integration in hardware platforms, which is other interesting research line. 

Although this dissertation constitutes an important piece of knowledge in pursuing 

feasible traffic classifiers based on ML, this research also opens new research 

questions and opportunities that are discussed in the next section. 
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6. Future Research Opportunities 

Despite the advances achieved during the years of research on ML-based 

NTC, many experimentation lines are still open. As a result of the thorough 

literature review performed, we identified interesting research opportunities that 

are presented and discussed below.  

Although several advanced techniques have been presented to get efficient traffic 

classifiers, the reported results are very often limited to offline experimentation 

without tests in real-time environments. This experimental deficiency is found in 

numerous research works, including ours; therefore, it may be very worthwhile to 

perform online experiments in real Internet networks via embedding the proposed 

classification models into hardware devices.  

The Internet is a very complex environment continuously evolving, since it supports 

emerging traffic and changes its topology daily. This fact imposes the necessity of 

self-learning traffic classifiers with the main capacities of detecting emerging traffic 

and retraining itself to refit classification models when network conditions change. 

In this regard, zero-day application detection and efficient retraining mechanisms 

are demanded to expand the capacity of ML-based traffic classifiers.  

When a supervised algorithm accomplishes its limits in terms of model 

performances, a way of upgrading its predictive power is including more informative 

predictors. Thus, advanced research on finding more effective predictors could be 

also interesting and worthy for the research field. This research objective may be 

achieved via Feature Engineering or examining new network-level attributes to 

represent classification objects. Another research opportunity related to the flow 

classification objects is the granularity in traffic class representations. In our 

research we applied a label grouping to reduce the number of classes and this step 

is commonly performed in other research works. Label grouping has the advantage 

that learning algorithms model better the generated classes but, conversely, the 

classification granularity is considerably decreased. Thus, finding ML mechanisms 

to achieve a finer classification granularity would a great asset.  

Furthermore, ML is fast evolving with the appearing of new learning mechanisms 

that may be also very interesting for upgrading traffic classifiers. That is the case of 

Multiview learning, in which classification objects are represented by different views 

[107]. This learning mechanism has shown very successful in diverse research 

problems, however the research work in NTC is quite scarce. Other novel learning 

mechanism that could constitute a promising solution for ML-based NTC is MTL. In 

MTL different close-related modeling tasks are solved using a common model for all 

classification tasks [108]. This learning mechanisms could be very useful to improve 

the granularity of traffic classification models based on ML. 

Through the literature review performed in this dissertation (see Section 1.5), we 

identified significant methodological differences in the reviewed works that hinder 

the consistent comparison amongst approaches. For example, some researchers 

focused their experiments only on TCP connections, and others altered the class 

distributions. Furthermore, some authors assumed different validation approaches, 
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which skew the comparison between works. Therefore, standardizing some research 

methods may facilitate the development of classifiers more and more advanced.   

Finally, the convergence of different technologies using the Internet as 

communication core opens new research stages. Thus, the research advances 

accomplished through this dissertation could be extended to other problems in 

Computer Networks, such as Mobile traffic modeling and IoT traffic detection.  

 

List of References 

[1] M. A. Khan, S. Peters, D. Sahinel, F. D. Pozo-pardo, and X. Dang, 

“Understanding autonomic network management : A look into the past , a 

solution for the future,” Comput. Commun., vol. 122, no. May 2017, pp. 93–

117, 2018. 

[2] D. C. Verma, Principles of Computer Systems and Network Management. 

Boston, MA: Springer US, 2009. 

[3] A. Callado, J. Kelner, D. Sadok, C. Alberto Kamienski, and S. Fernandes, 

“Better network traffic identification through the independent combination of 

techniques,” J. Netw. Comput. Appl., vol. 33, no. 4, pp. 433–446, Jul. 2010. 

[4] O. Courtois and C. Bardelay-Guyot, “Architectures and management of 

submarine networks,” in Undersea Fiber Communication Systems, Elsevier, 

2016, pp. 343–380. 

[5] D. Naboulsi, M. Fiore, S. Ribot, and R. Stanica, “Mobile Traffic Analysis: a 

Survey,” vol. 18, no. 1, pp. 1–38, 2015. 

[6] T. Nguyen and G. Armitage, “A survey of techniques for internet traffic 

classification using machine learning,” IEEE Commun. Surv. Tutorials, vol. 

10, no. 4, pp. 56–76, 2008. 

[7] A. Callado, A. Callado, C. K. Member, G. Szabó, B. Péter-gerö, and J. Kelner, 

“A Survey on Internet Traffic Identification . A Survey on Internet Traf fi c 

Identi fi cation,” vol. 11, no. November 2015, pp. 37–52, 2009. 

[8] M. Finsterbusch, C. Richter, E. Rocha, J. A. Müller, and K. Hänßgen, “A 

survey of payload-based traffic classification approaches,” IEEE Commun. 

Surv. Tutorials, vol. 16, no. 2, pp. 1135–1156, 2014. 

[9] A. Dainotti, A. Pescape, and K. Claffy, “Issues and future directions in traffic 

classification,” IEEE Netw., vol. 26, no. 1, pp. 35–40, Jan. 2012. 

[10] M. Dashevskiy and Z. Luo, “Network Traffic Classification and Demand 

Prediction,” in Conformal Prediction for Reliable Machine Learning, Elsevier, 

2014, pp. 231–259. 

[11] “IANA, List of assigned port numbers.” [Online]. Available: 

http://www.iana.org/assignments/port-numbers. 

[12] R. Bendrath, “Global technology trends and national regulation: Explaining 

Variation in the Governance of Deep Packet Inspection,” in International 

Studies Annual Convention, 2009, vol. 15, no. 18. 

[13] K. Yogo, R. Shinkuma, T. Konishi, S. Itaya, and S. Doi, “Coverage area 



Application of Advanced Machine Learning Techniques to Early Network Traffic Classification  

38 
 

management for wireless sensor networks,” Int. J. Netw. Manag., no. 22, pp. 

1–11, 2012. 

[14] A. L. Samuel, “Some Studies in Machine Learning Using the Game of 

Checkers,” IBM J. Res. Dev., vol. 3, no. 3, pp. 210–229, Jul. 1959. 

[15] T. M. Mitchell, Machine learning. McGraw-Hill, 1997. 

[16] A. Mcgregor, M. Hall, P. Lorier, and J. Brunskill, “Flow Clustering Using 

Machine Learning Techniques,” pp. 205–214, 2004. 

[17] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian 

analysis techniques,” ACM SIGMETRICS Perform. Eval. Rev., vol. 33, no. 1, 

p. 50, Jun. 2005. 

[18] W. Li and A. W. Moore, “A Machine Learning Approach for Efficient Traffic 

Classification,” in 2007 15th International Symposium on Modeling, Analysis, 

and Simulation of Computer and Telecommunication Systems, 2007, pp. 310–

317. 

[19] W. Li, M. Canini, A. W. Moore, and R. Bolla, “Efficient application 

identification and the temporal and spatial stability of classification schema,” 

Comput. Networks, vol. 53, no. 6, pp. 790–809, 2009. 

[20] H. Zhang, G. Lu, M. T. Qassrawi, Y. Zhang, and X. Yu, “Feature selection for 

optimizing traffic classification,” Comput. Commun., vol. 35, no. 12, pp. 1457–

1471, 2012. 

[21] L. Bernaille, R. Teixeira, I. Akodjenou, A. Soule, and K. Salamatian, “Traffic 

classification on the fly,” ACM SIGCOMM Comput. Commun. Rev., vol. 36, no. 

2, pp. 23–26, 2006. 

[22] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application 

identification,” Proc. 2006 ACM Conex. Conf., pp. 6:1--6:12, 2006. 

[23] N. Williams, S. Zander, and G. Armitage, “A preliminary performance 

comparison of five machine learning algorithms for practical IP traffic flow 

classification,” ACM SIGCOMM Comput. Commun. Rev., vol. 36, no. 5, p. 5, 

Oct. 2006. 

[24] J. Erman, M. Arlitt, A. Mahanti, I. C. Methodologies, and P. Recognition, 

“Traffic Classification Using Clustering Algorithms,” pp. 281–286. 

[25] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian Neural Networks for Internet 

Traffic Classification,” IEEE Trans. Neural Networks, vol. 18, no. 1, pp. 223–

239, Jan. 2007. 

[26] I. Guyon, A. Elisseeff, and A. M. De, “An Introduction to Variable and Feature 

Selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003. 

[27] N. Japkowicz, “Assessment Metrics for Imbalanced Learning,” in Imbalanced 

Learning, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013, pp. 187–206. 

[28] V. López, A. Fernández, and F. Herrera, “On the importance of the validation 

technique for classification with imbalanced datasets: Addressing covariate 

shift when data is skewed,” Inf. Sci. (Ny)., vol. 257, pp. 1–13, 2014. 

[29] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Network 

Traffic Classifier with Convolutional and Recurrent Neural Networks for 



Application of Advanced Machine Learning Techniques to Early Network Traffic Classification  

39 
 

Internet of Things,” IEEE Access, vol. 5, pp. 18042–18050, 2017. 

[30] S. E. Gómez et al., “A Feature Selection Framework and a Predictors Study 

for Internet Traffic Classification,” in First International Conference on 

Advances in Signal Processing and Artificial Intelligence, 2019, no. March, pp. 

20–22. 

[31] S. E. Gómez, “GitHub - SantiagoEG,” 2018. [Online]. Available: 

https://github.com/SantiagoEG?tab=overview&from=2018-02-01&to=2018-

02-28. [Accessed: 10-Jul-2019]. 

[32] S. Egea, A. Rego, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Intelligent 

IoT Traffic Classification Using Novel Search Strategy for Fast Based-

Correlation Feature Selection in Industrial Environments,” IEEE Internet 

Things J., 2018. 

[33] B. Senliol, G. Gulgezen, L. Yu, and Z. Cataltepe, “Fast Correlation Based 

Filter (FCBF) with a different search strategy,” 2008 23rd Int. Symp. Comput. 

Inf. Sci. Isc. 2008, 2008. 

[34] S. E. Gómez, “GitHub - SantiagoEG/FCBF module,” 2018. [Online]. Available: 

https://github.com/SantiagoEG/FCBF_module. [Accessed: 10-Jul-2019]. 

[35] S. E. Gómez, B. C. Martínez, A. J. Sánchez-Esguevillas, and L. Hernández 

Callejo, “Ensemble network traffic classification: Algorithm comparison and 

novel ensemble scheme proposal,” Comput. Networks, vol. 127, pp. 68–80, Nov. 

2017. 

[36] S. E. Gómez, “GitHub - SantiagoEG/TEC module,” 2018. [Online]. Available: 

https://github.com/SantiagoEG/TEC_module. [Accessed: 10-Jul-2019]. 

[37] S. E. Gómez, L. Hernández-Callejo, B. C. Martínez, and A. J. Sánchez-

Esguevillas, “Exploratory study on Class Imbalance and solutions for Network 

Traffic Classification,” Neurocomputing, vol. 343, pp. 100–119, May 2019. 

[38] S. E. Gómez, “GitHub - SantiagoEG/ImbalancedMulticlass,” 2018. [Online]. 

Available: https://github.com/SantiagoEG/ImbalancedMulticlass/tree/master. 

[Accessed: 10-Jul-2019]. 

[39] N. Chawla, “Learning in the presence of class imbalance and concept drift,” 

Neurocomputing, vol. 343, pp. 1–2, May 2019. 

[40] A. Este, F. Gringoli, and L. Salgarelli, “Support Vector Machines for TCP 

traffic classification,” Comput. Networks, vol. 53, no. 14, pp. 2476–2490, Sep. 

2009. 

[41] A. Este, F. Gringoli, and L. Salgarelli, “On the Stability of the Information 

Carried by Traffic Flow Features at the Packet Level,” ACM SIGCOMM 

Comput. Commun. Rev., vol. 39, no. 3, p. 13, 2009. 

[42] R. Yuan, Z. Li, X. Guan, and L. Xu, “An SVM-based machine learning method 

for accurate Internet traffic classification,” Inf. Syst. Front., vol. 12, no. 2, pp. 

149–156, 2010. 

[43] M. Soysal and E. G. Schmidt, “Machine learning algorithms for accurate flow-

based network traffic classification: Evaluation and comparison,” Perform. 

Eval., vol. 67, no. 6, pp. 451–467, Jun. 2010. 



Application of Advanced Machine Learning Techniques to Early Network Traffic Classification 

40 

[44] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-Pareta, 

“Analysis of the impact of sampling on NetFlow traffic classification,” Comput. 

Networks, vol. 55, no. 5, pp. 1083–1099, Apr. 2011. 

[45] T. T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely and 

Continuous Machine-Learning-Based Classification for Interactive IP 

Traffic,” IEEE/ACM Trans. Netw., vol. 20, no. 6, pp. 1880–1894, Dec. 2012. 

[46] Q. Liu and Z. Liu, “A comparison of improving multi-class imbalance for 

internet traffic classification,” Inf. Syst. Front., vol. 16, no. 3, pp. 509–521, 

2014. 

[47] J. Yang, J. Ma, G. Cheng, Y. Wang, L. Yuan, and C. Dong, “An Empirical 

Investigation of Filter Attribute Selection Techniques for High-Speed 

Network Traffic Flow Classification,” pp. 541–558, 2012. 

[48] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang, “Internet traffic 

classification by aggregating correlated naive bayes predictions,” IEEE Trans. 

Inf. Forensics Secur., vol. 8, no. 1, pp. 5–15, 2013. 

[49] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, “Network traffic 

classification using correlation information,” IEEE Trans. Parallel Distrib. 

Syst., vol. 24, no. 1, pp. 104–117, 2013. 

[50] N. F. Huang, G. Y. Jai, H. C. Chao, Y. J. Tzang, and H. Y. Chang, “Application 

traffic classification at the early stage by characterizing application rounds,” 

Inf. Sci. (Ny)., vol. 232, no. 22, pp. 130–142, 2013. 

[51] A. Fahad, Z. Tari, I. Khalil, I. Habib, and H. Alnuweiri, “Toward an efficient 

and scalable feature selection approach for internet traffic classification,” 

Comput. Networks, vol. 57, no. 9, pp. 2040–2057, 2013. 

[52] A. Fahad, Z. Tari, I. Khalil, A. Almalawi, and A. Y. Zomaya, “An optimal and 

stable feature selection approach for traffic classification based on multi-

criterion fusion,” Futur. Gener. Comput. Syst., vol. 36, pp. 156–169, 2014. 

[53] J. Zhang, Y. Xiang, W. Zhou, and Y. Wang, “Unsupervised traffic classification 

using flow statistical properties and IP packet payload,” J. Comput. Syst. Sci., 

vol. 79, no. 5, pp. 573–585, 2013. 

[54] J. Camacho, P. Padilla, P. García-teodoro, and J. Díaz-verdejo, “A 

generalizable dynamic flow pairing method for traffic classification,” Comput. 

Networks, vol. 57, no. 14, pp. 2718–2732, 2013. 

[55] D. Li, G. Hu, Y. Wang, and Z. Pan, “Network traffic classification via non-

convex multi-task feature learning,” Neurocomputing, vol. 152, pp. 322–332, 

2015. 

[56] L. Grimaudo and M. Mellia, “Self-learning classifier for Internet traffic,” 

Infocom, 2013  …, 2013, vol. 11, no. 2, pp. 144–157, 2014. 

[57] L. Peng, B. Yang, and Y. Chen, “Effective packet number for early stage 

internet traffic identification,” Neurocomputing, vol. 156, pp. 252–267, 2015. 

[58] Z. Liu, R. Wang, M. Tao, and X. Cai, “A class-oriented feature selection 

approach for multi-class imbalanced network traffic datasets based on local 

and global metrics fusion,” Neurocomputing, vol. 168, pp. 365–381, 2015. 



Application of Advanced Machine Learning Techniques to Early Network Traffic Classification 

41 

[59] V. Carela-Español, P. Barlet-Ros, O. Mula-Valls, and J. Solé-Pareta, “An 

Autonomic Traffic Classification System for Network Operation and 

Management,” J. Netw. Syst. Manag., vol. 23, no. 3, pp. 401–419, Jul. 2015. 

[60] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust Network Traffic 

Classification,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1257–1270, 2015. 

[61] D. M. Divakaran, L. Su, Y. S. Liau, and V. L. Vrizlynn, “SLIC: Self-Learning 

Intelligent Classifier for network traffic,” Comput. Networks, vol. 91, pp. 283–

297, 2015. 

[62] A. Rizzi, A. Iacovazzi, A. Baiocchi, and S. Colabrese, “A low complexity real-

time Internet traffic flows neuro-fuzzy classifier,” Comput. Networks, vol. 91, 

pp. 752–771, 2015. 

[63] A. Hajjar, J. Khalife, and J. Díaz-Verdejo, “Network traffic application 

identification based on message size analysis,” J. Netw. Comput. Appl., vol. 

58, pp. 130–143, 2015. 

[64] F. Iglesias and T. Zseby, “Time-activity footprints in IP traffic,” vol. 107, pp. 

64–75, 2016. 

[65] H. R. L. M. N. Marsono, “Online network traffic classification with 

incremental learning,” Evol. Syst., vol. 7, no. 2, pp. 129–143, 2016. 

[66] H. Shi, H. Li, D. Zhang, C. Cheng, and W. Wu, “Efficient and robust feature 

extraction and selection for traffic classification,” Comput. Networks, vol. 119, 

pp. 1–16, 2017. 

[67] L. Ding, J. Liu, T. Qin, and H. Li, “Internet traffic classification based on 

expanding vector of flow,” Comput. Networks, vol. 129, pp. 178–192, 2017. 

[68] L. Peng, H. Zhang, Y. Chen, and B. Yang, “Imbalanced traffic identification 

using an imbalanced data gravitation-based classification model,” Comput. 

Commun., vol. 102, pp. 177–189, 2017. 

[69] Y. Dong, J. Zhao, and J. Jin, “Novel feature selection and classification of 

Internet video traffic based on a hierarchical scheme,” Comput. Networks, vol. 

119, pp. 102–111, 2017. 

[70] S. Dong and R. Li, “Traffic identification method based on multiple 

probabilistic neural network model,” Neural Comput. Appl., 2017. 

[71] F. Ertam and E. Avcı, “A new approach for internet traffic classification: GA-

WK-ELM,” Measurement, vol. 95, pp. 135–142, 2017. 

[72] A. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-based 

classification,” Queen Mary Westf. Coll. Dep. Comput. Sci., no. August, 2005. 

[73] O. Article, “Hybrid multicriteria fuzzy classification of network traffic 

patterns , anomalies , and protocols,” 2017. 

[74] M. Shafiq, X. Yu, A. Kashif, B. Hassan, N. Chaudhry, and D. Wang, “A 

machine learning approach for feature selection traffic classification using 

security analysis,” J. Supercomput., 2018. 

[75] H. Shi, H. Li, D. Zhang, C. Cheng, and X. Cao, “An efficient feature generation 

approach based on deep learning and feature selection techniques for traffic 

classification,” vol. 132, pp. 81–98, 2018. 



Application of Advanced Machine Learning Techniques to Early Network Traffic Classification  

42 
 

[76] A. Fahad, A. Almalawi, Z. Tari, K. Alharthi, F. S. Al Qahtani, and M. Cheriet, 

“Semtra: A semi-supervised approach to traffic flow labeling with minimal 

human effort,” Pattern Recognit., vol. 91, pp. 1–12, 2019. 

[77] V. Carela-Español, T. Bujlow, and P. Barlet-Ros, “Is Our Ground-Truth for 

Traffic Classification Reliable?,” 2014, pp. 98–108. 

[78] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “Independent comparison of 

popular DPI tools for traffic classification,” Comput. Networks, vol. 76, pp. 75–

89, Jan. 2015. 

[79] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “nDPI: Open-source 

high-speed deep packet inspection,” in 2014 International Wireless 

Communications and Mobile Computing Conference (IWCMC), 2014, pp. 617–

622. 

[80] R. Niculescu-mizil et al., “Winning the KDD Cup Orange Challenge with 

Ensemble Selection.” 

[81] “KDD Cup 1999 Data.” [Online]. Available: 

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [Accessed: 29-Nov-

2017]. 

[82] A. Tsanas, M. A. Little, C. Fox, and L. O. Ramig, “Objective Automatic 

Assessment of Rehabilitative Speech Treatment in Parkinson’s Disease,” 

IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 1, pp. 181–190, Jan. 2014. 

[83] P. M. Ciarelli and E. Oliveira, “Agglomeration and Elimination of Terms for 

Dimensionality Reduction,” in 2009 Ninth International Conference on 

Intelligent Systems Design and Applications, 2009, pp. 547–552. 

[84] L. Yu and H. Liu, “Feature Selection for High-Dimensional Data: A Fast 

Correlation-Based Filter Solution,” Int. Conf. Mach. Learn., pp. 1–8, 2003. 

[85] Hanchuan Peng, Fuhui Long, and C. Ding, “Feature selection based on mutual 

information criteria of max-dependency, max-relevance, and min-

redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226–

1238, Aug. 2005. 

[86] D. Lin and X. Tang, “Conditional Infomax Learning: An Integrated 

Framework for Feature Extraction and Fusion,” Springer, Berlin, Heidelberg, 

2006, pp. 68–82. 

[87] F. Fleuret, “Fast Binary Feature Selection with Conditional Mutual 

Information,” J. Mach. Learn. Res., vol. 5, pp. 1531–1555, 2004. 

[88] A. Jakulin, “Machine Learning Based on  Attribute Interactions,” Thesis, pp. 

1–252, 2005. 

[89] R. Battiti, “Using Mutual Information for Selecting Features in Supervised 

Neural-Net Learning,” Ieee Trans. Neural Networks, vol. 5, no. 4, pp. 537–550, 

1994. 

[90] P. E. Meyer, C. Schretter, and G. Bontempi, “Information-Theoretic Feature 

Selection in Microarray Data Using Variable Complementarity,” IEEE J. Sel. 

Top. Signal Process., vol. 2, no. 3, pp. 261–274, 2008. 

[91] H. H. Yang and J. Moody, “Data Visualization and Feature Selection: New 



Application of Advanced Machine Learning Techniques to Early Network Traffic Classification  

43 
 

Algorithms for Nongaussian Data,” Adv. Neural Inf. Process. Syst., vol. 12, no. 

Mi, pp. 687–693, 1999. 

[92] D. D. Lewis, “Feature Selection and Feature Extraction for Text 

Categorization,” pp. 212–217, 1992. 

[93] T. G. Dietterich, “An experimental comparison of three methods for 

constructing ensembles of decision trees: Bagging, boosting, and 

randomization,” Mach. Learn., vol. 40, no. 2, pp. 139–157, 2000. 

[94] T. G. Dietterich and G. Bakiri, “Solving Multiclass Learning Problems via 

Error-Correcting Output Codes,” Jouranal Artifical Intell. Res., vol. 2, pp. 

263–286, 1995. 

[95] E. Bauer and R. Kohavi, “An empirical comparison of voting classification 

algorithms: Bagging, boosting, and variants,” Mach. Learn., vol. 36, no. 1/2, 

pp. 105–139, 1999. 

[96] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001. 

[97] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. 

Learn., vol. 63, no. 1, pp. 3–42, 2006. 

[98] J. G. Moreno-Torres, J. A. Saez, and F. Herrera, “Study on the Impact of 

Partition-Induced Dataset Shift on K-Fold Cross-Validation,” {IEEE} Trans. 

Neural Networks Learn. Syst., vol. 23, no. 8, pp. 1304–1312, 2012. 

[99] S. García, A. Fernández, J. Luengo, and F. Herrera, “Advanced nonparametric 

tests for multiple comparisons in the design of experiments in computational 

intelligence and data mining: Experimental analysis of power,” Inf. Sci. (Ny)., 

vol. 180, no. 10, pp. 2044–2064, 2010. 

[100] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” 

J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006. 

[101] “NumPy — NumPy.” [Online]. Available: https://www.numpy.org. [Accessed: 

10-Jul-2019]. 

[102] “Pandas.” [Online]. Available: https://pandas.pydata.org/index.html. 

[Accessed: 10-Jul-2019]. 

[103] “Scapy.” [Online]. Available: http://www.secdev.org/projects/scapy/. [Accessed: 

10-Jul-2019]. 

[104] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. 

Learn. Res., vol. 12, pp. 2825–2830, 2012. 

[105] G. Lemaitre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A Python 

Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning,” J. 

Mach. Learn. Res., vol. 18, no. 1, pp. 1–5, 2016. 

[106] J. Li et al., “Feature Selection: A Data Perspective,” ACM Comput. Surv., vol. 

50, no. 6, pp. 1–45, Jan. 2016. 

[107] S. Sun, L. Mao, Z. Dong, and L. Wu, Multiview Machine Learning. Singapore: 

Springer Singapore, 2019. 

[108] Y. Zhang and Q. Yang, “A Survey on Multi-Task Learning,” Jul. 2017. 



Application of Advanced Machine Learning Techniques to Early Network Traffic Classification  

44 
 

  
  



ANNEX 1 

45 

A.1 Journal Paper. Intelligent IoT Traffic Classification 
Using Novel Search Strategy for Fast Based-Correlation 
Feature Selection in Industrial Environments 

Table A1. JCR-Indexed Paper Information 
 

Title Intelligent IoT Traffic Classification Using Novel Search Strategy for Fast 
Based-Correlation Feature Selection in Industrial Environments 

Authors 
Santiago Egea Gómez, Albert Rego Mañez, Belén Carro, Antonio Sánchez-
Esguevillas and Jaime Lloret 

Journal IEEE Internet of Things Journal (IF: 9.515) 

Volume Volume: 5, Issue: 3, June 2018 

Publication Date 28 December 2017 

DOI 10.1109/JIOT.2017.2787959 

https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://www.researchgate.net/publication/322108423_Intelligent_IoT_Traffic_Classification_Using_Novel_Search_Strategy_for_Fast_Based-Correlation_Feature_Selection_in_Industrial_Environments?_sg=BGkxVnOwhecCF87wosJxfkH_UP6lX3W84E2umWuYCvzBIdmFkNWNtFN8NeibvfQ4O4Hn5S4CnpDRcIbn426eJwKZg5o_y-d8hGiZ_m9x.ZmAp8JmtLAj5NCiFgxh-wZ7iqxftRKXGlfENHVLY0RCMGPQjQcjfkXNIssi_Pb0EVEEfwh6ETdlFR4eQIEWWbQ
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8375923
https://doi.org/10.1109/JIOT.2017.2787959


IEE
E P

ro
of

IEEE INTERNET OF THINGS JOURNAL 1

Intelligent IoT Traffic Classification Using Novel
Search Strategy for Fast-Based-Correlation Feature

Selection in Industrial Environments
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Abstract—Internet of Things (IoT) can be combined with1

machine learning in order to provide intelligent applications2

to the network nodes. Furthermore, IoT expands these advan-3

tages and technologies to the industry. In this paper, we propose4

a modification of one of the most popular algorithms for fea-5

ture selection, fast-based-correlation feature (FCBF). The key6

idea is to split the feature space in fragments with the same7

size. By introducing this division, we can improve the correla-8

tion and, therefore, the machine learning applications that are9

operating on each node. This kind of IoT applications for indus-10

try allows us to separate and prioritize the sensor data from11

the multimedia-related traffic. With this separation, the sensors12

are able to detect efficiently emergency situations and avoid both13

material and human damage. The results show the performance14

of the three FCBF-based algorithms for different problems and15

different classifiers, confirming the improvements achieved by16

our approach in terms of model accuracy and execution time.17

Index Terms—Correlation-based methods, emergency detec-18

tion, feature selection, filter methods, industry, Internet of19

Things (IoT), machine learning, multimedia traffic.20

I. INTRODUCTION21

INTERNET of Things (IoT) pretends to extend sensor-22

ing, computation, and communications to every field and23

object. One of the most important fields where IoT can be24

applied is on industry. There are many advantages that indus-25

try can obtain from IoT, but also there are many challenges to26
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resolve [1], [2]. However, when these challenges are solved, 27

the ubiquity that industry will obtain from IoT will lead to 28

significant improvements on its procedures. For instance, the 29

increase of hazard and emergency detection may currently save 30

millions of dollars wasted due to the losses produced by those 31

emergencies [3]. 32

One of the techniques that can be applied to IoT is machine 33

learning and artificial intelligence [4]–[6]. Machine learning 34

has become popular in the last decades for many fields, from 35

biology to telecommunications. Machine learning provides 36

predictive models that are able to predict or detect responses 37

to problems employing knowledge previously collected in 38

a dataset. Nowadays the learning algorithms are more power- 39

ful, and our computing tools are more sophisticated. Despite 40

of these facts, the industry poses new and more complex prob- 41

lems each day, with higher accuracy requirements. Applying 42

machine learning to IoT introduces new constraints like more 43

energy consumption or computation time. In other words, the 44

complexity of these challenges is increasing constantly. These 45

issues force scientists to pay attention, not only to learning 46

algorithm designing, but also to efficient information process- 47

ing. The majority of learning algorithms are able to model 48

problems more accurately when the input of the classifier is 49

optimal [7]. Thereby, removing useless features is a much rec- 50

ommended practice, and this task is carried out by feature 51

selection methods. 52

The effectiveness of feature selection has already been 53

proved in numerous works. In fact, these techniques are con- 54

sidered essential in data preprocessing stages [8]. Feature 55

selection consists of selecting the relevant features from the 56

original dataset and remove the rest that could be potentially 57

irrelevant or/and redundant for the problem [7]. 58

The advantages of performing feature selection are well- 59

known [9]: preventing the model from overfitting the training 60

set, thus increasing the accuracy over the test set; reducing 61

both storage requirement and needed computing resources; 62

improving the interpretability of predictive models, since fea- 63

ture selection mitigates the course of dimensionality; and 64

remaining a suitable tradeoff between number of instances and 65

number of features, as this relationship is crucial for some 66

learning algorithms. 67

According to the way in which the problem is tack- 68

led, feature selection methods are mainly split in three 69

groups [9]–[11]: 1) filter methods; 2) wrappers methods; and 70

2327-4662 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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3) embedded methods. Filter methods use a relevance mea-71

surement in order to classify the features as useful or not,72

according to a threshold [9], [12]. Filter methods are computa-73

tionally very light and, also, they are scalable and independent74

of the learning algorithm employed in the problem. However,75

the subset resulted from filter methods is not the optimal76

one. Furthermore, a criterion has to be chosen for measur-77

ing the feature relevance. Therefore, lots of subgroups are78

included into this category. The other feature selection tech-79

nique includes the wrappers methods [9], [10], [12]. Their80

principles are based on the fact that machine learning algo-81

rithms are capable of scoring the features during the training82

process. Once the predictive model is built, we can get a sub-83

set for modeling tasks via observing the learning algorithm84

structure. These methods are slower; since they need to train85

a classifier and, additionally, the possible subsets have to be86

validated by cross validation or other validation technique.87

Furthermore, wrapper methods have difficulties in terms of88

scalability and have a high risk of overfitting the training set.89

But they usually produce more accurate subsets than filter90

methods for a specific classifier.91

The most modern techniques are the embedded methods.92

These techniques are implemented inside the learning algo-93

rithm and their search strategy is guided by the learning94

process. As embedded methods are optimized for a specific95

learning algorithm, they are faster than wrappers methods and96

achieve the best subsets; however, they are fully dependent on97

the used learning algorithm.98

The feature selection methods are formed by six properties99

or phases [10]: 1) initial state of search; 2) creating succes-100

sors; 3) search strategy; 4) feature evaluation method [13]; and101

5) stop criterion.102

This paper is focused on filter methods, and namely,103

on methods based on correlation measurements. The fast104

correlation-based filter [14] (FCBF) is the most popular of105

them. Later, a new strategy approach was introduced in [15],106

this algorithm is known as FCBF#.107

In this paper, we introduce a novel search strategy whose108

goal is to give a tuning parameter that allows users to con-109

trol both the algorithm computing time and the intercorrelation110

among the features contained in the resulting subset. With this111

proposal, we are able to create an optimal subset of features to112

classify the traffic propagated through an IoT network imple-113

mented in an industrial facility. Therefore, the detection of114

multimedia traffic is improved thanks to this proper selection115

of the features and can be separated in a better way from the116

sensor data, increasing the efficiency of the critical and priority117

use and management of that kind of data. Therefore, applica-118

tions using that critical data, such as emergency detection will119

increase their performance. This algorithm is called FCBF in120

pieces (FCBFiP).121

This paper is organized as follows. First of all, in Section II,122

a review of the current state of IoT and machine learning in123

the literature is presented. In Section III, we review the prior124

algorithms and explain our proposal. Next, in Section IV, we125

describe the experiments carried out to validate our proposal.126

In Section V, we show and discuss the results obtained for our127

algorithm and the prior ones by using four different datasets.128

Finally, in Section VI, we draw conclusions about the results 129

obtained. 130

II. RELATED WORK 131

In this section, some of the works related to IoT for industry 132

and machine learning are discussed. 133

Wan et al. [16] proposed and analyze a new entity for 134

production processes in industry called context-aware cloud 135

robotics (CACR). This new entity does an effective load bal- 136

ancing and provides context-aware services in factories. This 137

CACR improves the material handling. In this paper, the 138

architecture of CACR is shown, analyzed and discussed. The 139

results show that CACR, working with decision-making algo- 140

rithms, works in a more energy-efficient mode and increases 141

the cost-saving during the material handling. 142

An advantage related to the use of IoT for industry is the 143

reduction of energy-consumption during the production pro- 144

cess. These kind of energy-related issues are discussed in [17], 145

where sustainable development and green technologies are the 146

point for saving energy and reducing emissions. 147

Related to environment, Mehmood et al. [18] proposed an 148

artificial neural network in order to save energy and to make 149

the routing scheme more robust. This neural network, called 150

ELDC, has been designed for industry pollution monitoring 151

and increases the lifetime of the nodes by incorporating the 152

features of group-based protocols. The results show that the 153

lifetime of the nodes is increased over 40% compared against 154

other algorithms. 155

There are some published works related to pollution moni- 156

toring and energy saving. In [19], the increase of pollution and 157

carbon footprint problems are discussed and a solution given 158

in terms of routing protocol is proposed. This routing proto- 159

col, called secure and low-energy zone-based routing protocol 160

is designed in order to face two problems: 1) energy con- 161

sumption and 2) security. Taking some assumptions from the 162

features of wireless sensor networks (WSNs), the base station 163

divides the network into zones and clusters, reducing the num- 164

ber of messages. The results show an increase of around 400% 165

of network lifetime. Moreover, the wasted energy is reduced. 166

Traffic classification and filtering has been deeply applied 167

in several works and fields. A case study is realized by 168

Gupta and Muttoo [20], where the Internet traffic survellance 169

and network monitoring in India is studied. Under the con- 170

text of preventing terrorist attacks, India is working toward 171

the development of surveillance systems. One of this kind of 172

systems is NETRA, used by the Indian Government to search 173

suspicious keywords from messages in the network. In [20], 174

NETRA is compared against some other similar systems 175

like Dish Fire, Prism, or Echelon. Their work shows how 176

NETRA works and how it filters the messages and traffic. 177

Authors conclude that it shows only a bit weak in spying 178

the content. 179

This traffic monitoring and processing has been also applied 180

in IoT environments. Zheng et al. [21] introduced a nonintru- 181

sive traffic data collection for intelligent transportation systems 182

using WSNs. They placed magnetic sensor nodes on the road 183

to collect data from vehicles and obtain the vehicle flow data. 184
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This data is sent to a control center using ZigBee protocol,185

where the final vehicle flow data is calculated by using fil-186

tering and decision-making algorithms. They provide some187

experiments in order to demonstrate that the method illustrated188

is reliable. This process is nonintrusive to the transportation189

systems.190

The traffic monitoring can be used to obtain some flows191

or patterns like it has been done in the previous reference.192

However, it can also be used for improving the performance193

of the network. Avvenuti et al. [22] proposed a MAC proto-194

col, an extension from B-MAC+ protocol, which reduces the195

energy consumption for communication in WSNs. This proto-196

col is adaptive and asynchronous. It adapts depending on the197

observed traffic load and changes its operational parameters.198

The duty cycle is either increased or decreased attending to the199

incoming packet number variation. The protocol is distributed200

into the nodes of the network. The performance evaluation201

is done through two different simulated scenarios. The results202

show that the adaptive B-MAC+ protocols achieves a network203

lifetime from 1.35 up to 2.8 times longer than the standard204

B-MAC+ protocol.205

Furthermore, the collection and analysis of the data are not206

only used to reduce the energy consumption with MAC-level207

protocols or to produce new data, but also are used to create208

a general view of the state of the network. Tang et al. [23]209

introduced a new congestion-aware routing scheme that is210

based on the traffic information given from the sensors in211

a WSN. Congestion is one of the most important prob-212

lems in data networks and the proposal consists on reducing213

the network delay by being aware of the produced conges-214

tion. Moreover, the throughput is also increased. The routing215

scheme described achieves its goals by using a geographic216

routing scheme. Therefore, the relay node is selected attend-217

ing to the sensor node location and the current congestion of218

the area. The traffic sent by that local area is analyzed and due219

to that traffic information the algorithm selects the next hope220

node in the path. The simulations presented in the work show221

that the end-to-end packets transmission delay is reduced by222

50% and the throughput of the network is doubled.223

Filter methods are vital to obtain a good performance when224

taking decisions. In [14], FCBF is presented. A new upgrade225

is described in [15]. This last method is called FCBF#. They226

are explained in detail in the next section.227

Concerning to the network traffic classification, correlation-228

based filters have been employed to this modeling task for229

several years ago. Williams et al. [24] provided a comparison230

between learning algorithms, but, additionally, they demon-231

strated that correlation-based filters are suitable for traffic232

classification.233

Many authors have provided solutions to select the most234

informative attributes to identify network traffic. In [25],235

a hybrid feature selection algorithm is presented for high-speed236

networks. The algorithm consists of two selection phases,237

the less relevant and most redundant attributes are prefiltered238

using a new metric called weighted symmetrical uncertainty239

at the first stage, and later, the final subset is provided train-240

ing different learning algorithms and evaluating the area under241

curve performance metric. The authors reported significant242

improvements in terms of true positive rate and false positive 243

rate. 244

More recently, Fahad et al. [26] proposed an novel feature 245

selection scheme to obtain optimal and stable subsets for traffic 246

classification. They discuss the traffic profiling changes, how 247

they affect the classifier performances and propose new met- 248

rics to assess the optimality and stability of subsets. In order to 249

avoid performance losses, they present a multicriterion feature 250

selection method called global optimization approach (GOA). 251

GOA combines well-known feature selection techniques to 252

filter out the irrelevant attributes and the resulting subset is 253

processed to extract the stable features based on information 254

theory measures. 255

The different works commented in this section seeks to 256

improve the performance of the WSN, either by reducing 257

energy consumption or delay or by increasing the through- 258

put and time alive. In order to achieve their goals, the authors 259

proposed new routing schemas, algorithms, or data processing. 260

In this paper, we work on improving the core of the 261

intelligent network decision. A new filter method based on 262

FCBF is proposed to improve the correlation of the features. 263

Therefore, the algorithms and machine learning tools that 264

make use of it will be able to increase their performance. 265

In other words, it will make the classification and detection 266

algorithms better. The method presented is intended to be 267

used for multimedia traffic classification in IoT for industries. 268

Specifically, in facilities where the data sensed are used for 269

emergency detection and are sent through the network beside 270

the multimedia traffic. The improvement of detection algo- 271

rithms and special processing of the sensor data will repercute 272

in reducing losses. 273

III. FAST CORRELATION-BASED FEATURE SELECTION 274

Many researchers have approached the feature selection 275

problem from different viewpoints. Filter methods are under- 276

pinned by mathematical and statistical concepts as entropy, 277

mutual information [13] or correlation measurements [27]. 278

Relief algorithm [28] measures the feature relevance, but it is 279

not capable of removing redundant features. Later, correlation- 280

based approaches have been used in order to mitigate fea- 281

tures redundancy, like CFS [27]. Afterward, Yu and Liu [14] 282

presented the FCBF algorithm, which speeds up the selection 283

process. FCBF algorithm has been tested in many modeling 284

problems, proving its excellent performance. In [15], the 285

search strategy of FCBF was improved and a stop criterion 286

was included. In our proposal, we implement new capabili- 287

ties for FCBF. The key idea is to split the feature space in 288

pieces with the same size, compute the redundancy of each 289

feature with a multivariate evaluation method and rank them. 290

Each piece is processed independently. According to the scores 291

assigned to the features and the number of features selected 292

for the resulting subset, the algorithm drops the worst features 293

and includes the rest into the model. The size of the pieces 294

is a design parameter which allows us to control the tradeoff 295

between execution time of the algorithm and intercorrelation 296

of the resulting subset. 297
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A. FCBF Algorithm298

FCBF selection [14] uses the symmetrical uncertainty as299

evaluation method. The symmetrical uncertainty takes some300

advantages against other correlation measures: is normalized301

between 0 and 1; detects several kinds of correlations (not only302

linear correlation); and compensates for information gain’s303

bias.304

Symmetrical uncertainty uses the concept of entropy to mea-305

sure the correlation between features. Given a feature X that306

can take i different values (xi) with different occurrences, the307

entropy of X is defined as308

H(X) = −
∑

i

P(xi) log2(P(xi)) (1)309

where P(xi) is the probability of X to take xi. The entropy of310

X given other feature Y is called conditional entropy of X over311

Y , and is defined as312

H(X|Y) = −
∑

j

P
(
xj

) ∑

i

P
(
xi|yj

)
log2

(
P
(
xi|yj

))
. (2)313

Now, we define the information gain as314

IG(X|Y) = H(X) − H(X|Y). (3)315

Finally, the symmetrical uncertainty between X and Y is316

defined as317

SU(X, Y) = 2

[
IG(X|Y)

H(X) + H(Y)

]
. (4)318

Note that a value SU(X, Y) = 1 indicates a completely cor-319

relation between X and Y . Meanwhile SU(X, Y) = 0 indicates320

that variables are not correlated.321

The search strategy used by FCBF sorts the feature space322

based on the symmetrical uncertainty between each feature and323

the class. The overall complexity of FCBF is O(N log N) [14].324

And FCBF does not have stop criterion, so that it finishes the325

search when the whole feature space has been explored. This326

fact is a shortcoming, since FCBF removes features with no327

possibility of choosing the number of features desired for the328

model. Nevertheless, the FCBF efficiency has already been329

shown [14].330

B. FCBF#331

FBCF# tries to overcome the above issue, and also modifies332

the search strategy [15]. A stop criterion has been included in333

the algorithm by introducing a natural parameter k. When the334

subset has k features, the algorithm finishes the search and335

returns the subset. In addition, the search strategy has been336

changed, so that the process starts removing the irrelevant fea-337

tures during the first iterations. Unlike FCBF, Senliol et al. [15]338

have used a stop counter in their FCBF implementation in339

order to compare models with same number of features. The340

results prove that the change in the search strategy improves341

the model accuracy. However, the algorithm is slightly slower342

than FCBF.343

C. Our Proposal: FCBF in Pieces 344

Our algorithm, FCBFiP, includes two significant modifica- 345

tions with respect to the previous versions: the feature space 346

is divided in P pieces and the criterion to remove the features 347

is based on a scoring step. 348

Both FCBF and FCBF# consist of two steps. The first one 349

evaluates the relevance of each feature for predicting the target 350

class, and sorts them in descending order (sequence 1). This 351

step remains in our algorithm and the second one is modified 352

to avoid iterations which go over the whole feature space. At 353

the first step, when two or more correlated features exist, it is 354

expected that they have similar relevance for forecasting the 355

response. Thus, they have to be close in the ordered sequence 356

of features (sequence 1). Then, it is feasible to think that is 357

not necessary to evaluate the redundancy of a variable over 358

the whole feature space but, evaluating the redundancy on its 359

neighboring may be enough. The number of pieces defines the 360

size of the vicinities as 361

Vsize = N

P
(5) 362

where N is the number of features in the original dataset and 363

P the amount of selected pieces. 364

In this way, we can save up many operations if P is large. 365

On the other hand, the resulting subset could contain redundant 366

features, as the vicinity size is small. On the contrary, when P 367

is smaller, we will spend more time to process each piece and 368

the resulting subset will present lower intercorrelation among 369

the features included in it. To control the degree of redun- 370

dancy in the resulting subset may be beneficial depending 371

on the nature of the problem we are modeling. Other advan- 372

tage of splitting the feature space is that modern programming 373

languages offer tools to parallelize the computation, speeding 374

up the algorithm, since each piece can be processed indepen- 375

dently. This fact will be considered for future implementations 376

of FCBiP. 377

The evaluation method employed for determining the redun- 378

dancy of each feature is the computation of the mean 379

symmetrical uncertainty (6) between a given feature and its 380

neighbors 381

SU(Xi, V) = 1

Vsize − 1

∑

j=V;j�=i

SU
(
Xi, Xj

)
(6) 382

where V is the vicinity that contains the feature Xi. 383

In the scoring step, the aim is to classify the features 384

according to its relevance and redundancy into its piece. After 385

computing the mean symmetrical uncertainty for each feature, 386

they are sorted in ascending order (sequence 2). Next, the score 387

assigned to each feature is the sum of the position they occupy 388

in sequences 1 and 2. Finally, FCBFiP removes the features 389

with greater score until the subset contains k features. 390

The process to obtain the sequence 2 is described in Fig. 1. 391

First, we split the feature space in P fragments. Next, we com- 392

pute the SU for each feature into its vicinity. Finally, we order 393

the feature space in ascending SU order to get sequence 2. 394

This approach suffers a crucial limitation. The number 395

of pieces, P, has to be a divisor of N. Thus, when N is 396
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Fig. 1. Description of the process used to obtain the sequence 2.

TABLE I
DATASET INFORMATION

a prime number or has few divisors, a feature preselection397

using FBCF# is the best solution.398

IV. METHODS399

In this section, we describe the experiments carried out.400

We have selected four datasets corresponding with different401

classification problems and related to areas that could be402

extrapolated for IoT. Then, we have preprocessed them in403

order to suit them to the algorithm inputs. These preprocessing404

steps differ among them, as the formats of the datasets also405

differ. The following sections go in depth in the experiment406

setting.407

A. Tools408

The tools used to perform the experiments were Python409

libraries. For building the model we used Sklearn [29]. All410

algorithms were programmed using Numpy [30].411

B. Datasets412

We chose four datasets. To make the results more general,413

we looked for datasets whose ratio between #Instances-414

#Features and origin differ. Also the number of classes to415

forecast differs. Table I summarizes the characteristics of each416

dataset.417

The Orange [31] dataset was purposed for the KDD cup418

Orange challenge. Several authors have written about this419

challenge (e.g., [32] and [33]). This dataset is highly com-420

plex, therefore we used a small version of the original dataset.421

Additionally, we simplified the problem to solve only the churn 422

prediction task, therefore, this problem is a binary classifica- 423

tion. In the IoT industry, numerous services are rising up and 424

providers of services will compete in an emerging market. 425

Thus, churn prediction also applies to IoT (as a matter of fact 426

many lines affected if a customer changes the provider). 427

The KDD99 [34] dataset consists of about 4 370 000 428

data flows represented by 41 features. And the aim is to iden- 429

tify whether each flow corresponds to a computer attack or 430

to a normal behavior. Other works have already been pub- 431

lished using this dataset (e.g., [35]). In this experiment, we 432

used a reduced version of this dataset that includes 10% of all 433

samples (437 000). There are 23 different attacks to predict. 434

Although 41 is prime, this is not a limitation, since the algo- 435

rithm is capable of detecting this situation and dropping the 436

less relevant feature. IoT traffic goes through network infras- 437

tructures to implement the communication between devices. 438

Therefore, the IoT sensors are as sensitive to cyber-attacks as 439

other devices, such as personal computers. Thereby, guarantee- 440

ing the security of IoT devices is a must to assure the services. 441

Attack detection via machine learning could be a promising 442

solution for IoT attacks. 443

The CNAE-9 [36] dataset is extracted from a text mining 444

problem. The dataset contains 1080 free text business descrip- 445

tions of Brazilian companies [37]. The goal is to classify these 446

descriptions in nine categories. The features are 856 word 447

frequency records. IoT customers are typically enterprises. 448

Therefore, its description is quite useful in order to classify 449

target customers. 450

The LSVT voice [38] dataset was used to predict 451

Parkinson’s disease evolution [39]. It is a binary problem, 452

since persons labeled with “1” are patients whose disease 453

evolution is positive, and “0” the opposite case. This dataset 454

has 309 features corresponding to 126 patients. Thus, the 455

ratio between #Instances-#Features is lesser than 1. Digital 456

home virtual assistants constitute an emerging category of IoT 457

devices. In this context, machine learning models could be 458

employed to monitor patients based on their voice inputs. 459

C. Preprocessing 460

Due to the differences between the datasets used in our 461

experiments, we preprocessed each dataset differently. 462

The small Orange dataset contains artificial variables intro- 463

duced by the promoters of the challenge. Thus, we have 464

removed the features that only take a value, as they do not 465

give useful information [32]. Also we filled the missing values 466

with the feature mean value in case of the numeric features. 467

This dataset is formed by 40 categorical variables. These vari- 468

ables were encoded with strings to ensure the anonymity of the 469

data. Thus, we have mapped these variables with integer val- 470

ues, including the missing values. Finally, the resulting dataset 471

had 212 variables. To suit the KDD99 dataset to our experi- 472

ments we randomly shuffled the samples several times, since 473

the instances were sorted by the class to predict. Furthermore, 474

this dataset has three categorical features and the class coded 475

as string. All of them were mapped with integer values. The 476

CNAE-9 dataset also had the instances ordered. Thus the 477
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samples were shuffled randomly in the same way as the for-478

mer dataset. Besides, the dataset was normalized between 0479

and 1, as the classifier used for this dataset is sensitive to480

feature ranges. The LSVT voice dataset was also shuffled.481

Additionally, we normalized the dataset between 0 and 1, as482

the selected classifier requires. Finally, we have carried out483

a feature selection step, since the number 309 has only two484

divisors (3 and 103). To get more divisors, we applied the485

FCBF# algorithm with k = 306.486

D. Classifers Used487

For the Orange dataset, we chose a decision tree classifier488

because this kind of classifier needs less training time than489

others. To avoid overfitting the training set, the depth of the490

decision tree was limited to 6, and the minimum samples per491

leaf was set to 22.492

In the case of the KDD99 dataset, we also used a deci-493

sion tree with the same parameters as above to decrease the494

computing requirements for the experiments.495

For the CNAE-9 dataset, we modeled the problem by496

using support vector machines (SVMs). The regularization497

parameter, C, was fixed to 40.498

For the last dataset (LSVT voice), we observed that logis-499

tic linear regression slightly outperforms an SVM classifier.500

Thus, we used logistic regression to tackle this problem. The501

regularization parameter, C, was set to 1.502

For all multiclass problems (KDD99 and CNAE-9), the503

approach used to assign the final class to the samples was504

one-vs-the-rest strategy.505

E. Model Validation506

The measurements to assess the model validity were the507

F1 score for all problems, except for the Orange dataset. The508

F1 score was selected due to the fact that it gives information509

about the model precision and recall [40]. The F1 score is510

defined as511

F1 = 2
precision × recall

precision + recall
. (7)512

The AUC-ROC score was used for the Orange dataset,513

because it was the score proposed by the promoters of the514

challenge [32].515

As validation algorithm, we chose k-fold cross validation,516

since it is a low variance method. The folds were fixed to ten517

for all datasets; except for KDD99 dataset, we used fivefolds518

as the dataset contains enough number of samples. All experi-519

ments were repeated ten times, and we computed the mean of520

the resulting scores in order to rank the feature selection algo-521

rithms. For the multiclass problems, we computed the mean522

of the score over all possible classes.523

V. RESULTS524

Figs. 2–5 present the relevant results obtained from the525

experiments carried out, both model performance and execu-526

tion time are shown.527

Fig. 2 depicts the results obtained for the Orange dataset.528

FCBFiP did notably speed up the selection process when the529

Fig. 2. Performances obtained for Orange dataset.

feature space was divided in 106 and 53 pieces. However, they 530

did not get the highest AUC-ROC score, although, in most 531

cases, their performances are quite close to the other candi- 532

dates. Even, FCBFiP overcame FCBF# when models with 40 533

and 60 features were chosen. The FCBF algorithm returned 534

a subset with six features. For this subset size, the best results 535

were achieved by FCBFiP with P = 4, but the spent time 536

was significantly greater than the other algorithms. Note also 537

that, for a resulting subset with more than 120 features, it 538

was possible to obtain a model with similar performance that 539

FCBF#, but spending much less time. Finally, the global max- 540

imum performance was accomplished by FCBFiP with P = 2 541

for a model that included 180 features. However, the time 542

required was much higher than that for the FCBF# algorithm. 543

In the case of the KDD99 dataset, Fig. 3, we note 544

that FCBF# overcame its competitors when ten features are 545

selected in terms of accuracy. However, the FCBiP algorithm 546

obtained better performances than the other ones for models 547

with more than 10 features. FCBFiP with P = 10 achieved the 548

highest score for a model with 20 variables and the same hap- 549

pened with FCBFiP with P = 8 for 30 features. These results 550

reveal that the intercorrelation among features in a model may 551

be beneficial in specific cases. However, the time spent in these 552

cases was greater than the time spent by FCBF#. The best 553

results in terms of F1 score were obtained using FCBFiP with 554

P = 5 for a model with 12 features, but it lasted more time 555

than FCBF#. 556

Fig. 4 shows the results obtained modeling the CNAE-9 557

problem. Note that FCBF algorithm yielded a model with 558

47 features. In this case, the FCBF outperformed the other 559

candidates. The FCBF# and FCBFiP performances increased 560

as the number of features included in the model was gradually 561



IEE
E P

ro
of

EGEA et al.: INTELLIGENT IoT TRAFFIC CLASSIFICATION USING NOVEL SEARCH STRATEGY FOR FCBF SELECTION 7

Fig. 3. Performances obtained for KDD99 dataset.

Fig. 4. Performances obtained for CNAE-9 dataset.

raised. Also, the F1 scores obtained when applying FCBFiP562

differed considerably when the number of pieces varies for563

models with less than 500 features. In this case, the FCBFiP564

performances were very poor and were clearly overcome by565

FCBF and FCBF#. However, the best result was obtained by566

FCBFiP algorithm with P = 107 for a model with 500 fea-567

tures. It achieved higher score than FCBF# but lasting half568

Fig. 5. Performances obtained for LSVT-voice.

the time. These results show that penalizing the intercorrela- 569

tion between features may improve the accuracy of the model 570

for specific cases. 571

Fig. 5 shows the results obtained by modeling the LSVT 572

voice problem. As FCBFiP-2 and FCBFiP-6 obtained quite 573

high execution times to visualize the plot properly, both tem- 574

poral curves were excluded from the figure; the execution time 575

was around 145 s for FCBFiP-2 and 51 s in the instance of 576

FCBFiP-6. This dataset presents a ratio between #Instances- 577

#Features lower than 0.5. Note that FCBF returned a subset 578

with one feature. In this case, all algorithms converged in the 579

same solution. That fact may be due to the samples scarcity, 580

since it is related to the available information for the selec- 581

tion and modeling processes. Note that there are more cases 582

in which the different algorithms get the same results, for 583

example when a model with 15 features is selected. For 584

this experiment, the FCBFiP algorithm did not offer great 585

advantages in terms of execution time. Nonetheless, the most 586

accurate model resulted by using FCBFiP with P = 6 and 587

30 features. 588

VI. CONCLUSION 589

In this paper, we review some feature selection filters 590

based on correlation measurements, and we propose a novel 591

approach for providing new functionalities to the FCBF algo- 592

rithm in order to improve IoT-based intelligent networks in 593

industrial facilities. Our proposal consists of a modification of 594

the original FCBF algorithm, called FCBFiP, by changing the 595

evaluation method of the redundancy and including a scor- 596

ing process for ranking the variables. The new redundancy 597

evaluation was developed in two steps: first, by splitting the 598
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feature space in P pieces with the same size; and second, by599

evaluating the feature redundancy in the piece that contains600

it with a multivariate correlation measurement. This evalua-601

tion method allows us to set the number of pieces in which602

to split the whole feature space, being this parameter able to603

control both the execution time and the redundancy penalty604

in the selection process. The scoring process is carried out by605

ordering the sequences of features according to their relevance606

and redundancy measurements; assigning the scores according607

to the position each feature occupies in these sequences; and608

removing the features that obtain the worst scores. We val-609

idated our proposal by comparing our FCBFiP method with610

the FCBF and FCBF# algorithms.611

The datasets selected for the experiments were very differ-612

ent from each other to make the results more generalizable.613

Additionally, we modeled the problems by using different614

learning methods for each dataset, namely: decision trees,615

SVM, and logistic linear regression. The global highest616

performance for each experiment was achieved by our algo-617

rithm in terms of F1 score. Note that best F1 score does not618

always imply less execution time, parameter for which our619

algorithm offers a clear advantage. It is possible to obtain620

a subset with similar performances than the obtained by FCBF621

or FCBF# but spending much less time. Therefore, we have622

accomplished a more flexible solution by tuning a new design623

parameter. Furthermore, we can conclude that a lesser redun-624

dancy penalty improved the accuracy of the model built for625

some of the cases under study. We have found that the ratio626

between #Instances and #Features actually affects the selection627

process.628

Further work can be done opening new lines for upgrad-629

ing the FCBFiP algorithm: mixing evaluation methods (e.g.,630

including mutual information scores) and parallelizing oper-631

ations to speed up the algorithm. Besides, performing more632

experiments using other datasets might complete and expand633

the conclusions. For this aim, the code of the algorithm634

has been published in Gómez [41]. Feedbacks and debug635

reports are welcome. Moreover, a first implementation can636

be tested in an IoT environment, using sensor nodes to col-637

lect data and FCBFiP algorithm to classify traffic in order638

to check the increment of performance in the entire IoT639

system. Nonetheless, this algorithm has already been applied640

to a network traffic classification task in [42], where we641

employed FCBF to build consistent subsets in order to identify642

Internet traffic in two different contexts.643

In our future work we will check if this new method of644

features selection can be used to improve some other typi-645

cal parameters in IoT networks, like energy consumption of646

routing decisions.647
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A B S T R A C T 

Network Traffic Classification (NTC) is a key piece for network monitoring, Quality-
of-Service management and network security. Machine Learning algorithms have 
drawn the attention of many researchers during the last few years as a promising 
solution for network traffic classification. In Machine Learning, ensemble algorithms 
are classifiers formed by a set of base estimators that cooperate to build more complex 
models according to given training and classification strategies. Resulting models 
normally exhibit significant accuracy improvements compared to single estimators, 
but also extra time cost, which may obstruct the application of these methods to 
online NTC. This paper studies and compares the performance of seven popular 
ensemble algorithms based on Decision Trees, focusing on model accuracy, byte 
accuracy, and latency to determine whether ensemble learning can be properly 
applied to this modeling task. We show that some of the studied algorithms overcome 
single Decision Tree in terms of model accuracy and byte accuracy. However, the 
notable latency increase hinders the application of these methods in real time 
contexts. Additionally, we introduce a novel ensemble classifier that exploits the 
imbalanced populations presented in traffic networks datasets to achieve faster 
classifications. The experimental results show that our scheme retains the accuracy 
improvements of ensemble methods but with low latency punishment, enhancing the 
prospect of ensembles methods for online network traffic classification.

1. Introduction 
In the age of the Internet, vast amounts of devices are interconnected continuously exchanging information through data networks. The 
exponential growth of network traffic hinders Internet Services Providers (ISPs) to manage their infrastructures efficiently and Network Traffic 
Classification (NTC) plays a crucial role for this task. Traffic monitoring has attracted the attention of many researchers, and Machine Learning 
(ML) has shown to provide successful solutions in this area [1], [2]. NTC allows network administrators to reallocate resources (e.g. 
underutilizing links capacity) and reconfigure network parameters (e.g. disable or enable firewall ports) to prevent Quality of Services (QoS) 
decays or to react to malicious behaviors [1]. As inspecting all connection flows manually is certainly unfeasible, many researchers have 
endeavored to develop techniques for effective NTC [2]. Network traffic classifiers aim to automatically identify traffic applications that are 
being used at a given instant.  
NTC has to be carried out accounting for several requirements, traffic classifiers must accurately identify connection flows but, in real time 
conditions, there are other crucial aspects as: 

• Scalability. Traffic classifiers will be implemented in network devices where huge amounts of packets from different users go through,
so scalable classifiers are needed to manage these amounts of information [2].

• Memory Resources. Due to memory limitations in network nodes, classifiers must only store the most relevant information to
classify applications correctly and drop variables that are not useful [2].

• Latency. Identification process must be as fast as possible to determine applications that correspond to each flow before it ends or an
anomaly event causes QoS flaws in the network [1].

• Privacy. Privacy policies force network traffic classifiers not to use sensitive information obtained from users. This fact limits
considerably the available information for NTC [1], [2].

Many research lines have arisen in NTC since this discipline emerged. The earliest traffic classifiers were based on the port number used by 
each application [1], [2]. Since port-based tools only observe port numbers used by each connection flow without any information storage, they 
are the simplest and fastest classifiers. However, emerging applications have no fixed ports or use different port numbers while they are running, 
deteriorating the accuracy of port-based classifiers. Deep Packet Inspection (DPI) tools have appeared to overcome the former limitations [2]. 
DPI tools inspect packet payloads in order to check byte strings for matches with prefixed patterns. DPI based approaches give accurate results, 
but they also have critical limitations. DPI tools need to store packet contents and inspect them, thereby their memory consumption and latency 
increase excessively. Additionally, databases, which contain patterns associated with each application, must be maintained and updated with 
zero-day applications. The maintenance of these databases is quite arduous owing to the vertiginous increase in the number of Internet protocols 
and applications, and encrypted traffic also complicates pattern inspections. Finally, privacy policies constrain capacity of third parties to carry 
out lawful deep packet inspection [1]. In this line, ML is opening the ways to develop sophisticated network traffic classifiers, which achieve an 
acceptable tradeoff between computation complexity and accuracy respecting users’ privacy. 
In ML, ensemble algorithms are complex structures formed by sets of single estimators, called base estimators, which cooperate with each other 
according to training and classification strategies. A large number of studies have revealed the advantages of these methods in many diverse 
areas and this paper aims to assess the suitability of these algorithms for NTC. Since Decision Tree algorithms are one of the most suitable 
learning algorithm for online NTC [1], [3], [4], this work focuses on ensemble algorithms based on Decision Trees (DTs). Despite of their high 
computational complexity compared to single estimators, ensemble methods may provide more accurate predictive models. As no study of clear 
ensemble learning for online NTC has been provided yet, seven of the most popular ensemble algorithms are compared focusing on their 
capabilities to be applied to this issue in this paper. We evaluate classification accuracy metrics, but also assess the computational load of each 
candidate. The experimental results show that ensemble algorithms exhibit higher training and classification times than a single DT, which 
could obstruct their implementation in real time classifiers. As possible solution, we introduce a novel ensemble scheme that consists of a 
sequential chain of DTs, each DT acts as connection flow filter of its successor avoiding unnecessary and repetitive classifications to decrease 
training and classification times.  
The remainder of the article is organized as follows. Section 2 reviews relevant previous works in NTC. The methodology followed to perform 
our experiments and our ensemble algorithm are described in Section 3. We present and discuss the results obtained in each experiment in 
Section 4. Finally, the relevant conclusions of this work are presented in Section 5. 

2. Related Work 



The last trendy applications in NTC are based on ML algorithms. The fast-paced developments in ML have encouraged to research on these 
techniques in a wide number of research areas, an illustrative case is the use of clustering algorithms and Neural Networks for forecasting 
electricity demands [5], [6]. Although several challenging issues must be overcome yet to accomplish efficient network traffic classifiers [2], ML 
provides promising results for online NTC. Internet traffic identification based on ML consists of various processes, learning algorithms are 
trained using knowledge, which is previously acquired from captured network traces and recorded on a dataset. Dataset construction is a 
complicated process that dramatically affects the accuracy of traffic classifiers and their computational complexity. In online contexts, packet 
acquisition, training and classification times are prominent to get feasible classifiers. The main reasons why ML algorithms are excellent 
candidates as core of modern NTC systems are their capability of identifying network traffic respecting users´ privacy rights, their ability to 
handle encrypted traffic and also their capacity to be less computationally weighted than DPI tools retaining acceptable accuracies [1], [2].  
Two leading learning approaches are distinguished in ML: supervised and unsupervised learning. The main difference between both approaches 
is that supervised learning requires a labeling process using prior knowledge about the problem in order to establish a ground truths for each 
connection flow; whereas training unsupervised algorithms do not need to assign application labels to each flow, and they are able to cluster 
classes automatically. Some researchers have adopted one of these perspectives for NTC, but hybrid techniques, known as semi-supervised 
approaches, have been also applied showing interesting results. This work focuses on supervised learning, namely in DTs-based algorithms. 
The first relevant works in NTC [7], [8] demonstrated that application flows can be accurately identified by computing statistical attributes 
using few packets when connection flows start, introducing the concept of early stage classification. The authors used the first packets of TCP 
flows to compute instances, and they trained classifiers based on clustering methods. Although promising results were reported in terms of 
accuracy, they did not assess training and classification speed of their proposals. More recently, [9] has studied the efficient number of packets 
to perform early application identification. The authors used packet-size-based features extracted from bidirectional flows to train standard ML 
algorithms, including some ensemble algorithms also considered in this work (ADA Boosting and Bagging algorithm). They concluded that the 
optimal number of packets to correctly classify TCP flows is 5-7 and it depends on network environments. Also [4] studied how many packets 
could be considered to classify internet applications. They used 12 features to identify encrypted flows and compared C4.5 DT to ADA Boosting 
algorithm with C4.5 DT as base estimator, only one ensemble algorithm is considered in this work. 
The earliest comparison among supervised learning algorithms for NTC was carried out by [3]. They compared performances between standard 
algorithms: Bayesian Network, C4.5 decision tree, Naïve Bayes and Naïve Bayes Trees. Furthermore, they showed that Feature Selection (FS) 
algorithms based on correlation measures, such as Consistency-based FS, are more suitable for NTC datasets than other approaches. Also, they 
found that C4.5 Decision Trees exhibited the best performances in accuracy and classification speed. [3] is one of the earliest studies that 
compares computational costs of ML algorithms for NTC. Later, [10] evaluates classifier performances focusing on Accuracy and Recall scores, 
and also on classification rate and build time (or training time). Additionally, [10] observed the influence of the composition of training data  
and the effect of configuring dynamic-port applications on algorithm accuracies. They trained Bayesian Networks and DT algorithms showing 
that sample composition of training dataset affects considerably classifier performances. Finally, they discussed the importance of labeling 
correctly connection flows. 
Many authors have developed sophisticated ML classifiers to solve open issues in NTC. In [11], the authors combined weak learning algorithms 
to get more accurate predictive models, this classifier is a clear example of ensemble algorithm. Furthermore, they showed that differences 
among network scenarios affect classifier performances (type of applications and protocols detected, traffic distributions, link capacities and so 
on). Another example of ensemble algorithm is presented in [12] exploiting Sub-Space Clustering, Evidence Accumulation and Hierarchical 
Clustering concepts. In this work a semi-supervised approach is presented to create applications groups using clustering algorithms and assign 
network services labels to unknown connections in a supervised fashion. In order to create robust application groups the authors combined 
several clustering models using different partitions of the same dataset. A Flow-level ML classifier scheme is presented in [13], the authors 
designed a modular architecture for High-speed links traffic classification using 𝑚𝑚 ensemble classifiers. Namely, they used OneVsRest strategy, 
which is also considered in this paper, but they did not assess latency of their proposal. In [14], a Robust Network Traffic classifier is presented 
whose main goal is to identify zero-day applications. The authors provided a parameter optimization process and compared their algorithm to 
Random Forest, correlation-based classification, semi-supervised clustering and Support Vector Machines, showing that the Robust Traffic 
Classifier overcomes other approaches. In [15], the authors proposed a self-learning classifier that starts with small number of training instances 
and retrains itself to improve the model performances. They implemented a decision maker to extend the number of samples in training datasets 
using Random Forest algorithm. Accuracy improvements were reported in each retraining iteration. Other important open topic in NTC is the 
effect of subflow sampling over classifier performances, which is discussed in [16] and [17]. Additionally, Naïves Bayes, Bayesian Neural 
Networks and Support Vector Machines algorithms are independently studied in [18], [19] and [20]. For a more general literature revision of 
Internet Classification area we suggest [21] and [22]. In [21] the authors review operational aspect of traffic analysis and its state-of-the-art,  
finally they discuss and compare relevant contributions for internet application identification, including DPI and port-based techniques; and 
several classification approaches are reviewed and compared using seven different network traces in [22]. 
Although some previous works evaluated ensemble classifiers for NTC ([4], [11], [14], [15]), none of them has compared standard ensemble 
methods focusing on both, accuracy and latency performances. This work tries to fill this gap by comparing ensemble schemes through several 
experiments assessing accuracy and latency. Additionally to ensemble algorithms comparison, a novel ensemble scheme is presented to reduce 
training and classification times while retaining accuracy improvements of ensemble learning respect to single DTs. For more generality, our 
experiments have been performed using network traffic captured in two quite different environments, three traces were captured in an ISP 
backbone network and the other three were captured in host computers simulating human behaviors. Below we present the methodology 
followed in the experiments. 
 
3. Methodology 
This section describes the methodology used in the experiments and presents the ensemble algorithms considered (Section 3.4), as well as our 
ensemble scheme (Section 3.5). All programs used in this paper were developed using Python2.7, the library Scikit-Learn implements the ML 
algorithms studied and the network traffic traces were processed using Scapy. Scikit-Learn is a well-known ML library maintained by hundreds 
of users and whose usage is spreading over numerous research communities. Although other tools are preferred in production due to their lesser 
computational complexity, this library is a suitable choice for experimental and prototyping tasks as ours. 

3.1. Datasets 
For our experiments we have collected six network traces captured in two quite different environments. The Internet traffic that goes through 
different networks differs notably between environments in the type of applications found and their distribution, it depends on the usage of 
network services by users and on type of entity that is serviced (enterprises, educational institutions, private houses and so on). Imbalanced 
label distributions in datasets significantly affect the performances of learning algorithms [23]. Thus, using several traffic traces extracted from 
different network environments helps to get a better understanding of the performances of traffic classifiers. Next, we introduce the network 
traces employed. 

3.1.1. ISP traces 
The ISP traces were shared by an organization that provides Internet connection to more than two millions of users across Spain. The network 
traffic was captured at a node in the ISP network backbone where traffic rates of 7 GB/s are supported at high load hours. Tcpdump was 
employed for capturing data through a port mirror for redirecting network packets and each trace lasts approximately five minutes. The 
processing of these traces was performed respecting privacy rights of users in a server enabled for this purpose. These traces have been captured 
recently, thus the presence of encrypted applications and the latest protocols is ensured. At the request of the traces providers, the name does 
not appear explicitly in this work due to privacy concerns.  

3.1.2. HOST traces 



Privacy policies obstruct the possibility of sharing network traces with the application layer from institutions or ISPs, and traces without 
application layers can be labeled exclusively using Port-Based tools with low trust. Due to the difficulty in getting appropriate network traffic 
traces, we have used three network traces manually generated in three different hosts under a controlled environment. These traces have 
already been used in others works to validate DPI tools [24]. The information about the network captures is shown in Table 1. 

3.1.3. Attributes generation, Feature Selection and labeling process  
An ad-hoc developed tool of our own was developed to extract the datasets to feed the ML algorithms from the network traces. Our software 
takes as input network captures stored in pcap files and the number of packets to be considered to compute the statistical attributes. Our tool 
is able to split initial pcap files in traces that contain packets associated with each bidirectional connection flow. Once each flow is completely 
stored in its corresponding trace file, they are processed to compute instances with their associated application label. The output is a dataset 
that contains 77 statistics regarding number of packets, packets sizes, inter-arrival packet times, TCP windows and so. The whole collection of 
attributes is presented at the end of this paper in Annex 1 and it includes statistics accounting for outgoing, ingoing and both directions of flows. 
In our experiments only the first five packets at the beginning of each flow were used to compute all statistical attributes. Because correlation-
based filters have proven to be a proper FS algorithms in NTC, we have applied one of these algorithms in order to reduce the attribute space 
for all datasets. 

For label assignment, we used a DPI tool called nDPI [25], publicly available in [26]. NDPI is able to handle encrypted traffic and is one of the 
most accurate open source DPI applications [27]. This tool identifies web services, as YouTube or Google, along with an extended number of 
protocols. However nDPI was not capable of labeling all flows in our traces and some flows were labeled as unknown. Unknown flows were 
depreciated in this work, since applications marked as unknown could not be determined with certainty. In other cases, some encrypted flows 
were identified as SSL, and port-based information was examined to distinguish between HTTPS traffic and others, as encrypted SSH 
connections. Both, UDP and TCP flows, were employed in our experiments. Finally, different applications and protocols were detected among 
the six network traces; and each application was mapped to an application group according to its protocol properties and purposes, except DNS 
and NTP. The application grouping was carried out according to the following protocol types: P2P includes applications as eMule, BitTorrent or 
eDonkey; WWW includes all HTTP and HTTPS queries to Google, Facebook, GMail and other websites; INT (INTeractive) includes protocols as 
SSH, Telnet, RDP and so on; Services & Control (S/C) includes network control protocols and other services as NetBios, Radius, Kerberos and 
so forth; Bulk includes FTP and similar protocols; Media traffic includes RTP, Skype and so on; and DB includes MsSQL, MySQL and more 
database applications. Other applications, as email protocols, were detected and also depreciated from this study due to their low populations. 

Table 2 shows the traffic distributions found in our datasets after label assignment. Note that the network traffics are highly imbalanced 
according to the percentage of instances per class (%I) for the two network environments under study. In the instances of ISP-1,2 and 3, more 
than 70% of the samples belong to WWW traffic, and the absence of P2P, Media and Bulk traffics may be due to its restricted used at educational 
environments. Additionally, lower accuracy performances are expected for ISP traces owing to the point of capture. In the middle of networks, 
packets statistics suffer from degradation due to multipath routing, packet loss and packet duplication. Also HOST datasets are highly 
imbalanced, note that P2P, INT and DNS are the predominant application flows in ISP-1,2 and 3 respectively. Non-uniform sample 
distributions, which generally characterized NTC datasets, are exploited by the novel ensemble scheme proposed in this work to achieve faster 
classification and training times. Finally, note that the number of samples corresponding to Bulk and Media flows are scarce in HOST datasets, 
nevertheless they have an important impact on network resources due to the bytes they produce to run. 

The initial datasets were subjected to a Feature Selection (FS) process. Since correlation-based FS algorithms have found effective for NTC [3], 
three versions of the Fast Correlation-Based Feature selection algorithm [28], [29] have been implemented for this process. As output the FS 
algorithms return rankings of attributes ordered according its relevance for the modelling task. These algorithms have been made publicly 
available in at [30]. Namely, we employed the FCBFiP version since it yielded the most accurate models in the preliminary results using the 
lesser number of attributes. 

As final step, the datasets generated were split in training and validation subsets via a stratified technique to preserve the percentages of class 
populations in the training and validation phase. The 70% of the samples were used for training and the rest for validation. Next, parameters 
of base estimators were set using 10-fold stratified cross validation excluding the validation samples from this process, and no resampling 
techniques were employed avoiding to alter the class populations. This process was repeated for each iteration of the experiments. 

Table 2. Datasets Information. %I denotes the percentage of instances in the dataset and %B the percentage of Bytes in the network capture 

P2P WWW DNS INT S/C Bulk Media NTP DB 

%I %B %I %B %I %B %I %B %I %B %I %B %I %B %I %B %I %B 

ISP-1 0.17 <0.01 80.46 99.60 16.28 0.08 1.99 0.10 0.73 0.24 - - - - 0.37 <0.01 - - 

 ISP-2 - - 75.30 99.60 21.50 0.10 2.52 0.12 0.35 0.18 - - - - 0.34 <0.01 - - 

ISP-3 - - 71.70 99.60 24.98 0.11 2.66 0.12 0.37 0.22 - - - - 0.29 <0.01 - - 

HOST-1 33.00 15.90 32.83 27.61 9.12 0.09 10.30 2.73 5.96 0.06 5.72 23.71 3.07 29.9 - - - - 

HOST-2 14.30 7.90 17.10 11.80 7.21 0.04 55.40 67.1 1.06 0.01 3.43 6.22 1.50 6.93 - - - - 

HOST-3 2.01 38.10 8.31 39.06 79.81 4.05 4.94 2.58 - - 0.68 6.01 0.42 9.38 3.73 0.79 0.10 0.03 

3.2. Evaluation Environment 
All experiments were performed in a workstation with 12GB of memory RAM and CPU AMD A10 6800K (4.1Ghz). Although the CPU has four 
cores and Scikit-Learn allows to train models in parallel, we used only one for our experiments in order to isolate each experiment in a unique 
processing core. As decision trees are sensitive to random initializations at the beginning of their learning phase, they suffer from variance 

Table 1. Network Traffic Traces Information 

Start date Duration Datasize # Packets # Flows 

ISP-1 17/01/2017 298 seconds 12.12 GB 8863530 231137 

ISP-2 25/01/2017 259 seconds 16.96 GB 12293836 266165 

ISP-3 25/01/2017 280 seconds 17.64 GB 12966391 307605 

HOST-1 25/02/2013 ~59 days 9438 MB 5062825 121293 

HOST-2 25/02/2013 ~32 days 22 GB 21000000 245627 

HOST-3 25/02/2013 ~65 days 7113 MB 7203000 744814 



when they are trained. To diminish the effects of models variance, the experiments were repeated ten times and the mean of resulted metrics 
is reported in Results section. 

3.3. Performance Metrics & Statistical Validation 
We have studied several metrics to compare the proposed algorithms and applied a statistical validation procedure over the results as we 
describe below. Model performances were assessed isolating completely the validation datasets from the training processes.   

3.3.1. Overall Accuracy 
Overall Accuracy (OA) is the percentage of samples labeled correctly. In this way, OA is defined as 

𝑂𝑂𝑂𝑂 = ∑𝑇𝑇𝑇𝑇𝑖𝑖
#𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(1) 

Where 𝑇𝑇𝑇𝑇𝑖𝑖 denotes True Positives associated with the class 𝑖𝑖 and #Samples denotes the number of samples contained in the datasets. 
3.3.2. Class Accuracies 

Because OA is the percentage of samples correctly labeled and network traffic is highly imbalanced, great precisions over high populated traffic 
will hide errors on application flows with low populations in the datasets (Table 2). Therefore we included the individual accuracy for each class. 
Thus, we define the Accuracy for a given class 𝑖𝑖 as 

𝐴𝐴𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑖𝑖
#𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖

(2) 

Where #𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 is the number of samples associated with the class 𝑖𝑖. 
3.3.3. Byte Accuracy 

OA and Class Accuracies alone could be insufficient to assess model performances, it is interesting to study how many bytes have been accurately 
labeled to appreciate more clearly algorithm reliabilities. Thus, as it is an insightful metric in NTC, we have included the Byte Accuracy metric 
(BA) in our comparison, BA is defined as 

𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(3) 

3.3.4. Number of Features used in the models 
As scalability and latency are important properties for online NTC classifiers, we have included in our results the number of statistical attributes 
used by each algorithm. Furthermore, we provide a model complexity evaluation to determine if ensemble algorithms are able to equal or 
overcome a single estimator performances using more reduced subsets, and thus, bringing computational benefits in the attribute computing 
phase. 

3.3.5. Training and Classification times 
Finally, we measured Training and Classification times to quantify computational punishment of using different ensemble schemes. Although 
Classification time is more prominent in online NTC, novel classifiers include retraining phases, therefore, Training times are also relevant in 
our comparison.  

3.3.6. Statistical Validation: Friedman´s Test 
Since the average of measurements obtained from experiments using different datasets might sometimes be insufficient to validate general 
observations, we conducted a statistical validation process to make our results more rigorous [31], [32]. After measuring the previous properties 
for each algorithm over the six datasets studied, we have applied a well-known statistical method to compare multiple algorithms, the 
Friedman´s test. The Friedman´s test is a non-parametric statistical method for detecting differences amongst more than two related 
experiments. This procedure ranks the compared algorithms according to their results obtained for each dataset. The best scored algorithm is 
assigned the value 1 and the worst scored gets the value 𝑘𝑘, being 𝑘𝑘 the number of compared algorithms. The Friedman´s test is computed by 
equation (4), where 𝑅𝑅𝑗𝑗 is the average score for the algorithm 𝑗𝑗 over the 𝑁𝑁 datasets, with 𝑁𝑁 = 6 for this case.  

𝜒𝜒2𝐹𝐹 = 12𝑁𝑁
𝑘𝑘∗(𝑘𝑘+1)

�∑ 𝑅𝑅𝑗𝑗2𝑗𝑗 − 0.25𝑘𝑘 ∗ (𝑘𝑘 + 1)2� (4) 

Once 𝜒𝜒2𝐹𝐹 is computed, the p-value is obtained from a chi-squared random distribution with 𝑘𝑘 − 1 degrees of freedom. We have set the significance 
threshold at 𝛼𝛼 = 0.05. Thereby if the p-value is lesser than 𝛼𝛼, the null hypothesis, which states that statistical difference amongst candidates 
does not exist, is rejected.  

In addition to the Friedman´s test, we have applied a post-hoc correction method called the Holm´s procedure [32]. This method uses the adjusted 
p-values (APVs) to compare the performance of a control algorithm with respect to the rest, normally the control algorithm is the best scored in 
the Friedman´s ranking. The algorithms are sorted according to their average scores 𝑅𝑅𝑗𝑗, and the associated APVs are computed as 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 =
𝛼𝛼 (𝑘𝑘 − 𝑝𝑝)⁄  where 𝑝𝑝 is the position of the algorithm 𝑗𝑗 in the ordered ranking. The value zj is computed for each algorithm using equation (5), where 
𝑅𝑅𝑖𝑖 is the average score of the control algorithm in the Friedman´s test. The value 𝑧𝑧𝑗𝑗 follows a normal distribution and its associated probability 
𝑝𝑝𝑗𝑗 can be obtained evaluating 𝑍𝑍�𝑧𝑧𝑗𝑗�. If 𝑝𝑝𝑗𝑗 < 𝐴𝐴𝐴𝐴𝐴𝐴𝐽𝐽, we conclude that a significant difference exists among the algorithm 𝑗𝑗 and the control algorithm. 

𝑧𝑧𝑗𝑗 = �𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑗𝑗� �𝑘𝑘(𝑘𝑘+1)
6𝑛𝑛

� (5) 

This statistical validation procedure is similar to the methods applied in [9]. For more information about these methods read [31] and [32]. 
3.4. Ensemble Classifiers 

Ensemble classifiers are learning algorithms composed by multiple base estimators along with training and classification strategies to make 
final decisions [33]–[39]. Since DTs yield satisfactory results in NTC ([1], [3], [4]), we have selected the CART DT algorithm, provided by the 
Scikit-learn library, as base estimator for the ensemble structures. Ensemble algorithms can be distinguished according to the training and 
classification strategies they employ. Scikit-learn library contains a wide number of popular ensemble algorithms, some of these algorithms 
have been considered for the experiments presented in this paper. Below, we briefly describe the ensemble algorithms selected. 

• OneVsRest. One classifier is built per class to distinguish one class from the rest [38], thereby one dataset is generated for each class
to train each base estimator. Finally, unknown samples are classified according to the estimate of the posterior probability for each 
class: given an unknown sample, the class whose posterior probability is maximum is assigned to that sample. 



• OneVsOne. One base estimator is trained to distinguish between two different classes excluding the rest from the training. Therefore,
𝑛𝑛(𝑛𝑛 − 1)/2 datasets and classifiers are built for 𝑛𝑛 classes. The final label is assigned by majority voting: the most voted class amongst
all classifiers is the class associated with the unknown sample [38].

• Error-Correcting Output-code (OutputCode). One binary code is associated with each class and one classifier is trained in
parallel per each bit. In classification, a new instance generates a code that is projected onto the binary space, and the closest label to
the projected point is assigned to the unknown sample [36]. The code size is a design parameter that determines the number of
classifiers in the model, 12 base estimators were used in this work.

• Adaboost classifier (ADA). This algorithm is composed by a set of weak estimators that are trained sequentially and a set of weights
associated with each class [33], [34]. In each training iteration, misclassified classes are awarded by increasing their associated
weights. In contrast, classes with less error rate are punished decreasing their weights. Adaboost implements training and reweighting
phases in its training process that speed it down considerably. Finally, Label assignment is performed via weighted majority voting.
The number of estimators were set to 20 for Adaboost in the experiments to reach a right tradeoff between latency and accuracy.

• Bagging algorithm. In this instance a large number of base estimators are trained in parallel using different datasets [33], [40].
Each dataset is generated applying bootstrap resampling and is used to train only one classifier. Majority voting strategy is used for
label assignment. We set the number of base estimators to 20, since including many estimators leads to low classification and training
speeds, whereas a low number of base estimators could lead to poor accuracy.

• Random Forest (RF). RF is a combination of several DTs, whose training process is based on the generation of random subsets from
the original dataset to feed each DT [34], [37]. Unlike Bagging, each subset is built by random selection of samples and attributes. The
final label assignment is based on majority voting. Such as ADA and Bagging, the number of trees in the forest were set to 20.

• Extremely Randomized Trees (ExtraTrees). This algorithm is very similar to Random Forest but with two differences: ExtraTrees
does not generate new training datasets but instead it uses the initial one; and also it does not choose the best splits, but chooses the
split randomly [39]. Such as the former algorithms, the number of trees were set to 20.

Finally, our proposed ensemble algorithm was considered for the comparison. We describe this novel proposal, called Tailored Decision Tree 
Chain (T-DTC), in the following section.  

3.5. Our proposal: Tailored Decision Tree Chain 
As it is discussed in Section 3.1, network traffic is highly imbalanced (Table 2), e.g. DNS traffic is quite more populated than Bulk, S/C and 
others in our datasets. This fact is not exclusive of the datasets used in this study, network traffic has been studied by several researchers 
showing that traffic distributions are highly imbalanced in many environments [41], [42].  Furthermore, some type of flows are easier to identify 
than others as our experimental results show. These facts could be exploited to reach more efficient ensemble classifiers for online NTC. Next, 
a novel ensemble algorithm, called Tailored Decision Tree Chain (T-DTC), is introduced. 

3.5.1. Ensemble Scheme & Classification process 
Our proposal is based on the use of the fastest and most accurate DTs to classify and filter out samples avoiding repetitive classification of 
instances that are easily identified. In our scheme, a set of classifiers are sequentially ordered as a chain and trained to distinguish one traffic 
application from the rest, so that when T-DTC assigns an application label to an unknown sample, the connection flow is filtered out from the 
classification process and it is not classified in later stages. On the contrary, when T-DTC assigns the label “other” to an unknown sample, the 
instance passes to the ensuing classification stage to check if the sample corresponds to other application flow in the chain. This process is 
redundant until an application is assigned to the unknown sample and, immediately after the flow is identified, it is output from the 
classification process. Figure 1 depicts this idea for the classes contained in ISP-1 once an appropriate order of classifiers was determined by 
the procedure described in next section. Note that more than 80% of the network traffic is classified by the first stage requiring being identified 
only by one DT; above 95% of flows are identified in the following two stages and roughly the 2% of the instances reach the two last classifiers 
passing through all classification stages. Note also that this scheme requires only 𝑛𝑛 − 1 classifiers (where 𝑛𝑛 is the number of application flows 
to identify), since the last two classes share the same DT. This approach requires less classifiers than other strategies that are included in this 
paper (e.g. OneVsRest is composed by 𝑛𝑛 classifiers, and OneVsOne uses ((𝑛𝑛 − 1) ∗ 𝑛𝑛/2)) consuming less memory resources than other ensemble 
schemes. Next, we present the procedure followed to determine the proper order of DTs into T-DTC. 

3.5.2. Ordering the classifiers 
The order of the classifiers in the chain is crucial, since if inaccurate classifiers are put at the beginning of the chain, misclassified samples will 
not reach their corresponding DT and accuracy performances will diminish drastically. Thus, the fastest and most accurate DT must be put in 
the first classification stages. As the number of combinations grows exponentially as more type of applications to identify and testing all 
combinations is computationally weighted, we have studied the error metrics amongst classes to correctly order the classifiers in our structure. 
For that purpose, we trained a single DT and inspected the confusion matrix using only the training dataset for each network capture. This 
process considerably reduces the number of combinations considered as proper orders resulting in a bound set of choices. Finally, the order of 
the classifiers was chosen by assessing OA among the possibilities via cross validation. 
The best order for the six datasets using this procedure were: WWW-DNS-NTP-INT-S/C-P2P for ISP-1 (as Fig 1 shows); WWW-DNS-NTP-INT-
S/C for ISP-2; WWW-DNS-INT-S/C-NTP for ISP-3; P2P-S/C-WWW-DNS-INT-Bulk-Media for HOST-1; INT-P2P-DNS-WWW-Bulk-Media-S/C 
for HOST-2; and NTP-DNS-INT-P2P-WWW-DB-Bulk-Media for HOST-3. 

Figure  1. Tailored Decission Tree Chain Structure for ISP-1 once the classifiers were ordered 

3.5.3. Training process 
Considering 𝑛𝑛 traffic applications, our algorithm generates 𝑛𝑛 − 1 datasets from the initial one to train each DT. For example, according to Fig 1 
T-DTC needs to input the whole training dataset to the first classifier, but reassigning the labels different from WWW to “other”. In the instance 
of the second classifier in the chain, as WWW traffic has been identified in the previous stage, the samples belonging to this traffic application 
have to be removed from the dataset; and samples that do not belong to DNS traffic are labeled as “other”. This process is repeated until reaching 
the last classifier, which do not need label reassignments. Once all datasets are generated, classifiers in chain were trained in similar way to 
other schemes, as OneVsOne, OneVsRest or OutputCode.  



4. Results 
In this section, we discuss the experimental results obtained from comparing the ensemble algorithms, including our proposal, to a single DT. 
In order to show a clearer comparison of the ensemble algorithms, we have remarked the model that provides the best OA score for each 
algorithm varying the size of the subsets according to the attribute ranking provided by the FS algorithm. We present and discuss accuracy 
metrics in Section 4.1, and computational time during training and classification phases in Section 4.2; and later, the results presented are 
undergone to a statistical validation procedure in Section 4.3. Below, we discuss model complexity in terms of number of statistical attributes 
that each classifier has to compute to accurately classify Internet traffic. In Section 4.4, we evaluate how many attributes at least each ensemble 
algorithm need including in its training phase to outperform or equal the best DT models. Through this experiment, we find out the models that 
provide better performances than DT using the less number of statistical attributes. Finally, we provide a summary of our results in Section 
4.5. 

4.1. Overall Accuracy and Byte Accuracy Evaluation 
Table 3 contains the results obtained using the three datasets captured in the ISP backbone and Figure 2 depicts graphically the class accuracies 
obtained for all network traces. Figure 2 is a colormap that represents the accuracies obtained for each traffic class detected in the six network 
traces. The horizontal axis contains the applications found in each network traces, meanwhile each row of the vertical axis corresponds to each 
algorithm. In the case of ISP-1, we observe that the best results in terms of Overall Accuracy (OA) were provided by T-DTC, followed by 
OutputCode and OneVsRest. These three algorithms improve the accuracy for high populated traffic, WWW and DNS, resulting in higher OA 
scores. Ensemble algorithms generally overcome a single DT with the exception of OneVsOne and ExtraTrees. Although ADA yields high 
accuracy scores for WWW and DNS traffics, its performances over the rest of traffic applications are very poor affecting negatively the OA score. 
Examining the Byte Accuracy scores (BA), we find that the highest performances are provided by T-DTC, Bagging and OutputCode. In general, 
the learning algorithms yield similar results for the three ISP datasets, the three highest OA and BA for ISP-2 were provided by T-DTC, 
OutputCode and OneVsRest. Finally, the most accurate models in terms of OA for ISP-3 were T-DTC, Outputcode and OneVsRest; and, in terms 
of BA, OneVsRest outperforms OutputCode and T-DTC remains as the best score.  

Table 4 shows the accuracy scores obtained for the network traffic captured simulating host activity artificially. The best algorithm for HOST-
1 in terms of OA was Random Forest, followed by Bagging and Extremely Randomized Trees. Observing Table 4 and Figure 2 we find that the 
greater accuracies identifying the high populated classes (P2P, WWW and INT) compared to a single DT result in OA improvements for these 
three algorithms. In general, the OA using a single DT is improved by most of ensemble algorithms, only ADA Boosting and OneVsOne got 
worse OA for HOST-1. If we focus on BA the observations change, the winner algorithm is OneVsOne nearly followed by ExtraTrees and RF. 
Finally, ADA and T-DTC yielded poor byte accuracies due to accuracy diminishing for Bulk and Media flows. In the instance of T-DTC, the 
accuracy loss was caused by error propagation between classifiers in the chain, when an application flow is misclassified in the first stages, T-
DTC will yield low accuracy for that; error propagation is discussed below in this section. For HOST-2, the three most accurate models in terms 
of OA were provided by ExtraTrees, RF and OutputCode, respectively; while ADA yielded very poor results as in the former network trace. The 
accuracy improvements for the predominant application flows, especially WWW, result in the most of ensemble algorithms overcoming single 
estimator OA. Observing Byte Accuracy, none of the ensemble methods overcomes a single DT, the only ensemble algorithm that provides Byte 
Accuracy near to DT´s are T-DTC and OneVsOne for HOST-2. This BA reduction is owing to the fact that most of the ensemble methods yield 
worse results than a DT for Bulk and Media traffic, whose impact over the byte distribution is decisive (see Table 2). In the case of T-DTC, the 
accuracy loss over Bulk and Media is offset by a better interactive (INT) traffic identification. In the instance of HOST-3, we can observe that 
the greatest OAs were provided by RF, OutputCode and T-DTC. Whereas the best BAs were resulted from training T-DTC, ExtraTrees and 
OutputCode, respectively. Although in terms of OA the ensemble models do not seem to provide significant improvements for HOST-3, the BA 
for these algorithms is notably better than DT´s. 

Comparing the results obtained in the two network environments, we can observe that ensemble learning generally provides better results in 
terms of Overall Accuracy and Byte Accuracy than a single DT for ISP and HOST traces. Only ADA algorithm exhibited worse performances 
than a single DT for most of cases studied making its application to NTC not recommended. Also, we can observe that perfect ensemble algorithm 
that performs clearly better than other candidates for all traces is not found. However, T-DTC performances are the best or very close to the 
best for all traces except HOST-1. The excellent performances achieved in most cases is due to when the OA and Class Accuracies are higher 
for a given dataset, less errors propagate from the first classification stages of T-DTC to following stages, meaning that consistency of labels 
contained in datasets is a determinant fact for T-DTC. Unlike HOST-2,3 and ISP-1,2,3, T-DTC suffers from deterioration of BA when it is 
trained with the dataset HOST-1. This performance decay is due to the poor Bulk and Media accuracies for this dataset, note that Bulk and 
Media traffic populate an important percentage of Bytes in this network capture (see Table 2), and thus the errors committed over these traffic 
flows have a major influence on the general performances of classifiers. Other remarkable observation is that when an application flow is more 
populated in a NTC dataset, classifiers normally exhibit better performances on it than other traffics, being class distributions an important 
fact for NTC. Finally, a substantial difference is found between the datasets obtained from a host (HOST-1,2,3) and datasets obtained from ISP 
(ISP-1,2,3). Due to the fact that ISP-1,2,3 were captured at a point placed in the middle of the backbone, the statistical attributes have higher 
variance hindering the general performances in terms of accuracy metrics, especially for P2P, DNS, S/C and INT flows. Note that high populated 
classes in HOST and ISP traces, as WWW and DNS, are more resilient to high variance of the statistical attributes. Furthermore, ISP traces 
are more cutting edge, and consequently, the presence of encrypted connections is higher than in HOST traces complicating the identification 
of application flows, as WWW or INT, which permit the use of encryption protocols.  

Figure  2. Class Accuracies for the algorithms and network traces studied 



 Table 3. General performances for ISP traces after applying Feature 
Selection 

OA BA # Features 

ISP-1 

        DT 0,95685 0,99417 9 

        OneVsRest 0,96502 0,99850 11 

         OneVsOne 0,95680 0,99445 8 

         RF 0,96081 0,99586 8 

         Bagging 0,96122 0,99897 10 

         ExtraTrees 0,95249 0,99336 27 

         OuputCode 0,97011 0,99873 19 

         ADA 0,95915 0,99698 6 

         T-DTC 0,97400 0,99903 14 

ISP-2 

        DT 0,95310 0,93077 32 

        OneVsRest 0,96681 0,95995 22 

         OneVsOne 0,95384 0,95169 30 

         RF 0,95962 0,95390 20 

         Bagging 0,95467 0,95002 12 

         ExtraTrees 0,95492 0,94860 25 

         OuputCode 0,97396 0,96047 28 

         ADA 0,95587 0,94488 13 

         T-DTC 0,97604 0,97317 22 

ISP-3 

        DT 0,94817 0,95078 22 

        OneVsRest 0,96697 0,97340 22 

         OneVsOne 0,94845 0,95943 21 

         RF 0,95434 0,96342 18 

         Bagging 0,94889 0,95867 13 

         ExtraTrees 0,95476 0,92762 14 

         OuputCode 0,97003 0,97126 23 

         ADA 0,95055 0,96480 13 

         T-DTC 0,97603 0,97936 18 

Table 4. General performances for HOST traces after applying Feature 
Selection 

OA BA # Features 

HOST-1 

        DT 0,98652 0,94162 30 

        OneVsRest 0,98718 0,94407 22 

         OneVsOne 0,98646 0,95824 30 

         RF 0,99041 0,95611 30 

         Bagging 0,99005 0,95502 29 

         ExtraTrees 0,98986 0,95709 30 

         OuputCode 0,98840 0,94910 30 

         ADA 0,92842 0,59624 8 

         T-DTC 0,98790 0,91688 43 

HOST-2 

        DT 0,99192 0,99452 32 

        OneVsRest 0,99258 0,97969 20 

         OneVsOne 0,99194 0,99357 16 

         RF 0,99346 0,98962 12 

         Bagging 0,99330 0,98419 12 

         ExtraTrees 0,99348 0,98556 14 

         OuputCode 0,99336 0,98118 22 

         ADA 0,92842 0,89946 9 

         T-DTC 0,99319 0,99447 38 

HOST-3 

        DT 0,99742 0,95806 38 

        OneVsRest 0,99702 0,95518 42 

         OneVsOne 0,99750 0,95263 42 

         RF 0,99813 0,96934 42 

         Bagging 0,99590 0,96492 43 

         ExtraTrees 0,99363 0,97793 42 

         OuputCode 0,99795 0,97057 30 

         ADA 0,97526 0,87591 35 

         T-DTC 0,99792 0,97832 21 

4.2. Time Performance Comparison 
Table 5 contains the results obtained from measuring the computational times in both, Training and Classification phases, for the models 
included in Table 3 and 4. Since ADA yielded poor performances for OA and BA, it has been depreciated from this discussion. As expected, the 
fastest algorithm is a single DT compared to ensemble classifiers for all traces due to its lesser complexity.  

Table 5. Training and Classification time for the traces studied (in seconds) 

ISP-1 ISP-2 ISP-3 HOST-1 HOST-2 HOST-3 

Training 
Time 

Classificatio
n time 

Training 
Time 

Classificatio
n time 

Training 
Time 

Classificatio
n time 

Training 
Time 

Classificatio
n time 

Training 
Time 

Classificati
on time 

Training 
Time 

Classificati
on time 

DT 0.94330 0.02095 4.33370 0.03834 2.85369 0.03146 1.38806 0.01901 1.64008 0.03180 4.31513 0.08269 

OneVsRes
t 5.55971 0.08686 10.55774 0.11443 10.99850 0.11432 4.65841 0.08323 5.36138 0.13081 37.53189 0.54066 

OneVsOn
e 2.54106 0.37229 12.78923 0.52626 7.44010 0.36590 6.00742 0.52563 3.03271 0.74541 23.16181 3.45232 

RF 2.51751 0.29148 7.81902 0.49980 5.71650 0.38325 3.47846 0.30827 2.63806 0.40228 13.88464 1.17011 

Bagging 11.04407 0.35490 14.49463 0.42822 15.90904 0.39981 15.01821 0.37088 6.53809 0.40831 54.44654 2.02192 

ExtraTre
es 3.14286 0.52690 4.26417 0.61417 3.20274 0.64590 2.24429 0.53985 1.74953 0.51918 9.03618 1.76928 

OuputCo
de 17.09089 0.18528 23.63508 0.20806 20.17624 0.19767 16.95315 0.18262 10.46566 0.23858 35.89734 0.82363 

T-DTC 1.52025 0.04099 3.87237 0.06602 3.21352 0.05421 1.95967 0.04057 1.76991 0.06958 4.38929 0.48791 

In the case of ISP datasets, T-DTC provided the fastest ensemble model in classification and training, even T-DTC exhibited lesser training 
time than a DT for ISP-2. OneVsRest and OutputCode are the second and third fastest ensemble algorithms in classification, although their 



training phases are much longer than T-DTC´s. OneVsOne, RF, Bagging and ExtraTrees exhibited quite long classification times being more 
than ten times slower than a single DT. 

Focusing on HOST traces, the fastest ensemble algorithm is anew T-DTC for Training and Classification phases for the datasets HOST-1 and 
HOST-3. In the instance of HOST-2, T-DTC is overcome by ExtraTrees in Training, although T-TDC remains providing the best Classification 
Time. Although ExtraTrees retains a reasonable Training Time for HOST traces, its classification phase is quite more complex resulting in long 
Classification Times. OneVsRest yielded the second fastest Classification Time for all HOST traces, however its training phase is longer than 
other classifiers that provide more accurate models (see Table 4), as Random Forest, ExtraTrees and T-DTC. The slowest algorithms in Training 
are Bagging and OutputCode, but in Classification they spend less time than OneVsOne and ExtraTrees.  

The cost of employing ensemble algorithms in NTC is clear as it is shown in Table 5, all ensemble algorithms suffer a latency increase in 
Training and Classification. Although the time punishment is higher if the network capture contains more connection flows, it is very different 
among ensemble algorithms. Algorithms formed by a huge number of classifiers exhibited a significant increase in their times, this is the case 
of OneVsOne, RF, Bagging and ExtraTrees; unlike them, OneVsRest and T-DTC do not suffer from huge time increases, since they are formed 
by a fewer number of classifiers. Because they are composed by a similar number of base estimators (for 𝑛𝑛 classes OneVsRest trains 𝑛𝑛 estimators 
and T-DTC trains 𝑛𝑛 − 1), they spend similar times in the classification task, being T-DTC always faster due to its classification strategy and 
more accurate for the majority of the analyzed traces.  

4.3. Statistical Validation 
In this Section we present the results obtained from assessing the statistical significance of the performances presented in Table 4 and 5. Table 
6 shows the Friedman´s test scores along with the p-values and APVs obtained by applying the Holm´s procedure. Note that statistical 
differences exist between algorithms for almost all performances with less than 0.05 level of significance. Only Byte Accuracy obtained a p-value 
greater than 𝛼𝛼. Although BA p-value is greater than 0.05, it is lesser than 0.1 thus retaining high relevant differences among algorithms. 

For the Overall Accuracy, the three best performances are obtained by OutputCode, T-DTC and RF respectively. Setting OutputCode as control 
algorithm for the Holm´s procedure, we find that no relevant statistical differences exist for OneVsRest, RF, Bagging, ExtraTrees and T-DTC; 
meanwhile OutputCode OA differs considerably from DT, OnevsOne and ADA. Focusing on Byte Accuracy we observe that T-DTC is clearly the 
best algorithm followed by OutputCode and RF, and that there are not big statistical differences between ensemble methods with the exception 
of ADA algorithm. For the instance of Training Time, we note that DT is the fastest algorithm, as expected, and T-DTC ties with ADA and 
ExtraTrees. Being DT the control algorithm, we can say that there are no differences between DT and RF, ExtraTrees, ADA or T-DTC. Finally, 
DT is the fastest in classification, and T-DTC and OnevsRest are the second and third fastest algorithms. According to the Holm´s procedure 
there are not relevant differences between the previous three algorithms and DT in classification.  

Table 6. Friedman´s Test and Holm´s procedure results 

Overall Accuracy (OA) Byte Accuracy (BA) Training Time Classification Time 

Ranking p-values APVs Ranking p-values APVs Ranking p-values APVs Ranking p-values APVs 

DT 7.50 0.001 0.006 6.50 0.008 0.007 1.66 - - 1.00 - - 

OneVsRest 4.50 0.205 0.016 5.00 0.091 0.009 6.83 0.001 0.008 3.00 0.205 0.025 

OneVsOne 7.17 0.003 0.008 5.00 0.091 0.009 6.00 0.006 0.010 7.83 < 0.001 0.007 

RF 3.00 0.752 0.025 4.33 0.206 0.025 4.50 0.073 0.0125 5.83 0.002 0.012 

Bagging 5.17 0.091 0.011 5.00 0.091 0.009 8.17 < 0.001 0.007 6.67 < 0.001 0.008 

ExtraTrees 5.17 0.091 0.011 5.67 0.035 0.008 3.33 0.292 0.020 8.17 < 0.001 0.006 

OuputCode 2.50 - - 3.83 0.348 0.050 8.67 < 0.001 0.006 4.00 0.058 0.017 

ADA 7.33 0.002 0.007 7.33 0.002 0.006 3.33 0.291 0.02 6.50 < 0.001 0.010 

T-DTC 2.67 0.916 0.050 2.33 - - 3.33 0.598 0.050 2.00 0.527 0.050 

Friedman´s 25.91 0.001 - 13.64 0.091 - 40.80 < 0.001 - 43.02 < 0.001 - 

4.4. Model Complexity Evaluation 
We have already assessed the best models built by each ensemble algorithm. Before a connection flow is classified, the classifier has to compute 
the statistics associated with it, and also it may be interesting to assess how many attributes we can drop to equal or overcome the best DT 
performances for each ensemble algorithm. Although ensemble algorithms yield longer training and classification times, they could offer other 
advantages by reducing the number of statistical attributes used for training predictive models. Table 7 contains the results obtained using the 
best DT OA as baseline for each dataset. From Table 7, we can observe that RF, OutputCode and T-DTC provided models that overcome the 
baseline OA using a reduced number of attributes for all dataset. RF got the best OA for HOST-1,2 in spite of using quite reduced subsets. 
Although T-DTC yielded worse BA than the baseline for ISP-1 and HOST-2, its accuracy metrics were the best or almost the best using a lesser 
number of attributes for ISP-2-3 and HOST-1-3. Bagging also exhibited good scores with a high subset reduction, and DT only got higher BA 
than its competitors for ISP-2 using many more features. These experimental results show that ensemble learning algorithms are able to get 
similar performances to DT´s using less statistical attributes. The most of ensemble algorithms equaled or overcame single DT performances 
for almost all traces, only, ADA and OneVsOne achieved worse results than DT´s in four or more of the network traces. The subset reduction 
could offset the training and classification time punishment discussed in Section 4.2. 

Finally, we provide a rank of the most relevant features resulting from applying feature selection to our datasets. To appreciate the features 
that more contribute to the predictive models, we have counted the number of times the features appeared in the models with less number of 
attributes shown in Table 7; and Table 8 ranks the statistical attributes that are included in the different models at least two times. As Table 
8 shows, none of the attributes in the datasets is used for the six analyzed datasets. The most employed attributes are maxTCPWin0 and 
NPKT_128. Although three of the most relevant attributes depend on TCP windows, packet-size based attributes have a remarkable presence 
as informative features. In Internet networks, Packet-size based features are more resilient to the operational status of networks (e.g. if the 
network is congested) than TCP-windows based features, therefore packet-size based attributes are more interesting for NTC. More research 
must be conducted to determine the optimal set of statistical attributes independently to network environments and operational status of 
networks. 



Table 7. First models in accomplishing the same Overall Accuracy (OA) as the best DT model. (BA = Byte Accuracy and # is the number of features used) 

ISP-1 ISP-2 ISP-3 HOST-1 HOST-2 HOST-3 

OA BA # OA BA # OA BA # OA BA # OA BA # OA BA # 

DT 0.95685 0.99417 9 0.95310 0.93077 32 0.94817 0.95078 22 0.98652 0.94162 30 0.99192 0.99452 32 0.99742 0.95806 38 

OneVsRes
t 0.96339 0.99456 5 0.96284 0.95744 6 0.95651 0.96294 4 0.98682 0.94251 19 0.99207 0.97957 19 - - - 

OneVsOne - - - 0.95370 0.93042 28 - - - - - - - - - 0.99750 0.96185 42 

RF 0.95859 0.99467 5 0.95632 0.93149 6 0.95204 0.96229 7 0.98656 0.95407 16 0.99260 0.97829 8 0.99799 0.97158 38 

Bagging 0.95779 0.99502 5 0.95467 0.94032 12 0.94888 0.95901 12 0.98667 0.95639 20 0.99234 0.98068 9 - - - 

ExtraTree
s - - - 0.95335 0.90746 17 0.94883 0.89486 10 0.98696 0.95333 16 0.99286 0.97556 9 - - - 

OuputCod
e 0.96162 0.99487 5 0.96549 0.96035 6 0.95542 0.96053 5 0.98745 0.94172 17 0.99243 0.97917 10 0.99753 0.96852 13 

ADA - - - - - - 0.94982 0.96480 12 - - - - - - - - - 

T-DTC 0.95808 0.95615 3 0.97302 0.93900 6 0.96712 0.97109 4 0.98662 0.94648 11 0.99240 0.98093 12 0.99750 0.99205 12 

Table 8. Ranking of the most relevant features used for all the datasets included in the experiments 

Feature Name Description # of times 
used 

maxTCPWin0 Maximum TCP Windows used in flow packets considering outgoing direction. 4 

NPKT_128 Number of packets whose applications bytes is higher than 64 and lesser than 128 bytes 
considering both directions. 4 

maxBytes0 Maximum number of bytes transferred in flow packets considering outgoing direction. 3 

%Bytes0 Percentage of bytes transferred in flow packets considering outgoing direction over the total 
number of bytes in whole flows. 3 

minBytes0 Minimum number of bytes transferred in flow packets considering outgoing direction. 3 

NPKT_64 Number of packets whose application bytes are higher than 32 and lesser than 64 bytes. 3 

minTCPWin0 Minimum TCP Windows used in flow packets considering outgoing direction. 3 

varBytes1 Variance of the bytes transferred in flow packets considering ingoing direction. 3 

%Packets0 Percentage of the number packets transferred considering outgoing direction over the total 
number of packets in whole flows. 2 

varTCPWinT Variance of TCP Windows used in flow packets considering both directions. 2 

maxBytesT Maximum number of bytes transferred in flow packets considering both directions. 2 

4.5. Summary  
Finally, Table 9 contains a summary of the results discussed in previous sections. Since we intend to compare only ensemble algorithm, we 
exclude DT from this summary; and also ADA algorithm was excluded due to its poor performances.  

Table 9. Summary of results 

ISP-1 ISP-2 ISP-3 HOST-1 HOST-2 HOST-3 

Overall Accuracy 
(OA) 

       Highest T-DTC T-DTC T-DTC RF ExtraTrees RF 

       Lowest  ExtraTrees OneVsOne OneVsOne OneVsOne OneVsOne ExtraTrees 

Byte Accuracy (BA) 

       Highest T-DTC T-DTC T-DTC OneVsOne T-DTC T-DTC 

       Lowest ExtraTrees ExtraTrees ExtraTrees T-DTC OneVsRest OneVsOne 

Training Time 

       Fastest ExtraTrees T-DTC T-DTC T-DTC ExtraTrees T-DTC 

       Slowest OuputCode OutputCode OutputCode OuputCode OuputCode Bagging 

Classification Time 

       Fastest T-DTC T-DTC T-DTC T-DTC T-DTC T-DTC 

       Slowest ExtraTrees ExtraTrees ExtraTrees ExtraTrees OneVsOne OneVsOne 

As Table 9 reveals, T-DTC is the fastest ensemble scheme in classification for all datasets studied. Also T-DTC speeds up notably the training 
phase getting the fastest times for four datasets and the second fastest for the others. Finally, T-DTC exhibits the highest BA for all ISP traces 
and two of the three HOST traces; and, in terms of OA, T-DTC yielded the best or very close to the best scores. The experimental results obtained 
validate our proposal for our datasets, improving the prospects of ensemble learning in real time NTC. 
5. Conclusions 
This work compares the performance of seven popular DT-based ensemble algorithms along with a single base estimator (DT) and a novel 
proposed ensemble scheme in order to assess the suitability of ensemble learning in real time NTC. Although some ML algorithms have 



previously been studied in related works for this problem, they lack of a clear and detailed comparison among ensemble algorithms assessing 
both accuracy metrics and computational costs. Our experimental results show that most of the ensemble algorithms improve the performance 
metrics of a single estimator for our datasets, but, as expected, extra time costs are found in classification and training phases. All ensemble 
algorithms analyzed in this paper exhibit a notable classification-time increase that hinders the use of these techniques in real time contexts. 
Also we have shown that some ensemble schemes are able to equal or overcome a single DT using a reduced subset of attributes, leading to 
computational savings, which could offset classification and training time punishments. Therefore, the performance improvements and attribute 
reduction of some ensemble algorithms could justify their implementation in some contexts, such as small networks or environments where the 
computational capacity of network devices is not a crucial limitation.

With the intention of boosting ensemble learning in online NTC, a novel ensemble method, called T-DTC, is proposed. T-DTC exploits imbalanced 
traffic distributions in NTC datasets to significantly speed up Training and Classification phases. T-DTC achieves time savings by ordering 
CART Decision Trees in a sequential chain in which each base estimator is trained to distinguish only one traffic application from the rest. 
Thereby, each classifier filters out samples that are assigned to an application group and feeds following classifiers with samples whose 
application is not detected, avoiding repetitive classifications of classes that are easily and accurately identified.  

In this paper, we show that our ensemble scheme clearly outperforms other ensemble algorithms in terms of latency, but also retaining the 
essential performance metrics (such as Overall Accuracy and Byte Accuracy) improvements of ensemble learning respect to a single Decision 
Tree. Our proposal has been evaluated for two contexts with quite different operational features, showing that T-DTC is one of the best algorithm 
for both network environments. In conclusion, our proposed algorithm definitely enhances the prospects of ensemble learning to be applied to 
real time NTC.
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Annex 1: Collection of Statistical Attributes 

Table A1 contains the whole collection of statistical attributes used in this work along with a brief description of each one. Note that many 
statistics have been computed accounting for only one flow direction or both, “direction 0” denotes the way in which first packets of flow 
connections were detected and vice versa for “direction 1”. The datasets are publicly available at []. This collection of statistics attributes could 
be improved adding new and more informative attributes extracted from IP and Transport layers. 

Table A1. Collection of statistics employed for the experiments presented in this work 
Feature Name Description 

%Packet0 Percentage of packets transferred in the direction 0 

%Packet1 Percentage of packets transferred in the direction 1 

%Bytes0 Percentage of bytes transferred over number of packets in the direction 0  

%Bytes1 Percentage of bytes transferred over number of packets in the direction 1  

meanBytes0 Mean of bytes transferred over number of packets in the direction 0  

meanBytes1 Mean of bytes transferred over number of packets in the direction 1  

meanBytesT Mean of bytes transferred over number of packets in both directions  

varBytes0 Variance of bytes transferred over number of packets in the direction 0  

varBytes1 Variance of bytes transferred over number of packets in the direction 1  

varBytesT Variance of bytes transferred over number of packets in both directions  

rmsBytes0 Root mean square of bytes transferred over number of packets in the direction 0  

rmsBytes1 Root mean square of bytes transferred over number of packets in the direction 1  

rmsBytesT Root mean square of bytes transferred over number of packets in both directions  

maxBytes0 Maximum number of bytes transferred in the direction 0 

maxBytes1 Maximum number of bytes transferred in the direction 1 

maxBytesT Maximum number of bytes transferred in both directions 

minBytes0 Minimum number of bytes transferred in the direction 0 

minBytes1 Minimum number of bytes transferred in the direction 1 

minBytesT Minimum number of bytes transferred in both directions 

meanInterArrivalTime0 Mean of interarrival time over number of packets in the direction 0  

meanInterArrivalTime1 Mean of interarrival time over number of packets in the direction 1  

meanInterArrivalTimeT Mean of interarrival time over number of packets in both directions  

varInterArrivalTime0 Variance of interarrival time over number of packets in the direction 0  

varInterArrivalTime1 Variance of interarrival time over number of packets in the direction 1  

varInterArrivalTimeT Variance of interarrival time over number of packets in both directions  

rmsInterArrivalTime0 Root mean square of interarrival time over number of packets in the direction 0  

rmsInterArrivalTime1 Root mean square of interarrival time over number of packets in the direction 1  

rmsInterArrivalTimeT Root mean square of interarrival time over number of packets in both directions  

maxInterArrivalTime0 Maximum number of interarrival time in one packet in the direction 0 

maxInterArrivalTime1 Maximum number of interarrival time in one packet in the direction 1 

maxInterArrivalTimeT Maximum number of interarrival time in one packet in both directions 

minInterArrivalTime0 Minimum number of interarrival time in one packet in the direction 0 

minInterArrivalTime1 Minimum number of interarrival time in one packet in the direction 1 

minInterArrivalTimeT Minimum number of interarrival time in one packet in both directions 

meanTCPWin0 Mean of TCP window sizes over number of packets in the direction 0 

meanTCPWin1 Mean of TCP window sizes over number of packets in the direction 1  

meanTCPWinT Mean of TCP window sizes over number of packets in both directions  

varTCPWin0 Variance of TCP window sizes over number of packets in the direction 0  

varTCPWin1 Variance of TCP window sizes over number of packets in the direction 1  

varTCPWinT Variance of TCP window sizes over number of packets in both directions  

rmsTCPWin0 Root mean square of TCP window sizes over number of packets in the direction 0  

rmsTCPWin1 Root mean square of TCP window sizes over number of packets in the direction 1  

rmsTCPWinT Root mean square of TCP window sizes over number of packets in both directions  

maxTCPWin0 Maximum number of TCP window in one packet in the direction 0 

maxTCPWin1 Maximum number of TCP window sizes in one packet in the direction 1 

maxTCPWinT Maximum number of TCP window sizes in one packet in both directions 

minTCPWin0 Minimum number of TCP window sizes in one packet in the direction 0 



minTCPWin1 Minimum number of TCP window sizes in one packet in the direction 1 

minTCPWinT Minimum number of TCP window sizes in one packet in both directions 

flowDurationT Flow duration accounting for packets in both directions 

flowDuration0 Flow duration accounting for packets in the direction 0 

flowDuration1 Flow duration accounting for packets in the direction 1 

flowSize Total flow size in bytes accounting for bytes transferred in both directions 

meanBytes/Time0 Mean of bytes transferred over flow duration in the direction 0  

meanBytes/Time1 Mean of bytes transferred over flow duration in the direction 1  

meanBytes/TimeT Mean of bytes transferred over flow duration in both directions  

varBytes/Time0 Variance of bytes transferred over flow duration in the direction 0  

varBytes/Time1 Variance of bytes transferred over flow duration in the direction 1  

varBytes/TimeT Variance of bytes transferred over flow duration in both directions 

rmsBytes/Time0 Root mean square of bytes transferred over flow duration in the direction 0  

rmsBytes/Time1 Root mean square of bytes transferred over flow duration in the direction 1 

rmsBytes/TimeT Root mean square of bytes transferred over flow duration in both directions 

meanTCPWin/Time0 Mean of TCP window sizes over flow duration in the direction 0 

meanTCPWin/Time1 Mean of TCP window sizes over flow duration in the direction 1 

meanTCPWin/TimeT Mean of TCP window sizes over flow duration in both directions 

varTCPWin/Time0 Variance of TCP window sizes over flow duration in the direction 0  

varTCPWin/Time1 Variance of TCP window sizes over flow duration in the direction 1 

varTCPWin/TimeT Variance of TCP window sizes over flow duration in both directions 

rmsTCPWin/Time0 Root mean square of TCP window sizes over flow duration in the direction 0 

rmsTCPWin/Time1 Root mean square of TCP window sizes over flow duration in the direction 1 

rmsTCPWin/TimeT Root mean square of TCP window sizes over flow duration in both directions 

NPKT_64 Number of packets with equal or less than 64 bytes in both directions  

NPKT_128 Number of packets with equal or less than 128 bytes in both directions  

NPKT_256 Number of packets with equal or less than 256 bytes in both directions  

NPKT_512 Number of packets with equal or less than 512 bytes in both directions  

NPKT_1024 Number of packets with equal or less than 1024 bytes in both directions  

NPKT_MORE Number of packets with more than 1024 bytes in both directions  



ANNEX 3

47 

A.3 Journal Paper. Exploratory Study on Class Imbalance 
and Solutions for Network Traffic Classification 

Table A3. JCR-Indexed Paper Information 
 

Title 
Exploratory Study on Class Imbalance and Solutions for Network Traffic 
Classification 
 

Authors 
Santiago Egea Gómez, Luis Hernández-Callejo, Belén Carro Martínez and 
Antonio Sánchez-Esguevillas 

Journal Neurocomputing (IF: 4.072) 

Volume Volume 343, 28 May 2019, Pages 100-119 

Publication Date 4 February 2019 

DOI 10.1016/j.neucom.2018.07.091 

https://www.sciencedirect.com/science/journal/09252312/343/supp/C
https://doi.org/10.1016/j.neucom.2018.07.091


*Corresponding author. 

E-mail address: santiago.egea@alumnos.uva.es 

Exploratory Study on Class Imbalance and Solutions for Network Traffic 

Classification 

Santiago Egea Gómeza*, Luis Hernández-Callejoa, Belén Carro Martíneza, Antonio J. Sánchez-

Esguevillasa 

a Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, Valladolid 47011, Spain

A R T I C L E    I N F O 

Article history: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B S T R A C T 

Network Traffic Classification is a fundamental component in network 

management, and the fast-paced advances in Machine Learning have motivated 

the application of learning techniques to identify network traffic. The intrinsic 

features of Internet networks lead to imbalanced class distributions when 

datasets are conformed, phenomena called Class Imbalance and that is attaching 

an increasing attention in many research fields. In spite of performance losses 

due to Class Imbalance, this issue has not been thoroughly studied in Network 

Traffic Classification and some previous works are limited to few solutions and/or 

assumed misleading methodological approaches. In this article, we deal with 

Class Imbalance in Network Traffic Classification, studying the presence of this 

phenomenon and analyzing a wide number of solutions in two different Internet 

environments: a lab network and a high-speed backbone. Namely, we 

experimented with 21 data-level algorithms, six ensemble methods and one cost-

level approach. Throughout the experiments performed, we have applied the most 

recent methodological aspects for imbalanced problems, such as: DOB-SCV 

validation approach or the performance metrics assumed. And last but not least, 

the strategies to tune parameters and our algorithm implementations to adapt 

binary methods to multiclass problems are presented and shared with the 

research community, including two ensemble techniques used for the first time 

in Machine Learning to the best of our knowledge. Our experimental results 

reveal that some techniques mitigated Class Imbalance with interesting benefit 

for traffic classification models. More specifically, some algorithms reached 

increases greater than 8% in overall accuracy and greater than 4% in AUC-ROC 

for the most challenging network scenario.  

Keywords: Machine Learning; Network management; Class Imbalance; Network Traffic Classification 

1. Introduction 
Internet network administrators often confront vast amounts of traffic and fast events happening in different points of Internet 

networks. Controlling and managing network resources can be an arduous task considering the fast increase of interconnected 

devices and the complexity of underlying network topologies. Due to the former facts, the provision of automatic tools to facilitate 

the network administrators' work is crucial and urgent. Network Traffic Classification (NTC) is a fundamental functionality of 

network management systems, since many cyber-attacks and network flaws can be easily detected via monitoring the network 

traffic. Thereby, researchers have shown an increasing interest in NTC recently [1]. 

Machine Learning (ML) has opened up promising future prospects for NTC and the number of published articles proposing 

traffic classifiers based on ML is increasing continuously [1]–[10]. The application of ML to NTC brings important advantages 

over previous approaches; however new challenges have risen up and they must be solved to accomplish feasible classifiers. 

Port-based classifiers [11] are the earliest and simplest techniques to characterize Internet traffic. This kind of classifiers relies 

on port numbers into IP headers to associate protocols and applications with flow connections according to the well-known ports 

defined by the IANA [12]. Unfortunately, emerging applications (predominantly peer-to-peer) that dynamically use different 

ports and/or deliberately mask their communications behind IANA ports impose an unresolved obstacle for port-based 

classifiers. This handicap motivated researchers to develop more sophisticated techniques, gaining a relevant relevance an 

approach known as Deep Packet Inspection (DPI). DPI tools [13] inspect binary information found in the application layer of 

network packets in order to seek matches between inspected packets and prefixed signatures. Although network hardware is 

fast evolving and, thus, the perspective of DPI tools are improving in some network scenarios, these techniques have major 

drawbacks to be implemented in network devices with scarce memory and computation resources. DPI approaches are pretty 

computationally weighted complicating their scalability, and additionally signature databases are quite difficult to maintain 

due to zero-day protocols and software updates. But the most limiting issue from the point of view of Internet Service Providers 

(ISPs) is users' privacy violation. DPI tools unceasingly extract information from the application layer accessing to personal 

information about network users. The above reasons are being motivating the advanced research on ML-based NTC, since ML 

essentially provides accurate and fast classifiers respecting users’ privacy [1]–[3]. 

ML provides a wide number of preprocessing techniques and learning algorithms enabling highly accurate classifiers. Learning 

algorithms are able to process the knowledge contained in training datasets and generate predictive models describing the 

structure of data. The resulting models are afterwards used to reproduce the response for incoming unknown samples. If training 

datasets include the response to predict, we are solving a supervised learning task; otherwise, it is an unsupervised problem. 

Regarding the type of response, the modeling task is a classification problem if the response is categorical; whereas the 

regression problems cover cases in which the responses take continuous values.  

NTC is a multiclass classification problem, since traffic classifiers aim to categorize objects (Internet connection flows) in 

different classes or traffic categories (protocols or applications). The most extended approach in ML-based NTC is flow-based 

level in which all packets associated with a connection are aggregated and jointly processed to create classification objects. Both 



  
  

supervised and unsupervised approaches [14] have been proposed over recent years evidencing the potential of ML for NTC. 

Although unsupervised learning techniques have interesting advantages, such as the no necessity of a labeling process [1], 

supervised algorithms have outperformed unsupervised techniques in terms of accuracy. Furthermore, semi-supervised 

techniques [5] have also been studied with promising results. In this work we approach flow-based NTC from a supervised 

perspective.  

Network environments impose important challenges when ML is employed. One of the main challenges is Class Imbalance, 

phenomena that is being actively studied in numerous research fields in which ML is applied [15] (such as: Banking Fraud [16], 

Computer Vision [17] and Medical Diagnosis [18]). A classification problem is categorized as imbalanced when one or various 

classes are overrepresented comparing to the others. In almost all network environments some services are more often consumed 

than others, which turns out non-uniform class distributions when NTC datasets are conformed [8], [19]–[22]. Class Imbalance 

is a key topic in recent ML research, since imbalanced class distributions negatively affect learning algorithm performances 

awarding the most populated classes and punishing the underrepresented ones.  

In this work, we provide a thoroughly study on a wide number of solutions to Class Imbalance for data traffic extracted from 

different network environments and dates, which present dissimilar levels of imbalance. The most challenging traces was 

captured recently from an ISP backbone; meanwhile, the rest of datasets were extracted from a lab network in which users´ 

activities were manually simulated. Between the algorithms studied here to confront Class Imbalance, we include: six ensemble 

algorithms that include resampling during their training being two of them original contributions of this work; 21 well-known 

resampling algorithms and one well-known cost-sensitive approach. Throughout our experiments, we have applied novel 

methodological aspects that are gaining a special relevance due to their goodness for imbalanced problems, and they have not 

been employed in ML-based NTC yet, such as: the validation approach DOB-SCV or the performance metrics assumed. As an 

extra contribution of our research, we make publicly available our algorithm implementations in order to share them with other 

researchers. Some authors have already studied some solutions to Class Imbalance for NTC datasets [8], [21]–[23]; however, 

none of them employed a suitable cross-validation approach to minimize covariate shift between samples in validation folds. 

Furthermore, many of them employed outdated data, did not assume an early NTC approach and/or only considered TCP flows 

and excluded UDP traffic. To the best of our knowledge, the most of techniques considered in our experiments have not been 

explored for early ML-based NTC.  

This article is structured as follows. Section 2 introduces Class Imbalance and reviews the most recent NTC literature. The 

methodological aspects applied in our experiments are presented at Section 2 along with a discussion on Class Imbalance for 

our datasets. During our experiments we have assessed both global and per-class performance metrics, and a novel ML 

validation approach (DOB-SCV) have been used to validate our results. Section 4 presents and discusses the results obtained 

from the experiments we have carried out. Firstly, we show and discuss the effect of the imbalanced class distributions on a 

base estimator, which is afterwards selected as baseline for the algorithm comparison. Secondly, we have compared a wide 

number of techniques for Class Imbalance evaluating their performances in terms of global metrics and statistically validating 

the outcomes. Thirdly, the most interesting algorithms are selected in order to thoroughly analyze their performances for each 

individual traffic class. Finally, Section 5 states the conclusions of this work and presents future work lines. 

2. Previous work 
As aforementioned, many research efforts have been focused on addressing the problem of Class Imbalance for ML problems. 

Through this section, we firstly provide an introductory view of Class Imbalance, and afterwards we briefly review the recent 

advances in ML-based NTC to state an illustrative background. 

2.1 Confronting Class Imbalance 
A wide number of real-world problems addressed with supervised learning fulfill the condition to be categorized as imbalanced 

problems, which has motivated the research on solutions to evade Class Imbalance [15]–[18], [23]. A two-class dataset is denoted 

as imbalanced when a class (majority class) has more instances than the other (minority class). Standard learning algorithms 

were designed under the assumption that labels are equally distributed in training datasets biasing the classifier performances 

towards the majority class. Different solutions have been proposed in order to correct the negative effects of Class Imbalance, a 

thorough study on many of them is provided in [24]. V. López et al. examined Class Imbalance focusing on useful performance 

metrics and the reasons that lead to performance losses in imbalanced scenarios (overlapping regions, small disjuncts, noisy 

data, …). Additionally, the authors carried out several experiments to assess the existing solutions on different binary datasets. 

As Fig 1 shows, the existing techniques to confront Class Imbalance are categorized in three main levels according to how they 

address the problem: 

Data Level: Data-Level methods address Class Imbalance via modifying class distributions before training, they are also known 

as resampling algorithms. In order to offset the class populations they create new minority samples and/or remove the existing 

majority ones from the original dataset. In the first case we refer to oversampling methods [25]–[27], meanwhile the techniques 

that reduce the number of majority samples are known as undersampling algorithms [28]–[34]. Also hybrid algorithms, which 

combine oversampling and undersampling, have been proposed [35], [36]. 

Algorithm Level: This approach includes learning algorithms that are able to award the minority class and punish the majority 

while training. In this instance, modified versions of learning algorithms have been proposed to tackle imbalanced distributions. 

Some algorithm-level approaches gaining in prominence are the ensemble techniques that incorporate a resampling phase while 

creating ensembles [37]–[39]. 

Cost-sensitive Level: In this approach the algorithms learn taking into account for costs associated with the different classes 

[40]. Thereby, a high misclassification cost is assigned to the minority class strengthening its importance in the learning process; 

on the contrary, the majority class is weakened. The human perception of the problem is essential for assigning classification 

costs in this approach, which could lead to human errors in some cases. There mainly exist two approaches to cost-sensitive 

learning: (1) Direct Methods use costs directly associated with each class; meanwhile, (2) Meta-learning employs pre-processing 

(usually data-level techniques) and/or post-processing steps during algorithm training. 



  
  

Some authors have compared some of the former solutions in their respective areas. For example, O. Loyola-González et al. [23] 

recently studied how resampling methods affect pattern-based classifier performances. The authors advertised about misleading 

results when global accuracy is employed as performance metric, and also they proved the advantages of resampling algorithms.  

 

Fig. 1. Categorization of solutions to Class Imbalance 

An emerging discussion in Class Imbalance is how to adapt the proposed solutions, which have been primarily designed for 

binary problems, to multiclass problems [30], [41], [42]. The difficulty of dealing with multiclass imbalanced problems is quite 

superior to learning from imbalanced binary datasets as it is shown in [43]. Decomposition techniques have attached a relevant 

prominence in order to adapt two-class algorithms to multiclass problems. These data preprocessing techniques transform the 

multiclass problem in several binary sub-problems and once the problem has been simplified, algorithms are employed in all of 

the sub-problems to offset Multiclass Imbalance. The most popular approaches to decompose a multiclass problem are One-

versus-One (OvO) [44] and One-versus-All (OvA) [45]. 

Both decomposition methods have been studied by several authors. An extended analysis of imbalanced multiclass problems is 

provided in [41]. The authors studied the multi-minority and multi-majority effects over different performance metrics using 

artificial datasets and Decision Tree as base learner. Additionally, Wang et al. compared some data-level and algorithm-level 

techniques for 12 real-world datasets. A comparison between well-known oversampling and undersampling algorithms along 

with a cost-sensitive approach was carried out in [42]. The authors evaluated three state-of-art ML classifiers (Support Vector 

Machines, Decision Trees and K-Nearest Neighbors) in terms of average per-class accuracies and applying both OvO and OvA 

decomposition methods over 20 real-world problems. The obtained results reveal that oversampling techniques often provide 

better results than undersampling, and confirmed the advantages of applying decomposition techniques to Multiclass 

Imbalance. Charte et al. studied several resampling methods over different multilabel datasets in [30]. They combined simple 

random undersampling and oversampling along with a complex minority and majority search schemes. Furthermore, they 

presented measures to quantify Class Imbalance in multilabel datasets.  

Another active discussion in Class Imbalance is how to validate predictive models correctly. An interesting review on 

performance metrics to validate classifiers in imbalanced problems is provided in [46]. Regarding the validation approach, some 

traditional methods have shown to be inefficient to validate classifiers under imbalanced conditions as it was pointed out in the 

work [47], in which J. G. Moreno-Torres et al. analyzed different traditional cross-validation approaches for imbalanced 

problems. In addition, the authors proposed a novel validation approach called DOB-SCV (Distribution Optimally Balanced 

Stratified Cross Validation), which is more resilient to covariate shift due to random selections. The advantages of employing 

DOB-SCV was afterwards confirmed in [48] through several experiments over different learning algorithms and datasets 

extracted from different research fields. Thus, we have assumed this validation approach for our experiments. 

The particular characteristics of Internet networks lead to a high level of Class Imbalance when NTC datasets are constructed 

as we discuss for two different scenarios at Section 3.3.2. In this work, we study a wide number of techniques to boost algorithm 

performances in imbalanced NTC, including 21 data-level techniques, six ensembles techniques and one cost-sensitive approach. 

Amongst these algorithms, two new ensemble techniques are analyzed based on the combination of Tomek Links and ROS with 

boosting learning (Section 3.4). Additionally, this work constitutes a real-world case of study in which several novel methodology 

aspects are applied at first time in NTC. Below, we briefly review some relevant works on ML-based NTC to introduce readers 

to the state of the art.  

 



  
  

2.2 Recent Advances in ML-based NTC 
As aforementioned, ML has opened promising prospects in NTC and a wide number of researchers have attached their attention 

on this approach. One of the most important contributors to ML-based NTC was Bernialle at el. with their manuscripts [49], 

[50]. They presented the concept of early traffic identification, which consists in flow-based classification processing only a few 

number of packets at the beginning of TCP connections. The proposed classification approach accomplished satisfactory 

accuracies using only five packets per flow and clustering-based algorithms. Another work that discusses the effective number 

of packets to consider for accurate early classification is [6]. L. Peng et al. built their datasets using ordered sequence of packet 

sizes considering only TCP bidirectional flows. The authors reported accuracies greater than 90% using only the first 5-7 packet-

sizes as predictors. W. Li and A.W. Moore [51] also experimented varying the number of packets employed to conform their 

datasets. They not only measured the performances of classifiers based on accuracy, but also they studied the latency in training 

and classification. The C4.5 Decision Tree algorithm was reported as a promising technique for NTC due to its low latency and 

its high accuracy. 

Other authors have compared different state-of-the-art algorithms for NTC datasets. The earliest comparative study amongst 

ML algorithms was presented in [52]. Williams et al. confirmed the observations provided in [44], which reported Decision Trees 

as one of the most suitable learning algorithms for real-time NTC. Furthermore, they studied the behavior of correlation-based 

feature selection algorithms on their datasets showing that reducing the number of predictive attributes speeds up learning and 

classification without significant performances losses. Soysal and Schmidt [53] also provided a comparison between different 

ML algorithms confirming that Decision Trees outperform other approaches in terms of per-class precision and recall. As an 

additional contribution of their work, the authors studied how class distributions and errors in labeling connection flows affect 

classifier performances. Also, we carried out a comparison amongst ensemble algorithms using Decision Tree as base estimator 

in [54]. We assessed several popular ensemble algorithms showing their advantages in terms of accuracy but, also, their 

penalties in latency. To address the latency degradation, we presented a novel ensemble structure called T-DTC, which consists 

in a sequential chain of estimators acting as filters of their respective successors. T-DTC exhibited promising performances in 

terms of latency and accuracy over datasets extracted from two different network environments. Other authors have proposed 

other traffic classification approaches using different state-of-the-art learning algorithms, such as: Naïve Bayes classifier in 

[55]; Bayesian Neural Networks in [56]; and Support Vector Machines in [9], [57]. 

A current tendency in ML-based NTC is contributing to open research lines proposing ad-hoc classifiers. In the instance of [5], 

the authors faced the problem of detecting zero-day applications and proposed a classification approach able to detect emerging 

traffic and retrain itself to classify it. The proposed algorithm is composed essentially by three modules, an Unknown Discovery 

module, a Bag-of-Flows based classifier and a System Update module. Another classification approach with the capacity of self-

learning, called Self-Learning Intelligent Classifier (SLIC), was presented in [58]. SLIC dynamically builds a training dataset 

and retrains a predictive model based on K-Nearest Neighbors when a new sample is introduced in the dataset. The results 

reported show how classification accuracy increases in each retraining iteration. The issue of performance deterioration over 

distant-based classifiers due to Internet dynamic conditions is analyzed in [59]. J. Camacho et al. assessed the generalization 

ability of 1-Nearest Neighbor in dynamic contexts, and proposed a flow pairing technique for traffic classification based on a 

similarity function to address this issue. Furthermore, the authors extended their experiments for P2P traffic identification. 

Concerning Class Imbalance, some authors have tried to provide solutions for imbalanced NTC datasets. A class-oriented feature 

selection (COFS) and an ensemble learning approach are proposed in [7] to cope with non-uniform traffic distributions. COFS 

combines local and global metrics to remove redundant and irrelevant features outperforming traditional feature selection 

techniques. The presented ensemble scheme is composed by several base learners per traffic class and a subsequent weighted 

voting. Two simple data-level algorithms and one cost-sensitive approach (MetaCost) were compared in [22] for datasets 

extracted from network traces captured between 2003-2007. The authors applied Random Undersampling and Oversampling 

using a new strategy in order to detect minority and majority classes and set the ratios between classes. In the instance of 

MetaCost, the cost coefficients were adjusted according to a strategy based on flow-ratio. The reported results show how 

resampling algorithms can be very effective when there are insufficient training samples and cost-sensitive when there are 

enough number of samples. Finally, undersampling provided other interesting advantages, such as fast execution and training 

times. Wei H. et al. [21] also tackled the problem of class imbalanced for real-time NTC comparing several ensemble techniques 

that combine data sampling algorithms with boosting. The authors also proposed a hybrid approach called BalancedBoost, which 

is quite similar to other ensemble algorithms considered in this work. BalancedBoost outperformed the rest of algorithms using 

the UNIBS datasets, which is composed by traffic generated only by target hosts. Recently a cost-sensitive algorithm based on 

data gravitation-based classifier (IDGC) has been proposed in [8] to mitigate Class Imbalance in NTC. IDGC is a modification 

of the algorithm DGC proposed in [60], which introduce sensitiveness to imbalanced class distributions via applying a weighting 

phase using ratios between classes.  Peng et al. showed that IDGC overcomes other ensemble and cost-sensitive methods 

focusing only on TCP connections and transforming multiclass NTC in simpler two-class datasets. Finally, we suggest reading 

the surveys [1]–[4] to get a more general view of NTC.  

A large proportion of the above articles reported about imbalanced distributions in NTC datasets, however the works that tackle 

this issue are scarce. Throughout this article, we discuss Class Imbalance over real-world NTC datasets in order to insightfully 

analyze this problem. Additionally, the absence of studies conducting experiments to assess the benefits of solutions to Class 

Imbalance in early NTC encourages us to provide a uniform comparison among a wide number of these algorithms. The 

experiments presented below were conducted employing the most sophisticated validation approach and performance metrics 

for imbalanced problems up to date. The experiments were conducted employing different datasets composed by TCP and UDP 

traffic and extracted from two different environments, which present dissimilar Class Imbalance conditions. The classification 

task is faced a multiclass perspective, so that we had to adapt techniques preliminary designed for two-class problems to 

multiclass datasets. As part of the contributions of this work, we make our implementations available for the research 

community. 

 



  
  

3. Material and Methods 
The methodology followed in our experiments is described in detail through this section. Figure 2 depicts the methodology 

overview applied to all our NTC datasets. During dataset creation, the network traces were processed to generate a collection 

of 77 statistical attributes over each Internet connection assuming a flow-based classification approach. A detailed description 

of this process is provided at Section 3.3 along with a discussion on Class Imbalance in our datasets. After creating the NTC 

datasets, we applied the DOB-SCV approach to generate folds of instances that were used to train and validate the traffic 

classifiers, and the same folds were employed for all algorithms studied. As it was discussed in [47] and [48], traditional 

validation approaches, which rely on naïve random selection of samples, normally present a high covariate shift in the generated 

validation folds. Instead of a random selection, DOB-SCV exploits more information keeping the data distributions quite similar 

between folds, and thus minimizing covariate shift among folds. We generated five folds so that one fold was used to train the 

algorithms and the rest to validate the predictive model generated during each validation epoch. All results reported in Section 

4 are the average scores obtained over the five validation folds. 

 

 

Fig. 2 Methodology Overview 

Only Fold 1 was supplied to a Feature Selection (FS) algorithm in order to rank the most relevant predictors for our problem. 

The FS algorithm employed, called FCBFiP, is a modified version of the popular Fast Correlation Based Feature Selection 

algorithm, which speeds up the selection process via modifying the search strategy. We presented this algorithm and validated 

it against several datasets in [61]. Additionally, this algorithm was previously used in our work [54] and it is publicly available 

in [62]. Through FS, we generated a ranking of predictors that was applied to each fold so as to reduce the attribute space. For 

our experiments, we considered subset sizes from 2 to 20 with steps of 2 features in order to assess the solutions to Class 

Imbalance against different subset sizes. 

Our main contributions are achieved essentially through two experiments. Firstly, we employed a base estimator (described at 

Section 3.1) to generate a baseline and compare all techniques to it. The same base estimator was afterwards employed during 

the comparison of solutions to Class Imbalance as Figure 2 illustrates. In the case of data-level algorithms, each fold was 

resampled before being used to train the base estimator, meanwhile the rest of folds were kept unaltered for validation. For 

ensemble and Cost-Sensitive algorithms, the base estimator was the core of the learning process. After obtaining the results, 

we analyzed algorithm performances according to several global performance metrics and statistically validated the outcomes 

to extract general observations over all datasets (Section 4.2). Finally, we observe per-class metrics for the most promising 

techniques on the most challenging dataset at Section 4.3 so as to confirm that the studied solutions reinforce the predictiveness 

on minority classes.  

The algorithms to deal with Class Imbalance were collected from different sources. The data-level and two of the ensemble 

techniques studied are available in the Python Library imbalance-learn [63]. The boosting ensemble approaches employed are 

adapted versions to multiclass problems of some algorithms provided by a third party. In order to make these algorithms suitable 

for multiclass problems, we have designed different strategies to assist the learning process in managing ratios between classes. 

In total we have compared 21 Data-Level algorithms, six ensemble algorithms and one Cost-Level approach; we make accessible 

our implementations to the research community in [64], which constitutes an additional contribution of this work. A more 

detailed description of all techniques and the strategies assumed to adjust class ratios, associate classification costs with classes 

and assist the ensemble learning process is provided at Section 3.4. The algorithm comparison was performed in terms of several 

global and per-class performance metrics, which are introduced and described in Section 3.2. 

 

 



  
  

3.1 Estimator choice: CART Decision Tree 
During the first years of research on ML-based NTC many researchers focused on learning algorithm comparisons to find out 

which are the most effective learning approaches. Decision Tree has shown as one of the most suitable algorithms for online 

NTC due to the fact that it retains an excellent ratio between classification performances and latency [2], [51], [52]. In these 

works the authors shown how Decision Trees outperformed other learning approaches, such as SVM, Neural Networks and 

Naïve Bayes.  

CART Decision tree is a learning algorithm that iteratively creates decision rules by splitting the attributes space according to 

an information-based criterion, normally trying to minimize metrics such as Information Gain or GINI Impurity. When Decision 

Trees are trained, their internal structures implement a hierarchical set of rules that looks like a tree, as Figure 3 shows for 

two different cases. Each level in the tree is a conditional split that describes decision regions to classify unknown samples. New 

unknown samples go through this hierarchical set of heuristics until they reach the final leaf, in which they are finally classified. 

The final class is assigned according to the classes that mostly populates the decision region. Figure 2 depicts the structure of 

two trained CART Decision Trees in two different conditions of Class Imbalance. In Figure 2-a, the training dataset kept an 

almost uniform class distribution, on the contrary, the tree (b) was trained under high Class Imbalance. Observing the bottom 

levels of the tree (a), we find that 127 C1 samples were correctly modeled of a total of 170, 104 C2 samples of 167, and 142 C3 

samples of a total of 163. In the instance of tree (b), none of the C1 samples were correctly modeled, and only three C2 samples 

of a total of 26 did, whereas 453 C3 samples from a total of 462 were accurately modeled. 

 

 
(a) 

 
(b) 

Fig. 3. Internal set of decision rules implemented by Decision Tree. The classes to predict are C1, C2 and C3; and the predictors are X1, X2 and X3 

 

In spite of Class Imbalance sensitivity, Decision Tree algorithms have been widely employed in NTC research, and consequently 

we have chosen the CART Decision Tree algorithm implemented in [65] as base estimator. The CART decision Tree we have 

employed in our experiments tries to minimize the Gini Impurity. Gini Impurity is defined by Equation 1, where 𝑝𝑖 is the 

probability for each class and 𝐶 is the number of classes.  

 𝐼𝐺 = 1 − ∑ 𝑝𝑖
2𝐶

𝑖=1  (1) 

This measure is quite sensitive to Class distributions, since 𝐼𝐺 is computed using the square root of class probabilities found in 

the training dataset. Therefore, if the initial dataset is highly imbalanced, this metric will bias towards the most populated 

classes. The Class Imbalance sensitivity of CART Decision Tree makes it a good base estimator to assess the enhancements 

provided by the techniques studied.   

3.2 Performance Metrics: 
Which performance metrics use when an imbalanced problem is faced is already an open research topic in ML. Traditional 

metrics that measure the overall classifier performances were designed without considering Class Imbalance. Thus, no every 

assessment metric is appropriate for validating learning systems in this context [46]. In order to consistently compare the 

performances of the different solutions to Class Imbalance, both global and per-class metrics are assumed. We consider global 

metrics quite worthy to figure out the performances of classifiers on the whole network traffic. Additionally, per-class metrics 

describe the behavior of the algorithms on individual classes so that they are very insightful to know if minority classes are 

really strengthened. Below, the per-class and global metrics used for our comparison are introduced. Finally, we introduce other 

measures to assess the level of Class Imbalance in our datasets, and the statistical approach used so as to validate the results 

obtained in the comparison.  

3.2.1 Per-class Metrics: Class Accuracies and AUC-ROC  
The techniques to mitigate Class Imbalance are expected to reinforce the predictive power on minority classes and, eventually, 

weaken the majority classes. Therefore, it is crucial to evaluate the classifiers in terms of metrics that describe the performances 

on individual classes. To this aim, we assume per-class accuracies and AUC-ROCs (Area Under Curve – Receiving Operating 

Characteristics). The former is a general metric and it is defined by Equation 2, where 𝑇𝑃𝑖 denotes the true positives on samples 

belonging to class 𝑖 (note that 𝐴𝐶𝐶𝑖 is similar to per-class recall [46]). The latter is a scalar metric computed from the ROC curve. 

ROC curve is a graphical representation of binary classifier performances in terms of true positives and false positives. We have 

extended this binary metric to multiclass problems using One-versus-All approach. AUC-ROC method is quite interesting for 

imbalanced datasets, since it measures the quality of classifiers irrespective of class distributions.  



  
  

 𝐴𝐶𝐶𝑖 =
𝑇𝑃𝑖

#𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠 𝑖
 (2) 

In order not to collapse the result section due to the high number of algorithms considered, we only present and discuss the per-

class metrics for the base estimator (Section 4.1) and the most interesting algorithms (Section 4.3). 

3.2.2 Overall Metrics: Overall, Byte, Average Accuracies & Multiclass AUC-ROC  
Global performances for classifiers are often assessed by Overall Accuracy (OA), OA measures the percentage of samples 

correctly labeled as Equation 3 describes. 𝑇𝑃𝑖 denotes the number of true positives on class 𝑖 and #𝑆𝑎𝑚𝑝𝑙𝑒𝑠 the total number of 

instances contained in the dataset. Since flow-level classification is assumed, OA can be considered as flow accuracy. 

 𝑂𝐴 =
∑ 𝑇𝑃𝑖

#𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (3) 

Other interesting performance is the Byte Accuracy (BA) defined by Equation 4. Each Internet connection consumes network 

resources in terms of duration, bytes and number of packets transferred. From a network management perspective, measuring 

the quantity of bytes correctly classified is quite reveling to figure out the quality of traffic classifiers. Thus, we report the BA 

score in the result section, which is the percentage of bytes accurately classified over the total number of bytes contained in 

network traces. 

 𝐵𝐴 =
𝐵𝑦𝑡𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑
 (4) 

Both OA and BA metrics are quite sensitive to Class Imbalance. If a class accumulates the most of instances and/or the most of 

bytes transferred, OA and BA are not representative metrics for the rest of minority classes. Satisfactory accuracies on majority 

classes could mask poor classification rates on the minorities. To avoid misleading observations, we have evaluated two 

additional well-known metrics that accurately describe the quality of classifiers for imbalanced problems. A reveling metric for 

imbalanced problems is G-mean (GM), which is the geometric mean of all per-class accuracies (or recalls [46]). GM for a problem 

comprising 𝑛 classes is defined in Equation 5. One strategy to extend per-class metrics to multiclass metrics that summarize 

them is the macro averaging. The Macro-Average is the arithmetic mean of metrics partially computed for each individual class. 

This metric has shown more proper for imbalanced datasets than other global scores, since the impacts of minority and majority 

classes over the final score are the same. Therefore, we assume the Multiclass AUC (MAUC), which is defined by Equation 6 for 

𝑛 classes. 

 𝐺𝑀 = √∏ 𝐴𝐶𝐶𝑖
𝑛

 (5) 

 𝑀𝐴𝑈𝐶 =
∑ 𝐴𝑈𝐶𝑖

𝑛
 (6) 

3.2.3 Measuring the imbalance level: imbalance ratio per label  
An assessment approach to measure the level of Class Imbalance in multilabel datasets was presented in [30]. This approach is 

based on the imbalance ratio per label (IRLbl) defined by Equation 7, which is the ratio between the number of majority samples 

and the number of samples belonging to a given class 𝑖. Thereby, IRLbl for the majority class will be 1, meanwhile it will be 

larger for minority classes. 

 𝐼𝑅𝐿𝑏𝑙(𝑖) =
#𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠

#𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
 (7) 

Once the IRLbl has been computed for each class, the mean and variance of all IRLbl values are computed to get general 

information about Class Imbalance in the whole dataset. The larger the mean of IRLbl, the higher the level of imbalance in the 

dataset; and the larger the variance, the higher the difference among class populations. We assume these metrics so as to figure 

out the level of difficulty imposed by imbalanced class distributions in our datasets.  

3.2.4 Statistical Validation 
In our second experiment we compare a wide number of resampling algorithms according to several global metrics over four 

datasets. When algorithms are compared using different datasets, the statistical significance must be verified to assure that the 

obtained results are consistent [66]. A well-known method to compare a set of algorithms against different datasets is Friedman's 

Test. Friedman's Test is a non-parametric statistical method, which sets as null hypothesis that all algorithms involved in the 

comparison achieve the same performances: in short, no statistical differences exist between them. In order to confirm or reject 

the null hypothesis, algorithms are ranked for each dataset according to their performances, and the position that each 

algorithm occupies in the ranking is assigned as scores. Then, Friedman's score is computed as Equation 8 describes, being 𝑘 

the number of algorithms in comparison, 𝑁 the number of datasets and 𝑅𝑗 the score obtained by each algorithm for the dataset 

𝑗. 

 𝜒2
𝐹 =

12𝑁

𝑘∗(𝑘+1)
[∑ 𝑅𝑗

2
𝑗 − 0.25𝑘 ∗ (𝑘 + 1)2] (8) 



  
  

Once 𝜒2
𝐹 is computed, the associated p-value is obtained from a chi-squared random distribution with 𝑘 − 1 degrees of freedom. 

The lesser the resulting p-value, the greater the probability that statistical significance exists between the algorithms.  

3.3 Datasets: Network Environments, Feature Extraction & Level of Class Imbalance  
Internet networks environments normally differ each other in many features, such as: the kind of traffic observed, the quantity 

of connections belonging to each application, the topologies and traffic rates. These facts considerably affect the predictors 

contained in NTC datasets. Traffic rates could affect predictors related to Inter-Arrival Times, and network topologies may carry 

packet losses or multipath effect that influence the values of NTC predictors. Consequently, it is highly recommended to validate 

ML-based traffic classifiers in several network scenarios. We have selected four network traffic captures collected from two 

different network environments: a lab network and ISP backbone network. Table 1 includes relevant information about the 

network traces employed in our experiments. 

Privacy policies normally hinder the possibility of getting third-party real network traces. To evade this constraint, the CBA 

research group of UPC BarcelonaTech generated network traffic for research purposes in their lab. They manually simulated 

host activities for a long term and captured the network traffic generated in the hosts to assess DPI tools [67]. The datasets 

resulted from processing these network captures have been called HOST datasets in this work.  

In addition to HOST data, we have included datasets collected from a much more challenging scenario. An Internet Service 

Provider, which provide Internet to more than two million of users across Spain, has cooperated in this research sharing real 

network traffic with research purposes. The network traffic was captured recently in a node of their backbone network where 

traffic rates of 7 GB/s are supported. These datasets have been called ISP traces in our result section. The name of the ISP is 

omitted in this work due to security concerns. 

3.3.1 Feature Extraction: Statistical Attributes & Labeling 
The datasets involved in our experiments include 77 statistical attributes processing only five packets at the beginning of each 

Internet connection. Computing the attributes using a limited number of packets assures that our classifiers fulfil the early 

classification requirement presented in [49]. The classification objects considered are bidirectional flows, therefore each flow 

sample contains information about ingoing and outgoing packets. The complete list of predictors is available at an Annex in our 

previous article [54]. 

As we are assuming a supervised approach for our classification problem, we need to consistently associate each connection flow 

to the application that generates it. There are several fashions to label instances for NTC datasets, but it is highly recommended 

to employ a DPI approach due to their high accuracy. Since the tool nDPI [13], publicly available at [68], has shown as one of 

the most accurate open source DPI tool and it is able to handle encrypted traffic [69], we used it to label our datasets. 

The tool nDPI classifies application flows with an excessive fine granularity, which turns out datasets with an unmanageable 

number of classes. Evaluating Class Imbalance solutions on a high number of classes leads to too heavy execution times and a 

major challenge when ratios between classes are adjusted for resampling techniques. Additionally, some learning algorithms 

are pretty sensitive to the number of classes, hindering classifiers performances when they deal with a vast number of classes 

to predict. In order to avoid the former constraints, we have assumed an application grouping strategy, in which applications 

and protocols that share similar features are clustered in more general descriptive objects. Application grouping was introduced 

in [70], and this strategy has been commonly applied in numerous relevant ML-based NTC works [7], [10], [22], [51], [55], [56], 

[71]. 

 
Table 1. Network Traffic Traces Information. 𝐼𝑅𝐿𝑏𝐿̅̅ ̅̅ ̅̅ ̅̅  denotes the mean of IRLbl metric and 

𝜎(𝐼𝑅𝐿𝑏𝐿) denotes its variance 

 Start date Duration Datasize # Packets # Flows 𝑰𝑹𝑳𝒃𝑳̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈(𝑰𝑹𝑳𝒃𝑳)  

ISP-1 17/01/2017 298 seconds 12.12 GB 8863530 231137 38.50 35.79 

ISP-2 23/03/2017 600 seconds 35.62 GB 33156082 627898 91.22 107.45 

HOST-1 25/02/2013 ~59 days 9438 MB 5062825 121293 4.42 3.15 

HOST-2 25/02/2013 ~32 days 22 GB 21000000 245627 17.29 18.28 

 

Table 2. Network Application distribution for our datasets. %I denotes the percentage of instances belonging to each class and %B denotes the percentage of 

bytes transferred by each application in the network captures. 

 P2P WWW DNS INT S/C BULK Media E/C QUIC 

 %I %B %I %B %I %B %I %B %I %B %I %B %I %B %I %B %I %B 

ISP-1 - - 72.60 91.30 21.00 0.09 2.45 0.11 0.66 0.16 - - - - 1.59 0.44 1.70 8.10 

 ISP-2 0.25 <0.01 70.20 85.70 21.90 0.21 2.57 0.41 0.90 0.24 - - 0.26 0.10 1.59 0.25 2.33 13.40 

HOST-1 33.00 15.90 32.83 27.61 9.12 0.09 10.30 2.73 5.96 0.06 5.72 23.71 3.07 29.9 - - - - 

HOST-2 14.30 7.90 17.10 11.80 7.21 0.04 55.40 67.1 1.06 0.01 3.43 6.22 1.50 6.93 - - - - 

 
The WWW class is composed by HTTP and HTTPS queries towards many diverse websites. The DPI tool employed to label the 

dataset is able to directly detect connections to the most popular web services (such Google, YouTube, Facebook and so on), 

however some HTTPS connections were labeled as SSL on port 443. These instances were also mapped to the WWW class. Other 

website queries are represented by QUIC class, QUIC is a recent transport protocol implemented by the browser Google Chrome 

whose presence in the ISP traces is quite relevant. The eDonkey, Torrent and other peer-to-peer traffic have been grouped into 

P2P class. DNS protocol has been found with a notable presence in HOST and ISP data, thereby this protocol was considered as 



  
  

an independent class. Media groups applications and protocols as RTP and Skype. Remote control protocols as SSH, Telnet and 

others were represented by the class interactive (INT). The network service protocols (such as NetBios, Radius, Kerberos and 

so on) have been grouped in the class Service/Control (S/C). The Email/Chat class includes applications as WhatsApp, email 

services and so on. Finally, Bulk traffic groups File transfer protocols, such as FTP. NDPI reported some connection flows as 

unknown, so that we used the port numbers (IANA) to assign the final application class in these cases. If it was not possible to 

identify the application for any flow, these samples were excluded from the datasets. Other applications groups, as database 

queries and online games, were found in our traffic data; however, we excluded them from our experiments due to their hugely 

weak presence in the datasets. The datasets used in our experiments are accessible to the research community via emailing the 

authors. Table 2 contains the populations found in the datasets. 

3.3.2 Level of Class Imbalance in our datasets 
Table 2 contains the class distributions found in our datasets in terms of number of flows and the bytes consumed by each group 

of applications. In the instance of ISP traces, the majority classes are WWW and DNS, which accumulate more than 90% of the 

samples contained in both datasets. On the contrary, we found that the minorities are INT, S/C, E/C and QUIC for both, and 

also MEDIA and P2P in the case of ISP-2. In spite of the different capture durations and dates (Table 1), the distributions of 

classes are very similar to each other, but with the main difference that P2P and Media traffic emerged in ISP-2 with a quite 

low sample representation. This fact affects the metrics used to assess the level of Class Imbalance, note that 𝐼𝑅𝐿𝑏𝐿̅̅ ̅̅ ̅̅ ̅̅  and 𝜎(𝐼𝑅𝐿𝑏𝐿) 

for ISP-2 are much larger than the ISP-1 (Table 1). Focusing on the byte populations for ISP traces, we found that QUIC takes 

an important relevance. Although QUIC has a weak presence in terms of %I, it consumed more than the 8% of bytes for ISP-1 

and more than the 13% for ISP-2. However, WWW is remaining being the most byte-consuming for both datasets. Regarding 

HOST datasets, we find that they present a lesser degree of imbalance than the ISP traces. This fact is caused by the differences 

between network environments, since ISP traffic aggregates connections flows coming from many users, meanwhile HOST 

traces were captured in host computers.  

The level of Class Imbalance in HOST-1 is much lower than HOST-2 as can be noted observing 𝐼𝑅𝐿𝑏𝐿̅̅ ̅̅ ̅̅ ̅̅  and 𝜎(𝐼𝑅𝐿𝑏𝐿) from Table 

1. In the instance of HOST-1, P2P and WWW are the majority classes summing up more than the 60% of the samples, meanwhile 

MEDIA is the lowest populated class with only the 3.07% of samples, followed by S/C and BULK with a percentage of samples 

close to 6% each one. Note that, although MEDIA and BULK flows do not have a relevant presence in HOST-1 in terms of 

samples, these applications accumulate near the 60% of bytes. For this network trace, P2P and WWW also consumed an 

important percentage of bytes, meanwhile DNS, INT and S/C consumed much less. In the case of HOST-2, INT is remarkably 

the most populated class having more than 55% of samples. Contrary, the most underrepresented classes in terms of instances 

for HOST-2 are S/C and INT with a 1.06% and 1.5% of instances respectively. The high differences between the majority and 

the minority classes cause that HOST-2 presents a greater level of Class Imbalance than HOST-1. In terms of percentage of 

bytes for HOST-2, INT is the most byte-consuming application with more than the 67% followed by WWW, P2P, MEDIA and 

BULK, which add more than 30% of bytes. DNS and S/C are very light in terms of bytes captured in the network trace. 

As we have noted, Class Imbalance have an important presence in our datasets presenting multi-majority and multi-minority 

classes. Below, we introduce the algorithms studied and the multiclass strategies to confront Class Imbalance.   

3.4 Algorithms & Strategies to confront Class Imbalance 
In this section we introduce the algorithms employed in our experiments and the strategies assumed to tune their parameters. 

Table 3 contains a brief description of each algorithm and Figure 4 shows the strategies applied. As part of the contributions 

provided in this work, the algorithms we have implemented are accessible to the research community in [64]. 

We have collected several techniques from different approaches to confront Class Imbalance: 21 data-level algorithms, including 

undersampling, oversampling and hybrid approaches; 6 algorithm-level techniques and one well-known cost-sensitive approach. 

All data-level techniques along with Easy Ensemble and Balance Cascade algorithms are implemented in the Python library 

imbalanced-learn [63]. The other ensemble schemes are two-fold contributions from a third party and ours. The algorithms 

SMOTEboost and RUSboost were collected from the algorithm repository [72]. These algorithms were not adapted to multiclass 

problems, so that we had to upgrade the implementations to deal with multiclass problems. Furthermore, we have implemented 

two unexplored boosting algorithms: TLboost and ROSboost, which have already not been applied to ML to the best of our 

knowledge. The maximum number of estimators were set to 10 for all ensemble structures, since more estimators did not yielded 

better results for our datasets.  

Finally, we have implemented the cost-sensitive approach MetaCOST [40]. Preliminarily, we tested the strategy presented in 

[22] to compute the classification costs for MetaCOST, however majority classes were strongly punished due to the huge 

differences between the number of samples for different classes. In order to mitigate this fact, we have applied Equation 9 to 

compute classification costs. Thereby, the cost associated with misclassifying a sample belonging to class 𝑖 as class 𝑗 is 𝐶𝑜𝑠𝑡𝑖,𝑗, 

where 𝐶𝑖 denotes the number of samples for class 𝑖.  

 𝐶𝑜𝑠𝑡𝑖,𝑗 = {   
𝑙𝑜𝑔10(𝐶𝑖) 𝑙𝑜𝑔10(𝐶𝑗) ⁄ 𝑖 ≠ 𝑗

0                                    𝑖 = 𝑗 
 (9) 

NTC is a multi-minority and multi-majority problem, thus tuning manually the ratio of each class for resampling methods is a 

quite arduous and time-consuming task. Additionally, the boosting algorithms need a procedure to set the resampling ratios 



  
  

between classes for each learning iteration. Consequently, we have designed different strategies to set the former parameters 

during our experiments (Figure 4). In the case of Data-Level Undersampling, majority classes are considered classes whose 

number of samples are greater than the mean of all populations (Nmean), and majority classes are undersampled until reaching 

Nmean so as to avoid excessive information removal. Regarding Data-Level Oversampling, minority classes are considered all 

classes with a lesser population than the majority class (Nmaj), so that all minority classes are oversampled until equaling the 

majority class. In the instance of hybrid approaches, the classes with a number of samples lesser than Nmean were oversampled 

and the classes with greater populations were undersampled until reaching Nmean. 

In the instance of ensemble algorithms, EE and BC are ensemble algorithms based on creating bags of estimators trained using 

balanced datasets. These algorithms state that the minorities classes resampled until equaling the most majority class. 

However, boosting algorithms need to implement a resampling strategy to adjust the number of classes employed in each 

boosting iteration. In the case of algorithms that combine boosting and undersampling (UnderBoosting), all classes with more 

than Nmean are undersampling until Nmean. Meanwhile, in the case of OverBoosting algorithms, majority classes are considered 

the classes whose number of samples are lesser than Nmaj, and they are resampled until reaching Nmaj. For both, Under and 

OverBoosting, the minority and majority classes are proportionally resampled until accomplishing the corresponding sample 

populations. 

 

Table 3. Algorithm selected to deal with Class Imbalance in our NTC datasets. The strategies presented in Figure 4 were applied to the 

algorithms marked with an asterisk  

 Algorithm Description  

OVERSAMPLING  

Random OverSampling 

(ROS*) 

The minority class is resampled by replicating samples randomly selected. This algorithm is the simplest oversampling 

technique. 

Synthetic Minority Oversampling 

TEchnique (SMOTE*) 

Synthetic data are generated for the minority class [25]. 𝐾 minority nearest neighbors are selected for each minority sample, 

one of these neighbors is randomly chosen and one new sample is generated at a random point in the segment that joins the 

neighbors. This process is repeated until accomplish the desired number of new minority samples. 

 SMOTE with Borderline 1 and 2 

(SMOTE-B1* & B2*) 

This modification of SMOTE assumes that only minority samples placed near the borderline between classes are important 

for learning [26]. This SMOTE version detects borderline examples and strengthens them according to two strategies. In 

borderline 1 only 𝑘 nearest neighbors belonging to minority class are oversampled, meanwhile both majority and minority, 

borderline samples are generated in SMOTE-B2. 

ADAptive SYNthetic algorithm 

(ADASYN*) 

ADASYN adaptively resamples the minority class according to the level of difficulty in the learning process [27], so as that 

more synthetic samples are generated for classes difficult to predict. In the generation process the algorithm randomly 

selects the 𝑘 nearest neighbors around minority samples and estimate the distribution of the data. Finally, new samples are 

generated in middle points between minority samples and one of their neighbors randomly chosen. 

UNDERSAMPLING  

Random UnderSampling 

(RUS*) 

RUS randomly selects samples belonging to the majority classes and removes them from original datasets. RUS is the 

simplest approach to apply undersampling to imbalanced datasets. 

Near Miss 

(NM-1*, 2* & 3) 

Near-miss samples are defined as the majority samples that are located in minority class nearby. NM-1, 2 & 3 remove the 

near-miss samples according to a KNN strategy. Three strategies were developed to determine if a given sample is near-

miss, all of them are described in [29]. 

Condensed Nearest Neighbor 

(CNN) 

CNN iteratively finds a consistent subset with the minimal number of initial samples. CNN employs the Nearest Neighbor 

rule to determine if a sample will be retained or discarded. 

Tomek Links 

(TL) 

A Tomek Link consists of a pair of samples that are nearest neighbors but each one belongs to a different class [34]. TL 

detects and removes Tomek Links from the initial dataset. 

One Sided Selection 

(OSS) 

OSS intelligently removes the majority samples in two phases: (1) a 1-KNN classifier selects a representative subset of 

majority samples, and (2) the majority samples that participate in Tomek Links are removed. 

Edited Nearest Neighbor 

(ENN) 

ENN removes samples that are misclassified by a k-NN classifier [31]. The purpose of this technique is to remove outliers 

and overlapped samples between different classes. 

Neighborhood Cleaning Rule 

(NCR) 

NCR [32] removes noisy examples in two steps essentially: (1) NCR employs the ENN rule to identify noisy samples, and (2) 

noisy samples with 3 of their 5 nearest neighbors belonging to different classes are removed. 

Instance Hardness Threshold 

(IHT) 

IHT is a recent data reduction technique that trains a base classifier, estimates sample probabilities and removes the 

training samples whit weak probabilities [33]. We employed decision tree as base estimator for our experiments. 

HYBRID SAMPLING  

SMOTE+Undersampling 

(SMOTE-TL*, SMOTE-ENN*) 

SMOTE-TL [35] firstly oversamples minority samples using SMOTE and, afterwards, removes the TL links. Meanwhile, 

SMOTE-ENN [36] cleans the oversampled dataset applying ENN rule. 

ENSEMBLE ALGORITHMS  

EasyEsemble 

(EE) 

EE creates a bag of balanced datasets using ROS to train a set of base estimators, whose predictions are aggregated according 

majority voting [37].  

BalanceCascade 

(BC) 

BC is a supervised version of EE. BC creates a bag of balanced datasets, which are refined using a base estimator. [37] 

OverBoosting 

(ROSboost*, SMOTEboost*) 

OverBoosting oversamples minority classes in each boosting iteration. ROSboost employs ROS during learning, meanwhile 

SMOTEBoost oversamples the dataset using SMOTE [39]. 

 UnderBoosting 

(RUSboost*, TLboost) 

UnderBoosting undersamples majority classes in each boosting iteration. RUSboost [38] employs RUS during learning, 

meanwhile TLboost removes Tomek links in each iteration. 

COST-SENSITIVE   

MetaCOST 

(MetaCOST) 

MetaCOST is a well-established cost-sensitive technique independent from the learning algorithm employed [40]. 

MetaCOST creates a set of estimator trained using resampled datasets, which estimates the post-probabilities of training 

samples and applies classification costs to relabel the initial training set. 

 

 

 



  
  

 
Fig. 4. Strategies to adjust resampling ratios. C1, C2, C3 and C4 denote arbitrary classes, Nmin the minimum population, Nmaj the maximum population and Nmean the mean of all 

populations 

 

4. Experimental Results 
Through this section we present and discuss the results obtained during our experiments. Firstly, we analyze the effect of Class 

Imbalance on the global and per-class metrics for our datasets using the base estimator and with the aim of establishing the 

baselines to compare the algorithms under study. Secondly, we compare the techniques introduced in Section 3.4 in terms of the 

global metrics in order to figure out which algorithms are the most proper for imbalanced NTC. Additionally, a statistical 

procedure is employed to extract general observations on algorithm performances over all our NTC datasets. Finally, we validate 

the most promising techniques in terms of per-class metrics for the most challenging dataset so as to assure that minority classes 

are really strengthened. 

 

4.1 Preliminary results: Assessing Class Imbalance & Baseline  
In this experiment, a CART Decision Tree was trained using the datasets presented in Section 3.3 and varying the subset sizes 

after reducing the attribute space. Through this evaluation, we assess the negative effect of Class Imbalance on the global and 

per-class metrics and establish the baselines for the subsequent algorithm comparison. Table 4 presents the global metrics 

resulting from this preliminary experiment, and Table 5 contains the per-class metrics.  

From Table 4, it is apparent that notable differences exist between the global metrics obtained for different network scenarios. 

Generally, the predictive models produced for ISP datasets achieved lower performances than HOSTs. For example, the best 

OA for ISP-1 reached 92%, meanwhile the highest OA for HOST-1 overcame 98%. Note from Table 5 that per-class metrics for 

HOST datasets are also greater than for ISP datasets. These clear differences in performances suggest that ISP network 

environment comprises a more challenging traffic classification task than HOST. As aforementioned in Section 3.3, the ISP 

traces were captured in the middle of a high-speed backbone, where traffic is much more susceptible to packet losses and packets 

out of order. 

Focusing on ISP traces, we find that the differences between ISP-1 and ISP-2 are not as large as the observed between network 

environments. However, the observations change depending on the performance metric we focus on. In the instance of GM, the 

predictive model trained with ISP-2 generally overcame ISP-1, on contrast to OA, BA and MAUC, which were slightly greater 

for ISP-1 than for ISP-2. Note also that there are points in which all global metrics notably increased for both datasets when 

the subset sizes vary, and that the performances smoothly fluctuated without high variations after those points. The abrupt 

performance increases happened when 6 and 8 predictors were selected for ISP-1 and ISP-2 respectively. These sharp raises are 

strongly related to the high improvements on WWW and DNS traffic detection, but also on other applications with lesser impacts 

on the class distributions, such as S/C for ISP-1 or Media and E/C for ISP-2. Another remarkable observation is that the OA and 

BA losses are more significant for ISP-2 than for ISP-1 when insufficient attributes were selected. This fact is directly connected 

to important differences in WWW per-class metrics (Table 5) amongst ISP traces, which reveals the high impact of this traffic 

class over OA and BA. The best models in terms of GM and MAUC were achieved using 8 and 14 predictors for ISP-1 and ISP-

2 respectively. Furthermore, the best OA and BA were achieved using 16 and 18 features for ISP-1, meanwhile the subset with 

18 attributes produced the best models in terms of OA and BA for ISP-2. 

Regarding HOST datasets, we find that all global metrics (Table 4) fast boosted when 4 and 2 predictors were selected for HOST-

1 and HOST-2 respectively. After that point, the global metrics linearly grew up until reaching a point in which they fluctuated 

with smooth variations when subset sizes change. In the case of HOST-1, we find from Table 5 that P2P, WWW, S/C and BULK 

samples were poorly detected when two predictors were selected for training. Note also that the same happened for HOST-2, 

but with weaker per-class metric deteriorations. In the instance of HOST-1, the best models in terms of OA and BA were 

produced with 18 and 14 attributes, whereas the maximum MAUC and GM were accomplished selecting 18 and 20 predictors. 



  
  

While on HOST-2, the maximum OA resulted from selecting 12 or 14 features and the best BA from selecting 10. Respecting 

MAUC and GM for HOST-2, the former reached its maximum at 16 and the latter at 12, 14 or 18 features. 

 

Table 4. Global metrics obtained varying the subset sizes and employing the base estimator as learner. The results are expressed in % 

 ISP-1  ISP-2  HOST-1  HOST-2 

#Fe

a 

OA BA MAUC GM  OA BA MAUC GM  OA BA MAUC GM  OA BA MAUC GM 

2 74.13 75.11 77.56 42.01  44.27 45.90 78.63 58.40  77.72 81.95 87.47 77.18  95.86 94.48 94.79 89.97 

4 76.97 78.67 78.49 43.22  53.54 55.80 80.21 70.15  94.39 98.25 95.47 91.53  98.20 98.41 97.47 95.14 

6 90.45 91.47 91.60 84.97  63.97 66.76 83.63 74.82  95.30 96.99 96.21 92.86  99.00 99.18 98.45 97.02 

8 90.94 92.11 91.95 85.57  87.86 88.35 90.46 86.53  95.43 98.27 96.26 92.94  99.01 99.17 98.42 96.96 

10 91.93 93.01 91.87 85.21  87.74 88.55 90.75 87.22  96.37 98.23 96.81 94.07  99.16 99.21 98.61 97.38 

12 91.73 92.44 91.85 85.00  87.90 88.84 90.87 87.54  98.21 99.24 98.60 97.43  99.23 99.00 98.80 97.68 

14 91.63 92.62 91.86 85.18  88.09 88.69 91.35 88.38  98.20 99.51 98.61 97.43  99.23 99.20 98.80 97.64 

16 92.42 93.19 91.83 84.91  88.23 88.73 91.23 88.07  98.39 99.43 98.69 97.62  99.20 99.06 98.78 97.69 

18 92.47 93.10 91.86 85.12  88.59 89.10 91.27 87.95  98.48 99.19 98.73 97.65  99.22 98.93 98.80 97.66 

20 92.36 92.85 91.84 85.28  88.54 89.10 91.30 88.13  98.46 99.46 98.72 97.68  99.22 99.19 98.77 97.63 

 

Table 5. Per-class metrics obtained varying the subset sizes and employing the base estimator as learner. The results are expressed in % 

 P2P  WWW  DNS  INT  S/C  BULK  MEDIA  E/C  QUIC 

 ACC/AUC  ACC/AUC  ACC/AUC  ACC/AUC  ACC/AUC  ACC/AUC  ACC/AUC  ACC/AUC  ACC/AUC 
ISP-1                  

2 -/-  87.23/91.83  29.59/64.56  74.96/85.89  4.35/52.13  -/-  -/-  69.20/81.79  94.35/89.14 

4 -/-  90.91/93.65  29.96/64.74  78.24/87.85  4.64/52.30  -/-  -/-  69.87/83.09  94.35/89.29 

6 -/-  91.94/94.50  87.60/93.50  83.02/90.75  84.70/91.31  -/-  -/-  73.88/85.09  89.94/94.42 

8 -/-  91.90/94.45  90.04/94.73  83.50/90.99  86.32/92.18  -/-  -/-  73.24/84.76  89.90/94.60 

10 -/-  93.48/95.14  90.27/94.83  82.93/90.66  87.30/92.50  -/-  -/-  69.65/83.79  89.94/94.63 

12 -/-  92.81/94.82  90.12/94.76  83.86/91.11  86.78/92.23  -/-  -/-  68.64/83.04  90.24/94.77 

14 -/-  93.05/94.94  90.06/94.73  83.09/90.73  86.96/92.31  -/-  -/-  70.11/83.85  89.99/94.65 

16 -/-  93.24/94.86  92.51/95.98  82.41/90.44  85.86/91.91  -/-  -/-  67.34/82.47  91.22/95.41 

18 -/-  93.36/94.97  92.50/95.95  82.22/90.33  86.14/92.06  -/-  -/-  68.40/83.05  90.90/95.25 

20 -/-  93.25/94.96  92.85/96.12  82.64/90.59  85.91/91.98  -/-  -/-  68.62/83.09  91.18/95.39 

ISP-2                  

2 90.45/94.24  33.02/65.48  69.02/82.68  95.48/77.57  85.10/91.49  -/-  26.63/62.38  38.18/67.77  79.44/87.46 

4 89.36/93.85  43.90/70.42  77.58/87.03  85.08/78.95  85.01/91.71  -/-  35.14/63.41  36.76/67.28  80.82/89.07 

6 89.68/94.10  57.61/77.69  78.94/87.87  93.84/84.76  85.55/92.17  -/-  38.60/68.11  47.87/72.77  84.99/91.55 

8 90.19/94.56  89.81/93.45  83.16/91.24  86.95/91.99  88.31/93.68  -/-  64.98/81.64  70.08/83.48  88.43/93.67 

10 90.64/94.77  89.44/93.37  83.58/91.45  86.59/91.80  88.12/93.60  -/-  66.32/82.24  73.13/84.97  88.57/93.76 

12 90.32/94.63  89.60/93.42  83.80/91.57  86.10/91.58  88.85/93.96  -/-  67.36/82.74  73.58/85.24  88.61/93.79 

14 90.45/94.70  89.68/93.58  83.92/91.64  87.65/92.22  88.92/94.01  -/-  68.75/83.46  77.17/87.19  89.03/94.00 

16 90.77/94.86  89.89/93.65  84.04/91.69  87.43/92.20  88.64/93.88  -/-  68.15/83.11  76.17/86.72  88.54/93.76 

18 90.58/94.76  90.28/93.85  84.39/91.85  87.76/92.49  89.10/94.12  -/-  67.23/82.71  75.72/86.50  88.76/93.87 

20 90.32/94.61  90.38/93.90  83.78/91.55  87.90/92.59  89.03/94.06  -/-  68.21/83.16  75.85/86.59  88.94/93.96 

HOST-1                  

2 62.19/79.67  82.61/84.30  90.67/95.06  94.45/94.65  98.79/99.40  70.07/82.71  53.58/76.49  -/-  -/- 

4 97.24/97.30  93.38/96.36  90.68/95.07  99.30/99.55  98.89/99.44  89.93/94.49  74.01/86.05  -/-  -/- 

6 96.19/97.65  93.31/96.44  98.33/98.43  99.34/99.58  98.85/99.42  90.13/94.78  76.25/87.17  -/-  -/- 

8 96.40/97.74  93.52/96.55  98.34/98.43  99.37/99.65  98.86/99.43  90.10/94.78  76.33/87.23  -/-  -/- 

10 88.42/93.99  96.53/98.04  98.32/98.42  99.37/99.67  98.89/99.44  91.99/95.66  85.91/91.17  -/-  -/- 

12 99.19/99.48  96.73/98.13  99.59/99.77  99.42/99.69  99.07/99.53  97.41/98.46  90.93/95.12  -/-  -/- 

14 99.01/99.39  96.70/98.11  99.55/99.75  99.39/99.68  99.07/99.53  97.49/98.49  91.12/95.18  -/-  -/- 

16 99.24/99.50  97.33/98.45  99.60/99.78  99.41/99.69  99.07/99.53  97.43/98.51  91.52/95.46  -/-  -/- 

18 99.09/99.44  97.44/98.49  99.61/99.78  99.43/99.70  99.07/99.53  97.49/98.54  91.66/95.51  -/-  -/- 

20 99.33/99.55  97.34/98.45  99.51/99.73  99.44/99.71  99.07/99.53  97.37/98.48  91.96/95.69  -/-  -/- 

HOST-2                  

2 88.76/94.01  92.48/95.40  94.96/97.26  99.78/99.39  95.81/97.82  85.45/92.50  74.93/87.16  -/-  -/- 

4 98.26/99.05  96.26/97.86  96.94/98.30  99.67/99.81  96.62/98.25  89.14/94.38  89.65/94.63  -/-  -/- 

6 99.02/99.47  96.83/98.24  99.11/99.53  99.83/99.89  96.96/98.46  95.94/97.90  91.68/95.66  -/-  -/- 

8 99.07/99.50  96.92/98.28  99.09/99.51  99.82/99.88  96.96/98.46  95.95/97.90  91.19/95.42  -/-  -/- 

10 99.21/99.56  97.40/98.59  99.11/99.52  99.90/99.92  96.96/98.46  96.67/98.27  92.60/96.15  -/-  -/- 

12 99.28/99.60  97.45/98.64  99.09/99.51  99.90/99.92  96.92/98.44  97.70/98.74  93.55/96.67  -/-  -/- 

14 99.22/99.56  97.39/98.61  99.04/99.49  99.90/99.92  96.92/98.44  97.77/98.77  93.41/96.60  -/-  -/- 

16 99.25/99.58  97.21/98.53  99.10/99.52  99.88/99.92  97.04/98.50  97.75/98.76  93.71/96.74  -/-  -/- 

18 99.28/99.59  97.27/98.55  99.07/99.51  99.88/99.92  96.96/98.46  97.90/98.83  93.39/96.58  -/-  -/- 

20 99.32/99.61  97.24/98.54  99.10/99.52  99.90/99.93  96.96/98.46  97.72/98.74  93.36/96.57  -/-  -/- 



  
  

Interestingly, we find that P2P and QUIC traffic presented similar detection rates for ISP traces in spite of having quite 

dissimilar numbers of samples in the datasets (Table 2). The same happened for HOST traffic, DNS obtained high per-class 

metrics in spite of the fact that this class populated only the 9.12% and 7.21% of samples for HOST-1 and HOST-2. This fact 

indicates that the difficulty of detecting some kinds of application is not directly related to the class populations and there may 

exist other causes of performance degradation, such as: overlapping samples in the attribute space.  

In order to compare the solutions to Class Imbalance in terms of performance increases or decreases with respect to the base 

estimator, we had to establish a baseline for each dataset. As this study is focused on Class Imbalance, we selected the models 

that produced the best results in terms of MAUC and/or GM to set the baselines. Thus, we have selected the model with 8 and 

14 attributes for ISP-1 and ISP-2 respectively. We set the model with 18 attributes as baseline in the case of HOST-1, as it 

yielded the highest MAUC and OA. Finally, we chose the model including 12 predictors for HOST-2, since it produced the highest 

MAUC and BA accomplishing also the second best GM.  

4.2 Addressing Class Imbalance: Algorithm comparison 
In this section we present the comparison between the algorithms chosen to confront Class Imbalance in our NTC datasets. The 

comparison is firstly carried out in terms of global metrics, and per-class metrics are thoroughly explored for the most interesting 

techniques in Section 4.3. The results discussed correspond to the best-performing models in terms of MAUC, and they are 

presented as performance differences between each algorithm and the baselines set at Section 4.1. Firstly, we present the results 

obtained from experimenting with ISP traffic (Table 6) and secondly we focus on HOST network environment (Table 7). Finally, 

we statistically validate the results and present general remarks about the outcomes at Section 4.2.3. 

4.2.1 ISP Network Environment  
Table 6 shows the results for ISP-1 and ISP-2. Regarding oversampling on ISP-1, we find that all the algorithms generally 

performed well improving the scores obtained by the baseline. The best-performing algorithm in terms of OA and BA was 

SMOTE-B1, which increased the baseline by 4.92% and 3.8% respectively, meanwhile SMOTE yielded the second highest OA 

and BA. If we observe MAUC and GM, ROS obtains the best scores overcoming the baseline in 5.05% and 9.48%. When ISP-2 

was oversampled, we observe that ROS remained to be the best method in terms of MAUC and GM, with increases of 4.08% and 

8.05%. However, the observations on OA and BA change comparing to ISP-1. In this instance, the highest OA and BA were 

yielded by ADASYNC, which boosted both metrics in more than 6%. Interestingly, SMOTE-B1, SMOTE-B2 and ADASYNC 

produced quite negative impacts on MAUC and GM, evidencing that they did not clearly solve Class Imbalance for ISP-2. As 

the differences in performances between ISP traces reveal, the ISP-2 imposed a more difficult challenge than ISP-1 for 

oversampling. Note also that the size increase for ISP-1 was larger than ISP-2 due to the fact that ISP-2 present two minority 

classes more than ISP-1 (see Table 2).  

When undersampling techniques were employed on ISP-1, TL obtained the best MAUC and GM with increases of 5.08% and 

9.53% nearly followed by ENN, NCR and OSS. These algorithms also obtained the highest OAs and BAs amongst all the 

undersampling techniques, and ENN and NCR exactly yielded the same results for all global metrics. Note also that TL, ENN, 

NCR and OSS removed a low number of samples compared to other approaches. Other algorithms that notably overcame the 

baseline in terms of MAUC and GM were RUS and IHT, but getting weaker increases. In the case of RUS, these improvements 

were coupled with loose OA and BA increases and with a considerable training subset size reduction (more than 60% of samples 

were removed). Unlike RUS, IHT did not achieve improvements in terms of MAUC and GM. Furthermore, we find that there 

are some algorithms that dramatically worsened all global metrics evidencing that they are not recommendable choices for this 

network trace, they are: NM-1, NM-2, NM-3 and CNN. The abrupt performance decays are due to the fact that these algorithms 

removed a significant number of instances leading to important information losses (CNN and NM-3 removed more than 90% of 

the original samples). In the instance of ISP-2, the bad results obtained by NM-1, NM-2, NM-3 and CNN confirm the detrimental 

effect of these algorithms for ISP traffic. These techniques strongly lessened all global metrics, being the decrease more abrupt 

for OA and BA metrics. The best-performing algorithms were NCR, ENN and TL when ISP-2 was undersampled. NCR and ENN 

anew obtained pretty similar global metrics with increases close to 1.8% for OA and BA, and increases of 4.1% and 8.11% for 

MAUC and GM respectively. In the case of IHT, we observe that MAUC and GM metrics were reinforced, but it also yielded 

important losses in terms of OA and BA. In the case of OSS and RUS, they significantly overcame the baseline in terms of 

MAUC and GM, however they got weak enhancements for OA and BA. The main difference between both techniques is that 

RUS notably reduced the size of the training dataset, meanwhile OSS only removed the 1.49% of samples. Similarly to 

oversampling, ISP-2 poses a greater challenge than ISP-1 for undersampling algorithms. 

When hybrid techniques are applied to ISP-1, we find that all algorithms overcame the baseline for all global metrics. Among 

all the hybrid algorithms, SMOTE-TL yielded the highest MAUC and GM with increases of 4.56% and 8.43% respectively, so 

that it is the best hybrid method at confronting Class Imbalance for ISP-1. Additionally, SMOTE-B1-TL and SMOTE-B2-TL 

achieved also really positive results, meanwhile the methods that combine SMOTE and ENN provided very weak improvements 

for MAUC and GM. While on OA and BA, we observe from Table 6 that SMOTE-B1-TL improved the baseline in 4.64% and 

3.88% respectively, being the best-performing for these metrics. Another hybrid techniques that notably increased OA and BA 

were SMOTE-ENN, SMOTE-TL and SMOTE-B2-TL. Conversely, the slightest increases in terms of OA and BA were exhibited 

by SMOTE-B2-ENN and SMOTE-B1-ENN. In the case of ISP-2, SMOTE-TL is anew the technique that most improved the 

baseline in terms of MAUC and GM, it increased MAUC by 3.29% and GM by 6.39%. SMOTE-B1-TL, SMOTE-B2-TL and 

SMOTE-ENN also outperformed the baseline for MAUC and GM, but their enhancements were not as significant as SMOTE-

TL. Focusing on OA and BA, the best OA and BA were obtained by SMOTE-B1-ENN followed by SMOTE-ENN, however the 

former negatively affected MAUC and GM. In general, all hybrid algorithms produced positive outcomes for all global metrics 



  
  

but, on the contrary, SMOTE-B1-ENN and SMOTE-B2-ENN worsened MAUC and GM. In the case of applying hybrid 

approaches to ISP traces, these techniques also provided better results for ISP-1 than ISP-2.  

In the case of training ensemble algorithms with ISP-1, RUSboost and TLboost tied for MAUC and GM yielding the highest 

enhancements with increases of 5.02% and 9.88% respectively. Furthermore, EE also obtained pretty relevant increases 

according to MAUC and GM, being the third scored ensemble method. Generally, all ensemble techniques provided quite 

remarkable enhancements for these metrics, achieving also important increases for OA and BA in specific cases. That is the 

case of ROSboost and SMOTEboost, which yielded quite beneficial results for all global metrics accomplishing the two highest 

OAs and BAs amongst all ensemble techniques. According to these performance metrics, the rest of algorithms did not achieve 

results as significant as ROSboost and SMOTEboost, and even BC loosely underperformed the baseline in terms of BA. Focusing 

on ISP-2, we observe similar outcomes to the ISP-1. The best ensemble algorithms at dealing with Class Imbalance for ISP-2 

were RUSboost, EE and TLboost achieving increases superior to 4% for MAUC and superior to 8% for GM. The rest of algorithms 

also got positive outcomes for these metrics, however they were inferior to the former techniques. Regarding OA and BA, we 

find that ROSboost and SMOTEboost obtained the highest performances incrementing OA in more than 8.1% and in more than 

7.5% respectively. Although the other techniques did not perform as well as ROSboost and SMOTEboost, they also overcame 

the baseline in terms of OA and BA with the exception of BC. Surprisingly, ensemble algorithms yielded higher enhancements 

for ISP-2 than ISP-1 in contrast to the data-levels algorithm previously discussed. 

When MetaCOST was employed on ISP-1, we observe that it achieved to compensate Class Imbalance improving MAUC and 

GM in 4.41% and 9.13% respectively. On the contrary, MetaCOST weakened OA and BA with decreases of -1.48% and -1.19%. 

The same happened when MetaCOST was used to apply cost-sensitive to ISP-2, MAUC and GM were greatly strengthened, in 

contrast to OA and BA that deteriorated. In this case, the improvements on ISP-1 were more significant than ISP-2. 

 

Table 6. Global metrics obtained for ISP network environment. The results are expressed as percentage increments or decrements respecting with the baseline 

 ISP-1  ISP-2 

 OA BA MAUC GM % #F  OA BA MAUC GM % #F 

OVERSAMPLING              

ROS 3.31 2.53 5.05 9.48 335.75 16  1.69 1.98 4.08 8.05 461.65 18 

SMOTE 4.01 3.26 4.55 8.41 335.75 16  2.41 2.58 3.16 6.15 461.65 20 

SMOTE-B1 4.92 3.84 3.48 6.10 335.75 18  2.26 2.37 -2.84 -6.88 461.65 14 

SMOTE-B2 3.57 2.84 3.23 5.84 335.75 18  1.45 1.06 -2.55 -6.26 461.65 16 

ADASYNC 3.41 2.82 0.57 0.53 336.18 12  6.77 6.19 -2.61 -6.92 461.74 18 

UNDERSAMPLING              

RUS 2.1 1.14 4.82 9.23 -60.25 20  0.16 0.52 3.85 7.79 -67.08 18 

CNN -38.25 -39.17 -5.46 -7.35 -91.62 10  -63.6 -61.07 -8.46 -19.69 -91.29 10 

TL 3.38 2.29 5.08 9.53 -0.73 18  1.44 1.42 4.06 -0.55 8.04 18 

NM-1 -36.34 -38.73 -4.01 -4.58 -60.25 20  -52.02 -52.16 -5.76 -10.76 -67.08 12 

NM-2 -50.42 -53.29 -6.39 -11.32 -60.25 20  -55.78 -56.24 -5.95 -12.5 -67.08 16 

NM-3 -61.96 -62.09 -11.32 -21.93 -92.8 8  -72.95 -72.66 -10.28 -31.22 -91.91 8 

OSS 2.99 2.04 4.99 9.42 -1.63 16  0.5 0.45 3.83 -1.49 7.68 10 

ENN 3.09 2.24 5 9.43 -2.44 16  1.78 1.82 4.1 8.11 -3.8 20 

NCR 3.09 2.24 5 9.43 -3.17 18  1.79 1.84 4.1 8.11 -3.8 20 

IHT -5.35 -5.93 3.44 7.42 -16.41 16  -11.25 -10.38 2.02 4.73 -27.75 20 

HYBRID SAMPLING              

SMOTE-TL 3.95 3.29 4.56 8.43 57.61 18  2.55 2.59 3.29 6.39 

 

64.48 16 

SMOTE-B1-TL 4.64 3.88 4.06 7.31 58.08 20  3.83 3.38 2.11 3.68 

 

65.22 

 

18 

SMOTE-B2-TL 3.91 2.99 3.86 7.04 53.09 20  3.62 2.95 1.78 3.04 

 

58.63 

 

18 

SMOTE-ENN 4.05 3.1 2.9 5.22 31.57 20  4.5 4.08 0.78 1.17 

 

34.55 

 

14 

SMOTE-B1-ENN 3.51 2.77 2.39 4.23 40.65 16  5.13 4.9 -0.09 -1.14 

 

42.76 

 

14 

SMOTE-B2-ENN 2.78 2.07 1.25 2.04 14.81 10  2.51 2.1 -2.4 -5.98 11.67 12 

ENSEMBLE ALGORITHMS              

EE 0.9 1.18 4.96 9.87 - 20  1.62 1.89 4.12 8.14 - 18 

BC 0.29 -0.03 4.69 9.46 - 18  -0.01 -0.43 3.84 7.78 - 18 

ROSboost 5.48 5.22 5 9.21 - 16  8.16 7.56 3.52 6.12 - 18 

SMOTEboost 5.6 5.48 4.59 8.38 - 16  8.11 7.67 3.02 5.06 - 16 

RUSboost 1.7 1.61 5.02 9.88 - 18  2.29 2.65 4.21 8.23 - 20 

TLboost 1.99 1.6 5.05 9.88 - 18  1.56 1.9 4.1 8.11 - 20 

COST-SENSITIVE               

MetaCOST 

 

-1.48 -1.19 4.41   9.13 - 16  -2.36 -2.2 3.42 7.04 - 16 

 

4.2.2 HOST Network Environment  
Table 7 contains the results obtained via applying the different techniques to solve Class Imbalance for HOST datasets. When 

oversampling techniques were applied to HOST-1, ROS and SMOTE produced the best MAUCs and GMs with increases 

exceeding 0.55% and 1% respectively, so that they are the two best oversampling methods at solving Class Imbalance for HOST-

1. Although SMOTE-B1 & B2 and ADASYNC overcame the baseline for all global metrics, they provided weak increases for 

MAUC and GM compared to ROS and SMOTE. Focusing exclusively on OA and BA, we find that ADASYNC achieved the 

highest increases, 0.7% for OA and 0.63% for BA. In addition, ROS and SMOTE also yielded very remarkable improvements in 

terms of OA. When HOST-2 was oversampled, we find that ROS was anew the best method in terms of MAUC and GM, 



  
  

increasing MAUC by 0.55% and MAUC by 1.07%. These increases were also accompanied by significant improvements in terms 

of OA and BA, being ROS the best-performing techniques for OA. Additionally, SMOTE and ADASYNC also overcame the 

baseline for OA and BA, and even ADASYNC provided the highest BA. In the instance of SMOTE, this algorithm accomplished 

the second best MAUC and GM followed by ADASYNC. Unlike other oversampling algorithms, SMOTE-B1 and SMOTE-B2 

negatively affected the predictive power of the models decreasing all global metrics when they were applied to HOST-2. In this 

case, the outcomes obtained for HOST-2 were slightly poorer than HOST-1. 

 

Table 7. Global metrics obtained for HOST network environment. The results are expressed as percentage increments or decrements respecting with the baseline 

 HOST-1  HOST-2 

 OA BA MAUC GM % #F  OA BA MAUC GM % #F 

OVERSAMPLING              

ROS 0.59 0.49 0.66 1.26 131.16 20  0.32 0.45 0.55 1.07 287.62 14 

SMOTE 0.67 0.47 0.56 1.05 131.16 16  0.3 0.42 0.47 0.92 287.62 18 

SMOTE-B1 0.10 0.58 0.10 0.18 131.16 14  -0.44 -0.23 -0.64 -1.31 287.62 14 

SMOTE-B2 0.40 0.60 0.17 0.29 131.16 18  -0.91 -0.92 -0.85 -1.61 287.61 18 

ADASYNC 0.70 0.63 0.23 0.36 130.87 18  0.3 0.54 0.13 0.21 287.55 18 

UNDERSAMPLING              

RUS 0.38 0.40 0.60 1.16 -32.21 20  0.25 0.29 0.57 1.11 -41.14 12 

CNN -11.9 -4.99 -4.80 -8.52 -73.03 20  -2.77 -5.05 -1.78 -3.29 -69.52 12 

TL 0.52 0.43 0.64 1.23 -0.21 20  0.26 0.3 0.57 1.11 -0.03 12 

NM-1 -14.1 -14.85 -3.88 -6.41 -32.21 20  0.26 0.3 0.56 1.09 -41.14 20 

NM-2 -21.23 -5.31 -6.36 -11.09 -32.21 12  0.12 0.19 0.37 0.75 -41.14 10 

NM-3 -26.77 -14.98 -9.28 -15.97 -73.29 20  -9.35 -9.43 -5.83 -13.1 -69.65 12 

OSS 0.10 0.37 0.49 0.99 -3.06 12  -1.73 -2.4 0.13 0.56 -45.06 16 

ENN 0.36 0.47 0.60 1.16 -1 20  0.25 0.33 0.56 1.09 -0.15 14 

NCR 0.36 0.47 0.60 1.16 -1 20  0.25 0.33 0.56 1.09 -0.15 14 

IHT -4.53 -3.07 -0.85 -1.08 -9.93 18  0.02 0.15 0.51 1.04 -1.02 12 

HYBRID SAMPLING              

SMOTE-TL 0.6 0.38 0.53 0.99 31.44 16  0.25 0.25 0.46 0.90 40.86 12 

SMOTE-B1-TL -0.49 -0.21 -0.27 -0.52 30.36 18  -0.35 -0.23 -0.61 -1.24 40.29 18 

SMOTE-B2-TL -0.26 -0.18 -0.24 -0.51 27.84 18  -0.2 -0.12 -0.34 -0.72 36.55 20 

SMOTE-ENN 0.34 0.5 -0.03 -0.09 26.49 20  -0.19 -0.11 -0.09 -0.15 37.35 10 

SMOTE-B1-ENN -0.24 0.55 -0.18 -0.33 15.86 18  -0.69 -0.46 -1.04 -2.11 34.12 20 

SMOTE-B2-ENN -0.46 0.42 -0.51 -0.99 11.07 18  -0.52 -0.2 -1.06 -2.24 20.56 18 

ENSEMBLE ALGORITHMS              

EE 0.55 -0.01 0.65 1.23 - 16  0.28 0.37 0.58 1.12 - 12 

BC 0.33 -0.25 0.58 1.12 - 16  0.28 0.37 0.58 1.12 - 12 

ROSboost 0.5 -1.23 0.47 0.89 - 18  0.17 0.41 0.52 1.02 - 12 

SMOTEboost 0.49 0.23 0.44 0.82 - 18  -0.27 -0.21 0.18 0.43 - 14 

RUSboost 0.17 -0.29 0.54 1.06 - 20  0.24 0.32 0.56 1.10 - 12 

TLboost 0.54 0.06 0.65 1.23 - 20  0.3 0.38 0.58 1.12 - 12 

COST-SENSITIVE               

MetaCOST 

 

0.46 0.07 0.6 1.13 - 18  0.26 0.36 0.54 1.04 - 14 

 

When HOST-1 was undersampled, we find from Table 7 that TL is the best algorithm at confronting Class Imbalance for this 

dataset, improving the baseline in 0.64% for MAUC and 1.23 for GM. Additionally, RUS, ENN and NCR also achieved positive 

results obtaining the same performances in terms of BA, MAUC and GM overcoming the baseline in 0.47%, 0.6% and 1.16% 

respectively. While on OA, TL got the highest OA with an increase of 0.52%, and RUS slightly outperformed ENN and NCR. 

Another algorithm that more loosely overcame the baseline for all global metrics was OSS, but its enhancements are not as 

remarkable as the former techniques. As it happened for ISP datasets (Table 6), CNN, NM-1, NM-2 and NM-3 had huge negative 

impacts on HOST-1. Surprisingly, IHT did not achieve overcoming the baseline for any metrics explored in contrast to ISP 

datasets. In the case of undersampling HOST-2, RUS and TL provided the highest increases in terms of MAUC and GM, nearly 

followed by NM-1, ENN and NCR. The main differences between the algorithms RUS, NM-1 and TL, ENN, NCR is the sample 

reduction rate, since the former techniques removed more than 40% of samples and the latter less than 0.20%. Among all 

undersampling techniques, the highest OAs were obtained by TL and NM-1; meanwhile, ENN and NCR outperformed the rest 

of algorithms for BA. Another algorithms that improved all global metrics comparing to the baseline were NM-2 and IHT. 

Surprisingly, the performances exhibited by NM-1 and NM-2 on HOST-2 notably differ from the observed for the rest of datasets, 

in this case all global metrics were reinforced. Observing the outcomes provided by OSS, we find that OA and BA were worsened 

comparing to baseline, in contrast to MAUC and GM that were loosely strengthened. Unlike for other datasets, the only two 

undersampling algorithms that reported negative impacts on all global metrics were CNN and NM-3.  

When hybrid sampling was applied to HOST-1, the best-performing technique to confront Class Imbalance was SMOTE-TL 

according to MAUC and GM. This method was the only hybrid approach that enhanced all global metrics with respect to the 

baseline. Additionally, SMOTE-ENN also increased some performance metrics comparing to baseline, specifically the metrics 

that are sensitive to Class Imbalance (OA and BA). The highest BA was accomplished by SMOTE-B1-ENN, which accurately 

classified 0.55% of bytes more than the base estimator. Combining SMOTE-B1 or B2 with TL or ENN leaded to performance 

degradations with the exception of BA for SMOTE-B1-ENN and SMOTE-B2-ENN. Focusing on HOST-2, we find that the only 

hybrid algorithm that overcame the baseline for all global metrics was anew SMOTE-TL. This technique achieved increases of 



  
  

0.25% for both OA and BA, and increases of 0.46% and 0.90% for MAUC and GM respectively. The rest of approaches obtained 

negative results for all global metrics when they are employed on HOST-2. The most unsatisfactory results in terms of OA and 

BA were obtained by SMOTE-B1-ENN, whereas SMOTE-B2-ENN yielded the poorest MAUC and GM with decreases of -1.06% 

and -2.11% respectively.  

As Table 7 shows, ensemble algorithms that include resampling while learning comprise interesting solutions to deal with Class 

Imbalance. When these algorithms were trained with HOST-1, the best results in terms of MAUC and GM were achieved by EE 

and TLboost, which increased MAUC by 0.65% and GM by 1.23%. All ensemble algorithms outperformed the baseline for these 

metrics, and namely that BC and RUSboost obtained also very positive result. While on OA, EE obtained the highest score 

overcoming TLboost slightly, in contrast to BA for which the latter improved the baseline and the former underperformed it. 

The highest BA was obtained by SMOTEboost with an increase of 0.23%, and the rest of ensemble algorithms yielded BA decays 

with the exception of TLboost. Namely, ROSboost decreased BA with respect to the baseline by -1.23%. When ensemble 

algorithms were employed on HOST-2, we find that three algorithm tied in terms of MAUC and GM. EE, BC and TLboost 

obtained the best results for these performance metrics improving the baseline by 0.58% for MAUC and 1.12% for GM. 

Furthermore, the rest of algorithms also overcame the baseline for MAUC and GM achieving positive results, especially 

RUSboost and ROSboost. Regarding OA, TLboost yielded the best outcomes increasing the baseline by 0.3%, nearly followed by 

EE, BC and RUSboost. Among all the six ensemble algorithms, ROSboost yielded the best results in terms of BA, and other 

algorithms that produced positive results for this metric are: TLboost, EE, BC and RUSboost. Furthermore, ROSboost also 

improved the baseline in terms of BA, whereas OA and BA deteriorated when SMOTEboost was applied to HOST-2. 

In the case of the cost-sensitive approach studied, we observe from Table 7 that MetaCOST improved all global metrics for both 

dataset (HOST-1 and HOST-2). When MetaCOST was applied to HOST-1, we find that OA and BA increased by 0.46% and 

0.06% respectively; meanwhile, MAUC and GM improved in 0.6% and 1.13%. In the case of HOST-2, the performance increases 

were loosely lower than for HOST-1 with the exception of BA, which increased by 0.36%. 

 

4.2.3 Statistical Validation & General Remarks  
In the previous section we compared different type of solutions to Class Imbalance discussing their strengths and weakness in 

terms of all global metrics for the best models after applying FS. Through this section we pretend to confirm the previous 

observations validating statistically the results and to discuss more general remarks about the analyzed techniques. Table 8 

contains the outcomes from applying the statistical approach presented at Section 3.3.4, which enables algorithm comparison 

against different datasets.  

From Table 8, we find that some algorithms are fairly discarded as suitable solutions to confront Class Imbalance for our NTC 

dataset. The Friedman's scores obtained by these techniques are quite high revealing that they do not provide benefits for any 

global metric, or even they produced detrimental performances. These algorithms are: NM-3, CNN, NM-2, NM-1, IHT, OSS, 

SMOTE-B2, SMOTE-B1, SMOTE-B1-ENN and SMOTE-B2-ENN.  

Other algorithms achieved reinforce metrics insensitive to imbalanced class distributions (MAUC and GM), but also they yielded 

very weak enhancements in terms of OA and BA. For example, the ensemble algorithms EE, BC, RUSboost and TLboost 

produced great improvements for MAUC and GM, and even TLboost and EE were the two best scored algorithms for these 

metrics. On the contrary, they obtained poor Friedman's scores for OA and BA. In addition, the data-level algorithms RUS, TL, 

ENN and NCR, SMOTE-TL, SMOTE-B1-TL, SMOTE-B2-TL and SMOTE-ENN also provided positive results for metrics 

insensitive to Class Imbalance. Note that ENN and NCR obtained the same Friedman's scores and that they were the best 

undersampling methods at mitigating Class Imbalance for our NTC datasets. Interestingly, we find that the best-performing 

techniques that employ undersampling tended to improve MAUC and GM notably, meanwhile they did not obtained so 

optimistic outcomes for OA and BA. In the case of MetaCOST, it did not obtained remarkable results for any of all the global 

metrics.  

When ROSboost, SMOTEBoost, ADASYNC, ROS were applied to our datasets, we find that they notably strengthened OA and 

BA. Whereas they did not get so positive increases in terms of MAUC and GM. Among all the algorithms studied, ADASYNC 

was fairly the best-performing in terms of OA and BA for our datasets followed SMOTE. However, they did not yield so 

significant improvements for MAUC and GM. While on ROS, it achieved to improve all global metrics preserving a quite 

interesting tradeoff among metrics that are sensitive to Class Imbalance and the metrics that are not. ROSboost was the best 

ranked ensemble algorithm in terms of OA and BA followed by SMOTEboost, however they did not produce so notable 

improvements for the rest of metrics.  

In short, the findings observed up to this point can be summarized in the following brief remarks: 

• The algorithms that involve oversampling tend to reinforce the metrics that are sensitive to Class Imbalance (OA and 

BA). As we will show at Section 4.3, these improvements are directly related to increases in the individual accuracy of 

majority classes. Interestingly, ROS was able to provide benefits for both minority and majority traffic applications 

achieving quite positive outcomes in terms of GM and MAUC.  

• The algorithms that include undersampling are prone to solve Class Imbalance and not to reinforce majority classes 

uniquely. Although some of them provided quite detrimental outcomes due to an excessive information removal, there 

are also some undersampling methods that constitute an interesting solution to imbalanced NTC. And particularly, 

RUS achieved to improve MAUC and GM with a significant sample reduction in spite of its simplicity, leading to faster 

training times.  

• The Hybrid approaches considered did not provide significant benefits for imbalanced NTC comparing to other data-

level approaches. And more specifically, the combination of SMOTE and TL generally outperformed the techniques that 

combine SMOTE with ENN. 



  
  

• Regarding ensemble algorithms, we find that some of them confronted Class Imbalance effectively. EE jointly with the 

methods that included undersampling with boosting (TLboost and RUSboost) notably improved MAUC and GM, and 

oppositely the methods combining oversampling and boosting were prone to boost OA and BA more clearly than MAUC 

and GM. 

• The cost-sensitive approach assumed achieved to increase MAUC and GM, however it produced losses in terms of OA 

and BA. However, further experimentation could be performed to study other more effective ways for computing 

classification costs.   

• Through the experimentation on different datasets extracted from two network scenarios presenting quite dissimilar 

conditions, we find that some techniques present a more stable behavior than others. A clear example of a stable 

technique is TLboost, which performed uniformly on the different datasets. In the opposite side we find SMOTE-B1 

and OSS, which produced quite dissimilar outcomes for different datasets. 

• Accordingly to the metrics explored in our experiments, we find quite interesting to assess global metrics that are 

sensitive to Class Imbalance jointly to metrics that are not. As we have probed in previous sections, tradeoffs between 

performance metrics could exist and monitoring several of them is highly recommendable. 

• Finally, network environments could present different Class Imbalance properties among them. In our work, the ISP 

environment constitutes the most challenging network scenario presenting a higher level of Class Imbalance. 

Interestingly, we find that performance losses are not exclusively related to class distributions, so that poor accuracies 

could also be related to other facts, such as: packet losses, packets out of order, overlapping regions and/or outliers.  

In the following section we pretend to analyze individual accuracies for majority and minority classes. We focus the discussion 

on the most interesting methods explored with the purpose of validating their outcomes for the most challenging NTC dataset.  

 

Table 8. Friedman´s Test. 𝑅𝑗 denotes the scores obtained by each algorithm 

 OA  BA  MAUC  GM 
OVERSAMPLING        

ROS 8.25  8.25  4.87  5.50 

SMOTE 5.08  6.16  13.00  12.50 

SMOTE-B1 13.87  10.12  20.75  20.75 

SMOTE-B2 15.75  13.75  20.75  20.75 

ADASYNC 4.33  3.75  20.37  20.75 

UNDERSAMPLING        

RUS 14.31  16.75  6.56  6.45 

CNN 26.25  26.25  26.50  26.50 

TL 10.91  13.37  4.12  7.20 

NM-1 20.41  22.37  19.81  20.16 

NM-2 24.00  23.75  24.00  24.00 

NM-3 28.00  28.00  28.00  28.00 

OSS 20.12  19.50  12.37  14.62 

ENN 12.06  11.66  3.83  5.12 

NCR 11.81  11.41  3.83  5.12 

IHT 22.25  22.25  18.25  16.37 

HYBRID SAMPLING        

SMOTE-TL 6.06  10.50  13.25  12.62 

SMOTE-B1-TL 13.50  12.87  19.00  19.00 

SMOTE-B2-TL 13.75  13.25  19.25  19.00 

SMOTE-ENN 10.75  8.75  19.75  19.25 

SMOTE-B1-ENN 14.50  10.75  21.75  21.50 

SMOTE-B2-ENN 17.75  14.75  23.25  23.25 

ENSEMBLE ALGORITHMS        

EE 11.87  14.87  3.79  2.25 

BC 16.37  17.87  7.66  6.16 

ROSboost 6.50  7.75  10.33  12.50 

SMOTEboost 8.00  9.50  14.75  15.25 

RUSboost 15.50  14.75  5.06  4.62 

TLboost 11.08  13.75  2.41  2.12 

COST-SENSITIVE         

MetaCOST 15.41  17.50  10.43  10.12 

p-value 0.0015  0.0011  <0.0001  <0.0001 

 

 

 

4.3 Analysis of per-class metrics  
Up to this point, a wide number of solutions to Class Imbalance were compared analyzing their strengths and weaknesses in 

terms of global metrics. We found that the effectiveness of each technique depends on the metrics observed and also on the 

network environments. Through this section, we analyze in more detail the ability of reinforcement minority classes for some 



  
  

algorithms aiming to confirm the suitability of them to be applied to imbalanced NTC. In order to not collapse the article with 

redundant results, we focus uniquely on the most remarkable algorithms and the most challenging dataset according to the 

results previously discussed. As aforementioned, ISP-2 constitutes the most challenging dataset, thus we report the per-class 

metrics obtained for this dataset. Regarding the algorithms discussed in this section, we have selected at least one algorithm 

from each approach considered. While on oversampling techniques, ROS has been selected due to the fact that it is the best-

performing oversampling method in terms of MAUC and GM. Additionally, ADASYNC obtained the best Friedman's scores for 

OA and BA between all the algorithms studied, and also it has been included in this section. NCR and SMOTE-TL are also 

studied, since they obtained the highest MAUC and GM for their respective resampling approaches according to Table 8. 

Regarding ensemble algorithms, as TLboost was the most remarkable method between all the comparison algorithms, we have 

selected it for this section. Finally, we have included MetaCOST. Thereby, Table 9 contains the per-class accuracies obtained 

over ISP-2, the results are presented as increases or decreases comparing to the best model produced by the base estimator. As 

useful information for the subsequent discussion, we remember that the best-performing and that the minority classes for this 

dataset are (Table 4): P2P, INT, S/C, MEDIA, E/C and QUIC.   

Regarding the metrics exhibited by ROS, per-class enhancements were not so positive when six or less predictors were chosen. 

This fact could likely be caused by the low predictive power of these subsets, since these subset sizes also produced negative 

outcomes when the base estimator was trained (Table 4). Although the best model in terms of MAUC was produced with 18 

attributes (Table 7), significant enhancements on per-class metrics were observed with less features. For example, when models 

with more than eight predictors were selected, we find that the most of classes benefit from applying this oversampling 

technique. In general, the performance improvements of minority classes were very significant, and even the majority classes 

were also strengthened with the exception of DNS for specific subset sizes. Namely, ROS increased ACC and AUC for MEDIA 

(which was the most punished class by the base estimator, see Table 5) by more than 20% and 10% respectively and, similarly, 

E/C got important performance increases.  

While on ADASYNC, we find that all minority classes were negatively affected for all subset sizes studied, being P2P the most 

damaged class with decreases that reached -47.89% and -23.47% for ACC and AUC respectively. On the contrary, WWW and 

DNS metrics were notably improved accomplishing the most significant increases for these classes between all the algorithms 

discussed through this section. Specifically, ACCs for WWW and DNS were increased by more than 7% and 10% when more 

than 10 attributes were selected. Due to this fact, ADASYNC obtained the best results in terms of OA and BA, meanwhile it 

exhibited quite detrimental performances for GM and MAUC.  

Something similar to ROS happened when NCR was applied to undersample ISP-2, no evident improvements were observed on 

all classes when subset sizes equal or lesser than six were selected. In the case of selecting six predictors, some classes were 

strengthened, however the most of them were significantly punished. After that point, almost all per-class performances 

increased with the exception of WWW and DNS for certain subset sizes. The classes that exhibited the worst performances for 

the baseline were significantly improved, but with weaker increases than ROS. Conversely, other minority classes exhibited 

greater performances than using ROS, which contributed to the fact that NCR achieved better MAUCs and GMs than ROS, on 

contrast to OA and BA. The best model from employing NCR on ISP-2 were produced with 20 features, obtaining notable 

increases for all classes with the exception of DNS whose metrics were slightly worsened.   

Regarding SMOTE-TL and similarly to ROS and NCR, we find that the most per-class metrics were worsened when less than 

eight attributes were selected. After that point, SMOTE-TL exhibited inferior improvements on minority classes to ROS and 

NCR, however the enhancements were also quite remarkable. While on majority classes, both WWW and DNS were reinforced 

with increases greater than 2.1% and 1.1% for their ACCs and AUCs. The performance increases exhibited on majority classes 

leaded SMOTE-TL to get better scores for OA than ROS and NCR (Table 8), but without reaching as significant increases as 

ADASYNC. 

Among all the comparison algorithms, the best method at solving Class Imbalance was the ensemble technique TLboost, which 

is an original contribution of this work. Although significant increases on the most classes were observed for subset sizes greater 

than six, the best model was produced using 20 attributes. Note that per-class metrics for this subset size were generally greater 

than the obtained by ROS and NCR, with the exception of WWW, E/C and QUIC traffic.  

Focusing on MetaCOST, we find a pretty different behavior from the previous algorithms. We find that majority classes are 

dramatically worsened comparing to baseline for all subset sizes considered, meanwhile minority classes were significantly 

improved when more than six predictors were selected. There are essentially one likely cause for this fact, remember that 

MetaCOST uses post-probability estimates and applies classification cost for relabeling the original training set. We 

experimented with several functions to compute classification costs, and finally the costs were computed according to Equation 

9. The penalty on majority classes is strongly dependent on the cost computation, so that more optimal cost could conduct to 

better performance for MetaCOST. Finally, note that MetaCOST obtained the highest improvements on most of the minority 

classes amongst all methods discussed in this section, being the best model at improving QUIC, INT and S/C. Conversely, 

MEDIA, E/C and P2P obtained similar increases to TLboost.  

 

 

 



  
  

Table 9. Per-class metrics produced by the selected techniques on ISP-2. The baseline corresponds with the model formed by 14 features 

 P2P  WWW  DNS  INT  S/C  MEDIA  E/C  QUIC 

 ACC/AUC  ACC/AUC  ACC/AUC  ACC/AUC  ACC/AUC  ACC/AUC  ACC/AUC  ACC/AUC 
ROS                

2 4.42/1.74  -57.11/-27.83  -15.23/-8.94  8.73/-14.2  2.28/0.43  -28.39/-14.4  -30.19/-14.9  -3.10/-3.41 

4 7.05/3.16  -45.77/-22.41  -6.08/-4.31  -1.06/-12.51  4.07/1.74  -15.68/-11.11  -26.76/-13.04  1.46/-0.12 

6 6.60/3.06  -32.04/-15.15  -4.48/-3.51  8.32/-6.35  4.28/2.03  -10.03/-5.35  -13.68/-6.54  1.84/0.57 

8 7.18/3.56  0.89/1.19  -0.68/-0.28  7.09/3.79  5.75/2.88  21.10/10.57  14.96/7.50  3.16/1.58 

10 7.11/3.52  0.47/1.07  -0.22/-0.02  7.33/3.87  5.85/2.94  21.22/10.57  15.64/7.79  3.56/1.81 

12 6.79/3.38  0.51/1.08  -0.03/0.07  7.24/3.75  5.60/2.82  20.92/10.44  15.59/7.84  3.81/1.94 

14 6.41/3.21  0.46/1.01  0.83/0.51  7.27/3.80  5.80/2.91  20.37/10.07  15.47/7.89  3.78/1.92 

16 6.60/3.28  0.62/1.09  0.28/0.24  7.43/3.85  5.53/2.82  21.10/10.42  15.61/7.99  3.51/1.79 

18 6.60/3.29  1.39/1.51  0.26/0.21  7.64/4.12  5.66/2.85  21.10/10.58  15.94/8.14  3.83/1.95 

20 6.60/3.26  1.37/1.50  -0.25/-0.05  7.66/4.20  5.66/2.83  21.10/10.55  15.98/8.13  3.59/1.81 

ADASYNC                

2 -44.68/-22.14  -50.98/-26.9  2.91/-0.78  -69.55/-33.25  -15.27/-7.79  -4.19/-21.69  -51.74/-24.93  -29.64/-14.95 

4 -46.67/-22.97  -31.67/-17.82  4.60/0.38  -9.11/-16.28  -12.93/-6.95  -55.25/-26.81  -49.01/-23.21  -16.3/-8.12 

6 -14.62/-6.91  4.78/-3.61  6.38/1.57  -70.38/-33.66  -10.79/-5.34  -45.28/-21.93  -37.11/-17.43  -10.0/-4.78 

8 -36.86/-18.64  4.07/1.15  6.64/3.07  -17.07/-7.86  -8.19/-4.00  -25.71/-12.32  -9.73/-4.02  -7.26/-3.42 

10 -6.99/-3.12  6.26/1.92  10.82/5.17  -17.12/-7.48  -6.92/-3.35  -31.49/-15.08  -12.96/-5.53  -5.54/-2.45 

12 -12.89/-6.00  7.33/2.31  11.38/5.49  -18.47/-7.98  -6.21/-2.91  -20.48/-9.55  -15.06/-6.50  -5.72/-2.53 

14 -13.46/-6.29  7.14/2.34  11.83/5.70  -15.59/-6.50  -6.23/-2.91  -27.66/-13.28  -11.97/-4.91  -5.56/-2.38 

16 -13.78/-6.53  4.70/1.08  11.48/4.74  -22.25/-9.95  -6.33/-2.97  -24.49/-11.57  -15.36/-6.85  -5.08/-2.21 

18 -15.9/-7.51  7.54/2.81  10.04/4.83  -12.24/-4.93  -4.69/-2.34  -17.75/-8.10  -8.11/-2.97  -6.19/-2.71 

20 -47.89/-23.47  7.11/2.53  11.89/5.68  -14.20/-5.86  -8.12/-3.87  -22.12/-10.3  -7.01/-2.59  -6.08/-2.68 

NCR                

2 3.20/1.40  -51.11/-27.23  -22.19/-12.02  8.65/-14.19  1.82/0.55  -29.05/-14.29  -31.28/-15.43  -3.86/-3.16 

4 6.86/3.11  -46.10/-23.04  -9.03/-5.53  -0.57/-12.35  4.46/1.68  -15.92/-11.28  -26.61/-13.03  1.38/-0.26 

6 7.18/3.29  -31.01/-16.42  -10.98/-6.05  8.55/-6.30  4.30/1.99  -10.33/-5.47  -13.80/-6.67  2.37/0.67 

8 7.11/3.54  0.50/0.85  -0.73/-0.30  7.20/3.84  5.64/2.84  20.61/10.39  15.28/7.51  3.21/1.60 

10 7.18/3.55  -0.04/0.52  -1.19/-0.45  7.07/3.65  5.85/2.93  20.61/10.30  15.35/7.50  3.56/1.78 

12 6.86/3.42  -0.22/0.58  -0.14/0.03  7.48/3.74  5.62/2.83  20.61/10.31  15.57/7.70  3.85/1.94 

14 6.60/3.31  0.27/0.72  -0.53/-0.13  7.19/3.71  5.66/2.84  20.55/10.28  15.45/7.68  3.91/1.94 

16 6.73/3.36  0.71/0.94  -0.61/-0.21  7.37/3.86  5.83/2.93  21.10/10.55  15.63/7.85  3.41/1.74 

18 6.73/3.36  -0.06/0.68  -0.63/-0.24  8.88/4.03  6.00/3.00  20.61/10.41  15.86/8.18  3.42/1.76 

20 7.18/3.56  1.68/1.43  -0.32/-0.03  7.84/4.21  6.21/3.11  20.73/10.48  15.83/8.12  3.81/1.94 

SMOTE-TL                

2 1.34/0.34  -54.93/-27.05  -12.95/-8.40 

 

 8.16/-14.44  -1.37/-1.06 

 

 -35.19/-17.54 

 

 -33.38/-16.38 

 

 -6.72/-4.62 

 4 2.05/0.90  -44.26/-21.96  -3.82/-3.57 

 

 -1.56/-12.71  -0.39/-0.35 

 

 -25.22/-15.84 

 

 -31.03/-14.88 

 

 -3.25/-2.20 

 6 3.14/1.48  -30.59/-14.75  -2.97/-2.85 

 

 7.87/-6.57  1.00/0.48  -18.78/-9.50 

 

 -17.24/-8.21 

 

 -0.19/-0.27 

 8 4.42/2.26  1.52/1.35  1.78/0.92  5.29/2.94  3.30/1.74  16.36/8.34  10.90/5.56  2.38/1.24 

10 4.36/2.24  1.13/1.16  1.55/0.81  5.04/2.76  4.25/2.19  16.23/8.31  10.95/5.47  2.77/1.43 

12 4.04/2.08  1.09/1.08  1.71/0.92  5.03/2.66  4.01/2.09  15.14/7.79  10.95/5.49  2.90/1.52 

14 4.04/2.07  2.14/1.72  2.07/1.08  5.99/3.39  3.48/1.83  15.99/8.10  12.50/6.57  2.86/1.49 

16 4.17/2.14  2.23/1.77  2.15/1.12  6.18/3.47  3.69/1.94  15.02/7.64  12.845/6.75  2.83/1.48 

18 4.23/2.16  2.04/1.65  2.11/1.10  5.82/3.29  4.10/2.14  15.26/7.71  12.59/6.60  2.73/1.44 

20 4.36/2.24  2.12/1.69  2.67/1.38  5.69/3.25  4.00/2.08  14.84/7.60  12.65/6.60  2.71/1.42 

TLboost                

2 4.16/1.70  -57.16/-27.86  -15.04/-8.92  8.74/-14.20  2.16/0.43  -28.26/-14.41  -30.22/-14.92  -3.16/-3.45 

4 6.92/3.10  -45.80/-22.48  -6.26/-4.41  -0.97/-12.49  4.05/1.66  -15.74/-11.10  -26.60/-12.97  1.20/-0.23 

6 6.60/3.10  -31.90/-15.12  -4.69/-3.58  8.33/-6.32  4.21/1.99  -9.97/-5.34  -13.73/-6.63  1.88/0.62 

8 7.11/3.54  0.78/1.11  -0.44/-0.15  7.04/3.77  5.49/2.77  21.16/10.60  15.16/7.54  3.11/1.58 

10 7.05/3.50  0.09/0.84  -0.29/-0.05  7.15/3.75  5.74/2.90  21.34/10.65  15.48/7.57  3.59/1.82 

12 6.79/3.39  0.35/0.96  -0.19/-0.01  7.20/3.77  5.75/2.88  20.91/10.47  15.59/7.71  3.81/1.93 

14 7.05/3.50  0.52/1.03  -0.18/0.00  7.13/3.69  5.85/2.94  21.10/10.53  15.52/7.81  3.66/1.87 

16 6.86/3.41  0.78/1.18  0.03/0.10  7.46/3.90  5.87/2.96  21.16/10.58  15.79/7.98  3.50/1.79 

18 6.86/3.41  1.25/1.41  0.28/0.22  7.68/4.13  5.89/2.96  21.16/10.62  15.88/8.07  3.45/1.78 

20 6.86/3.42  1.16/1.36  0.36/0.26  7.70/4.13  5.91/2.96  21.34/10.70  15.86/8.06  3.69/1.90 

MetaCOST                

2 3.46/0.56  -59.99/-29.07  -22.76/-12.43  -63.89/-30.77  2.16/-0.08  13.44/-14.02  -29.87/-15.26  -4.84/-4.38 

 4 6.28/2.61  -54.93/-26.55  -13.90/-7.99  -63.44/-30.38  5.17/1.81  18.12/-11.06  -26.31/-13.13  3.43/0.53 

6 5.77/2.40  -37.02/-17.53  -14.01/-7.79  -15.09/-14.15  4.84/1.67  -0.97/-6.36  -13.64/-6.90  3.16/0.71 

8 6.15/2.97  -2.64/-0.33  -7.78/-3.74  7.71/3.27  6.53/2.95  20.24/9.87  14.99/7.13  4.86/2.15 

10 7.18/3.48  -3.41/-0.69  -7.41/-3.56  6.28/2.59  6.62/3.02  21.03/10.22  15.08/6.90  4.90/2.21 

12 6.60/3.21  -3.19/-0.57  -7.54/-3.62  6.86/2.90  6.66/3.06  21.16/10.23  15.37/7.13  5.64/2.56 

14 6.86/3.32  -2.20/-0.08  -7.05/-3.37  8.34/3.60  6.89/3.21  21.28/10.22  15.74/7.83  5.61/2.55 

16 6.79/3.31  -2.19/-0.06  -7.15/-3.42  8.39/3.61  6.98/3.21  21.34/10.31  15.66/7.77  5.78/2.63 

18 6.60/3.19  -1.76/0.14  -7.12/-3.41  8.34/3.68  6.69/3.09  20.98/10.14  15.77/7.87  5.41/2.45 



  
  

20 5.83/2.77  -1.92/0.06  -7.70/-3.71  8.26/3.64  6.33/2.89  20.55/9.95  15.68/7.75  5.28/2.37 

 

The observations provided through this section confirm trade-offs between metrics sensitive to Class Imbalance and other that 

are not. Some algorithms strengthened minority classes, and eventually, these performance increases were accompanied also 

with improvements on the majority classes. Other interesting observation is that most of the techniques obtaining positive 

outcomes for MAUC and GM using less predictors than the best models provided as baseline. This fact leads to attributes 

savings, which could be an interesting feature for fast early NTC.  

5. Conclusions and Future Work  
Through this paper, 28 techniques to solve Class Imbalanced were analyzed and compared for our NTC datasets. To the best of 

our knowledge, this work constitutes the first study that analyzes an important number of solutions to Class Imbalance for 

multiclass NTC. Previous works limited the analysis to few methods or faced the problem simplifying it to binary subproblems. 

Our algorithm comparison involved: 21 data-level solutions, six ensemble techniques and one cost-sensitive approach. The 

selected techniques were tested on two different network environments evaluating several performance metrics to find out the 

strengths and weakness of each method. Among the algorithms studied, we presented two boosting algorithms that include 

data-level methods during learning, they are: ROSboost and TLboost. Additionally, some algorithms had to be adapted to 

multiclass problems using our own strategies to adjust the required parameters (Section 3.4). We make publicly available all 

algorithms and strategies implemented at [64], and encourage other authors to test them in their respective research fields.  

As result of our comparison, we find that many of the techniques explored are able to benefit traffic classification models 

compensating performance losses due to Class Imbalance. Regarding metrics sensitive to imbalanced class distributions, we 

find that methods involving oversampling provided substantial improvements, being the algorithms that involve ROS and 

SMOTE the most promising approaches. Conversely, the algorithms that employ undersampling produced the best 

improvements for metrics insensitive to Class Imbalance, being our algorithm TLboost the best-performing for these metrics. 

However, they leaded to weak enhancements for OA and BA, being RUS the only undersampling algorithm that keep an 

interesting tradeoff between metrics sensitive and insensitive to imbalanced traffic distributions. As it has been reported in our 

result section, hybrid resampling did not get so positive results comparing to other solutions, and the same happened for 

MetaCOST. Furthermore, we have confirmed that minority classes are significantly benefit from applying the most relevant 

algorithms and that important enhancements can be achieved using less features than the baseline. The latter fact could 

constitute an interesting advantage for fast early NTC. 

In order to extend and improve the contributions provided here, several research lines are envisioned as future work. Although 

we have considered several algorithm-level and one cost-sensitive approaches, there exists novel algorithms based on decision 

trees that could provide interesting enhancements for Class Imbalance. The lack of implementations of these algorithms was 

the decisive fact to not include them for our experiments. With respect to the cost-sensitive approach studied, we found that it 

produced negative outcomes for majority classes, so that experimenting with more sophisticated ways to compute classification 

cost may lead to more optimistic improvements. Furthermore, the comparison carried out in this work may be extended to other 

emerging knowledge areas such as: IoT and Smart Cities. Finally, studying these solutions with a finer classification granularity 

might constitute also an interesting future research line.  
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1. Introduction 

Enabling technologies rely on underlying Internet 
networks as means of communication. Smart Cities 
and Internet of Things envision facilities (such as: 
control of critical infrastructures, assistance in 
emergencies and smart transportation) requiring traffic 
control for availability, privacy and security [1]. In this 
vein, NTC constitutes a key piece to detect service 
decays and cyber threats.  

ML has attached a relevant prominence for NTC, 
since it enables accurate traffic classification evading 
the handicaps of previous approaches [2]. An essential 
in ML is FS. Through FS, the best predictors are 
selected for training, meanwhile irrelevant ones are 
discarded leading to efficient classification models. 
Three FS approaches exist according to their selection 
schemes: (1) Filter methods, which assume an 
information metric to assess the quality of predictors; 
(2) Wrapper methods, which evaluate the importance 
of attributes using learning algorithms; and (3) 
Embedded methods, which are integrated in learning 
algorithms while training. In this paper, an FS 
framework is proposed for efficient NTC. The 
predictors are separately ranked by several filter and 
wrapper strategies, and afterwards the rankings are 
combined to select the final subset. Furthermore, we 
analyze several sets of predictors from different raw 
information contained in packet headers.  

This article is structured as follows. Section 2 
reviews previous works in FS for NTC. Section 3 
describes the methodology followed and presents our 
FS framework. The experimental results are presented 

and discussed in Section 4, and finally we draw the 
conclusions. 

 
2. Previous Works 
 

FS for efficient ML-based NTC is not unexplored, 
and many authors have proposed their solutions. In [3], 
A. Fahad et al. presented an FS method called Global 
Optimization Approach (GOA) to find a stable set of 
predictors over time. GOA combines a preselection 
phase based on filters and a subsequent wrapper 
scheme based on Random Forest. A class-oriented FS 
algorithm (COFS) and an ensemble classifier were 
proposed in [4]. First, COFS selects a preliminary 
subset of attributes for each class, and redundant 
attributes are removed according to Weighted 
Symmetric Uncertainty (WSU).  

A feature extraction and selection approach were 
presented in [5]. Feature extraction is based on 
Wavelet Multifractal transformation on raw packet-
header information. As for attribute selection, 
Principal Component Analysis (PCA) is used to filter 
out the irrelevant components, and K-Means to cluster 
the features that are optimal or redundant. M. Shafiq et 
al. [6] presented a wrapper method to select the best 
predictors for imbalanced NTC. The proposed method 
filters out the irrelevant attributes using Weighted 
Mutual Information metric, and a learning algorithm is 
used to assess the AUC-ROC for each predictor.  

Finally, Efficient Feature Optimization Approach 
(EFOA) is proposed [7] to confront Class Imbalance 
and concept of drift in NTC. This proposal includes 
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feature generation using Deep Belief Networks and a 
subsequent selection based on WSU. 

Our FS framework presents relevant differences 
respecting previous approaches, since we combine 
several information metrics and performance metrics 
to improve the diversity for predictor selection. 

 
3. Methods and Materials 
3.1. Network Environment and Datasets 
 

The traffic data employed here was captured in a 
backbone at an ISP network, which constitutes a 
challenging scenario. The traffic was sniffed in a high-
speed link supporting transmission rates up to 7Gbps, 
where connections are susceptible to packet losses and 
multipath effect. We have employed two different 
datasets for training and validating the NTC models. 
The tranining data comprises 12Gb collected on 
17/1/2017 for 5 minutes, meanwhile the validation 
consists of 35.62GB captured for almost 10 minutes on 
23/3/2017. 

The first five packet-headers were processed for 
each flow to create the classification objects and 
following the concept of early NTC [8]. There are 
mainly four information sources available in IP and 
transport layers: packet sizes, timestamps, window 
sizes and others parameters (duration, directions, ports 
and so on). For the three first of them, a set of 47 
predictors were computed and merged with the 
original raw information, as Fig. 1 illustrates. The 
collection of predictors includes statistics (means, 
maximum and minimum values, …) and FFT 
transform components. In the case of “Others” 
predictors, we considered ports, directions, % of 
packets in each direction and packet counts. Finally, 
we merged all those datasets resulting in a whole 
dataset with a total of 172 attributes. The different 
datasets are denoted as follows: SIZES, IATS, 
WINSIZES, OTHERS and WHOLE. 

 

 
Fig. 1. Collection of attributes and datasets employed for 

our experiments 
 

3.2. FS Framework based on rankings 
 

Fig. 2 presents the proposed FS framework. As it is 
shown, three phases are involved: (1) Filter, (2) 
Wrapper, and (3) Final Ranking. During (1), several 
independent attribute rankings are computed using 
different filters, meanwhile wrapper strategies rank 
predictors in (2). The more relevant the attribute, the 
topper the position it occupies in the rankings, so that 
the attribute positions are used as scores and combined 
in means to select the final subset in (3).  

Through combining filters, the attributes are 
assessed against different information-based metrics, 
therefore increasing the diversity in the selection. In 
(2), several learning algorithms and performance 
metrics are assumed leading to more rich selection 
criteria. This framework follows a flexible design that 
allow extending it including more selection strategies. 

For our experiment, we selected the following nine 
filter methods using different information metrics: 
MRMR [9], CIFE [10], CMIN [11], ICAP [12], MIFS 
[13], DISR [14], JMI [15] and MIM [16]. The most of 
the filters selected are implemented in the Python 
library, with the exception of FCBFiP, which was used 
in [17] and is available in [18]. Regarding Wrapper 
Ranking, we have evaluated three performance metrics 
for three learning algorithms. As Decision Tree 
algorithms have shown as a promising approach for 
NTC due to its excellent ratio amongst precision and 
speed, we have selected the CART Decision Tree and 
two ensemble algorithms implemented in Scikit-learn 
[19]. The OutputCode and Bagging algorithms were 
the ensemble techniques considered in wrapper 
ranking. In (2), our FS framework ranks the attributes 
according to the performance metrics they produce 
when they are used as unique predictor for each 
learning algorithm. The selected performance metrics 
in this phase are: Overall Accuracy (OA), Byte 
Accuracy (BA) and geometric mean (GM). 

 

 
Fig. 2. FS Framework based on rankings. 

 
4. Experimental results 
 

In this section, we present and discuss the results 
obtained from applying our FS framework to the 
different datasets. Firstly, we present a preliminary 
experiment to assess predictive power of the different 
sets of predictors (SIZES, IATS, WINSIZES and 
OTHERS) and confirm the efficiency of our selection 
approach. In a second experiment, we applied our FS 
framework to the WHOLE dataset to assess which are 
the most relevant attributes when several information 
sources are combined. Furthermore, we performed a 
minor experiment to evaluate how port evasion may 
affect to performance metrics when port numbers are 
included as attributes in traffic classifiers. 
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4.1. Preliminary Results  
 

Through this experiment, we pretend to validate 
our FS framework and study which family of 
predictors are the most relevant for early NTC. The 
final ranking for each dataset is employed to 
sequentially vary the number of attributes selected, and 
a Decision Tree is trained to evaluate the model 
performances according to OA, BA and GM. Figure 3 
presents the results obtained for the different models, 
and the top ten attributes are shown in Table 2 for each 
case. 

From Figure 3, we find that the best-performing 
attributes in terms of OA are OTHERS, with which we 
were able to identify more than 82% of connections. 
Conversely, the WINSIZES and SIZES obtained OAs 
around 58% and 51% respectively.  While on BA, 
SIZES clearly outperformed the other sets of 
predictors accomplishing BAs up to 94.7%. The rest of 
datasets did not produced as positive BAs as SIZES, 
and the second best BAs were obtained by WINSIZES 
with values around 80%. Focusing on GM, we observe 
that OTHERS is anew the set of attributes producing 
the best results reaching GMs greater than 65% for 
certain subset sizes. In the case of SIZES, the GM 
overcame 23% for 7 and 8 predictors; on contrast to 
IATs and WINSIZES datasets that yielded null GMs. 
OTHERS and IATS produced quite weak results for 
this performance metric. Note also that the subsets 
computed by our FS framework accomplished similar 
performances to that using all predictors for each 
datasets, which confirms the effectiveness of our 
proposal in reducing the dimensinality space without 
performance decays. 

If we observe Table 2, we find that only there is one 
FFT component (8th) amongst the best ten features for 
SIZES. On the contrary, raw packet sizes (2nd, 7th and 
9th) and statistical components (such as: means root 
mean square and maximum values) have a notable 
presence in the selected subset (1st, 3rd, 4th, 5th, 6th and 
10th). While on IATS, FFT-related predictors (such as 
module and phase of FFT components) were selected 
(1st, 6th, 7th, 9th and 10th) jointly with an important 

number of statistics (2nd, 3rd, 4th and 5th), meanwhile 
only one raw attribute was selected (8th). Focusing on 
WINSIZES, we observe that two raw predictors (2nd 
and 8th) and two FFT phases (4th and 10th) were 
selected for the final subset, in contrast to statistical 
attributes that mainly composed the top ten subset (1st, 
3rd, 5th, 6th, 7th and 9th). Unlike the previous datasets, 
OTHERS dataset contains predictors of other nature. 
Interestingly, we find that source and destination ports 
(1st and 2nd) have an important impact on the final 
subset resulting from our FS framework. Furthermore, 
we find that packet-size counts exhibited notable 
predictive power for NTC according to their positions 
in the ranking (3rd, 4th, 5th, 6th and 10th). Conversely, 
packet directions (6th and 8th) and percentage of 
exchanged packets (7th and 9th) were not as important 
as the former attributes. 

Generally, the poor performances exhibited by 
IATS for all metrics considered might be caused by the 
instability of this family of predictors. IATS are quite 
susceptible to the operation phase of the Internet 
network. When the workload is very high packet 
forward slows down, which produces variations in 
these types of attribute leading to performance losses. 

In the case of WINSIZES, something similar might 
happen. TCP window sizes are variable parameters 
that protocols adjust depending on the network 
workload, so that attributes related to this parameter 
could vary on time. Another important handicap of 
these kinds of attribute is that window sizes are not 
useful for UDP connections.  

As its high GM reveals, OTHERS attributes 
provided predictiveness to identify different types of 
application. However, port numbers had an important 
role for this collection of predictors. As port numbers 
are configurable parameters, models including these 
parameters are quite susceptible to port evasion, which 
is a severe handicap.  

 In the case of SIZES, these attributes are 
independent from the transport protocol. Similarly to 
OTHERS, the GM obtained for SIZES indicates that 
this type of attributes are useful to identify different 
family of applications, in contrast to the rest of datasets 
that obtained almost null GMs. 

 
 
 

 
Fig. 3. Performances for different subet sizes 
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Table 1. Top ten predictors for the different datasets 
 Top ten predictors 
SIZES 
 

 
 1st  Root Mean Square of packet sizes in both directions. 
 2nd  Size of the 1st packet exchanged. 
 3rd  Maximum packet size in the 1st direction. 
 4th  Root Mean Square of packet sizes in the 1st direction. 
 5th  Maximum packet size in both directions. 
 6th  Mean of packet sizes in the 1st direction. 
 7th  Size of the 2nd packet exchanged. 
 8th  Phase of the 1st FFT component on sizes in the 1st direction 
 9th  Size of the 5th packet exchanged. 
 10th  Mean of packet sizes in both directions. 
IATS  
 1st  Phase of the 1st FFT component on IATs in both directions. 
 2nd  Percentage of IATs in the 1st direction. 
 3rd  Maximum IAT in both directions. 
 4th  Root Mean Square of IATs in both directions. 
 5th  Root Mean Square of IATs in the 1st direction. 
 6th  Module of the 5th FFT component on IATs in both directions. 
 7th  Phase of the 1st FFT component on IATs in both directions. 
 8th  IAT of the 2nd packet. 
 9th  Module of the 3rd FFT component on IATs in the 1st direction. 
 10th  Module of the 2nd FFT component on IATs in the 1st direction. 
WINSIZES  
 
 
 
 

1st  Root Mean Square of window sizes in both directions. 
 2nd  Window size of the 1st packet exchanged. 
 3rd  Mean of window sizes in the 1st direction. 
 4th  Phase of the 1st FFT component on Window sizes in the 1st direction. 
 5th  Maximum window size in the 1st direction. 
 6th  Maximum window size in both directions. 
 7th  Root Mean Square of window sizes in the 1st direction. 
 8th  Window size of the 2nd packet exchanged. 
 9th  Percentage of window sizes in the 1st direction 
 10th  Phase of the 3rd FFT component on Window sizes in the 1st direction. 
OTHERS  
 1st  Destination port number. 
 2nd  Source port number. 
 3rd  Number of packets with packet sizes between 128 and 64 bytes. 
 4th  Number of packets with packet sizes between 10 and 20 kilobytes. 
 5th  Number of packets with packet sizes greater than 64 bytes. 
 6th  Direction of the 5th packet. 
 7th  Percentage of packets in the 1st direction. 
 8th  Direction of the 2nd packet. 
 9th  Percentage of packets in 1st direction. 
 10th  Number of packets with packet sizes greater than 20 kilobytes. 

 
4.2. Final subset  
 

In this section we present and discuss the results 
obtained from applying our FS framework to the 
WHOLE dataset. Table 3 contains the top ten 
predictors selected by our FS method, and the 
performance metrics obtained when a Decision Tree is 
trained including each one.  

Observing Table 3, we find that the five top 
predictors yielded better outcomes that the original 
dataset according to OA and GM, on contrast to BA 
that was slightly lower than using all attributes. The 
highest OA was reached when the 9th predictor was 

included in the predictive model identifying accurately 
the 98.5% of connection flows. In the instance of BA, 
the best value was obtained when eight attributes are 
selected, although subsets achieved the same BA as the 
whole dataset when more than five predictors were 
selected. While on GM, the best performance was 
achieved when six or seven attributes are selected for 
training. GM accomplished 84% for these subset sizes, 
meanwhile the whole datasets got a score of 73.5%. 
The notable increase in this performance metric 
reveals that a smaller dataset better identifies a range 
of diverse applications, providing better outcomes in 
presence of Class Imbalance.
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Table 2. The ten best-scored predictors and performance metrics for the WHOLE dataset 
Top ten predictors OA BA GM 
1st  Destination port number. .265 .209 .539 
2nd  Size of the 1st packet exchanged. .829 .848 .607 
3rd  Source port number. .961 .969 .697 
4th  Maximum packet size in the 1st direction. .956 .989 .720 
5th  Window size of the 1st packet exchanged. .983 .995 .824 
6th  Root Mean Square of packet sizes in both directions. .981 .996 .840 
7th  Phase of the 1st FFT component on packet sizes in the 1st direction. .981 .996 .840 
8th  Maximum packet size in both directions. .980 .997 .817 
9th  Phase of the 1st FFT component on Window sizes in the 1st direction. .985 .996 .820 
10th  Maximum window size in both directions. .984 .996 .811 
Whole dataset .979 .996 .735 

Through this experiment, we have probed that our 
FS framework is able to reduce the training subsets 
increasing some performance metrics for early NTC. 
We also found that the combination of predictors 
computed using different parameters from packet 
headers yielded much better results than independently 
using them. Note that the collection of top ten 
predictors (Table 3) includes source and destination 
port numbers (1st and 3rd). As aforementioned, these 
parameters are susceptible to evasion, since port 
numbers are a configurable parameter by users or 
applications. Below, we present the results of an 
experiment during which port evasion was simulated 
to assess performance losses due to this effect. In 
addition to port numbers, the top ten subset contains 
five predictors computed from packet sizes (2nd, 4th, 6th, 
7th and 8th) and three Window-size related attributes 
(5th, 9th and 10th).  

 
Masking connections behind random port 

numbers 
 
Finally, we provide a minor experiment to probe 

that ML-based traffic classifiers are susceptible to port 
evasion when port numbers are included in the 
predictive model. For this purpose, we have selected 
the subset with six features from Table 3, and port 
evasion was simulated by randomly modifying the 
source and destination port numbers for specific 
percentage of samples. Fig. 4 contains the results 
obtained in this experiment.  

Generally, all performance metrics are negatively 
affected when the connections are masked behind 
other ports. When the percentage of masked 
connections increases, the performances of the 
classifier notably decreases. In the case of masking the 
5%, all metrics decreased in around 4%. Through this 
simple experiments, we have probed as port evasion 
can decrease the performance of ML-based traffic 
classifiers when port numbers are included in the 
predictive model.  
 
 
 

5. Conclusions 
 
Through this work, we have presented an FS 

framework for selecting a reduced dataset for early 
NTC. Our framework combines two parallel ranking 
phases in which filter methods and wrapper strategies 
are employed to independently rank predictors 
according to their relevance in the predictive model. 
We have validated our FS scheme on different NTC 
datasets containing predictors computed from the 
different parameters in packet headers (such as: packet 
sizes, inter-arrival times, window sizes and so on).  

As a result of our experiments, we have found that 
our FS framework is able to notably reduce the 
attribute space preserving and even improving the 
performances of the classifier. Additionally, we have 
analyzed the different collections of attributes to find 
out the predictive power of each one for NTC. Finally, 
we have applied our FS framework to a whole dataset 
that combines the former datasets. As result, we found 
that combining predictors computed from different 
network parameters provides better results than 
employing them separately. As source and destination 
port numbers were ranked as one of the most relevant 
attributes, we performed a minor experiment to assess 
the effect of port evasion on classifier performances. 
Our results reveal that port evasion decreases the 
classifier accuracy, and it should be considered when 
port numbers are included in the predictive model. 
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Fig. 4. Effect of Port evasion on model performances 
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