451 research outputs found

    Application of MRI Connectivity in Stereotactic Functional Neurosurgery

    Get PDF
    This thesis examines potential applications of advanced MRI-connectivity studies in stereotactic functional neurosurgery. Several new analysis methodologies are employed to: (1) build predictive models of DBS surgery outcome; (2) refine the surgical target and (3) help build a better understanding of the pathogenesis of the treated conditions and the mechanism of action of DBS therapy. The experimental component is divided into three main parts focusing on the following pathologies: (1) Parkinson’s disease (PD), (2) tremor and (3) trigeminal autonomic cephalalgias (TAC). Section I: In the first experiment (chapter 3), resting state fMRI was used to find radiological biomarkers predictive of response to L-DOPA in 19 patients undergoing subthalamic nucleus (STN) DBS for PD. A greater improvement in UPDRS-III scores following L-DOPA administration was characterized by higher resting state functional connectivity (fcMRI) between the prefrontal cortex and the striatum (p=0.001) and lower fcMRI between the pallidum (p=0.001), subthalamic nucleus (p=0.003) and the paracentral lobule. In the second experiment (chapter 4), structural (diffusion) connectivity was used to map out the influence of the hyperdirect pathways on outcome and identify the therapeutic ‘sweet spots’ in twenty PD patients undergoing STN-DBS. Clusters corresponding to maximum improvement in symptoms were in the posterior, superior and lateral portion of the STN. Greater connectivity to the primary motor area, supplementary motor area and prefrontal cortex was predictive of higher improvement in tremor, bradykinesia and rigidity, and rigidity respectively. The third experiment (chapter 5) examined pyramidal tract (PT) activation in 20 PD patients with STN-DBS. Volume of tissue activation (VTA) around DBS contacts were modelled in relation to the PT. VTA/ PT overlap predicted EMG activation thresholds. Sections II: Pilot data suggest that probabilistic tractography techniques can be used to segment the ventrolateral (VL) and ventroposterior (VP) thalamus based on cortical and cerebellar connectivity in nine patients who underwent thalamic DBS for tremor (chapter 6). The thalamic area, best representing the ventrointermedialis nucleus (VIM), was connected to the contralateral dentate cerebellar nucleus. Streamlines corresponding to the dentato-rubro-thalamic tract (DRT) connected M1 to the contralateral dentate nucleus via the dentato-thalamic area. Good response was seen when the active contact’s VTA was in the thalamic area with the highest connectivity to the contralateral dentate nucleus. Section III: The efficacy and safety of DBS in the ventral tegmental area (VTa) in the treatment of chronic cluster headache (CH) and short lasting unilateral neuralgiform headache attacks (SUNA) were examined (chapters 7 and 8). The optimum stimulation site within the VTa that best controls symptoms was explored (chapter 9). The average responders’ deep brain stimulation activation volume lay on the trigemino-hypothalamic tract, connecting the trigeminal system and other nociceptive brainstem nuclei, with the hypothalamus, and the prefrontal and mesial temporal areas

    Investigating Risk Factors and Predicting Complications in Deep Brain Stimulation Surgery with Machine Learning Algorithms

    Full text link
    © 2019 Elsevier Inc. Background: Deep brain stimulation (DBS) surgery is an option for patients experiencing medically resistant neurologic symptoms. DBS complications are rare; finding significant predictors requires a large number of surgeries. Machine learning algorithms may be used to effectively predict these outcomes. The aims of this study were to 1) investigate preoperative clinical risk factors and 2) build machine learning models to predict adverse outcomes. Methods: This multicenter registry collected clinical and demographic characteristics of patients undergoing DBS surgery (n = 501) and tabulated occurrence of complications. Logistic regression was used to evaluate risk factors. Supervised learning algorithms were trained and validated on 70% and 30%, respectively, of both oversampled and original registry data. Performance was evaluated using area under the receiver operating characteristics curve (AUC), sensitivity, specificity, and accuracy. Results: Logistic regression showed that the risk of complication was related to the operating institution in which the surgery was performed (odds ratio [OR] = 0.44, confidence interval [CI] = 0.25–0.78), body mass index (OR = 0.94, CI = 0.89–0.99), and diabetes (OR = 2.33, CI = 1.18–4.60). Patients with diabetes were almost 3× more likely to return to the operating room (OR = 2.78, CI = 1.31–5.88). Patients with a history of smoking were 4× more likely to experience postoperative infection (OR = 4.20, CI = 1.21–14.61). Supervised learning algorithms demonstrated high discrimination performance when predicting any complication (AUC = 0.86), a complication within 12 months (AUC = 0.91), return to the operating room (AUC = 0.88), and infection (AUC = 0.97). Age, body mass index, procedure side, gender, and a diagnosis of Parkinson disease were influential features. Conclusions: Multiple significant complication risk factors were identified, and supervised learning algorithms effectively predicted adverse outcomes in DBS surgery

    Investigating risk factors and predicting complications in deep brain stimulation surgery with machine learning algorithms

    Get PDF
    Background: Deep brain stimulation (DBS) surgery is an option for patients experiencing medically resistant neurological symptoms. DBS complications are rare; finding significant predictors requires a large number of surgeries. Machine learning algorithms may be used to effectively predict these outcomes. The aims of this study were to (1) investigate preoperative clinical risk factors, and (2) build machine learning models to predict adverse outcomes. Methods: This multicenter registry collected clinical and demographic characteristics of patients undergoing DBS surgery (n=501) and tabulated occurrence of complications. Logistic regression was used to evaluate risk factors. Supervised learning algorithms were trained and validated on 70% and 30%, respectively, of both oversampled and original registry data. Performance was evaluated using area under the receiver operating characteristics curve (AUC), sensitivity, specificity and accuracy. Results: Logistic regression showed that the risk of complication was related to the operating institution in which the surgery was performed (OR=0.44, confidence interval [CI]=0.25-0.78), BMI (OR=0.94,CI=0.89-0.99) and diabetes (OR=2.33,CI=1.18-4.60). Patients with diabetes were almost three times more likely to return to the operating room (OR=2.78,CI=1.31-5.88). Patients with a history of smoking were four times more likely to experience postoperative infection (OR=4.20,CI=1.21-14.61). Supervised learning algorithms demonstrated high discrimination performance when predicting any complication (AUC=0.86), a complication within 12 months (AUC=0.91), return to the operating room (AUC=0.88) and infection (AUC=0.97). Age, BMI, procedure side, gender and a diagnosis of Parkinson’s disease were influential features. Conclusions: Multiple significant complication risk factors were identified and supervised learning algorithms effectively predicted adverse outcomes in DBS surgery

    Clinical applications of magnetic resonance imaging based functional and structural connectivity

    Get PDF
    Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective

    Programming of subthalamic nucleus deep brain stimulation with hyperdirect pathway and corticospinal tract-guided parameter suggestions.

    Get PDF
    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for advanced Parkinson's disease. Stimulation of the hyperdirect pathway (HDP) may mediate the beneficial effects, whereas stimulation of the corticospinal tract (CST) mediates capsular side effects. The study's objective was to suggest stimulation parameters based on the activation of the HDP and CST. This retrospective study included 20 Parkinson's disease patients with bilateral STN DBS. Patient-specific whole-brain probabilistic tractography was performed to extract the HDP and CST. Stimulation parameters from monopolar reviews were used to estimate volumes of tissue activated and to determine the streamlines of the pathways inside these volumes. The activated streamlines were related to the clinical observations. Two models were computed, one for the HDP to estimate effect thresholds and one for the CST to estimate capsular side effect thresholds. In a leave-one-subject-out cross-validation, the models were used to suggest stimulation parameters. The models indicated an activation of 50% of the HDP at effect threshold, and 4% of the CST at capsular side effect threshold. The suggestions for best and worst levels were significantly better than random suggestions. Finally, we compared the suggested stimulation thresholds with those from the monopolar reviews. The median suggestion errors for the effect threshold and side effect threshold were 1 and 1.5 mA, respectively. Our stimulation models of the HDP and CST suggested STN DBS settings. Prospective clinical studies are warranted to optimize tract-guided DBS programming. Together with other modalities, these may allow for assisted STN DBS programming

    A Subject-Specific Multiscale Model of Transcranial Magnetic Stimulation

    Get PDF
    Transcranial magnetic stimulation (TMS) is a neuromodulation technique used to treat a variety of neurological disorders. While many types of neuromodulation therapy are invasive, TMS is an attractive alternative because it is noninvasive and has a very strong safety record. However, clinical use of TMS has preceded a thorough scientific understanding: its mechanisms of action remain elusive, and the spatial extent of modulation is not well understood. We created a subject-specific, multiscale computational model to gain insights into the physiological response during motor cortex TMS. Specifically, we developed an approach that integrates three main components: 1) a high-resolution anatomical MR image of the whole head with diffusion weighted MRI data; 2) a subject-specific, electromagnetic, non-homogeneous, anisotropic, finite element model of the whole head with a novel time-dependent solver; 3) a population of multicompartmental pyramidal cell neuron models. We validated the model predictions by comparing them to motor evoked potentials (MEPs) immediately following single-pulse TMS of the human motor cortex. This modeling approach contains several novel components, which in turn allowed us to gain greater insights into the interactions of TMS with the brain. Using this approach we found that electric field magnitudes within gray matter and white matter vary substantially with coil orientation. Our results suggest that 1) without a time-dependent, subject-specific, non-homogeneous, anisotropic model, loci of stimulation cannot be accurately predicted; 2) loci of stimulation depend upon biophysical properties and morphologies of pyramidal cells in both gray and white matter relative to the induced electric field. These results indicate that the extent of neuromodulation is more widespread than originally thought. Through medical imaging and computational modeling, we provide insights into the effects of TMS at a multiscale level, which would be unachievable by either method alone. Finally, our approach is amenable to clinical implementation. As a result, it could provide the means by which TMS parameters can be prescribed for treatment and a foundation for improving coil design

    Combined brain language connectivity and intraoperative neurophysiologic techniques in awake craniotomy for eloquent-area brain tumor resection

    Get PDF
    Speech processing can be disturbed by primary brain tumors (PBT). Improvement of presurgical planning techniques decrease neurological morbidity associated to tumor resection during awake craniotomy. The aims of this work were: 1. To perform Diffusion Kurtosis Imaging based tractography (DKI-tract) in the detection of brain tracts involved in language; 2. To investigate which factors contribute to functional magnetic resonance imaging (fMRI) maps in predicting eloquent language regional reorganization; 3. To determine the technical aspects of accelerometric (ACC) recording of speech during surgery. DKI-tracts were streamlined using a 1.5T magnetic resonance scanner. Number of tracts and fiber pathways were compared between DKI and standard Diffusion Tensor Imaging (DTI) in healthy subjects (HS) and PBT patients. fMRI data were acquired using task-specific and resting-state paradigms during language and motor tasks. After testing intraoperative fMRI’s influence on direct cortical stimulation (DCS) number of stimuli, graph-theory measures were extracted and analyzed. Regarding speech recording, ACC signals were recorded after evaluating neck positions and filter bandwidths. To test this method, language disturbances were recorded in patients with dysphonia and after applying DCS in the inferior frontal gyrus. In contrast, HS reaction time was recorded during speech execution. DKI-tract showed increased number of arcuate fascicle tracts in PBT patients. Lower spurious tracts were identified with DKI-tract. Intraoperative fMRI and DCS showed similar stimuli in comparison with DCS alone. Increased local centrality accompanied language ipsilateral and contralateral reorganization. ACC recordings showed minor artifact contamination when placed at the suprasternal notch using a 20-200 Hz filter bandwidth. Patients with dysphonia showed decreased amplitude and frequency in comparison with HS. ACC detected an additional 11% disturbances after DCS, and a shortening of latency within the presence of a loud stimuli during speech execution. This work improved current knowledge on presurgical planning techniques based on brain structural and functional neuroimaging connectivity, and speech recordingA função linguística do ser humano pode ser afetada pela presença de tumores cerebrais (TC) A melhoria de técnicas de planeamento pré-cirurgico diminui a morbilidade neurológica iatrogénica associada ao seu tratamento cirúrgico. O objetivo deste trabalho é: 1. Testar a fiabilidade da tractografia estimada por difusor de kurtose (tract-DKI), dos feixes cerebrais envolvidos na linguagem 2. Identificar os fatores que contribuem para o mapeamento linguagem por ressonância magnética funcional (RMf) na predição da neuroplasticidade. 3. Identificar aspetos técnicos do registo da linguagem por accelerometria (ACC). A DKI-tract foi estimada após realização de RM cerebral com 1.5T. O número e percurso das fibras foi avaliado. A RMf foi adquirida durante realização de tarefas linguísticas, motoras, e em repouso. Foi testada influência dos mapas de ativação calculados por RMf, no número de estímulos realizados durante a estimulação direta cortical (EDC) intraoperatória. Medidas de conectividade foram extraídas de regiões cerebrais. A posição e filtragem de sinal ACC foram estudadas após vocalização de palavras. O sinal ACC obtido em voluntários foi comparado com doentes disfónicos, após estimulação do giro inferior frontal, e após a adição de um estímulo sonoro perturbador durante vocalização. A tract-DKI estimou um elevado número de fascículos do feixe arcuato com menos falsos negativos. Os mapas linguísticos de RMf intraoperatória, não influenciou a EDC. Medidas de centralidade aumentaram após neuroplasticidade ipsilateral e contralateral. A posição supraesternal e a filtragem de sinal ACC entre 20-200Hz demonstrou menor ruido de contaminação. Este método identificou diminuição de frequência e amplitude em doentes com disfonia, 11% de erros linguísticos adicionais após estimulação e diminuição do tempo de latência quando presente o sinal sonoro perturbador. Este trabalho promoveu a utilização de novas técnicas no planeamento pré-cirúrgico do doente com tumor cerebral e alterações da linguagem através do estudo de conectividade estrutural, funcional e registo da linguagem

    Investigation of intraoperative accelerometer data recording for safer and improved target selection for deep brain stimulation

    Get PDF
    Background: Deep Brain Stimulation (DBS) is a well established surgical treatment for Parkinson’s Disease (PD) and Essential Tremor (ET). Electrical leads are surgically implanted in the deeply seated structures in the brain and chronically stimulated. The location of the lead with respect to the anatomy is very important for optimal treatment. Therefore, clinicians carefully plan the surgery, record electrophysiological signals from the region of interest and perform stimulation tests to identify the best location to permanently place the leads. Nevertheless, there are certain aspects of the surgery that can still be improved. Firstly, therapeutic effects of stimulation are estimated by visually evaluating changes in tremor or passively moving patient's limb to evaluate changes in rigidity. These methods are subjective and depend heavily on the experience of the evaluator. Secondly, a significant amount of patient data is collected before and during the surgery like various CT and MR images, surgical planning information, electrophysiological recordings and results of stimulation tests. These are not fully utilized at the time of choosing the position for lead placement as they are either not available or acquired on separate systems or in the form of paper notes only. Thirdly, studies have shown that the current target structures to implant the leads (Subthalamic Nucleus (STN) for PD and Ventral Intermediate Nucleus (VIM) for ET) may not be the only ones responsible for the therapeutic effects. The objective of this doctoral work is to develop new methods that help clinicians subdue the above limitations which could in the long term improve the DBS therapy. Method: After a thorough review of the existing literature, specifically customized solutions were designed for the shortcomings described above. A new method to quantitatively evaluate tremor during DBS surgery using acceleration sensor was developed. The method was then adapted to measure acceleration of passive movements and to evaluate changes in rigidity through it. Data from 30 DBS surgeries was collected by applying these methods in two clinical studies: one in Centre Hospitalier Universitaire, Clermont-Ferrand, France and another multi-center study in Universitäspital Basel and Inselspital Bern in Switzerland. To study the role of different anatomical structures in the therapeutic and adverse effects of stimulation, the data collected during the study was analysed using two methods. The first classical approach was to classify the data based on the anatomical structure in which the stimulating contact of the electrode was located. The second advanced approach was to use patient-specific Finite Element Method (FEM) simulations of the Electric Field (EF) to estimate the spatial distribution of stimulation in the structures surrounding the electrode. Such simulations of the adverse effect inducing stimulation current amplitudes are used to visualize the boundaries of safe stimulation and identify structures that could be responsible for these effects. In addition, the patient-specific simulations are also used to develop a new method called "Improvement Maps" to generate 2D and 3D visualization of intraoperative stimulation test results with the patient images and surgical planning. This visualization summarized the stimulation test results by dividing the explored area into multiple regions based on the improvement in symptoms as measured by the accelerometric methods. Results: The accelerometric method successfully measured changes in tremor and rigidity. Standard deviation, signal energy and spectral amplitude of dominant frequency correlated with changes in the symptoms. Symptom suppressing stimulation current amplitudes identified through quantitative methods were lower than those identified through the subjective methods. Comparison of anatomical targets using the accelerometric data showed that to suppress rigidity in PD patients, stimulation current needed was marginally higher for Fields of Forel (FF) and Zona Incerta (ZI) compared to STN. On the other hand, the adverse effect occurrence rate was significantly lower in ZI and FF, indicating them to be better targets compared to STN. Similarly, for ET patients, other thalamic nuclei like the Intermediolateral (InL) and Ventro-Oral (VO) as well as the Pre-Lemniscal Radiations (PLR) are as efficient in suppressing tremor as the VIM but have lower occurrence of adverse effects. Volumetric analysis of spatial distribution of stimulation agreed with these results suggesting that the structures other than the VIM could also play a role in therapeutic effects of stimulation. The visualization of the adverse effect simulations clearly show the structures which could be responsible for such effects e.g. stimulation in the internal capsula induced pyramidal effects. These findings concur with the published literature. With regard to the improvement maps, the clinicians found them intuitive and easy to use to identify the optimal position for lead placement. If the maps were available during the surgery, the clinicians' choice of lead placement would have been different. Conclusion: This doctoral work has shown that modern techniques like quantitative symptom evaluation and electric field simulations can suppress the existing drawbacks of the DBS surgery. Furthermore, these methods along with 3D visualization of data can simplify tasks for clinicians of optimizing lead placement. Better placement of the DBS lead can potentially reduce adverse effects and increase battery life of implanted pulse generator, resulting in better therapy for patients

    Personalized computational models of deep brain stimulation

    Get PDF
    University of Minnesota Ph.D. dissertation. December 2016. Major: Biomedical Engineering. Advisor: Matthew Johnson. 1 computer file (PDF); xii, 138 pages.Deep brain stimulation (DBS) therapy is used for managing symptoms associated with a growing number of neurological disorders. One of the primary challenges with delivering this therapy, however, continues to be accurate neurosurgical targeting of the DBS lead electrodes and post-operative programming of the stimulation settings. Two approaches for addressing targeting have been advanced in recent years. These include novel DBS lead designs with more electrodes and computational models that can predict cellular modulation during DBS. Here, we developed a personalized computational modeling framework to (1) thoroughly investigate the electrode design parameter space for current and future DBS array designs, (2) generate and evaluate machine learning feature sets for semi-automated programming of DBS arrays, (3) study the influence of model parameters in predicting behavioral and electrophysiological outcomes of DBS in a preclinical animal model of Parkinson’s disease, and (4) evaluate feasibility of a novel endovascular targeting approach to delivering DBS therapy in humans. These studies show how independent current controlled stimulation with advanced machine learning algorithms can negate the need for highly dense electrode arrays to shift, steer, and sculpt regions of modulation within the brain. Additionally, these studies show that while advanced and personalized computational models of DBS can predict many of the behavioral and electrophysiological outcomes of DBS, there are remaining inconsistencies that suggest there are additional physiological mechanisms of DBS that are not yet well understood. Finally, the results show how computational models can be beneficial for prospective development of novel approaches to neuromodulation prior to large-scale preclinical and clinical studies
    • …
    corecore