
A Machine Learning-Based Framework for Preventing Video Freezes
in HTTP Adaptive Streaming

Stefano Petrangelia,∗, Tingyao Wub, Tim Wautersa, Rafael Huysegemsb, Tom Bostoenb, Filip De Turcka

aDepartment of Information Technology (INTEC), Ghent University – imec, Ghent, Belgium
bNokia Bell Labs, Antwerp, Belgium

Abstract

HTTP Adaptive Streaming (HAS) represents the dominant technology to deliver videos over the Internet, due to its
ability to adapt the video quality to the available bandwidth. Despite that, HAS clients can still suffer from freezes in
the video playout, the main factor influencing users’ Quality of Experience (QoE). To reduce video freezes, we propose
a network-based framework, where a network controller prioritizes the delivery of particular video segments to prevent
freezes at the clients. This framework is based on OpenFlow, a widely adopted protocol to implement the Software-
Defined Networking principle. The main element of the controller is a Machine Learning (ML) engine based on the
Random Undersampling Boosting algorithm and fuzzy logic, which can detect when a client is close to a freeze and drive
the network prioritization to avoid it. This decision is based on measurements collected from the network nodes only,
without any knowledge on the streamed video or on the client’s characteristics.

In this paper, we detail the design of the proposed ML-based framework and compare its performance with other
benchmarking HAS solutions, under various video streaming scenarios. Particularly, we show through extensive experi-
mentation that the proposed approach can reduce video freezes and freeze time with about 65% and 45% respectively,
when compared to benchmarking algorithms. These results represent a major improvement for the QoE of the users
watching multimedia content online.

Keywords: HTTP Adaptive Streaming, Quality of Experience, Video Freezes, Machine Learning, RUSBoost,
Software-Defined Networks

1. Introduction

Video streaming currently represents one of the most
important applications running over the Internet. Tra-
ditional video delivery techniques using the RTP/RSTP
protocol suite and progressive download have now been
replaced by HTTP Adaptive Streaming (HAS) protocols,
which can be considered as the de-facto standard for video
streaming services nowadays. In HAS, the video is stored
on a server and is encoded at different quality levels. Each
version of the same video is also temporally segmented.
The HAS clients are equipped with a heuristic to dynam-
ically select the most appropriate quality level to down-
load, based on information as the locally perceived band-
width and the video player buffer filling level. Despite the
capability of HAS solutions to adapt to varying network
conditions, current solutions are still suffering from inter-
ruptions of the video playout, also called video freezes [1].
The 2015 Conviva report shows that almost 30% of the an-
alyzed HAS sessions are affected by at least one freeze [2].

∗Correspondence to: Stefano Petrangeli, Department of
Information Technology (INTEC), Ghent University – imec,
Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium

Email address: stefano.petrangeli@ugent.be (Stefano
Petrangeli)

Moreover, this problem becomes more prominent during
live streaming sessions, where the video player buffer has
to be reduced as much as possible in order to minimize the
end-to-end delay. This inefficiency is extremely detrimen-
tal for the Quality of Experience (QoE) of the users and
consequently for video streaming providers.

In order to reduce the occurrence of video freezes, we
propose in this paper a network-based approach, where in-
termediate network elements are designed to support the
delivery of the video. The proposed network framework is
built upon the Software-Defined Networking (SDN) princi-
ple, a recently proposed innovative network architecture [3].
In SDN, the control plane of the packets is managed by a
network controller, while the data forwarding plane is the
responsibility of the SDN switches. This decoupling allows
to exploit network functionalities in a flexible and real-time
manner, as the SDN controller can be easily programmed
to control low-level network resources. In this paper, we
present an SDN controller in charge of prioritizing the de-
livery of particular video segments in order to avoid video
freezes at the clients. The main element of the controller
is a Machine Learning (ML) engine, based on the Ran-
dom Undersampling Boosting (RUSBoost) algorithm [4]
and fuzzy logic, which can identify when a client is close
to a video freeze and decide whether the client’s segments

Preprint submitted to Journal of Network and Computer Applications February 17, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/147057156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

should be prioritized or not. The RUSBoost algorithm is
particularly suited for classification problems affected by
class imbalance, as in the freeze prediction case. In fact,
only a small percentage of a video is usually affected by
freezes, since in normal conditions the HAS principle is
able to achieve a continuous playout.

The main contributions of this paper are three-fold.
First, we present a ML-based framework to help clients
avoiding video freezes caused by network congestion. Par-
ticularly, we assume that congestion occurs in the edge
or aggregation network, where alternative routing is un-
available, and handle it using a prioritized queue. An
SDN controller is equipped with a ML engine, which al-
lows the controller to predict when an HAS client will ex-
perience a video freeze and decide whether the currently
downloaded segment should be prioritized or not. This
decision is based on measurement data collected from the
network nodes only, with no extra signalling required from
the clients. Second, we design a freeze predictor based on
the RUSBoost classification algorithm, which is embedded
in the network controller. The freeze predictor is designed
to detect conditions possibly leading to a freeze at the
clients. The freeze predictor does not require any a priori
knowledge on the characteristics of the video, as the seg-
ment duration or the bit-rates of the different quality lev-
els, nor on the client’s configuration, in terms of maximum
buffer size and start-up buffering time. Although this in-
formation can enhance the performance of the controller’s
logic as shown in our previous work [5], it is difficult to
obtain in a real environment. By properly training the
freeze predictor, it is still possible to reduce the number
of video freezes experienced by the clients, without mak-
ing any assumption on the streamed videos and the clients
themselves. Third, detailed experimental results are pre-
sented to show the performance of the proposed approach
under different congestion levels, network topologies and
streamed videos. We also evaluate the performance of sev-
eral classification algorithms for the freeze prediction task,
and show that the RUSBoost algorithm is able to achieve
the highest accuracy.

The remainder of this article is structured as follows.
Section 2 reports related work on HAS optimization. Next,
Section 3 details the proposed machine learning-based frame-
work both from an architectural and algorithmic point of
view. In Section 4, we evaluate our solution through em-
ulation and show its benefits compared to current HAS
heuristics. Section 5 presents the main conclusions.

2. Related Work

Many rate adaptation heuristics have been proposed to
optimize the QoE of HAS clients [6]. Yin et al. present a
control-theory-based HAS client based on the model pre-
dictive control approach [7]. In the work by Li et al., the
download of a chunk is scheduled to obtain a continuous
average data rate sent over the network and to maintain

the buffer level close to a given threshold [8]. This ap-
proach also helps reducing bit-rate oscillations when mul-
tiple HAS clients compete for the same bandwidth. The
same problem is also investigated by Jiang et al [9]. They
study different design aspects that may lead to fairness
improvements, including the quality selection interval, a
stateful quality level selection and a bandwidth estimation
using an harmonic mean instead of a normal one. Sun et al.
improve the throughout prediction of HAS clients by de-
veloping a prediction model based on past video sessions,
which is built offline in a node located in the streaming
provider network [10]. This model is then used online in
the rate adaptation heuristic of the video clients, which
remain the sole responsible of the actual quality adapta-
tion. Even though purely client-based heuristics simplify
the design and implementation of the algorithms, such
heuristics can fail in case of sudden and unexpected band-
width drops. This failure leads to video freezes and con-
sequently low QoE. This issue is further worsened in live
video streaming scenarios, where the playout buffer has
to be reduced in order to minimize the camera-to-display
delay.

In order to solve this issue, we adopt in this paper an
in-network approach, where intermediary nodes are placed
in the network to collect information regarding the status
of the clients. Consequently, the network has a compre-
hensive view of the clients’ conditions and can help them
achieving a high QoE. As an example of such a principle,
Ivesic et al. show the benefit of an application-aware QoE-
driven connection admission control for general multime-
dia services in LTE networks [11]. Ganjam et al. present
a hierarchical centralized control system to optimize the
delivery of HAS streams [12]. The root controller peri-
odically creates a general model of the streaming system,
which is then used by the children controllers (on a coarser
time-scale) to take decisions on the best QoE strategy for
the video clients. A similar approach is also employed by
Mukerjee et al. to optimize the performance of live video
streams [13]. The use of an SDN controller to optimize
the behavior of HAS clients has been studied by Egilmez
et al. [14]. They propose to dynamically re-route HAS
traffic to avoid congested links. Uzakgider et al. investi-
gate the performance of an SDN-controller equipped with
a Q-Learning algorithm to re-route traffic for layered adap-
tive streaming [15]. As traffic re-routing is only possible
in the core Internet service provider network while con-
gested links mainly arise in the edge network [16], these
approaches are not able to fully optimize the behavior of
HAS clients. Several other papers apply traffic shaping
techniques to limit the bandwidth assigned to each client
and to drive them to request a target bit-rate. Georgopou-
los et al. propose a centralized SDN controller allocat-
ing bandwidth for each streaming device, in order to ob-
tain fairness from a QoE point of view [17]. The authors
present a model to correlate video bit-rate with video qual-
ity, which is used by the controller in the bandwidth al-
location process. The use of an SDN controller to obtain

2

video quality fairness among different HAS clients is also
investigated by Cofano et al. [18]. The principal disadvan-
tage of the aforementioned algorithms is the active role
of the in-network elements in the quality decision process.
This aspect entails an alteration of the classical HAS prin-
ciple, as the network de-facto decides which quality level
the clients can download. Moreover, these approaches are
not designed to foresee the occurrence of video freezes and
avoid them. In our solution instead, the quality level deci-
sion is completely left to the clients. The SDN controller
supports the delivery of particular segments to avoid a
freeze but does not have any active role in the quality de-
cision process of the clients.

In this paper, we propose a ML-based framework to
foresee the occurrence of video freezes for HAS clients and
reduce them using network-based prioritization. This ap-
proach presents two advantages. First, the in-network cal-
culation can be kept very simple and consequently not
computationally demanding, since the quality decision al-
gorithm still runs at the client. Second, the controller is
transparent for both the HAS clients and the HAS server,
as the controller only supports the delivery of the segments
to avoid a freeze but does not interfere in the quality deci-
sion process of the clients. Moreover, it is more robust in
case of fault or malfunctioning of the network equipment,
as the clients can continue to operate (at a sub-optimal
level) without the in-network system. A network-based
prioritization framework was already presented in our pre-
vious work [5], where we analyzed the prioritization sys-
tem in terms of dimensioning of the prioritization queue,
scalability issues and its performance compared with sev-
eral purely client-based solutions. Even though the pre-
sented approach showed excellent results, it is affected by
two main drawbacks. First, the controller’s logic needs to
know the characteristics of the streamed video, in terms of
segment duration and bit-rates of the different quality lev-
els. Second, it requires an estimation of the buffer filling
level of the clients’ video player. This in turn entails that
the controller has to know the initial buffering time of the
client (i.e., the amount of video buffered before the play-
out can start). As no extra signalling is foreseen between
the clients and the controller, this information can only
be obtained by intercepting the manifest file requested by
a client before starting the video. This aspect limits the
general applicability of the proposed framework in a real
environment. The main contribution of this paper is there-
fore a complete re-design of the controller’s logic using a
ML-based approach. A freeze prediction algorithm located
at the controller is able to detect beforehand when a client
is going to freeze and drive the network prioritization. The
freeze prediction algorithm is trained to correlate informa-
tion as the network bandwidth and the timing of consecu-
tive segment requests issued by a client to the occurrence
of a freeze. Consequently, the prediction does not require
any a priori assumption on the video characteristics or the
buffer behavior of the clients.

A ML-based approach to off-line detect the occurrence

of video freezes in HAS has also been proposed by Wu at
al. [19]. A decision tree is trained to identify whether a
completed video session is affected by video freezes. In
this work instead, the identification is performed on-line
and on a segment basis, rather than off-line and on the
basis of a completed video session. Our machine learning
framework is designed to foresee future freezes and avoid
them, in contrast to identifying freezes that have already
occurred as investigated by Wu et al. [19].

3. Machine Learning-Based Framework

In this section, we detail the implementation of the
proposed ML-based framework introduced in the previous
sections. The main component of this framework is an
SDN controller, deciding which segments should be pri-
oritized in order to avoid interruptions in the video play-
out of the clients. This decision is driven by a ML mod-
ule, the so-called freeze predictor, which is trained off-line
and used on-line to drive the network prioritization. Each
time a client requests a new segment, the predictor iden-
tifies whether the client could experience a freeze. The
proposed network framework is implemented using Open-
Flow, which currently represents one of the most common
SDN protocols.

Another important aspect of our solution is that the
clients are aware of the prioritization status of the down-
loaded segments. This information is used by the clients
to adjust their quality selection process. If the clients are
not aware of the prioritization status of the downloaded
segment, a problem could arise in their quality decision
process, as the bandwidth perceived by the clients in case
of prioritization does not match the real available band-
width. Moreover, a prioritized segment entails that the
decision of the client was not optimal or that a sudden
bandwidth drop has occurred. Consequently, the prioriti-
zation status is used by the clients as an additional feed-
back on the quality of their rate adaptation process or on
the network conditions.

In the remainder of this section, we provide an archi-
tectural description of the proposed framework (Section
3.1) and detail the ML-based controller heuristic to en-
force prioritization (Section 3.2).

3.1. Architectural Description

As previously introduced, the OpenFlow controller helps
the clients avoiding freezes in case of scarce network re-
sources, e.g., bandwidth drops, by introducing prioriti-
zation in the delivery of the video segments. Prioritiza-
tion is enforced in the network by using an OpenFlow-
enabled switch, the so-called prioritization switch, which is
equipped with a best-effort and a prioritized queue. Based
on the decisions of the controller, the prioritization switch
enqueues the clients’ segments in one of these queues. As
far as the prioritization switch positioning is concerned,
the switch should be located before the main bottleneck

3

HAS

Clients

HAS

Server

1#: HTTP GET request for

the next segment

2A#: HTTP GET

header forwarded to

the controller

3#: Next segment

delivery

2#: HTTP GET request for

the next segment

3#: Next segment

delivery

Prioritization

Switch

Openflow

Controller

2B#: Openflow rule

installed to enforce

prioritization
4#: DSCP field

extracted and new

segment selected

Figure 1: The OpenFlow controller intercepts clients’ re-
quests and decides whether the requested segment should
be prioritized or not.

of the network, which is typically a link in the edge or
aggregation network [16]. Potential bottlenecks can be
identified by analyzing the underlying network architec-
ture or at runtime by monitoring link conditions (e.g., if
the traffic exceeds a certain percentage of the link capacity,
a prioritization switch can automatically become active).

An illustrative sequence diagram of the proposed frame-
work is shown in Figure 1. The OpenFlow controller in-
tervenes each time a client requests a new segment from
the HAS server and decides whether the analyzed segment
should be prioritized or not. Particularly, the prioritiza-
tion switch forwards to the controller, via an OpenFlow
rule, the IP packets flowing from the client to the server.
The controller can analyze these packets and identify the
HTTP GET requests issued by the client. When a GET
is received, the controller decides whether the delivery of
the analyzed segment should be prioritized or not.

This decision is made by analyzing the flow of inter-
cepted GET requests issued by a client and network mea-
surements collected from the prioritization switch. Net-
work measurements are obtained by using the OpenFlow
protocol, which provides well-defined APIs to collect data
from the OpenFlow switches. More specifically, the con-
troller periodically polls the prioritization switch to com-
pute the available bandwidth for the HAS clients in the
best-effort queue (not shown in Figure 1). The freeze
predictor module uses these inputs to detect whether the
client is going to experience a freeze during the download
of the requested segment. If prioritization is needed, a
fuzzy module checks if enough resources are available in
the prioritization queue to prioritize the segment and effec-
tively prevent a freeze. The complete ML-based logic im-
plemented by the controller, as well as the network band-
width estimation algorithm, is presented in Section 3.2.

Next, the controller installs a new OpenFlow rule on
the prioritization switch to guarantee a proper delivery of
the analyzed segment, i.e., best-effort or prioritized deliv-
ery. This way, the controller only supports the delivery
of particular video segments, rather than determining the
quality to be requested by the clients. This approach is
robust toward controller and switch failures, as the clients
can still operate even if prioritization cannot be enforced

Freeze predictor
Based on the RUSBoost

algorithm - Section 3.2.2

HTTP GET
timestamp

Requested
quality level

HAS bandwidth in
best-effort queue

Congestion
detection

Based on fuzzy logic -

Section 3.2.3

Number consecutive
prioritizations

Requested
quality level

HAS bandwidth in
prioritization queue

Pfreeze

1 - Pcongestion

Pprioritization

Figure 2: The controller’s logic is based on a freeze pre-
dictor, to identify when a client is close to a freeze, and a
congestion detection module, to check whether prioritizing
the segment would congest the prioritization queue.

into the network. It is worth noting that the prioritization
switch does not require any specialized feature to be used
in the proposed framework. Particularly, the only required
features for the switch are: (i) support the use of queues
and (ii) support the OpenFlow protocol. Consequently,
any general purpose OpenFlow-enabled switch can easily
implement the prioritization switch functionalities.

As introduced previously, an important element of our
approach consists of the prioritization-awareness of the
HAS clients. This communication is carried out by us-
ing in-network signaling instead of a direct communication
channel between the controller and the clients [5]. More
specifically, the prioritization switch can be configured to
mark prioritized packets with a specific Differentiated Ser-
vices Code Point (DSCP) field. This field is extracted by
the clients during the download of a segment to understand
whether the segment was prioritized or not. As stated pre-
viously, this information is highly relevant for the quality
decision process of the clients. When a client downloads
a prioritized segment, the prioritization mode is triggered.
In this mode, prioritized segments are ignored in the calcu-
lation of the estimated bandwidth because the bandwidth
perceived in case of prioritization does not match the real
network conditions. In addition, the client directly re-
quests the next segment at the lowest quality. This way,
the client tries to minimize the risk of video freezes, which
is high as the prioritization indicates. It is worth noting
that the prioritization mode is independent from the ac-
tual rate adaptation heuristic implemented by the client.
The only modification required at the client side is the ex-
traction of the DSCP field from the downloaded segments
and the prioritization mode, while no changes are required
in the rate adaptation heuristic itself. This aspect also en-
tails that the proposed framework and the HAS clients can
keep on operating even if the prioritization mode cannot
be executed or is not implemented.

3.2. OpenFlow Controller

The prioritization logic of the OpenFlow controller is
executed each time a client requests a new segment to
download, and is composed of two modules, the freeze

4

predictor and the congestion detection modules. Figure
2 gives a high level overview of the interaction between
these two modules in the prioritization decision of the con-
troller. The freeze predictor module is designed to under-
stand whether the client could experience a freeze during
the download of the requested segment. The prediction is
performed by analyzing the flow of GET requests issued
by the client, the requested quality level and the available
bandwidth for HAS traffic in the best-effort queue. The
predictor is trained off-line using the RUSBoost classifica-
tion algorithm. The congestion detection module is used
to avoid congesting the prioritization queue and to allow
a fair share among the different clients. This detection is
performed by a fuzzy engine based on inputs as the band-
width in the prioritization queue, the requested quality
level and the number of consecutive prioritizations experi-
enced by a client. The freeze prediction and the congestion
detection modules return the probability for the current
segment to freeze and the probability for the current seg-
ment to congest the prioritization queue, respectively. By
combining these two factors, the controller obtains the ac-
tual probability of prioritizing the segment. A client is pri-
oritized with higher probability when the risk of a freeze is
high, as indicated by the freeze predictor, and prioritizing
the segment does not congest the prioritized queue nor is
unfair to the other clients, as indicated by the congestion
detection module.

Section 3.2.1 details the operations performed to esti-
mate the available bandwidth for HAS traffic in the best-
effort queue. Sections 3.2.2 and 3.2.3 detail the freeze pre-
dictor and the congestion detection modules, respectively.

3.2.1. HAS Bandwidth Estimation

As previously introduced, the controller periodically
polls the prioritization switch to estimate the available
bandwidth for HAS traffic in the best-effort queue. We
indicate with Tpoll the polling period. The communica-
tion between the controller and the switch is carried out
using the OpenFlow protocol. OpenFlow does not provide
a direct API to collect bandwidth information for a specific
type of traffic (e.g., HAS traffic). Consequently, we adopt
a two-steps approach to compute the available bandwidth
for HAS traffic in the best-effort queue.

The controller first obtains from the prioritization switch
the total downstream bandwidth for HAS traffic during
the last Tpoll seconds. The controller sends an OpenFlow
aggregate flow statistic request message for all the flows
whose IP source address matches that of the HAS Server,
which we assume is known to the controller. A flow belongs
to the HAS group if the IP source address matches that of
the HAS server. It is worth noting that this measurement
represents the total downstream bandwidth for HAS traf-
fic flowing through the prioritization switch, i.e., both in
the prioritized and best-effort queue. The controller also
obtains the downstream bandwidth for HAS traffic in the
prioritization queue during the last Tpoll seconds. This

measurement can be obtained using an OpenFlow queue
statistic request message to the switch.

Next, the bandwidth for the HAS clients in the best-
effort queue is computed, as the difference between the to-
tal HAS downstream bandwidth and the prioritized band-
width. The final throughput is calculated as the exponen-
tial average of the current throughput and past samples.
Based on our previous work [5], we set the polling time
Tpoll and the weight of the exponential average to 1 sec-
ond and 0.25, respectively.

3.2.2. Freeze Predictor Module

The freeze predictor is the core element of the pro-
posed machine learning framework. When a segment is
requested by a client, the freeze predictor has to decide
whether the download of the segment is going to be af-
fected by a freeze or not. This problem can be modelled
as a classification problem with two classes: freeze and
non-freeze. The classification is based on measurements
obtained by the controller without any a priori assump-
tion on the video and clients’ configuration, in terms of
video bit-rates, segment duration, maximum buffer size
and start-up buffering time. This aspect clearly compli-
cates the classification task but allows a more general ap-
plicability of the proposed approach in a real environment.
As the HAS clients do not explicitly communicate with the
controller, the controller would need to intercept the video
manifest to access the aforementioned information. Con-
versely, we only use data obtained by the OpenFlow proto-
col (e.g., the network bandwidth) or by analyzing the flow
of HTTP GET requests issued by the HAS clients (e.g.,
the timing of the GET requests). In light of the above,
the inputs for the freeze predictor are:

• banHAS, the bandwidth for HAS traffic in the best-
effort queue when the segment is requested;

• ∆banHAS, the difference between two consecutive sam-
ples of the HAS bandwidth;

• ∆GET, the inter-arrival time between two consecu-
tive GET requests issued by a client;

• ∆GET , the average GET inter-arrival time of a client;

• q, the requested segment quality level, which is ex-
pressed as an integer ranging from 0 (the lowest
level) to qmax (the maximum quality level, different
from video to video and not available to the con-
troller);

• ∆q, the difference between the qualities of two con-
secutive segment requests.

banHAS is measured using the OpenFlow protocol, as
explained in Section 3.2.1. The risk of freezes is directly
related to the network bandwidth: when congestion is
high, more freezes are likely to occur. ∆banHAS indicates

5

whether network conditions are improving or not. Intu-
itively, the risk of freezes decreases when network condi-
tions improve, i.e., when ∆banHAS is greater than zero.

∆GET is an important input for the freeze predictor,
as it accounts for the buffer dynamic of the client. In
steady-state conditions, a client issues a GET with a pe-
riod equal to the segment duration. In this condition, no
freezes can occur at the client. When the available band-
width drops, the inter-arrival time ∆GET starts to in-
crease, as the client has to wait for the complete download
of a segment before requesting a new one. Consequently,
the buffer starts to decrease and a possible freeze can oc-
cur. ∆GET allows to detect this condition and anticipate
the freeze. The average GET inter-arrival time ∆GET
provides a rough estimation of the segment duration of
the video, in steady-state conditions. This estimate al-
lows to discriminate between videos with different segment
durations and better exploit the information provided by
∆GET. As an example, a 4 seconds inter-arrival time is
normal for a 4-seconds segment video, while it indicates
that the buffer is depleting in a 1-second segment video.
∆GET allows to discriminate between the two cases, as
the average inter-arrival time is going to be different for
different segment durations.

The last two inputs, q and ∆q, account for the behav-
ior of the client. A client usually requests a low quality
when the bandwidth is scarce or the buffer is close to de-
pletion. Conversely, a high quality is more susceptible to
freezes if the bandwidth suddenly drops. This measure-
ment is therefore highly valuable for the predictor. ∆q
shows if the client’s conditions are improving. A client
increases the quality only when the perceived bandwidth
and/or the buffer allow it. The requested quality level can
be extracted by analyzing the URL of the HTTP GET re-
quest. Different qualities must be associated with different
URLs and this dissimilarity can be used by the controller
to extract the requested quality.

By using these six inputs, the predictor is able to fore-
see the occurrence of a video freeze at the client. When
a new segment is requested and a freeze is foreseen, the
controller can enforce prioritization in order to avoid it.
We divided this problem in two different phases: an off-
line step where the predictor is built and an on-line step
where the predictor is used to drive the network prioriti-
zation. The off-line phase is carried out collecting a large
amount of HAS clients’ logs in a controlled environment.
Each entry of the training set is associated with a seg-
ment request made by a client, and is composed of the six
aforementioned inputs and a label indicating whether the
download of the requested segment resulted in a freeze or
not. A machine learning algorithm can then be used to
build the freeze predictor.

Several challenges complicate the freeze prediction task.
First, no assumptions are made on the clients’ configura-
tion and on the streamed videos. Second, the training set
is imbalanced as most of the segment requests are not asso-
ciated with a video freeze. In fact, the adaptive streaming

principle is able to accommodate bandwidth variations,
and network prioritization should only be used in emer-
gency situations. Class imbalance is a well-known issue in
the machine learning field, which can negatively affect the
performance of classical classification algorithms [4]. In
imbalanced training sets, the occurrence of the so-called
negative class is much higher than the occurrence of the
positive class, which represents the class of interest for the
considered problem. In our case for example, most of the
segments are not associated with a freeze, while we are
interested in detecting segments affected by freezes (the
positive class), which are the minority. Several algorithms
have been proposed in literature to address this problem,
with the RUSBoost algorithm emerging for its simplicity,
accuracy and low computational complexity [4].

The RUSBoost algorithm combines two techniques: ran-
dom undersampling and boosting. In random undersam-
pling, most of the examples belonging to the negative class
are removed from the training set, in order to obtain a
desired balanced class distribution (e.g., 50%). This ap-
proach reduces the training time (as the new training set
is much smaller than the original one), at the cost of a
loss of information, as many negative class entries are re-
moved. This drawback is counterbalanced using boost-
ing. In boosting, a set of classifiers is iteratively built. At
each iteration, the new classifier focuses on training ex-
amples that were misclassified at the previous iteration.
After training, each classifier in the set, also called ensem-
ble, participates in a vote to classify new examples. In
the RUSBoost case, at each iteration, the new classifier is
trained with a different undersampled subset of the orig-
inal training set. This way, the loss of information due
to undersampling is mitigated because data excluded in a
given iteration can be included in other ones.

In light of the above, the RUSBoost algorithm rep-
resents a viable choice for the freeze predictor task. As
shown in Figure 2, the outcome of the freeze predictor
is PFreeze, the probability for the current requested seg-
ment to freeze. The classifiers in the ensemble are as-
sociated with a weight, indicating how good or bad a
given classifier is. When classifying a new request, each
classifier contributes to the final decision according to its
weight. All the weights of the classifiers indicating that
the current segment will not freeze are summed in the
WNoFreeze variable. Conversely, all the weights of the clas-
sifiers indicating a freeze are summed in the WFreeze vari-
able. The output probability PFreeze is simply computed
as WFreeze/(WFreeze+WNoFreeze).

In Section 4.2, the off-line training phase of the freeze
predictor using the RUSBoost algorithm is analyzed in de-
tail and compared with other state-of-the-art classification
algorithms.

3.2.3. Congestion Detection Module

The second module completing the ML-based controller
logic is the congestion detection module. This module is
designed to understand whether prioritizing a particular

6

segment would congest the prioritization queue. Priori-
tizing a segment is only useful when a freeze is proba-
ble and enough resources are available in the prioritiza-
tion queue to effectively prevent the freeze. If too many
clients are prioritized at the same time, the performance
of the whole framework would drop. Moreover, this mod-
ule ensures that the prioritization queue is fairly shared
among all HAS clients, by limiting the maximum amount
of consecutive prioritizations a client can benefit from. For
each segment requested by a client, three inputs are used
by the congestion detection module: (i) q, the segment’s
quality level, (ii) NPrio, the number of consecutive pri-
oritizations enjoyed by the client and (iii) clientBanPrio,
the bandwidth per client in the prioritization queue, com-
puted as the ratio between the bandwidth in the prioriti-
zation queue and the number of prioritized clients. It is
worth mentioning that clientBanPrio is only an estimate,
as bandwidth is not always shared fairly among clients.

q and clientBanPrio allow to assess the risk of prioritiz-
ing the requested segment. Even though the bit-rates of
the video are not known to the controller, a higher quality
segment will always take more resources to be transported
than a lower quality segment. Consequently, the controller
has to find a trade-off between prioritizing few high qual-
ity segments or many low quality segments. clientBanPrio

is the fundamental input to understand the conditions of
the prioritization queue. When many clients are priori-
tized at the same time, the bandwidth per client decreases
and, consequently, also the probability of a successful pri-
oritization. NPrio is used to limit an unfair usage of the
prioritization system. The probability of prioritization di-
minishes as the number of consecutive prioritizations in-
creases, as to allow all clients to benefit from the system.

As explained in the previous paragraph, the correlation
and the influence of the different inputs are rather simple.
Despite that, an immediate translation into mathemati-
cal formulation is not straightforward. For this reason,
we decided to implement the congestion detection mod-
ule using fuzzy logic. Fuzzy logic allows to take complex
decisions based on uncertain inputs, mimicking the rea-
soning of the human logic. It is based on fuzzy sets, which
provide a rough modelling of the main characteristics of
the analyzed problem, and fuzzy rules, which combine the
knowledge modelled by the sets and make a final decision.
These rules are expressed using human concepts rather
than strict measurements. The fuzzy sets and the fuzzy
rules are designed considering common sense knowledge of
the analyzed domain. The fuzzy-based congestion detec-
tion module is composed of three input sets (one for each
input), one output set for the output variable Pcongestion

and six fuzzy rules to correlate the sets, which are de-
scribed in the following.

The fuzzy set associated to the quality q is composed of
three membership functions: low, medium and high (Fig-
ure 3a). At any given point of the input range, the value of
q is associated to one or more of these membership func-
tions, with a certain degree. As an example, a value of q

0

1

0.5

1 2.5 3 3.5 5 6

Low

Medium

High

q

2

0.2

(a) Input q is divided into
three symmetric input sets: low,
medium and high.

0

1

0.5

1 0.75 2 2.5 3 3.5 4 6

Low Medium

High

clientBanPrio [Mbps]

(b) clientBanPrio is considered
low when below 1 Mbps and high
when above 2.5 Mbps.

1 3.5 4 5

Low High

NPrio

1.5 2.5
0

1

0.5

(c) Only two membership func-
tions compose the fuzzy set for
NPrio: low and high.

0

1

0.5

0.1 0.5

Low

Medium

High

0.2 0.8 0.9 1.0

Pcongestion

(d) Pcongestion is considered high
when higher than 0.8 and low
when below 0.2.

Figure 3: The fuzzy-based congestion detection module is
composed of four fuzzy sets: three for each input (3a, 3b,
3c) and one for the output (3d).

equal to 2 is considered 0% high, 50% medium and 20%
low. On the contrary, a value of q equal to 0 (i.e., the
lowest one) is considered 100% low.

Also clientBanPrio is composed of a low, medium and
high membership function (Figure 3b). When the band-
width per client drops below 1 Mbps, it starts to be consid-
ered low. Intuitively, the lower qualities of a video are en-
coded at low bit-rates, usually below the 1 Mbps threshold.
Consequently, if we want to assure a successful prioritiza-
tion for at least the lower qualities of a video, a consistent
amount of bandwidth should always be available in the
prioritization queue. A bandwidth higher than 2.5 Mbps
starts to be considered high, since even the higher quality
segments (usually encoded at high bit-rates) can be prior-
itized without congesting the prioritized queue. Although
fixed in this paper, these values can be easily modified by
the service provider in order to reflect the specific condi-
tions of the video streaming service, without altering the
general design of the proposed fuzzy system.

Only two membership functions compose the fuzzy set
for NPrio (Figure 3c). In this case, a specific value of NPrio

is either considered low or high. A fine-grained representa-
tion of this variable is not needed in this case: only when
a large number of consecutive prioritizations occur (e.g.,
higher than 3) the congestion detection module should
avoid prioritizing the client.

The output set for Pcongestion is also divided in low,
medium and high (Figure 3d). When Pcongestion is higher
than 80%, the probability of congesting the queue is con-
sidered high. Conversely, it is low when below 20% and

7

Table 1: The six fuzzy rules of the congestion detection
module.

1. If clientBanPrio is HIGH then Pcongestion is LOW

2. If clientBanPrio is LOW then Pcongestion is HIGH

3. If NPrio is HIGH then Pcongestion is HIGH

4. If q is HIGH and clientBanPrio is NOT HIGH then
Pcongestion is HIGH

5. If q is LOW and clientBanPrio is NOT LOW then
Pcongestion is LOW

6. If q is MEDIUM and clientBanPrio is MEDIUM and NPrio is LOW
then Pcongestion is MEDIUM

0
1 2 3 5 6 4

q

Pcongestion

0.12

0.32

0.93

0.43
0.51
0.57

NPrio = 0

NPrio = 2

NPrio = 4

(a) clientBanPrio = 1 Mbps

0
1 2 3 5 6 4 q

0.06

0.32

0.43
0.48

0.93

0.65

NPrio = 0

NPrio = 2

NPrio = 4

Pcongestion

(b) clientBanPrio = 3 Mbps

Figure 4: An example of the fuzzy decision plane obtained
when clientBanPrio is fixed to 1 Mbps (4a) and 3 Mbps
(4b). Pcongestion increases with the requested quality and
the number of consecutive prioritizations, and decreases as
the bandwidth per client increases.

considered medium otherwise.
The core of the fuzzy engine is represented by the fuzzy

rules, which correlate the input and output sets and allow
to make a decision (also called inference). The fuzzy rules
for the congestion detection module are presented in Table
1. The first rule states that when the bandwidth is very
high the probability of congesting the queue is considered
low, independently from q and NPrio. The opposite conclu-
sion is drawn by the second rule. The third rule is designed
to ensure a fair share of the prioritized system among all
clients, by limiting the number of consecutive prioritiza-
tions for a client. The other rules take into account the
requested quality level. As an example, a medium quality
level will cause a medium congestion when the prioritiza-
tion queue is in decent conditions and the client has not
been prioritized too many times (rule six in Table 1).

Despite the simplicity of the proposed fuzzy model,
a complex behavior can be obtained during the decision
phase. As an example, Figures 4a and 4b show the deci-
sion plane of the fuzzy engine when fixing NPrio to 0, 2 and
4 and clientBanPrio to 1 Mbps and 3 Mbps, respectively.
The x-axis reports the requested quality level, while the
y-axis the value of Pcongestion. As expected, an increase
of the bandwidth per client (i.e., less clients prioritized
at the same time) results in a smaller probability of con-
gestion. The highest value when clientBanPrio is 1 Mbps

Table 2: Characteristics of the HAS videos. The nomi-
nal average bit-rate for the 2-seconds segment version is
reported, together with the standard deviation (between
brackets). All values are expressed in kbps.

Big Buck

Bunny

Of Forest

and Man

Tears of

Steel

Elephant’s

Dream
Red Bull

Playstreets
334(±66) 366(±75) 254(±105) 382(±123) 300(±41)
522(±75) 553(±101) 507(±217) 795(±176) 896(±134)
791(±101) 824(±168) 811(±346) 1494(±526) 1180(±226)
1244(±257) 1519(±376) 1516(±680) 2444(±728) 1993(±291)
1546(±417) 2529(±839) 2427(±1057) 3431(±1481) 2995(±376)
2494(±531) 3798(±1631) 3020(±1349) 4228(±2390) 3991(±514)
3078(±867) – 4028(±1746) – –

is 0.93 (Figure 4a), while this value drops to 0.65 when
clientBanPrio is 3 Mbps (Figure 4b). Pcongestion follows an
increasing monotonic trend with respect to the requested
quality. In this case, the shape of the curves changes de-
pending on the number of consecutive prioritizations and
convergence is reached for the highest quality levels. Inde-
pendently from NPrio, a high quality level is always associ-
ated to a high risk of congesting the queue. Interestingly,
when NPrio is very high (i.e., higher than 4), Pcongestion

only depends on clientBanPrio. This behavior is mainly
caused by the third rule of the fuzzy engine (see Table 1),
which tries to limit as much as possible a large number
of consecutive prioritizations. Consequently, the segment
would be considered for prioritization only when sufficient
bandwidth is available in the prioritization queue.

The performance of the congestion module in combi-
nation with the freeze predictor are thoroughly analyzed
in Section 4.

4. Performance Evaluation

4.1. Experimental Setup

The proposed OpenFlow framework has been imple-
mented on the Mininet Network Emulator1. The HTTP
server, where the video content is stored, is a Jetty Server2.
We use five different HAS videos to evaluate the proposed
framework under different streaming scenarios, selected
from an MPEG-DASH compliant public repository3. The
main characteristics of the videos are summarized in Table
2. The videos, which belong to different genres (animation,
documentary, sports and movie), are encoded in variable
bit-rate (VBR) and are capped to the first 10 minutes, if
longer. Each video is available in a 1, 2, 4 seconds segment
version, for a total of 15 different videos.

The HAS clients are implemented on top of the libdash
library, the official software of the ISO/IEC MPEG-DASH
standard [20]. The Libpcap library4 is used to extract

1http://mininet.org
2http://eclipse.org/jetty
3http://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/
4http://www.tcpdump.org

8

http://mininet.org
http://eclipse.org/jetty
http://www.tcpdump.org

HAS Server

NHAS HAS

Clients

LPS

OpenFlow

Controller

Prioritization

Switch

PD Server

Web-browsing

Server

NPD PD

Clients

NWEB Web

Browsing

Clients

Figure 5: The emulated topology on Mininet is composed
of several HAS, progressive download and web browsing
clients, connected to the respective servers via the bottle-
neck link LPS.

Table 3: Characteristics of the cross-traffic applica-
tions [22].

PD video streaming clients Web browsing clients
Inter-arrival video request Inter-arrival page request

Pareto distribution with mean 350
seconds and standard deviation to
mean ratio of 2

Pareto distribution with mean 8.5
seconds and standard deviation to
mean ratio of 1.5

Video size Page size
Pareto distribution with mean 38
MBytes and standard deviation to
mean ratio of 1.5

Based on web statistics [22]. Aver-
age 0.7 MBytes and standard de-
viation 1.5 MBytes.

the DSCP field from the received packets and thus en-
able prioritization-awareness. The rate adaptation heuris-
tic used by the HAS clients is the FINEAS algorithm5 [21].
The controller is implemented using POX6, a Python-based
controller, while the OpenFlow switches are realized via
Open vSwitch7. The prioritization switch is equipped with
a best-effort and a prioritized queue. Based on our previ-
ous work [5], a strict-priority policy is used for the exper-
iments, i.e., the prioritized queue can transmit at a guar-
anteed rate, equal to 15% of the total channel capacity.

The emulated network topology is shown in Figure
5, where the position of the prioritization switch is illus-
trated. The prioritized queue is installed on the interface
towards link LPS. NHAS HAS clients stream the video se-
quence at the same time from the same HAS Server. In
order to provide an extensive evaluation of the proposed
framework, we emulate 10 episodes of the video trace and
average the results over the 10 runs. The capacity on link
LPS is kept fixed during each episode while the capacity
on all the other links is over-provisioned. During our eval-
uation, we tested different values of the fixed capacity of
link LPS in order to investigate the performance of the pro-
posed solution under different levels of network congestion.

Cross-traffic for HAS clients is introduced by two other
types of application: NWEB web browsing clients and NPD

PD video streaming clients. This applications mix allows
to evaluate the performance of the proposed framework

5In this work, the in-network computation proposed by Petrangeli
et al. has not been implemented.

6https://github.com/noxrepo/pox
7http://openvswitch.org

under realistic network conditions and to analyze the im-
pact of prioritization both on HAS and background traffic.
The implementation of the cross-traffic applications used
in this paper is obtained by following the indications pre-
sented by Akhtar et al. [22]. PD clients can stream from a
single PD server, shown in Figure 5. Web browsing clients
can download a web page from seven different web servers,
which has been shown to be the average number of web
hosts used to download a web page [22] (for simplicity, only
one host is shown in Figure 5). In order to download a web
page, a web browsing client opens a single TCP connection
to each of the available web servers. Table 3 summarizes
the most important characteristics of the cross-traffic ap-
plications. The inter-arrival video request time and the
size of the video for PD clients are both based on a Pareto
distribution, as well as the inter-arrival page request time
for the web browsing clients. The web page size is based
on web statistics published by Google [22], and presents
an average of 0.7 MBytes and a standard deviation of 1.5
MBytes. In our experiments, the number of HAS clients,
PD clients and web browsing clients is fixed to 30, 25 and
15, respectively. The percentage of video streaming traffic
has been set according to the Sandvine report on Inter-
net QoE, which shows that video streaming applications
currently dominate Internet traffic [23].

In order to provide an extensive benchmark of the pro-
posed framework, we compare our results with those ob-
tained using three other HAS solutions. First, the FI-
NEAS heuristic described by Petrangeli et al. without in-
network computation [21], which provides the baseline for
the proposed ML-based framework. Second, the Microsoft
ISS Smooth Streaming (MSS) client, a popular proprietary
HAS client8. In our previous work [5], we showed already
that these two purely client-based solutions were able to
achieve a low number of video freezes as well as a good
video quality when compared to other heuristics. Finally,
we also analyze the performance of the network-based pri-
oritization system proposed in our previous work [5]. In
this case, the controller has a perfect knowledge of the
status of the clients, in terms of video player buffer fill-
ing level, requested segment bit-rates and video segment
duration and can therefore fully optimize the behavior of
the HAS clients. Conversely, our ML-based solution does
not rely on any of this information. Comparing the per-
formance of this solution with that of the proposed ML-
based framework allows to assess the trade-off between the
amount of knowledge possessed by the controller and the
effectiveness of the prioritization system. The heuristic
embedded in the HAS clients for both network-based so-
lutions is the FINEAS algorithm.

4.2. Training the Freeze Predictor Off-line

As explained in Section 3.2.2, a fundamental compo-
nent of the proposed prioritization framework is the freeze

8https://slextensions.svn.codeplex.com/svn/trunk/

SLExtensions/AdaptiveStreaming

9

https://github.com/noxrepo/pox
http://openvswitch.org
https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/AdaptiveStreaming
https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/AdaptiveStreaming

Table 4: Characteristics of the emulated streaming scenar-
ios.

Video player
buffer size [s]

Segment duration
[s]

LPS [Mbps]

Scenario 1 6 1 65
Scenario 2 10 2 60
Scenario 3 12 4 55

predictor. Based on inputs as the available bandwidth for
HAS traffic, the inter-arrival time of consecutive GET re-
quests and the requested quality, the predictor should be
able to detect conditions possibly leading to a video freeze
and drive the network prioritization to avoid it. The freeze
predictor is based on the RUSBoost algorithm, due to its
accuracy in imbalanced classification problems.

In order to train the freeze predictor, we collected a
large number of HAS logs using the experimental setup
reported in Figure 5. The network emulation setup allows
us to have full control of the experiments and to collect
logs about the clients’ behavior after the streaming ses-
sion. As an example, we can identify off-line when a client
has experienced a video freeze. Consequently, we can cre-
ate a training set of labeled data, which can be used to
build a predictor. Each data point of the training set is
associated with a segment request made by a client, and
is composed of the six inputs of the predictor (see Section
3.2.2) and a label indicating whether the download of the
requested segment resulted in a freeze or not. A machine
learning algorithm can then be used to build a freeze pre-
dictor. The collected logs should be representative of the
possible different video streaming scenarios, in terms of
clients, network and videos configuration. For this reason,
we experimented with three different streaming scenarios,
reported in Table 4. We varied the buffer size of the clients,
the segment duration of the video and the capacity of link
LPS (see Figure 5). Each scenario has been tested with all
the videos reported in Table 2, for a total of 15 different
experiments.

In total, 4500 clients’ logs have been collected, result-
ing in almost 1.5 million individual segment requests. Only
2.5% of the segment requests are affected by a video freeze,
which confirms the imbalanced nature of the analyzed clas-
sification problem. We divided the logs into a training set,
to train the predictor, and a validation set, to test its per-
formance. Particularly, 85% of the logs collected with the
Big Buck Bunny, Of Forest and Man and Tears of Steel
videos are used to train the predictor. The remaining 15%
is used as validation set. Moreover, the logs collected with
the Elephant’s Dream and Red Bull Playstreet videos are
used as an additional validation set. This choice allows to
assess to what extent the predictor can adapt to untrained
videos, which is a fundamental requirement for the real de-
ployment of the proposed approach.

We compare the performance of the RUSBoost algo-
rithm in the freeze predictor task using four other popu-
lar classifiers: Random Forest, AdaBoost, GradientBoost
and 1-Nearest Neighbourhood (1-NN) [24]. The Random

Forest classifier builds an ensemble of decision trees, each
contributing towards the final classification. In a random
forest, N different decision trees are trained on a different
sub-sample of the given dataset. Each training set is a
random sample with replacement of the original dataset,
and has therefore the same size as the original one. When
used for classification, each tree in the random forest par-
ticipates in a vote, where the class selected by the major-
ity of the trees in the random forest is finally chosen. This
process allows to increase the classification accuracy and
control over-fitting, a common problem affecting standard
decision trees. The AdaBoost algorithm applies the same
boosting technique as the RUSBoost, without the random
undersampling filtering on the training dataset. In boost-
ing, each sample of the training set is associated with a
weight. At the beginning of the training process, all the
weights have the same value. At each iteration a decision
tree is classified and the weights are updated. Particularly,
the weights of samples that are misclassified are increased,
while the weights of samples that correctly classified are
decreased. This way, at each iteration, the new decision
tree is forced to focus on those training samples that were
misclassified by the previous decision trees. The Gradi-
entBoost classifier is a generalization of boosting methods.
The number of decision trees is set to 50 for all the algo-
rithms previously introduced. Differently from the other
methods, the 1-NN classifier does not create a generalized
model of the problem (e.g., the ensemble of decision trees
created by the boosting algorithms). A new data point
is classified with the same label as the label of the clos-
est data point in the training set. This classifier does not
require to fit a model and is typically ”memory-based”
(i.e., the whole training set has to be stored to classify
unknown samples). Given a new point to classify, the k
closest neighbors in the training set are identified, and the
new point is classified using a majority vote among the k
neighbors. Despite its simplicity, this method has proven
to be very effective in many real classification problems.
As an example, Jian et al. report how a K-NN classifier
can be used to optimize the behavior of 5G networks, in
terms of handover selection or energy savings [25]. The
training time for the different classifiers is in the order of
tens of minutes on a Dell Latitude E5530 running Ubuntu
12.04 LTS 64-bit, Intel Core i5-3320M CPU @ 2.60GHz
processor and 8 GB of memory. It is worth stressing that
the training phase can be carried out off-line, without any
real-time constraint. Only the trained model is actually
used on-line in the OpenFlow controller to actively avoid
the occurrence of video freezes.

The results of the ML algorithms comparison are pre-
sented in Figure 6. The y-axis reports the percentage of
correctly predicted freezes, also called true positives. Each
bar of the graph represents the percentage of true posi-
tives over the entire validation set, composed of logs from
the trained videos and untrained videos. The RUSBoost
classifier is able to consistently outperform the other clas-
sifiers. The freeze prediction accuracy is 99% for trained

10

RUSBoost 1-NN AdaBoost GradientBoost Random

Forest

Trained Videos

Untrained Videos

Freeze predicted [%]

44

63

78
85

99

0

Figure 6: The RUSBoost algorithm is able to outperform
all the other ML solutions, both for trained and untrained
videos. The y-axis reports the percentage of correctly pre-
dicted freezes.

videos (Big Buck Bunny, Of Forest and Man, Tears of
Steel) and 85% for untrained videos (Elephant’s Dream
and Red Bull Playstreet). Methods based on an ensemble
of decision trees (AdaBoost, GradientBoost and Random
Forest) are also able to reach good performance on trained
videos, with almost 80% of the freezes correctly predicted.
Creating an ensemble of weak classifiers helps in reducing
the negative effects due to the unbalanced training set.
Despite that, their performance consistently drops when
exposed to untrained videos. The 1-NN classifier obtains
the lowest performance9. As this classifier does not build
a model of the analyzed problem, it is not able to infer the
general conditions possibly leading to a freeze.

Another important parameter of the freeze predictor is
the percentage of non-freezes correctly predicted, i.e., the
percentage of video segments not leading to a video freeze
that are correctly classified as such. This metric is referred
to as true negative. As for the true positives, also the true
negatives should be maximized. All the classification al-
gorithms result in a high true negatives accuracy. The
RUSBoost classifier presents an accuracy of 95%, while all
the other classifiers have an accuracy higher than 98%.
The 3%-4% loss of the RUSBoost classifier is largely coun-
terbalanced by the gain in terms of true positives, which
reaches 40% for untrained videos, as shown in Figure 6.
These results therefore confirm the suitability of the RUS-
Boost algorithm for the freeze predictor task.

Table 5 reports the freeze prediction accuracy of the
different classifiers, for each video. The total predicted
freeze time is also reported, between brackets. This value
corresponds to the total amount of freeze time associated
to the correctly predicted freezes. The RUSBoost algo-
rithm is able to outperform the other classifiers, indepen-
dently of the video. As expected, higher accuracies are
obtained for trained videos. The lowest performance is
reached in the 2-seconds Red Bull Playstreet video, where
only 37% of the total freeze time can be anticipated. Nev-
ertheless, the performance of the RUSBoost algorithm is

9Several values of the k parameter have been tested, with no
significant differences in the obtained results.

Table 5: Summary of the off-line freeze prediction task.
The percentage of correctly predicted freezes is reported,
together with the corresponding percentage of predicted
freeze time (between brackets).

RUSBoost AdaBoost Random
Forest

1-NN Gradient
Boost

Big Buck

Bunny

1s 90(99) 78(85) 79(86) 64(73) 76(85)
2s 100(100) 78(80) 78(83) 68(69) 62(68)
4s 97(98) 49(56) 48(60) 45(70) 52(67)

Of Forest
and Man

1s 100(100) 81(86) 83(87) 66(73) 79(85)
2s 100(100) 85(86) 88(90) 68(69) 82(85)
4s 96(99) 70(91) 60(86) 45(70) 60(86)

Tears of
Steel

1s 100(100) 81(86) 83(89) 76(81) 84(87)
2s 100(100) 73(74) 71(73) 53(50) 69(73)
4s 98(98) 62(79) 56(79) 42(59) 51(70)

Elephant’s

Dream

1s 94(93) 54(62) 59(69) 51(58) 60(70)
2s 74(69) 26(27) 21(22) 35(33) 26(29)
4s 63(64) 17(18) 8(9) 25(24) 8(10)

Red Bull
Playstreet

1s 93(81) 64(60) 70(65) 61(55) 76(69)
2s 72(37) 32(20) 13(10) 35(18) 10(6)
4s 92(96) 36(50) 39(59) 33(45) 37(54)

still acceptable, even for untrained videos. The AdaBoost
classifier is the second best choice in terms of accuracy. As
previously mentioned, the RUSBoost algorithm adds the
random undersampling technique on top of the AdaBoost
classifier. The 1-NN algorithms is able to achieve constant
performance, both for trained and untrained videos. As
it appears from Table 5, the freeze predictor is designed
to anticipate possible video freezes, but it does not have
any notion on the possible duration of these freezes. As
an example, predicting 63% of the freezes in the 4-seconds
Elephant’s Dream video leads to 64% of the total freeze
time predicted. This value drops to 37% in the 2-seconds
Red Bull Playstreet video, even though the percentage of
correctly predicted freezes is 72%.

In light of the above results, the RUSBoost algorithm
has been chosen to implement the freeze predictor func-
tionalities for the rest of the paper.

4.3. On-line Freeze Reduction

In this section, we plan to investigate the performance
of the proposed ML-based framework in terms of on-line
freeze reduction. The freeze predictor trained in Section
4.2 is now plugged into the network controller together
with the fuzzy-based congestion detection module, in or-
der to foresee the occurrence of video freezes during an
ongoing streaming session and try to actively avoid them
(see Section 3). We compare the performance of our solu-
tion, referred to as FINEAS-ML, with that of the MSS and
FINEAS clients and the network-based solution proposed
in our previous work [5], called FINEAS-INF. As explained
in Section 4.1, this solution has access to very detailed in-
formation about the video characteristics and the client’s
buffer filling status. The experiments have been repeated
for each video and for each HAS solution, using the same
streaming scenarios as in Table 4, for a total of 60 experi-
ments. Each experiment has been repeated 10 times.

A high level summary of the obtained results is pre-
sented in Figure 7. For each experiment and for each iter-
ation, we first compute the average number of freezes and

11

BBB

7.8 2.1 0.5

0.5

2.1

3.7

6.7

Average number of freezes

Average freeze

duration [s]
MSS

FINEAS

FINEAS-ML

FINEAS-INF

(a) Big Buck Bunny

Forest

Average number of freezes

Average freeze

duration [s]
MSS

FINEAS

FINEAS-ML

0.8

3.2
5.7

11.4

13.3 9.3 3.1 3.9

FINEAS-INF

(b) Of Forest and Man

Tos

Average number of freezes

Average freeze

duration [s]
MSS

FINEAS

FINEAS-ML

9.0 3.2 0.6 1.5
0.6
1.2
3.5

7.7
FINEAS-INF

(c) Tears of Steel

Elephant

Average number of freezes

Average freeze

duration [s]

MSS

FINEAS

FINEAS-ML

FINEAS-INF

15.8 12.7 4.7 6.4

1.5

3.6

6.0

7.5

(d) Elephant’s Dream

Red bull

Average number of freezes

Average freeze

duration [s]
MSS

FINEAS
FINEAS-ML

4.7 3.7 0.3 1.2
0.2
1.7
2.3

5.8

FINEAS-INF

(e) Red Bull Playstreet

Figure 7: The purely client-based MSS and FINEAS heuristics present the worst performance, independently of the
video. The proposed ML-based solution can consistently reduce the amount of video freezes, in all scenarios. The best
performance is reached by the FINEAS-INF solution, which can use detailed information about the video and the clients’
characteristics. The x-axis and y-axis report the average number of freezes and the average freeze duration, respectively.

the average freeze duration over the entire group of HAS
clients. We then average these results per video. The x-
axis reports the average number of video freezes obtained
with the MSS, FINEAS, FINEAS-ML and FINEAS-INF
solutions. The y-axis reports the average freeze duration,
in seconds. As expected, the MSS and FINEAS algorithms
present the worst performance, independently from the
streamed video. Both algorithms are purely client-based
and can fail fully optimizing the QoE of the video stream-
ing session. Apart from the Elephant’s Dream video (see
Figure 7d), the FINEAS client is always able to outper-
form the MSS client. The number of freezes strongly de-
pends on the video characteristics. As reported in Table
2, all videos have different bit-rates, ranging between 254
and 4228 kbps and are encoded in VBR. In order to main-
tain the visual quality constant for each quality level, the
bits saved during the encoding of simple scenes are reused
to encode more complex scenes (e.g., with a lot of move-
ment). Consequently, the bit-rate of a specific quality level
is not constant but varies depending on the video content
itself. VBR encoding complicates the rate adaptation of
the clients, as the segment size is not constant and it is
not known in advance. As such, the videos Of Forest and
Man and Elephant’s Dream, which are characterized by a
high variability (see Table 2), result in the highest amount
of video freezes (Figures 7b and 7d). Particularly, the FI-
NEAS heuristic results in the worst performance for the
Elephant’s Dream video, which presents the highest bit-
rate and variability for the lowest quality. The FINEAS
heuristic has a more aggressive behavior than the MSS
one and is therefore more susceptible to freezes for this
specific video. Despite the high standard deviation of the
bit-rates of the Tears of Steel video (see Table 2), results
for the FINEAS heuristic are in line with those of the Big
Buck Bunny and Red Bull Playstreet videos. The nomi-
nal bit-rates of the Tears of Steel video are the lowest or
second lowest among the entire set, which simplifies the
adaptation of the clients. The FINEAS-ML and FINEAS-
INF solutions are able to outperform purely client-based
solutions, both in terms of number of freezes and freeze

duration. It is worth noting that the heuristic embedded
in the HAS clients for both network-based solutions is the
FINEAS algorithm, which represents the baseline for the
performance analysis. Our proposed ML-based approach
is able to consistently reduce the amount of freezes for all
videos. This result also entails a strong reduction of the
average freeze duration. The FINEAS-INF solution is able
to reach the best performance overall and to almost com-
pletely eliminate video freezes. As previously explained, in
this case the network controller has very detailed informa-
tion about the characteristics of the videos (nominal bit-
rates and segment duration) and the status of the client’s
buffer and it can take the best decision in terms of seg-
ment prioritization. These results show a clear trade-off
between the performance of the prioritization system and
the accessibility of the inputs for the network controller.
Unlike the FINEAS-INF approach, our ML-based solution
does not require any special assumption on the clients’ be-
havior, nor on the video characteristics, but it is still able
to considerably reduce the amount of video freezes.

Figure 8 quantifies the gain brought by the proposed
ML-based solution and the FINEAS-INF one, when com-
pared to the FINEAS heuristic. Figures 8a and 8b report
the relative reduction in terms of number of freezes and
freeze duration, respectively, for the five analyzed videos.
Despite not having access to refined information on the
client’s status and video characteristics, our proposed ML-
based solution shows similar performance to the FINEAS-
INF one, in terms of freeze reduction (Figure 8a). Particu-
larly, our ML-based solution is able to reduce video freezes
with about 65% compared to FINEAS, which is about 15%
less than FINEAS-INF.

It is worth noting that worse performance is obtained
in terms of freeze reduction compared to the results pre-
sented in Section 4.2. The reasons for this behavior are
two-fold. First, network prioritization is inherently an
on-line process, while the freeze identification presented
in Section 4.2 was performed off-line, on completed video
sessions. Due to the limited resources of the prioritization
queue, whose bandwidth is fixed to 15% of the total capac-

12

93

Big Buck
Bunny

Of Forest
and Man

Tears of
Steel

Elephant’s
Dream

Red Bull
Playstreet

64
68
73
81

0

58

Relative reduction of
number of freezes
compared to FINEAS [%]

FINEAS-INF

FINEAS-ML

(a) The ML-based solution is able to reduce the amount of video
freezes with about 65% when compared to the FINEAS client, which
is 15% less than what achieved by the FINEAS-INF solution.

FINEAS-INF

Big Buck
Bunny

Of Forest
and Man

Tears of
Steel

Elephant’s
Dream

Red Bull
Playstreet

0

Relative reduction of
freeze duration
compared to FINEAS [%]

FINEAS-ML

43
52

81
86

29

90

(b) The proposed network-based prioritization can reduce freeze time
with about 45%, even without having any information on the client’s
and video characteristics. The FINEAS-INF solution, which has ac-
cess to this information, can reduce freeze time with about 85%.

Figure 8: Relative comparison between the FINEAS-INF and ML-based solutions compared to the FINEAS heuristic,
in terms of number of freezes (8a) and freeze duration (8b).

ity of link LPS (see Figure 5), not all the segments possibly
leading to a freeze can actually be prioritized. In Section
3.2.3, we presented the fuzzy-based congestion detection
module, whose role is to understand whether prioritizing
a segment would congest the prioritization queue. When
network congestion is high, many segments are identified
by the freeze predictor module as in risk of a video freeze,
but not all of them can be prioritized due to the decision
of the congestion detection module. Moreover, as the net-
work controller of our ML-based approach does not have
any information on the video characteristics and clients’
status, it results in a more conservative prioritization be-
havior. On average, 10% of the video is prioritized in the
FINEAS-ML case, while this number rises to 15% in the
FINEAS-INF case. Second, bandwidth drops leading to
video freezes can occur after a prioritization decision has
been taken by the network controller. While the FINEAS-
INF solution knows the buffer filling level of the clients and
can employ a safety prioritization in this case, the same is
not true for our ML-based solution, which only has limited
information. This aspect also explains the better results
obtained by the FINEAS-INF solution in terms of freeze
time reduction, shown in Figure 8b. Our ML-based ap-
proach and FINEAS-INF solution can reduce freeze time
with about 45% and 85% compared to FINEAS, respec-
tively. As reported in Section 4.2, the freeze predictor
based on the RUSBoost algorithm is designed to reduce
the amount of video freezes. This condition however does
not always result in a correspondent freeze time reduction.

Table 6 reports the complete results, for each video
and for each different version in terms of segment duration.
We report the average requested quality, number of freezes
and freeze duration. We also perform an analysis to assess
whether the differences between the different heuristics are
statistical significant or not (t-test, p≤0.05). Each heuris-
tic is assigned a letter, from a for FINEAS to d for MSS.
Results associated with one of these letters are not statis-

tically different from the results obtained by the heuristic
associated with the correspondent letter. As an example,
if a result of the FINEAS heuristic is associated with the
letter d, then it is not statistically different from the result
obtained by the MSS client, and viceversa. Overall, the
results of the FINEAS-INF and FINEAS-ML approaches
show strong statistical significance when compared to the
FINEAS and MSS heuristics. The FINEAS-INF solution
is able to almost completely eliminate video freezes, in all
video streaming scenarios. Only in the 1-second segment
version of the Of Forest and Man and Elephant’s Dream
videos, this approach shows sub-optimal performance. In
the FINEAS-INF approach, one of the inputs of the net-
work controller are the nominal bit-rates of the streamed
video. As reported in Table 2 though, these two videos
present a high bit-rate variability. Moreover, encoding the
video with 1-second segments results in a slightly higher
nominal bit-rate (about 5%) compared to the 2-seconds
version, due to the cost of more frequent I-frames at the
beginning of the segments. These disturbances complicate
the task of the controller.

Thanks to the RUSBoost and fuzzy algorithms, our
ML-based approach is able to reduce video freezes when
compared to the baseline FINEAS heuristic, without need-
ing any explicit information on the video or client’s config-
uration. Our approach presents worse performance com-
pared to the FINEAS heuristic only in two cases (4-seconds
Big Buck Bunny and 2-seconds Red Bull Playstreet), but
these differences are not statistically significant. Similar
conclusions can also be drawn for the MSS heuristic. These
results again confirm the suitability of the proposed ap-
proach for the on-line freeze reduction task. Another im-
portant aspect to analyze is the requested video quality. In
order to maximize users’ QoE, a heuristic should be able
to not only avoid freezes, but also to request the highest
possible video quality. As reported in Table 6, only minor
differences can be noted among the different HAS solu-

13

Table 6: Summary of the obtained results in terms of average quality (q, expressed as an integer between 0 and the
highest quality level, which varies between 5 or 6 depending on the video), number of freezes (NF) and freeze time (FT,
in seconds). Differences between cells associated with the same uppercase letter are not statistically significant (t-test,
p≤0.05).

FINEAS(a) FINEAS-ML(b) FINEAS-INF(c) MSS(d)
q NF FT[s] q NF FT[s] q NF FT[s] q NF FT[s]

Big Buck

Bunny

1s 2.98 17.4 7.33 2.95 4.31 3.69d 2.97 0.59 0.13 3.1 9.54 3.02b

2s 2.84 4.83d 2.52d 2.68 0.68 0.91 3.02 0.02 0.01 2.79 6.02a 3.42a

4s 2.18 1.16b 1.26b 2.08 1.31a 1.71a 2.05 0.84 1.41 2.14 7.93 13.7

Of Forest
and Man

1s 2.72 16.93d 7.43d 2.47 6.40 3.69 2.67 8.62 0.97 2.70 15.80a 6.49a

2s 2.63 8.32d 4.66d 2.36 2.54 2.29 2.24 0.04 0.01 2.60 7.18a 5.18a

4s 2.06 2.77b 4.99b 1.85 2.88a 3.76a 1.84 0.74 1.39 1.94 16.83 22.47

Tears of
Steel

1s 2.90 5.04 2.80d 2.78 1.62 1.31 2.74 0.96 0.22 2.64 8.96 3.25a

2s 2.67 2.76 1.63 2.61 0.29 0.39 2.69 0.03 0.01 2.60 5.50 4.77
4s 2.03 2.66 5.21 1.96 1.81 2.94 1.90 0.90 1.56 2.01 8.78 19.11

Elephant’s

Dream

1s 2.07 27.60d 10.39d 1.94 6.69 3.92 2.04 16.91 3.31 2.05 24.69a 8.52a

2s 1.89 9.51 4.92 1.79 3.25 2.83d 1.88 0.68 0.24 1.68 5.73 3.32b

4s 1.59 10.27d 7.24d 1.51 4.03 4.11 1.52 1.65 1.05 1.69 7.81a 6.22a

Red Bull
Playstreet

1s 2.27 8.80 3.45 2.07 1.58 1.53d 2.15 0.31 0.05 2.16 4.57 1.35b

2s 2.18 0.76b 0.83b 2.05 1.05a 2.08a,d 2.03 0.08 0.01 1.85 2.43 1.85b

4s 1.64 1.69 2.75 1.52 0.91 1.38 1.53 0.40 0.59 1.68 7.07 14.36

9.711.16

2.68 20.89
FINEAS

FINEAS-ML

Average freeze time of the 90% quantile [s]

Figure 9: Our ML prioritization framework has a consis-
tent impact on the freeze distribution, by reducing freeze
time for all the clients. The figure reports the average
freeze time of the 90% quantiles, for all the possible net-
work and video configurations.

tions. The average quality slightly decreases (with about
5%) in the FINEAS-INF and ML-based cases when com-
pared to the FINEAS heuristic. This result is mainly due
to the prioritization mode, where a client is forced, by de-
sign, to request the lowest quality level in case the most re-
cently downloaded segment has been prioritized. It is also
worth mentioning that the quality tends to decrease when
longer segments are used. In this situation, the clients
have less fine-grained decision points to adjust the qual-
ity to the available bandwidth, consequently resulting in
a more conservative behavior. This condition is especially
true when the maximum buffer size of the clients is limited
to a few seconds in order to reduce the end-to-end delay
in live video streaming scenarios, as in our experiments.

Another important aspect to consider is the distribu-
tion of video freezes among the different clients. Ideally,
the freeze reduction reported in the previous paragraphs
should be equally shared among the different clients, in or-
der to provide fairness to the entire system. To show this
behavior, we computed the 90% quantile of the average
client freeze time, for all the different network and video
configurations as reported in Table 6. The 90% quantile
expresses the maximum freeze time experienced by 90%
of the clients. By using the proposed ML prioritization

framework, we should be able to reduce not only the av-
erage freeze time (as shown in Figure 8) but also its 90%
quantile, which would entail that all the clients benefit
from the prioritization system. The results of this anal-
ysis are reported in Figure 9, where the 90% quantile of
all the 15 different streaming configurations are reported,
for both FINEAS and FINEAS-ML. Using our prioritiza-
tion framework results in a consistent reduction of the 90%
quantile of the average freeze time, when compared to the
purely client-based FINEAS heuristic. As explained be-
fore, this reduction entails that all the HAS clients benefit
from prioritization. In only two configurations the 90%
quantiles increase, which correspond to the streaming sce-
narios where the 4-seconds Big Buck Bunny and 2-seconds
Red Bull Playstreet videos are used (see dotted lines in Fig-
ure 9). As reported in Table 6, in these two cases the aver-
age freeze time is higher when prioritization is used (even
though this difference is not statistically significant).

4.4. Heterogeneous Clients

In this section, performance results are shown of the
prioritization framework when different rate adaptation
heuristics are used instead of the FINEAS algorithm. As
reported in Section 4.2, the freeze predictor based on the
RUSBoost algorithm has been trained using logs generated
by FINEAS clients only. Despite that, the prioritization
system should provide good performance even when differ-
ent clients are equipped with different heuristics, a com-
mon situation in real deployments. The same topology as
in Figure 5 is used for the experiments, with capacity on
link LPS fixed to 65 Mbps. The clients stream the 1-second
version of the Big Buck Bunny video.

In a first set of experiments, all HAS clients use the
BBA algorithm by Huang et al. [1]. The BBA client is
an example of a purely buffer-based algorithm, where the
next quality is selected based on the buffer level only. Par-
ticularly, Huang et al. showed on a real field test that
the BBA client is able to outperform the standard Netflix

14

Table 7: Summary of the results when the BBA algorithm
is used as adaptation heuristic, in terms of average quality
(q, expressed as an integer between 0 and 6), number of
freezes (NF) and freeze time (FT, in seconds). The 10%
and 90% quantiles are reported between brackets.

q NF FT[s]
BBA 3.2(2.4-3.9) 4.6(1.5-9.0) 1.9(0.5-3.8)

BBA-ML 2.8(2.4-3.2) 2.0(0.3-3.6) 1.8(0.1-3.4)

Average number

of freezes 12.2

6.9

4.4

1.3
0.5

BBA

MSS

None
prioritized

MSS
prioritized

BBA
prioritized

All
prioritized

(a) Average number of freezes.

3.4

1.8

0.7

5.9

Average freeze

duration [s]
BBA

MSS

None
prioritized

MSS
prioritized

BBA
prioritized

All
prioritized

(b) Average freeze duration.

Figure 10: Even in a heterogeneous scenario, our system
can always reduce the number of freezes for the prioritized
clients. When only one group is prioritized, the influence
on the non-prioritized group depends on the underlying
heuristic.

player. This choice allows to assess the performance of the
prioritization system when the clients are equipped with
a completely different heuristic compared to the one used
for training. The main results are reported in Table 7, for
a buffer size fixed to 20 seconds. The proposed ML-based
framework can consistently reduce the number of freezes
by 57%. It is worth stressing that this result is achieved
even though the freeze predictor module has been trained
with a different adaptation heuristic. Even though freezes
can be limited, the average freeze time is similar for both
the BBA and BBA-ML solutions. The prioritization sys-
tem is effective in avoiding short freezes, while long freezes
are more difficult to predict because of the different behav-
ior of the purely buffer-based BBA heuristic compared to
the FINEAS heuristic used for training. As expected, the
video quality is slightly reduced when prioritization is en-
forced, since the clients are forced to request the lower
quality in case of prioritization.

In a second set of experiments, we investigate a hetero-
geneous scenario, where 50% of the clients are equipped
with the BBA heuristic and 50% with the MSS one. We
analyze the performance of the system both when all the
clients are prioritized and when only one group can ben-
efit from prioritization. The same experimental setup as
for the previous experiment has been used. The correspon-
dent results are shown in Figure 10, in terms of average
number of freezes and freeze duration. For each emulated
iteration, we also computed the 10% and 90% quantiles,
which quantify the maximum number of freezes and freeze
time experienced by 10% and 90% of the HAS clients, re-
spectively. Each point of the graphs is therefore associated
with the average 10% and 90% quantiles over the 10 iter-
ations. When none of the clients is prioritized, the BBA
heuristic exhibits worse performance than the MSS one,
both in terms of number of freezes (×3.4) and freeze du-
ration (×2.6). This behavior is due to the purely buffer-
based nature of the BBA client, which does not take into
account the available bandwidth and is therefore more sus-
ceptible to freezes unless a very large buffer is used. When
only the MSS group is prioritized, freezes can be reduced
by 62% (see Figure 10a) for MSS clients, while freeze dura-
tion is similar to the non-prioritized case (see Figure 10b).
Interestingly, prioritizing the MSS group has a negative
impact on the performance of the BBA group, as both
the number of freezes and freeze time increase when com-
pared to the non-prioritized case. When prioritization is
enforced by the controller, the bandwidth available for the
clients in the best-effort queue can drop. As BBA clients
do not consider this metric in their adaptation, they are
affected by more video freezes. When only the BBA group
is prioritized, freezes can be completely eliminated, for all
BBA clients. This result does not negatively affect the
performance of the MSS clients, which consider both the
buffer level and the available bandwidth in their quality
adaptation, and can therefore react quickly to changing
bandwidth conditions. When all the clients can benefit
from prioritization, freezes are reduced for both groups.
Even though the ML-based prioritization system is trained
in a scenario where all the clients are equipped with the
FINEAS algorithm, the learned client model can be effec-
tively re-used to optimize the behavior of other adaptation
heuristics, even in heterogeneous scenarios.

4.5. Multiple Bottlenecks Network Topology

So far, we have investigated a single bottleneck sce-
nario, where congestion can occur on one link only (i.e.,
link LPS in Figure 5). In real networks however, bottle-
necks can arise on different links simultaneously and at
different network levels. The goal of this section is there-
fore to investigate the performance of the proposed ML-
based solution in a multi-bottleneck network scenario. In
this scenario, each possible bottleneck should be associated
with an independent network controller, equipped with the
same set of algorithms as described in Section 3.2. It is

15

HAS Server
L0

PD Server

Web-browsing

Server

Network #1

Network #2

Network #3

L1

L2

L3

OpenFlow

Controller

Prioritization

Switch

Figure 11: Three networks compose the topology emulated
on Mininet. Links L0, L1, L2 and L3 are the bottlenecks
and are equipped with a prioritization queue. Each link is
associated with an independent OpenFlow controller.

important to stress that no communication should be en-
visioned among the independent controllers, as this ap-
proach would require extra-signalling inside the network.
Despite that, the controllers should still be able to achieve
a global coordinated behavior in order to provide end-to-
end prioritization. This distributed approach presents two
advantages with respect to a centralized one, where one
single controller is responsible for all the network bottle-
necks. First, it is inherently more scalable. In our previous
work [5], we showed that the proposed prioritization sys-
tem can control up to 5000 HAS clients simultaneously.
The controller could therefore be overloaded when a cen-
tralized solution is used. Second, a distributed approach
is easier to deploy, as no modifications to the design pre-
sented in Section 3.2 are required.

In light of the above, the multi-bottleneck topology
shown in Figure 11 has been emulated on Mininet. The
HAS, PD and web browsing clients are divided into three
networks. Each network is composed of 10 HAS clients
equipped with the FINEAS heuristic, 8 PD clients and 5
web-browsing clients, for a total of 69 clients. Links L0,
L1, L2 and L3 represent the possible bottlenecks for the
HAS clients. Each link is equipped with a prioritization
queue, with bandwidth equal to 15% of the channel capac-
ity, and is controlled by an independent network controller.
Even though the controllers for links L1, L2 and L3 can
be located together, we decided to logically split them in
order to show the performance of the system in a fully dis-
tributed scenario. Two different video streaming scenarios
have been evaluated. In the first one, the HAS clients are
equipped with a 6 seconds buffer and stream the 1-second
segment version of the Tears of Steel video. Capacity on
links L0 and L1-3 is fixed to 75 Mbps and 30 Mbps, re-
spectively. In a second scenario, the 2-seconds segment
Tears of Steel video is streamed, and the clients use a 10
seconds buffer. L0 has a capacity of 70 Mbps, while links
L1-3 have a capacity of 28 Mbps. Each experiment has
been repeated 10 times. Depending on the cross-traffic on
links L1, L2 and L3, the actual bottlenecks for the three
networks dynamically change. This way, we can explore
a wide range of network configurations, where the three

Tears of Steel

- 1 second

Tears of Steel

- 2 seconds

Average number

of freezes

0
1.3
2.9
5.3
7.7

17.4

30.4

FINEAS

FINEAS-ML

FINEAS-INF

(a) Average number of freezes

FINEAS-INF

Tears of Steel

- 1 second

Tears of Steel

- 2 seconds

Average freeze

duration [s]

0

2.2
2.8

4.9

13.4

3.8

7.9
6.4

FINEAS

FINEAS-ML

(b) Average freeze duration

Figure 12: The proposed ML-based approach can reduce
the amount of freezes and the freeze time with respect to
the FINEAS heuristic, even in a multi-bottleneck scenario
with independent controllers. The FINEAS-INF solution
achieves the best results overall.

networks could possibly influence each other.
Figure 12 reports the obtained results for the FINEAS,

FINEAS-ML and FINEAS-INF approaches, in terms of av-
erage number of freezes and average freeze duration. Each
point of the graphs is also associated with the average
10% and 90% quantiles over the 10 iterations. The client-
based FINEAS heuristic results in the highest amount of
freezes and freeze time. The presence of congestion at
multiple network levels makes it harder for the client to
avoid freezes, which are up to 3 times higher than in the
single bottleneck case. Moreover, some of the clients ex-
perience very high freeze time (up to 13.4 seconds), as
the quantiles indicate. Network-based prioritization can
consistently improve the performance of the system, both
for the proposed FINEAS-ML approach and the FINEAS-
INF one. Even though independent, the controllers are
able to take coordinated actions on which client to pri-
oritize. This behavior is due to the type of inputs used
by the controllers to decide on prioritization. Particularly,
each controller can obtain local information about the sta-
tus of the controlled link and global information about the
HAS clients. Information about the clients is composed
of the quality level of the requested segment and the time
between consecutive HTTP GET requests, as described
in Section 3.2.2. The status of the controlled link is a
local information that is only available to the specific con-
troller. Conversely, the requested quality and the GET
inter-arrival time are measurements that can be obtained
by all controllers, independently of their position. Con-
sequently, the controllers are fed with some inputs that
are global and shared with all the other controllers. This
specific condition facilitates coordination among the oth-
erwise independent controllers. As expected, the FINEAS-
INF solution is able to reach the best performance, both in
terms of video freezes and freeze duration. Our ML-based
solution can reduce video freeze with 70% in the 1-second
segment Tears of Steel video and 55% in the 2-seconds
segment version (Figure 12a), when compared to FINEAS.

16

These results correspond to a 50% and 13% freeze time re-
duction (Figure 12b). The low dispersion indicated by the
90% quantiles also shows that all the clients obtain similar
performance and confirms the effectiveness of the proposed
prioritization system. It is worth stressing that these re-
sults are obtained in a completely distributed scenario,
where the controllers do not communicate among each-
other, and without using any information on the streamed
video or on the clients’ status. Despite that, the proposed
ML-based approach can still provide good performance,
even in a multi-bottleneck network scenario.

5. Conclusions

We presented in this paper a novel network-based frame-
work to prevent the occurrence of video freezes for HAS
clients. The main element of this framework, implemented
using the OpenFlow protocol, is a network controller. This
controller can prioritize the delivery of video segments
likely leading to a freeze using a dedicate queue. Prior-
itization is driven by a machine learning engine, based on
the RUSBoost algorithm and fuzzy logic. The RUSBoost
algorithm is used to detect whether a client is close to a
freeze, while fuzzy logic allows to understand whether the
conditions of the prioritization queue are good enough to
successfully prioritize the segment. No knowledge on the
video, in terms of bit-rates and segment duration, is re-
quired nor on the client’s configuration, in terms of initial
buffering time. This aspect simplifies the practical appli-
cability of the proposed framework in a real deployment.
Results obtained through emulation showed that our ML-
based approach can consistently reduce video freezes with
about 65% and freeze time with 45%, when compared to
the benchmarking heuristics FINEAS and MSS. Moreover,
the proposed approach has also been evaluated in a multi-
bottleneck network scenario, where we showed that a sys-
tem of distributed independent controllers is still able to
reduce the amount of video freezes with about 60%. These
results represent an important step toward the optimiza-
tion of the final QoE of the users watching online videos.

Acknowledgement

The research was performed partially within the strate-
gic research project SMILE-IT funded by VLAIO and the
iMinds PRO-FLOW project (under VLAIO grant agree-
ment no. 150223). This work was partly funded by FLA-
MINGO, a Network of Excellence project (ICT-318488)
supported by the European Commission under its Seventh
Framework Programme.

References

[1] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, M. Watson,
A buffer-based approach to rate adaptation: Evidence from a
large video streaming service, in: Proceedings of the 2014 ACM
Conference on SIGCOMM, ACM, New York, NY, USA, 2014,
pp. 187–198.

[2] CONVIVA, 2015 viewer experience report, http:

//www.conviva.com/conviva-viewer-experience-report/

vxr-2015/.
[3] R. Masoudi, A. Ghaffari, Software defined networks: A survey,

Journal of Network and Computer Applications 67 (2016) 1 –
25.

[4] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, A. Napolitano,
Rusboost: A hybrid approach to alleviating class imbalance,
Trans. Sys. Man Cyber. Part A 40 (1) (2010) 185–197.

[5] S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen,
F. De Turck, Software-defined network-based prioritization to
avoid video freezes in http adaptive streaming, International
Journal of Network Management 26 (4) (2016) 248–268.

[6] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld,
P. Tran-Gia, A survey on quality of experience of http adaptive
streaming, IEEE Communications Surveys Tutorials 99, 2014.

[7] X. Yin, A. Jindal, V. Sekar, B. Sinopoli, A control-theoretic
approach for dynamic adaptive video streaming over http, SIG-
COMM Comput. Commun. Rev. 45 (4) (2015) 325–338.

[8] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, D. Oran,
Probe and adapt: Rate adaptation for http video streaming
at scale, IEEE Journal on Selected Areas in Communications
32 (4) (2014) 719–733. doi:10.1109/JSAC.2014.140405.

[9] J. Jiang, V. Sekar, H. Zhang, Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive,
Networking, IEEE/ACM Transactions on 22 (1) (2014) 326–
340.

[10] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu,
B. Sinopoli, Cs2p: Improving video bitrate selection and adap-
tation with data-driven throughput prediction, in: Proceedings
of the 2016 Conference on ACM SIGCOMM 2016 Conference,
SIGCOMM ’16, ACM, New York, NY, USA, 2016, pp. 272–285.

[11] K. Ivesic, L. Skorin-Kapov, M. Matijasevic, Cross-layer qoe-
driven admission control and resource allocation for adaptive
multimedia services in lte, Journal of Network and Computer
Applications 46 (2014) 336 – 351.

[12] A. Ganjam, J. Jiang, X. Liu, V. Sekar, F. Siddiqi, I. Sto-
ica, J. Zhan, H. Zhang, C3: Internet-scale control plane for
video quality optimization, in: Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation,
NSDI’15, USENIX Association, Berkeley, CA, USA, 2015, pp.
131–144.

[13] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan,
H. Zhang, Practical, real-time centralized control for cdn-based
live video delivery, in: Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM
’15, ACM, New York, NY, USA, 2015, pp. 311–324.

[14] H. Egilmez, S. Civanlar, A. Tekalp, An optimization frame-
work for qos-enabled adaptive video streaming over openflow
networks, IEEE Transactions on Multimedia 15, 2013.

[15] T. Uzakgider, C. Cetinkaya, M. Sayit, Learning-based approach
for layered adaptive video streaming over sdn, Computer Net-
works 92, Part 2 (2015) 357 – 368.

[16] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira,
S. Crawford, A. Pescapè, Measuring home broadband perfor-
mance, Communications of the ACM 55 (11) (2012) 100–109.

[17] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, N. Race,
Towards network-wide qoe fairness using openflow-assisted
adaptive video streaming, in: Proceedings of the 2013 ACM
SIGCOMM Workshop on Future Human-centric Multimedia
Networking, FhMN ’13, ACM, New York, NY, USA, 2013, pp.
15–20.

[18] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-
Gia, S. Mascolo, Design and experimental evaluation of
network-assisted strategies for http adaptive streaming, in: Pro-
ceedings of the 7th International Conference on Multimedia Sys-
tems, MMSys ’16, ACM, New York, NY, USA, 2016, pp. 3:1–
3:12.

[19] T. Wu, R. Huysegems, T. Bostoen, Scalable network-based
video-freeze detection for http adaptive streaming, in: 2015
IEEE 23rd International Symposium on Quality of Service

17

http://www.conviva.com/conviva-viewer-experience-report/vxr-2015/
http://www.conviva.com/conviva-viewer-experience-report/vxr-2015/
http://www.conviva.com/conviva-viewer-experience-report/vxr-2015/
http://dx.doi.org/10.1109/JSAC.2014.140405

(IWQoS), 2015, pp. 95–104.
[20] C. Mueller, S. Lederer, J. Poecher, C. Timmerer, Libdash -

an open source software library for the mpeg-dash standard,
in: Multimedia and Expo Workshops (ICMEW), 2013 IEEE
International Conference on, 2013, pp. 1–2.

[21] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, F. De Turck, Qoe-
driven rate adaptation heuristic for fair adaptive video stream-
ing, ACM Trans. Multimedia Comput. Commun. Appl. 12 (2)
(2015) 28:1–28:24.

[22] S. Akhtar, A. Francini, D. Robinson, R. Sharpe, Interaction
of aqm schemes and adaptive streaming with internet traffic
on access networks, in: Global Communications Conference
(GLOBECOM), 2014 IEEE, 2014, pp. 1145–1151.

[23] Sandvine, Exposing the technical and commercial factors un-
derlying internet quality of experience, https://www.sandvine.
com/trends/global-internet-phenomena/.

[24] T. J. Hastie, R. J. Tibshirani, J. H. Friedman, The elements
of statistical learning : data mining, inference, and prediction,
Springer series in statistics, Springer, New York, 2009.

[25] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen, L. Hanzo, Ma-
chine learning paradigms for next-generation wireless networks,
IEEE Wireless Communications PP (99) (2016) 2–9.

18

https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/

	Introduction
	Related Work
	Machine Learning-Based Framework
	Architectural Description
	OpenFlow Controller
	HAS Bandwidth Estimation
	Freeze Predictor Module
	Congestion Detection Module

	Performance Evaluation
	Experimental Setup
	Training the Freeze Predictor Off-line
	On-line Freeze Reduction
	Heterogeneous Clients
	Multiple Bottlenecks Network Topology

	Conclusions

