421 research outputs found

    Neuromorphic perception for greenhouse technology using event-based sensors

    Get PDF
    Event-Based Cameras (EBCs), unlike conventional cameras, feature independent pixels that asynchronously generate outputs upon detecting changes in their field of view. Short calculations are performed on each event to mimic the brain. The output is a sparse sequence of events with high temporal precision. Conventional computer vision algorithms do not leverage these properties. Thus a new paradigm has been devised. While event cameras are very efficient in representing sparse sequences of events with high temporal precision, many approaches are challenged in applications where a large amount of spatially-temporally rich information must be processed in real-time. In reality, most tasks in everyday life take place in complex and uncontrollable environments, which require sophisticated models and intelligent reasoning. Typical hard problems in real-world scenes are detecting various non-uniform objects or navigation in an unknown and complex environment. In addition, colour perception is an essential fundamental property in distinguishing objects in natural scenes. Colour is a new aspect of event-based sensors, which work fundamentally differently from standard cameras, measuring per-pixel brightness changes per colour filter asynchronously rather than measuring “absolute” brightness at a constant rate. This thesis explores neuromorphic event-based processing methods for high-noise and cluttered environments with imbalanced classes. A fully event-driven processing pipeline was developed for agricultural applications to perform fruits detection and classification to unlock the outstanding properties of event cameras. The nature of features in such data was explored, and methods to represent and detect features were demonstrated. A framework for detecting and classifying features was developed and evaluated on the N-MNIST and Dynamic Vision Sensor (DVS) gesture datasets. The same network was evaluated on laboratory recorded and real-world data with various internal variations for fruits detection such as overlap, variation in size and appearance. In addition, a method to handle highly imbalanced data was developed. We examined the characteristics of spatio-temporal patterns for each colour filter to help expand our understanding of this novel data and explored their applications in classification tasks where colours were more relevant features than shapes and appearances. The results presented in this thesis demonstrate the potential and efficacy of event- based systems by demonstrating the applicability of colour event data and the viability of event-driven classification

    Intelligent road lane mark extraction using a Mobile Mapping System

    Get PDF
    102 p.During the last years, road landmark in- ventory has raised increasing interest in different areas: the maintenance of transport infrastructures, road 3d modelling, GIS applications, etc. The lane mark detection is posed as a two-class classification problem over a highly class imbalanced dataset. To cope with this imbalance we have applied Active Learning approaches. This Thesis has been divided into two main com- putational parts. In the first part, we have evaluated different Machine Learning approaches using panoramic images, obtained from image sensor, such as Random Forest (RF) and ensembles of Extreme Learning Machines (V-ELM), obtaining satisfactory results in the detection of road continuous lane marks. In the second part of the Thesis, we have applied a Random Forest algorithm to a LiDAR point cloud, obtaining a georeferenced road horizontal signs classification. We have not only identified continuous lines, but also, we have been able to identify every horizontal lane mark detected by the LiDAR sensor

    Distributed Intermittent Fault Diagnosis in Wireless Sensor Network Using Likelihood Ratio Test

    Get PDF
    In current days, sensor nodes are deployed in hostile environments for various military and commercial applications. Sensor nodes are becoming faulty and having adverse effects in the network if they are not diagnosed and inform the fault status to other nodes. Fault diagnosis is difficult when the nodes behave faulty some times and provide good data at other times. The intermittent disturbances may be random or kind of spikes either in regular or irregular intervals. In literature, the fault diagnosis algorithms are based on statistical methods using repeated testing or machine learning. To avoid more complex and time consuming repeated test processes and computationally complex machine learning methods, we proposed a one shot likelihood ratio test (LRT) here to determine the fault status of the sensor node. The proposed method measures the statistics of the received data over a certain period of time and then compares the likelihood ratio with the threshold value associated with a certain tolerance limit. The simulation results using a real time data set shows that the new method provides better detection accuracy (DA) with minimum false positive rate (FPR) and false alarm rate (FAR) over the modified three sigma test. LRT based hybrid fault diagnosis method detecting the fault status of a sensor node in wireless sensor network (WSN) for real time measured data with 100% DA, 0% FAR and 0% FPR if the probability of the data from faulty node exceeds 25%

    Deep Learning-Based Intrusion Detection Methods for Computer Networks and Privacy-Preserving Authentication Method for Vehicular Ad Hoc Networks

    Get PDF
    The incidence of computer network intrusions has significantly increased over the last decade, partially attributed to a thriving underground cyber-crime economy and the widespread availability of advanced tools for launching such attacks. To counter these attacks, researchers in both academia and industry have turned to machine learning (ML) techniques to develop Intrusion Detection Systems (IDSes) for computer networks. However, many of the datasets use to train ML classifiers for detecting intrusions are not balanced, with some classes having fewer samples than others. This can result in ML classifiers producing suboptimal results. In this dissertation, we address this issue and present better ML based solutions for intrusion detection. Our contributions in this direction can be summarized as follows: Balancing Data Using Synthetic Data to detect intrusions in Computer Networks: In the past, researchers addressed the issue of imbalanced data in datasets by using over-sampling and under-sampling techniques. In this study, we go beyond such traditional methods and utilize a synthetic data generation method called Con- ditional Generative Adversarial Network (CTGAN) to balance the datasets and in- vestigate its impact on the performance of widely used ML classifiers. To the best of our knowledge, no one else has used CTGAN to generate synthetic samples for balancing intrusion detection datasets. We use two widely used publicly available datasets and conduct extensive experiments and show that ML classifiers trained on these datasets balanced with synthetic samples generated by CTGAN have higher prediction accuracy and Matthew Correlation Coefficient (MCC) scores than those trained on imbalanced datasets by 8% and 13%, respectively. Deep Learning approach for intrusion detection using focal loss function: To overcome the data imbalance problem for intrusion detection, we leverage the specialized loss function, called focal loss, that automatically down-weighs easy ex- amples and focuses on the hard negatives by facilitating dynamically scaled-gradient updates for training ML models effectively. We implement our approach using two well-known Deep Learning (DL) neural network architectures. Compared to training DL models using cross-entropy loss function, our approach (training DL models using focal loss function) improved accuracy, precision, F1 score, and MCC score by 24%, 39%, 39%, and 60% respectively. Efficient Deep Learning approach to detect Intrusions using Few-shot Learning: To address the issue of imbalance the datasets and develop a highly effective IDS, we utilize the concept of few-shot learning. We present a Few-Shot and Self-Supervised learning framework, called FS3, for detecting intrusions in IoT networks. FS3 works in three phases. Our approach involves first pretraining an encoder on a large-scale external dataset in a selfsupervised manner. We then employ few-shot learning (FSL), which seeks to replicate the encoder’s ability to learn new patterns from only a few training examples. During the encoder training us- ing a small number of samples, we train them contrastively, utilizing the triplet loss function. The third phase introduces a novel K-Nearest neighbor algorithm that sub- samples the majority class instances to further reduce imbalance and improve overall performance. Our proposed framework FS3, utilizing only 20% of labeled data, out- performs fully supervised state-of-the-art models by up to 42.39% and 43.95% with respect to the metrics precision and F1 score, respectively. The rapid evolution of the automotive industry and advancements in wireless com- munication technologies will result in the widespread deployment of Vehicular ad hoc networks (VANETs). However, despite the network’s potential to enable intelligent and autonomous driving, it also introduces various attack vectors that can jeopardize its security. In this dissertation, we present efficient privacy-preserving authenticated message dissemination scheme in VANETs. Conditional Privacy-preserving Authentication and Message Dissemination Scheme using Timestamp based Pseudonyms: To authenticate a message sent by a vehicle using its pseudonym, a certificate of the pseudonym signed by the central authority is generally utilized. If a vehicle is found to be malicious, certificates associated with all the pseudonyms assigned to it must be revoked. Certificate revocation lists (CRLs) should be shared with all entities that will be corresponding with the vehicle. As each vehicle has a large pool of pseudonyms allocated to it, the CRL can quickly grow in size as the number of revoked vehicles increases. This results in high storage overheads for storing the CRL, and significant authentication overheads as the receivers must check their CRL for each message received to verify its pseudonym. To address this issue, we present a timestamp-based pseudonym allocation scheme that reduces the storage overhead and authentication overhead by streamlining the CRL management process

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    Learning from class-imbalanced data: overlap-driven resampling for imbalanced data classification.

    Get PDF
    Classification of imbalanced datasets has attracted substantial research interest over the past years. This is because imbalanced datasets are common in several domains such as health, finance and security, but learning algorithms are generally not designed to handle them. Many existing solutions focus mainly on the class distribution problem. However, a number of reports showed that class overlap had a higher negative impact on the learning process than class imbalance. This thesis thoroughly explores the impact of class overlap on the learning algorithm and demonstrates how elimination of class overlap can effectively improve the classification of imbalanced datasets. Novel undersampling approaches were developed with the main objective of enhancing the presence of minority class instances in the overlapping region. This is achieved by identifying and removing majority class instances potentially residing in such a region. Seven methods under the two different approaches were designed for the task. Extensive experiments were carried out to evaluate the methods on simulated and well-known real-world datasets. Results showed that substantial improvement in the classification accuracy of the minority class was obtained with favourable trade-offs with the majority class accuracy. Moreover, successful application of the methods in predictive diagnostics of diseases with imbalanced records is presented. These novel overlap-based approaches have several advantages over other common resampling methods. First, the undersampling amount is independent of class imbalance and proportional to the degree of overlap. This could effectively address the problem of class overlap while reducing the effect of class imbalance. Second, information loss is minimised as instance elimination is contained within the problematic region. Third, adaptive parameters enable the methods to be generalised across different problems. It is also worth pointing out that these methods provide different trade-offs, which offer more alternatives to real-world users in selecting the best fit solution to the problem
    • …
    corecore