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“Remember that all models are wrong; the practical question is how wrong do they have 

to be to not be useful.”  

- George E. P. Box 
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Abstract 

Deep brain stimulation (DBS) therapy is used for managing symptoms associated with a 

growing number of neurological disorders. One of the primary challenges with delivering 

this therapy, however, continues to be accurate neurosurgical targeting of the DBS lead 

electrodes and post-operative programming of the stimulation settings. Two approaches 

for addressing targeting have been advanced in recent years. These include novel DBS 

lead designs with more electrodes and computational models that can predict cellular 

modulation during DBS. Here, we developed a personalized computational modeling 

framework to (1) thoroughly investigate the electrode design parameter space for current 

and future DBS array designs, (2) generate and evaluate machine learning feature sets for 

semi-automated programming of DBS arrays, (3) study the influence of model 

parameters in predicting behavioral and electrophysiological outcomes of DBS in a 

preclinical animal model of Parkinson’s disease, and (4) evaluate feasibility of a novel 

endovascular targeting approach to delivering DBS therapy in humans. These studies 

show how independent current controlled stimulation with advanced machine learning 

algorithms can negate the need for highly dense electrode arrays to shift, steer, and sculpt 

regions of modulation within the brain. Additionally, these studies show that while 

advanced and personalized computational models of DBS can predict many of the 

behavioral and electrophysiological outcomes of DBS, there are remaining 

inconsistencies that suggest there are additional physiological mechanisms of DBS that 

are not yet well understood. Finally, the results show how computational models can be 

beneficial for prospective development of novel approaches to neuromodulation prior to 

large-scale preclinical and clinical studies.      
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1. Introduction 

1.1.Deep brain stimulation 

Deep brain stimulation therapy is used for managing symptoms associated with a 

growing number of neurological and cognitive disorders, particularly in cases where 

medication is ineffective or not well tolerated. In the United States, several brain areas 

have been approved or been granted a humanitarian device exemption (HDE) by the 

Food and Drug Administration (FDA) as targets for DBS therapy to treat the symptoms 

of essential tremor (ET) [1], Parkinson’s disease (PD) [2], dystonia [3], and obsessive-

compulsive disorder (OCD) [4]. To date, over 120,000 DBS leads have been implanted 

and DBS surgery has become common practice for treating subsets of patients suffering 

from these disorders.    

DBS therapy was originally inspired by the practice of lesioning tissue within the globus 

pallidus internus (GPi) or the ventrolateral intermedus (Vim) nucleus of the thalamus for 

treating patients with severe idiopathic PD or ET, respectively [5,6]. While the 

mechanisms of DBS are not yet completely understood, perhaps the most elegant theory 

states that electrical stimulation acts as a reversible and adjustable information-lesion, 

thereby producing a similar therapeutic effect to anatomical lesioning [7,8]. Motivated by 

this hypothesis, a subset of putatively therapeutic DBS targets currently under 

investigation include those already recognized as lesion targets. For example, the anterior 

limb of the internal capsule (ALIC) for treatment resistant OCD [9] and the anterior 

cingulate for treatment resistant depression (TRD) [10]. Other putatively therapeutic DBS 

targets have been identified through studies using electrophysiology to relate stimulation 

of a particular brain region to a particular behavior (e.g. stimulation of the ventromedial 

and lateral hypothalamus for eating disorders [11]) or through serendipitous discovery 

(e.g. stimulation of the fornix for memory disorders [12]). Investigations into the safety 

and efficacy of delivering therapeutic electrical stimulation to numerous brain targets are 

currently underway and include both cortical and deep brain (Table 1) structures. 
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Table 1. Conditions and respective DBS targets: current and investigational. 

Clinical disorder Targeted neural region [13–18] 

Parkinson’s disease STN
a
, GPi

a
, PPN, CM/pf-Th 

Essential tremor Vim-Th
a
, CM/pf-Th 

Dystonia GPi
b
, STN

b
 

Obsessive-compulsive disorder ALIC
b
, NAc, VC/VS, ITP, STN 

Tourette syndrome GPi, CM/pf-Th 

Treatment resistant depression SgCwm, VS, STN, GPi, ITP, NAc, ALIC, LH 

Addiction NAc 

Cluster headache pHyp 

Chronic pain PAG/PVG, VPL/VPM-Th, Vc-Th 

Obesity/anorexia nervosa VMH, latHyp, NAc 

Alzheimer’s disease Fornix 

Epilepsy CM/pf-Th, AN-Th, STN, hippocampus 

Disorder of consciousness LN-Th 

Aggressive behavior Hypothalamus 
a
FDA approved, 

b
Humanitarian device exemption 

ALIC=anterior limb of the internal capsule, AN-Th=anterior nucleus of the thalamus, 

CM/pf-Th=centromedian/parafasicularis nucleus of the thalamus, GPi=globus pallidus 

internus, ITP=inferior thalamic peduncle, latHyp=lateral hypothalamus, LH=lateral 

habenula, LN-Th=lateral nucleus of the thalamus, NAc=nucleus accumbens, 

PAG/PVG=periaqueductal gray/periventricular gray, pHyp=posterior hypothalamus, 

SgCwm=subgenual cingulate white matter, STN=subthalamic nucleus, Vc-Th=ventralis 

caudalis nucleus of the thalamus, VC/VS=ventral capsule/ventral striatum, Vim-

Th=ventrolateral intermedus nucleus of the thalamus, VMH=ventromedial 

hypothalamus, VPL/VPM=ventral posterolateral/ventro-posteromedial nucleus of the 

thalamus, VS=ventral striatum. 

1.2.Challenges associated with DBS 

Deep brain stimulation is a procedure that is considered on an individual basis. The 

process generally begins with referral of a patient to a DBS surgical center by a patient’s 

primary physician who, in the case of PD or ET, may be a neurologist or movement 

disorders specialist. A patient’s primary physician and a neurosurgeon will generally 

work closely with the patient to consider potential costs and benefits of neurosurgical 

implantation of a DBS system. Patient selection criteria for DBS depend on the disorder 

being treated; however, consideration generally includes two key factors: potential 

therapeutic benefit and ability to tolerate surgery.  

1.2.1. Therapeutic benefit and directional steering 
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Assessing the potential therapeutic benefit can be difficult, particularly in the case of 

novel DBS applications. Guidelines for assessing the potential therapeutic benefit have 

been proposed in the literature and continue to evolve as clinicians gain more experience 

using DBS for the treatment of a wide variety of brain disorders [19–22]. In the most 

common use-case for DBS, STN or GPi DBS for Parkinson’s disease, the best predictor 

of therapeutic benefit is considered an excellent initial response to the drug, levodopa 

[23]. Within this subset of potential therapeutic responders, however, DBS efficacy is 

highly dependent on lead trajectory and placement [24]. 

The success of DBS therapy relies heavily on accurate electrode placement within the 

brain [25]. The stereotactic technique is used to deliver a DBS lead along a preplanned 

implantation trajectory to the correct depth. This technique has been advanced over 

several decades by high-precision instruments and improved medical imaging. However 

pre-operative imaging is commonly confounded by intra-operative brain shift [26–28]. 

Accurate lead placement facilitates precise electrical stimulation of the targeted brain 

region and avoidance of brain regions known to induce side-effects. The size of these 

anatomical targets, and their proximity to brain regions known to induce side-effects, 

dictate that leads be placed with millimeter-scale accuracy [29]. Attaining this level of 

accuracy is particularly difficult in the case of DBS because deep brain structures are 

targeted using implant trajectories that originate from the cranial surface. Therefore, 

small deviations from the surgical plan can result in large discrepancies between the 

planned final lead location and the actual lead location. Evidence of suboptimal lead 

placement can be gathered during surgery using intraoperative microelectrode recordings 

(MER) and electrical stimulation. This information can then be used to determine a new 

lead trajectory and allow for correction without additional surgical procedures. Following 

surgery, current steering may be used to compensate for small errors in final lead 

placement by adjusting stimulation parameters.  

Currently, the process of DBS therapy is most commonly delivered using the Medtronic 

DBS system. The DBS leads currently offered by Medtronic consist of a stack of four 1.5 

mm tall cylindrical shell electrodes distributed along a 1.27 mm diameter lead with 
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electrode separation of 1.5 (model 3387) or 0.5 (model 3389). Such leads provide the 

opportunity to select the best electrode for stimulation in a manner that can compensate 

for leads that are placed more deep or shallow than planned [30–33]. In the case of PD, 

the optimal stimulation configuration is selected for a patient through monopolar review, 

whereby a clinician will systematically increase the stimulation amplitude using each 

electrode while assessing therapeutic benefit and side-effects [34]. If no optimal 

stimulation configuration is found using monopolar settings a clinician may explore 

bipolar settings as well. This programming method works well in the case of PD or ET 

where many of the motor signs and side-effects present quickly in response to 

stimulation, on the order of several seconds to minutes. However, the therapeutic effects 

of DBS on dystonia, for example, may take weeks to months to manifest and therefore 

make selection of stimulation parameters much more difficult [35].  

Medical software and computational models made specifically for DBS applications have 

the potential to assist clinicians in both surgical planning and stimulation parameter 

selection. Such software provides the ability to plan surgical trajectories using patient-

specific medical imaging data and to better select stimulation parameters by estimating a 

volume of tissue activated (VTA) using any number of electrodes and stimulation 

amplitudes. While such computational tools are useful for programming conventional 

DBS, they will become necessary for stimulation parameter selection as advancements in 

lead fabrication techniques enable DBS leads with more electrodes and more complex 

stimulation configuration possibilities. Such computational tools will also become 

necessary for selection of stimulation parameters for clinical indications in which DBS 

does not respond quickly to electrical stimulation.    

As of 2016, new DBS lead designs with novel and potentially clinically advantageous 

features have been granted the European CE Mark and one has gained FDA approval for 

sale in US markets. Several of these novel designs include electrodes distributed radially 

around the lead, which allows for directional current steering in two dimensions rather 

than one. For this reason, these deep brain stimulation arrays (DBSA) are anticipated to 

improve patient outcomes by allowing clinicians to better customize stimulation to 
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individual patients and better compensate for suboptimal DBS lead placement. However, 

selection of stimulation parameters using leads with more electrodes will require new 

approaches, as will be shown in the subsequent chapters, leveraging predictive modeling 

to help manage the increased number of stimulation options.  

1.2.2. Surgical tolerance and vascular complications 

In its current form, DBS has proven to be a safe and reliable treatment option for many 

patients; however, complications associated with craniotomy, meningeal damage, micro 

bleeds, ventricular penetration, and risk of severe hemorrhage disqualify many patients 

from surgical candidacy. These risks can be partially mediated by the use of high-

precision instruments and improved medical imaging, but can be confounded by intra-

operative brain shift [26–28], which may lead to unanticipated vascular damage and 

breaching the ventricular wall during MER and lead implantation [36]. Risk factors for 

the occurrence of hemorrhage in DBS surgery have been studied extensively and 

correlated with the use of MER, sulcal incursion, and breaching the ventricular walls 

[37–41]. The reported symptomatic effects of clearly observable vascular events 

following DBS surgery include increased relative risk of post-operative seizure [42], 

permanent neurological deficit [43], post-operative confusion [44], and subsequent 

extended hospital stays [45]. Reports on the symptomatic effects of small bleeds exist, 

but remain difficult to interpret as small bleeds are likely underreported [38] due to a lack 

of blood-sensitive pre- and post-operative imaging [36,46]. 

Patient factors shown to be correlated with increased risk of hemorrhage include 

hypertension [39,47], age [40,48], male gender [49], and vascular malformation [50]. 

These rates have also been shown to vary across target [51,52] and may relate to lead 

trajectory and target proximity to large blood vessels. For example, GPi DBS for PD 

carries a higher risk of hemorrhage than STN DBS [51–54] and this may be related to the 

close proximity of the A1 segment of the anterior cerebral arteries (ACA) to the ventral 

border of GPi. Alternatively, reports of cognitive complications for STN DBS are higher 

in comparison to GPi DBS and are correlated with the use of transventricular lead 

implantation trajectories [44]. 
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Patient factors associated with hemorrhage and comorbidities such as dementia are 

utilized as exclusion criteria during prescreening for DBS surgical eligibility [55–59]. It 

is impossible to know the number of patients excluded from surgery due to risk factors 

associated with stereotactic lead implantation; however, one study showed that 30% of 

patients deemed eligible for STN DBS surgery by prescreening were later excluded, with 

reasons pertaining to neuropsychological disorders (48.3%) cited as the most common 

reason [56]. The same study found that 10% of excluded patients were poorly motivated 

for surgery, while a later survey assessment of patient receptivity to DBS for ET found 

that nearly two-thirds of patients interviewed would not consider undergoing surgery 

[60]. These studies indicate that risk factors, exclusion criteria, and patient reservations 

associated with transcranial lead implantation may leave a large population of 

medication-refractory patients underserved by DBS therapy [61]. The development of 

new and complementary techniques for delivering DBS may help to expand the patient 

population served by DBS. Technologies that are of particular interest include 

endovascular approaches (discussed in chapter 4) that enable electrodes to be implanted 

without penetrating brain tissue and microvasculature [62–64]. 

1.3.Computational modeling of DBS 

Computational models of DBS generate a prediction of cellular activation during 

stimulation, which are represented spatially by defining a volume of tissue activated or by 

activation profile curves that are brain region specific. These models provide a platform 

to study DBS therapy in a manner that complements experimental studies. In the past two 

decades computational models have been used in studies to explore mechanisms of DBS 

[8,65], to guide surgical planning and patient programing [66–69], and to evaluate novel 

DBS lead designs [70–72]. Advancements in model complexity and available 

computational power have improved the usefulness of these models by enabling the 

creation of individualized or ‘personalized’ models of DBS. These personalized models 

rely on medical imaging data to reflect subtle aspects of neural anatomy and generate 

model solutions that are specific to individual patients. Using anatomical medical 

imaging data, models of DBS span the macro and micro scale by combining a patient-
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specific volume conductor model of the brain with multi-compartment cell models 

populated throughout brain regions that are segmented and reconstructed. 

1.3.1. Volume conductor models of the brain 

Volume conductor models of the brain incorporate electrical properties of tissue and 

provide the means to solve for time and spatially dependent electric potential in the brain 

during stimulation. These models rely on the governing equations of electromagnetic 

phenomena, Maxwell’s equations. Stimulation waveforms used in DBS have a spectrum 

with minimal power above 10 kHz allowing for the use of a simplified set of equations 

known as the quasistatic formulation [73]:  

Law of conservation of charge:  ∇ ∙ 𝐽 = 0     (1) 

Gauss’ law:     ∇ ∙ 𝐸 =
𝜌

𝜀
     (2) 

Ohm’s law:     𝐽 = 𝜎𝐸      (3) 

Electric field by definition:  𝐸 = −∇Φ     (4) 

where J is the current density,  E is the electric field, Φ is the scalar electric potential, σ is 

the conductivity, ρ is the charge density, ɛ is the permittivity. From the quasistatic 

formulation, assuming an infinite and homogenous medium, the domain equation for 

simple point source volume conductor models can be derived and used to calculate 

electric potential in tissue during stimulation. 

For a monopolar source:   Φ =
𝐼

4𝜋𝜎𝑟
     (5) 

For a bipolar source:    Φ =
𝐼

4𝜋𝜎
(

1

𝑟1
−

1

𝑟2
)    (6) 

where r is the distance between the point source and the point where electric potential is 

measured. For bipolar sources, the subscript 1 and 2 represent the anodic and cathodic 

point sources, respectively. These point source models were utilized in early modeling 

studies of DBS [74,75] and under specific conditions, provide valid estimates of electric 
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potential in tissue during microelectrode stimulation [76] and DBS [77]. Point source 

models can be expanded upon to include multiple sources, anisotropic homogenous 

mediums, and semi-infinite inhomogeneous mediums. However, point source models 

cannot be used to compare different lead designs, represent anatomically correct 

brain/head models, or incorporate anatomically correct inhomogeneous and anisotropic 

tissue properties. Modeling of these aspects require the use of numerical techniques such 

as finite element analysis (FEA) or boundary element analysis and rely on discretized 

representations of the brain and DBS lead to solve a more generalized domain equation, 

which can be derived from the quasistatic formulation and used to solve for electric 

potential in tissue during stimulation. Using Eqs. 1, 3, and 4, the domain equation takes 

the following form: 

∇J = ∇ ∙ 𝜎E = ∇ ∙ 𝜎∇Φ = 0    (7) 

and is solved using FEA in the context of applied boundary conditions. Expanding the 

conductivity parameter to incorporate capacitive and dispersive tissue properties results 

in the formulation of the time-harmonic electro-quasistatic equation: 

∇ ∙ [𝜎(𝜔) + 𝑗𝜔𝜀0𝜀𝑟(𝜔)]∇Φ = 0   (8) 

where ω is angular frequency, j is the imaginary unit, ɛ0 is the permittivity of free space 

(8.85 x 10
-12

 F/m), ɛr is relative permittivity. 

1.3.2. Inhomogeneous and anisotropic electrical properties of brain tissue 

Accurate calculation of the voltage in tissue during electrical stimulation is highly 

dependent on accurate representations of the electrical properties of tissue. Early studies 

investigating the electrical properties of tissue demonstrated that conductivity and relative 

permittivity in brain tissue are frequency dependent [78] and vary for different tissues 

within the brain [79,80]. In a series of journal articles published in 1996 by Gabriel et al., 

the authors performed a comprehensive analysis of electrical properties of various 

biological tissues including brain gray matter, brain white matter, cerebrospinal fluid, and 

blood. Gabriel et al. experimentally characterized the electrical properties of these tissues 
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[81], performed a comprehensive meta-analysis of literature on the subject [82], and 

generated a mathematical model from which conductivity and relative permittivity of the 

investigated tissues can be calculated [83]. 

The Gabriel dispersion equation provides the means to generate detailed model of the 

brain that is inhomogeneous and dispersive. However, it does not accurately represent 

anisotropy, which exists in gray matter and is prominent in white matter [84]. Previous 

DBS computational modeling studies have established that subject-specific 

inhomogeneous and anisotropic tissue property maps can significantly impact model 

predictions [85–87] and this effect is primarily attributed to the close proximity of DBS 

target brain structures to highly anisotropic axonal fiber tracts. Several methods have 

been proposed within the literature to model anisotropy, each relying on diffusion tensor 

imaging (DTI). 

DTI is a medical imaging technique based on MRI, which is used to map the diffusion of 

water molecules in tissue. The image contrast is generated by the diffusion of water 

molecules in response to the application of multiple magnetic field gradients. In 2001 

Tuch and colleagues demonstrated a linear relationship between the diffusion of water 

molecules and ion movement in the brain, which allows for the calculation of an 

anisotropic conductivity tensor from DTI [88]. Using this relationship, the matrix of 

conductivity tensor eigenvalues (Λσ) is calculated by scaling the diffusion tensor 

eigenvalues (λ1, λ 2, and λ 3) by a factor s: 

Λ𝜎 = 𝑠 ∗ [
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

]     (9) 

The anisotropic conductivity tensor (σ) is then calculated from its eigendecomposition 

using the matrix of DTI eigenvectors (V): 

𝜎 = 𝑉Λ𝜎𝑉𝑇       (10) 
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In addition to the Tuch method for incorporating anisotropy, several other methods have 

been proposed within the literature, whereby the matrix of conductivity tensor 

eigenvalues is calculated differently. Examples include: (1) constraining the volume of 

each diffusion tensor and imposing a predefined anisotropy ratio [89] and (2) normalizing 

each diffusion tensor eigenvalue by the diffusion tensor volume and scaling the result by 

the isotropic conductance value for the appropriate tissue [90]. Each of these techniques 

generates personalized tissue property maps that are used to create personalized 

computational models that are inhomogeneous, anisotropic, and in the case of the two 

examples provided, allow for the inclusion of dispersion. To calculate the potential in 

tissue during electrical stimulation using these complex tissue property maps, simple 

electrostatic or time-domain FEA stimulations cannot be utilized. Rather, the analysis 

must be performed in the frequency domain following the technique described by Butson 

and McIntyre in 2005 for neurostimulation applications [91], termed the Fourier finite 

element method. 

1.3.3. Waveform modulation using the Fourier finite element method 

The Fourier finite element method (FFEM) allows for computation of a time-dependent 

stimulation waveform throughout the volume conductor model. For models of DBS, the 

FFEM involves first transforming the stimulation pulse into the frequency domain using 

the discrete Fourier transform (DFT). Next, FEA is performed in the frequency domain 

for stimulation at each of frequency bins contained within the DFT solution. To capture 

the dispersive effects in tissue, tissue properties may be assigned for each FEA frequency 

using the appropriate frequency-dependent values from the Gabriel dispersion equation. 

Next, at any coordinate within the finite element model, the complex voltage from the 

FEA solution is used to scale and shift the DFT result. Finally, the inverse DFT (iDFT) of 

the scaled and shifted spectrum is used to generate a time-dependent stimulation 

waveform that has been sculpted by the resistive, capacitive, and dispersive aspects of the 

tissue map.  

Using the FFEM in combination with personalized volume conductor models of the brain 

provides the ability to model small changes in the time-dependent stimulation waveforms 
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delivered using DBS. Ultimately, however, the effects of DBS are dependent on cellular 

responses to stimulation. Therefore, multi-compartment cell models are paired with 

volume conductor models to generate spatial activation profiles and activation profile 

curves. 

1.3.4. Modeling cellular activation 

Volume conductor models provide the means to estimate potential in brain tissue during 

stimulation; however, the ultimate goal is to understand the impact of electrical 

stimulation on neurons. Simple equivalent circuit models of axons are used for this 

purpose. For example, a length of axon membrane, or node, may be modeled using a 

capacitance (Cm) to represent the resting cell membrane, placed in parallel with a battery, 

representing the resting potential of the cell, and a resistance (Rm), representing the 

resistance of the membrane ion channels connected in series. A fiber can then be created 

by linking multiple nodes together using an axial resistance that represents the axon 

internal resistance. Simulating the response of this circuit to an applied electric field can 

be performed using circuit modeling software such as Simulink or the Neuron 

programming environment [92]. The cellular response to stimulation, firing of an action 

potential or not, is dependent on the transmembrane potential (Vm), which is the 

difference between the intracellular and extracellular (Ve) voltage minus the resting 

potential. An action potential occurs when the difference of the extracellular voltage 

across two nodes is large enough to cause a transmembrane potential that exceeds the 

threshold potential of the cell, which opens voltage gated sodium channels. Relying on 

these principles and using Kirchoff’s law, one can formulate the nonlinear cable equation 

for unmyelinated axons [73,93]: 

𝜆2 𝜕2𝑉𝑚

𝜕𝑥2 + 𝜏𝑚
𝜕𝑉𝑚

𝜕𝑡
− 𝑉𝑚 = −𝜆2 𝜕2𝑉𝑒

𝜕𝑥2      (11) 

where λ is the space constant: 

𝜆 =
1

2
√

𝑅𝑠𝑚𝑑

𝑅𝑎
      (12) 
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where Rsm is the specific membrane resistance, Ra is the axoplasmic-specific resistance, 

and d is the axon diameter. The axon time constant, τm, is given by:  

𝜏𝑚 = 𝑅𝑚𝐶𝑚      (13) 

Further, one can model the effect of an applied electric field on a myelinated axon using 

the discrete cable equation for myelinated axons [94,95]: 

𝑅𝑛

𝑅𝑎
Δ2𝑉𝑚 − 𝑅𝑛𝐶𝑛

𝜕𝑉𝑚

𝜕𝑡
− 𝑉𝑚 = −

𝑅𝑛

𝑅𝑑
Δ2𝑉𝑒    (14) 

where Rn is the membrane resistance at the node of Ranvier, Ra is the resistance between 

adjacent nodes, Cn and is the capacitance at the node of Ranvier: 

𝑅𝑛 =
𝑅𝑠𝑛

𝜋𝑑𝑙
      (15) 

𝑅𝑎 =
4𝑅𝑠𝑎𝐿

𝜋𝑑2       (16) 

𝐶𝑛 = 𝐶𝑠𝑛𝜋𝑑𝑙     (17) 

where d is the unmyelinated fiber diameter, l is the node of Ranvier length, L is the 

distance between nodes, and the subscript s indicates specific resistance or capacitance of 

the membrane at the nodes. This set of equations differs from the unmyelinated cable 

equation in that is takes into account the presence of the myelin sheath, which causes 

action potential propagation to occur through salutatory conduction. For axon models 

within the central nervous system, such as those presented within this thesis, the anatomy 

generally mandates the use of the cable equation for myelinated axons.   

Modeling of cellular activity that was performed in the following sections of this thesis 

utilized populations of individual multi-compartment axon models are used to predict 

cellular activation. These models are based on the McIntyre et al. double-cable model of 

a generalized mammalian nerve fiber [96], which represents the axon as a repeating series 

of compartments representing different aspects of a myelinated axon, with a single 

compartment representing each node of Ranvier. Simulating the response of the double-
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cable model of a generalized mammalian nerve fiber is performed using Neuron 

programming environment [92] by applying an extracellular voltage to each compartment 

that is consistent with the voltage calculated from FEA volume conductor model solution 

during DBS. Quantifying the cellular responses from a population of model axons was 

performed by varying the stimulation amplitude in order to determine the minimum 

amplitude that results in the occurrence of an action potential for each model neuron 

within the population. Using the stimulation threshold for each axon, axons which are 

activated by stimulation at specific amplitudes are grouped to define a spatial activation 

profile or an activation profile curve. 

1.4.Objectives and research goals 

Despite high interest in personalized models of deep brain stimulation that combine 

highly complex volume conductor models with multi-compartment cell models, these 

models are underutilized for assessment of novel electrode technologies. Additionally, 

while these models provide the means to estimate cellular responses to electrical 

stimulation with a high degree of precision, the accuracy of these estimates are dependent 

on assumptions regarding tissue electric properties and the placement and biophysics of 

cellular models. The following chapters of this thesis describe computational modeling 

efforts to evaluate novel DBS electrode designs in the context of relevant anatomical 

models and seek to address the issue of model validation using behavioral and 

electrophysiological measures.  

Chapter 2 describes the development of a computational model to evaluate the utility of 

DBS arrays with increasing numbers of electrodes distributed around a DBS lead.  This 

study compared the ability of various lead designs to steer current using quantified 

measures. This study then evaluated the accuracy of several machine learning feature sets 

for predicting the optimal stimulation configuration using a four radial electrode deep 

brain stimulation array. Chapter 3 describes the development of a personalized 

computational model of deep brain stimulation using a preclinical animal model for 

computational model validation. In this study, model predictions using a range of 

personalized tissue property maps were evaluated using experimental data, which 
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included behavioral responses and electrophysiological recordings from motor cortex. 

Chapter 4 describes the development of a personalized model of endovascular DBS. This 

study used a personalized model to map out the neurovasculature of a single-subject and 

compare the effects of endovascular DBS to conventional DBS using two investigational 

brain targets.  
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2. DBS array design and machine learning feature sets 

This chapter reprinted with permission from Frontiers in Computational Neuroscience. 

 

Teplitzky BA, Zitella LM, Xiao Y and Johnson MD (2016) Model-Based 

Comparison of Deep Brain Stimulation Array Functionality with Varying Number of 

Radial Electrodes and Machine Learning Feature Sets. Front. Comput. Neurosci. 

10:58. doi: 10.3389/fncom.2016.00058 

2.1.Overview 

2.1.1. Objective 

Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to 

improve clinical outcomes through more selective targeting of pathways and networks 

within the brain. However, increasing the number of electrodes on clinical DBS leads by 

replacing conventional cylindrical shell electrodes with radially distributed electrodes 

raises practical design and stimulation programming challenges.  

2.1.2. Approach 

Computational modeling was used to investigate: (1) how the number of radial electrodes 

impact the ability to steer, shift, and sculpt a region of neural activation (RoA), and (2) 

which RoA features are best used in combination with machine learning classifiers to 

predict programming settings to target a particular area near the lead. Stimulation 

configurations were modeled using 27 lead designs with one to nine radially distributed 

electrodes. The computational modeling framework consisted of a three-dimensional 

finite element tissue conductance model in combination with a multi-compartment 

biophysical axon model. For each lead design, two-dimensional threshold-dependent 

RoAs were calculated from the computational modeling results. 

2.1.3. Main results 

The models showed more radial electrodes enabled finer resolution RoA steering; 

however, stimulation amplitude, and therefore spatial extent of the RoA, was limited by 

charge injection and charge storage capacity constraints due to the small electrode surface 

area for leads with more than four radially distributed electrodes. RoA shifting resolution 

was improved by the addition of radial electrodes when using uniform multi-cathode 
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stimulation, but non-uniform multi-cathode stimulation produced equivalent or better 

resolution shifting without increasing the number of radial electrodes. Robust machine 

learning classification of 15 monopolar stimulation configurations was achieved using as 

few as three geometric features describing a RoA. 

2.1.4. Significance 

The results of this study indicate that, for a clinical-scale DBS lead, more than four radial 

electrodes minimally improved in the ability to steer, shift, and sculpt axonal activation 

around a DBS lead and a simple feature set consisting of the RoA center of mass and 

orientation enabled robust machine learning classification. These results provide 

important design constraints for future development of high-density DBS arrays. 

2.2. Background 

Deep brain stimulation is a neurosurgical intervention for symptomatic treatment of a 

number of brain disorders. The success of DBS therapy relies on accurate electrode 

placement within the brain [25] and generation of spatially defined tissue voltage 

distributions that can precisely modulate brain activity with millimeter, or even sub-

millimeter resolution [29]. The size of the anatomical targets, and their proximity to 

neural pathways that when stimulated generate unwanted side-effects, making selective 

modulation challenging for this therapy. Commercial DBS leads currently consist of a 

stack of cylindrical shell electrodes that can accommodate current steering along the lead 

axis [30–33]. Such current steering can be useful for enhancing the ability to target the 

subthalamic nucleus [67,85,97], globus pallidus [98,99], and motor thalamus [85,97,100]. 

However, the cylindrical electrode design of current DBS leads produces predominantly 

axisymmetric modulation of neuronal activity [100]. This axisymmetric modulation 

enables inadequate flexibility to adapt stimulation to compensate for neurosurgical 

targeting errors tangential to the DBS lead [100,101] or for targeting anatomical regions 

with complex geometries [87,102]. In such cases, delivering therapy without evoking side 

effects such as phantom sensory perceptions, involuntary motor contractions, and 

cognitive/mood changes can be challenging [31,67,100]. 
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The concept of current steering with implantable electrode arrays has existed in the fields 

of spinal cord stimulation [103,104], intracochlear stimulation [105,106], and retinal 

stimulation [107,108] for some time. Recent computational and experimental work has 

also applied this concept to preclinical and clinical DBS electrode arrays, which employ 

three to four radially distributed electrodes per row and several rows per lead [101,109–

113]. Such DBS arrays have potential to improve steering, shifting, and sculpting of 

neural activation beyond the capacity of conventional DBS leads with cylindrical shell 

electrodes. However, it is presently not clear how the number of radial DBSA electrodes 

impact the ability to steer, shift, and sculpt a region of neural activation. 

In addition to the challenges associated with understanding current steering with DBS 

arrays, leads with more than the conventional four electrodes have the potential to create 

significant patient programming challenges. Currently, clinicians select programing 

settings for a patient using trial-and-error through a monopolar review. A clinician will 

systematically stimulate through each of the available electrodes using increasing 

stimulation amplitudes, evaluate the patient's symptoms and the presence of side effects, 

and select the optimal stimulation configuration for the patient [34]. With only four 

electrodes this can be a time consuming and imprecise task. Increasing the number of 

electrodes has the potential to greatly complicate this problem, making programming 

impractical or even infeasible in a clinical setting. To address this issue, model based 

optimization algorithms [114] and machine learning classifiers [115] have been proposed. 

In general, the goal of these algorithms is to use medical imaging to determine the 

location of an implanted DBS lead relative to the targeted brain region and using this 

information, predict potentially therapeutic stimulation settings in order to guide the 

clinician in programming the implanted DBS system. Implementation of such techniques; 

however, relies heavily on the identification of robust quantifiable measures, or features, 

that describe the desired region or volume of activation. Currently, it remains unclear 

which RoA features are best used in combination with machine learning classifiers to 

predict programming settings to target a particular area near a DBSA. 
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In the first section of this manuscript we used computational modeling to explore DBSA 

lead design and current steering strategies. In particular, we calculated the maximum 

stimulation amplitude for various DBSA designs in the context of charge injection and 

charge storage capacity limits. We then investigated the size, shape, and location of a 

region of neural activation resulting from stimulation using a variety of electrode 

configurations within these limits. In the second section of this manuscript, we evaluate 

various machine learning feature sets for predicting stimulation settings to target a 

particular region near the DBS lead.  

2.3.Methods 

2.3.1.  Radially segmented DBS arrays 

Twenty-four deep brain stimulation array and three non-array leads were created in 

COMSOL Multiphysics v4.4. DBSA leads included two to nine electrodes per row. Each 

DBSA electrode was constructed by projecting an ellipse onto the cylindrical lead body 

and extruding the resulting surface 0.1 mm into the lead body. The width of the projected 

ellipse (Figure 1) was calculated using the equation of a chord whose endpoints lie on a 

circle with a diameter equal to the lead body diameter, 1.27 mm (Equations 18, 19). 

𝛩 =
360

𝑛
     (18) 

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑤𝑖𝑑𝑡ℎ = 𝑑 ∗ sin (
𝛩

2
)    (19) 

where Θ was the center-to-center electrode separation, d was the lead body diameter, and 

n was the number of radial electrodes in a row. Non-array leads included conventional 

cylindrical shell electrodes. Both array and non-array electrodes were constructed with 

three heights: 0.5, 1.0, and 1.5 mm. Each DBS lead included four rows of electrodes and 

the separation between rows was equal to electrode height. Each lead diameter was 1.27 

mm in accordance with the diameter of the clinical Medtronic 3387 and 3389 DBS leads 

(Medtronic Inc., Minneapolis, MN). To simplify reference to each DBS lead design, the 

following naming convention was implemented: DBSA–e[number of radial electrodes]–

h[electrode height]. For example, DBSA–e4–h1.5 would refer to the DBSA lead with 4 

radial electrodes per row, each with a height of 1.5 mm. 
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Figure 1. DBSA lead design. DBSA leads were designed with two to nine electrodes per 

row. DBSA electrode width and radial separation were calculated for each lead design 

using Equations (18, 19). The DBSA–e3–h1.5 lead design is shown. Electrode height was 

1.5 (shown), 1.0, or 0.5 mm. Tissue conductance models 

Simulations were conducted using only the bottom row of electrodes for each lead. A 

three-dimensional tissue conductance model was created for each stimulation 

configuration using Comsol Multiphysics v4.4 and solved for using the finite element 

method (FEM; Figure 2A). Each tissue model incorporated a lead body (σ = 1e−12 S/m), 

electrodes (σ = 1e6 S/m), a 0.25 mm thick encapsulation layer (σ = 0.18 S/m [116,117]), 

and a 20 cm diameter sphere representing bulk neural tissue (σ = 0.3 S/m [79,80]). Point 

current-sources were placed at the three-dimensional center of each electrode. The 

surface of the bulk neural tissue sphere was set to ground, i.e., zero volts, via Dirichlet 

boundary conditions. A variable resolution mesh containing quadratic tetrahedral 

elements ranging from 0.2 mm near the electrode to 10 mm near the model perimeter was 

generated via Delaunay triangulation. The resulting mesh contained 280,000–310,000 

elements depending on the lead design. To confirm that further mesh refinement was not 

advantageous, the average relative change in the calculated potentials were determined at 

the midpoint of each axon model compartment using a mesh with elements that were two 

and three times smaller than the previously described model. The average relative change 

in the calculated potentials was found to be < 1% for these more refined models.  



 

21 

 

Figure 2. Modeling axonal activation. Tissue voltage during stimulation was modeled for 

each stimulation configuration using the finite element method (A). The multi-

compartment axon model population superimposed with extracellular potentials derived 

from the tissue voltage predictions (B). A spatial axonal activation profile, or region of 

activation (RoA) plot resulting from stimulation at 2.5 mA (C). RoA quantification using 

regional properties calculated from a closed binary image of the RoA plot (D). 

To investigate impact of the changes to the electrode-tissue interface (ETI) resulting from 

novel electrode geometries, a three-element Randles equivalent circuit model of the ETI 

was constructed for the lead with the smallest and largest electrode surface areas. In these 

models, the Fourier FEM described by Butson and McIntyre [91] was implemented so 

that capacitive effects of the ETI could be captured. Briefly, the Fourier FEM was carried 

out by creating a waveform with a 90 μs cathodic pulse in the time domain (dt = 1 μs), 

performing the 1024 point discrete Fourier transform (DFT), solving the finite element 

model (εr=1×10
6
 [83]) at each of the 513 frequencies represented within the DFT (0–512 

kHz), scaling and phase shifting the finite element model results by the DFT magnitude 

and phase, and finally performing the 1024 point inverse DFT on the result to reconstruct 

the stimulation waveform in the time domain. The equivalent circuit model was 

represented at the electrode surface within the frequency dependent finite element model 

as a circuit terminal using the Comsol Multiphysics AC/DC module. In accordance with 

previous work [118], the equivalent circuit model included an access resistance, Ra, in 

series with a parallel RC pair consisting of a faradaic resistance, Rf, and double layer 

capacitance, Cdl. Ra was calculated using the finite element model solution for 1 volt 

applied at the electrode surface from which the effective applied current was calculated 

by integrating the normal current density across the electrode surface and taking the 

reciprocal. Rf and Cdl were calculated from the distributed faradaic resistance (150 Ω-
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cm
2
 [119]) and the distributed double layer capacitance (30 μF/cm

2
 [119]) using the 

electrode surface area. Inclusion of the ETI was confirmed to have no discernable impact 

on the stimulation results, and thus the ETI equivalent circuit model was excluded from 

subsequent simulations. 

2.3.3. Stimulation configurations 

Current-regulated stimulation was modeled using one or multiple independent sources. 

Variations on stimulation configuration were constrained to monopolar settings and 

included single-cathode stimulation, uniform multi-cathode stimulation, and non-uniform 

multi-cathode stimulation. Uniform multi-cathode stimulation involved uniformly 

splitting the total cathodic current across all designated cathodes. Non-uniform multi-

cathode stimulation involved assigning different proportions of total cathodic current to a 

single, primary cathode, and evenly distributing the remaining cathodic current across the 

remaining electrodes in a given row. Simulations of 15 monopolar single-cathode and 

uniform multi-cathode stimulation configurations using only the DBSA–e4–h1.5 lead 

were used for machine learning feature set analysis. 

2.3.4.  Multi-compartment axon models 

Three-dimensional multi-compartment myelinated axon models were distributed within a 

lead-centered 13-by-13 mm grid. Axons were separated by 0.25 mm and aligned parallel 

to the DBS lead. While the axon model orientations were generated in an artificial 

framework, the orientations were generally similar to fiber tracts (e.g., corticospinal tract 

of internal capsule) [115] that course approximately parallel to clinical DBS lead targets 

(e.g., subthalamic nucleus DBS) and that are hypothesized to elicit side effects when 

stimulated [120]. Fibers were modeled with a 2 μm diameter [121] and populated with 

compartments representing nodes of Ranvier, myelin attachment segments, paranode 

main segments, and internode segments connected through an axial resistance. Axon 

compartment properties were consistent with the multi-compartment cable model axon 

developed and described in detail by McIntyre et al. [122]. 
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Rather than incorporating tissue conductance using the computationally expensive 

Fourier FEM method, the quasistatic solution at each axon compartment was scaled by a 

time-varying experimentally-recorded 135 Hz charge-balanced current-regulated 

stimulation waveform [123] (Equation 20).  

Φ(𝑥, 𝑦, 𝑧, 𝑡) = Φ(𝑥, 𝑦, 𝑧) ∗ 𝑤(𝑡)     (20) 

Extracellular potential, represented by Φ for a given model axon compartment was scaled 

by the time varying 135 Hz waveform, w(t). The charge-balanced waveform consisted of 

a 90 μs pulse followed by a 400 μs interphase delay and a 3 ms pulse with opposite 

polarity. The waveform-scaled extracellular potential was dynamically incorporated into 

the model axon compartments (Figure 2B) using the Neuron programming environment 

v7.3 [124]. Within the Neuron programming environment, the axonal membranes were 

perturbed by driving membrane current using the extracellular mechanism 

(e_extracellular), with parameters consistent with previous work [102].  

2.3.5.  Calculating neural activation thresholds and regions of activation  

The total applied cathodic current threshold for inducing axonal spiking was calculated 

for each model axon within each tissue voltage model using a binary threshold-searching 

algorithm. The algorithm relied upon trial-and-error within a narrowing range of 

stimulation amplitudes that was considered to have converged once the range of 

stimulation amplitudes was reduced to 0.01 mA. Axons were considered “activated” if an 

action potential was recorded within 3 ms of stimulation following 8 out of 10 

stimulation pulses at the distal node of Ranvier. For each stimulation configuration, two-

dimensional spatial activation plots, referred to as region of activation (RoA) plots, were 

generated by plotting the cross-section of the axon population with activation-thresholds 

less than or equal to a specified stimulation amplitude (Figure 2C). Where charge storage 

capacity and charge injection limits were considered, the maximum safe stimulation 

amplitude was calculated using Equations 21 and 22, respectively. The reversible charge 

storage capacity, 150 μC/cm
2
, represented the upper limit of reported values [125,126] 

for platinum-iridium electrodes like those generally used in DBS for cathodic-pulse 
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leading charge balanced waveforms. The charge injection limit was characterized by a 

safety factor, k = 2.0, was derived from the charge per phase verses charge density per 

phase relationship [125,127] as a limit for safe charge delivery to neural tissue.  

𝐼𝐶𝑆𝐶 =  
𝐶𝑆𝐶 × 𝐴

𝑝𝑤
      (21) 

𝐼𝑆𝐹 =  
√𝐴 × 10𝑘

𝑝𝑤
     (22) 

With stimulation amplitude in amperes, I; charge storage capacity in μC/cm
2
, CSC; 

surface area of a single electrode in cm
2
, A; and cathodic pulse-width, pw.  

2.3.6.  RoA quantification 

Binary image analysis techniques were used to extract quantifiable metrics from each 

RoA at amplitudes ranging from 1 to 5 mA in 0.1 mA increments resulting in 41 RoAs 

per stimulation configuration. These techniques were used for quantification rather than 

precise measurement of the spatial activation profile to ensure that the process could be 

replicated in the context of post-operative medical imaging for the purpose of patient 

programing. Post-processing began with saving RoA plots spanning the 13-by-13 mm 

axon-space within 20-by-20 cm lead-centered images. A binary transform of each image 

was performed and morphologically closed using disk-shaped elements in order to 

preserve the ellipsoidal nature of the region. Regional properties including area, 

perimeter, center-of-mass (CoM), major axis length, and minor axis length were extracted 

from each of the closed images (Figure 2). 

From these regional properties, several metrics were calculated to compare lead designs. 

These included lateral shift, angular shift, aspect ratio, target region coverage, and target 

region overspill. Lateral shift was calculated as distance from the lead-center to the RoA 

CoM in the direction of the primary cathode (usually along the x-axis). Angular shift, in 

the context of single-cathode stimulation through two neighboring electrodes, was 

calculated as the angle, in degrees, between vectors running from the lead-center to each 

RoA CoM. Aspect ratio was calculated as the RoA minor axis length divided by the RoA 
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major axis length. Target region coverage and overspill were calculated for a set of 

experiments where a target region was placed between neighboring electrodes. These 

experiments were run using only the DBSA–e4–h1.5, which has electrodes separated by 

90°. The target region, therefore, was generated from the same lead but was rotated 45° 

about the lead-center. Overlap between the target region and the activated region was 

calculated by first multiplying the binary image transforms of the two regions and then 

calculating the percent of the target region area covered by the overlapped region. 

Overspill was estimated by multiplying the binary image transforms of the activated 

region and the inverse of the target region, and then calculating the resulting area in 

mm2. Overlap and overspill were calculated for stimulation amplitudes ranging from 1 to 

5 mA at 0.1 mA increments using three monopolar configurations. All processing and 

calculations of regional properties were performed using the Matlab Image Processing 

Toolbox (v2014b). 

2.3.7.  Feature sets 

Feature sets (Table 2) were derived from simulations of 15 monopolar stimulation 

configurations using the DBSA–e4–h1.5 lead (Figure 3). Because RoA measures were 

conducted at 41 amplitudes (1 to 5 mA in 0.1 mA increments) using 15 stimulation 

configurations, feature sets for 41 × 15 = 615 RoAs were generated. Post-processing of 

RoA plots was performed using the same binary image analysis techniques as described 

in Section 2.3.6. From the post-processed binary images, three feature sets were 

generated: a region properties feature set (RPFS), a Legendre polynomial feature set 

(LPFS) [128], and a 7 Hu invariant moments feature set (7 HuIM) [129]. The RPFS 

included the common region properties; center or mass, area, perimeter, convex hull area, 

solidity as well as features derived from an ellipse fit to the RoA; eccentricity, 

orientation, major axis length, and minor axis length. The LPFS was generated using the 

distance transform of each RoA binary image. The distance transform results were sorted 

in ascending order, normalized to the largest value, and fit to a 9th order Legendre 

polynomial. The features consisted of the coefficients of this 9th order Legendre 

polynomial. The majority of features that were investigated originate from computer 

vision applications where desirable traits include invariance to scale, rotation, and 
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translation [130]. We hypothesized that the ideal feature set for prediction of stimulation 

configuration would (1) be rotation and translation variant since RoA direction underlies 

current steering, and (2) scale invariant with regard to stimulation amplitude but not with 

regard to RoA offset. To achieve this, distance of the RoA CoM from lead-center in the x 

and y directions were included in each feature set. 

Table 2. Features extracted from simulations using the DBSA-e4-h1.5 lead.

Number Feature 

1 Center of mass x-coordinate  

2 Center of mass y-coordinate  

3 Eccentricity of ellipse fit 

4 Orientation of ellipse fit 

5 Major axis length of ellipse fit 

6 Minor axis length of ellipse fit 

7 Area  

8 Perimeter  

9 Convex hull area  

10 Solidity 

11-20 Legendre polynomial coefficients from distance transform [128] 

20-27 7 Hu invariant moments [129] 

Twenty-seven features were extracted from each RoA. The region properties feature set 

(RPFS) included features 1 through 10. The Legrendre polynomial feature set (LPFS) 

included features 1, 2, and 11 through 20. The 7-Hu invariant moments feature set 

(7HuIM) included features 1, 2, and 20 through 27. 
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Figure 3. Machine learning feature set generation. Machine learning features were 

extracted from simulation results spanning 15 monopolar stimulation configurations at 

simulation amplitudes ranging from 1 to 5 mA in 0.1 mA increments. 

2.3.8. Classification and feature set quality assessment 

Each of the 615 samples in the proposed classification problem included all features 

(Table 2) from a single RoA. The goal of the classification problem was to classify each 

sample, using a subset of features i.e., one of the three feature sets, as originating from 

the correct stimulation configuration, of which there were 15. The quality of each feature 

set was assessed using 10-fold cross validation of five classification models: k-nearest 

neighbor (KNN), naïve Bayes (NB), a multi-class support vector machine (mSVM) with 

a radial-basis function kernel [131], a two-layer feed-forward pattern recognition neural 

network (NN) with 20 hidden elements, and a random forest (RF) decision tree ensemble 

with 100 trees [132]. All models except the mSVM were implemented using the Matlab 

Statistics Toolbox (v2014b). Training and testing data sets were pseudo-randomly 

divided within each cross validation fold such that each class was represented 

approximately equally and no samples were used for both training and testing. 

Classification accuracy was calculated for each fold as the number of correctly classified 

samples divided by the number of classified samples. The mean accuracy and standard 

error of the accuracy were then calculated across all 10 folds. 

Feature importance was assessed using sequential forward selection and Breiman's 

random forest algorithm. Sequential forward selection was performed using the neural 

network and naïve Bayes classifiers. In each case, starting with an empty feature set, the 

classifier was run using each of the 27 features and the feature with the highest accuracy 

was considered the most important and added to the feature set. Classification was then 

performed using each of the remaining 26 features in combination with the first elected 

feature, and again the feature with the highest accuracy was considered the most 

important and added to the feature set. This process was repeated until the feature set 

contained 10 of the 27 features. From the random forest classifier, feature importance 

was assessed by calculating the increase in prediction error that resulted from random 
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permutation of each feature across the out-of-bag samples. Features with the greatest 

effect on error were considered the most important. 

2.4. Results 

2.4.1.  Stimulation amplitude limits 

Increasing the number of radial electrodes resulted in a reduced electrode surface area. 

This in-turn lowered the theoretical stimulation amplitude that could be safely delivered 

through each electrode to neural tissue. More precisely, as the number of radial electrodes 

was increased both charge storage capacity and charge injection constraints limited the 

safe stimulation amplitude. This relationship followed an exponentially decaying trend 

(Figure 4). Charge injection constraints limited stimulation amplitude for leads with five 

or fewer radial electrodes with an electrode height of 1.5 mm. Charge storage capacity 

limited the stimulation amplitude for leads with more than five radial electrodes and 

electrode height of 1.5 mm. As electrode height was decreased, the intersection of the 

two lines: charge storage capacity constrained amplitude and charge injection constrained 

amplitude was shifted left, toward a smaller number of radial electrodes. Charge storage 

capacity was found to be the limiting factor for all DBSAs with an electrode height of 0.5 

mm. In accordance with the inclusion of surface area in Equations 21 and 22, stimulation 

amplitude limited by charge storage capacity was proportional to the electrode height, 

while stimulation amplitude limited by charge injection was proportional to the square 

root of electrode height. Most electrode designs (23/27) were limited to stimulation 

amplitudes below 10 mA per electrode, while approximately half (13/27) were limited to 

amplitudes below 5 mA using the 150 μC/cm
2
 and k = 2.0 limits. All DBSA designs with 

an electrode height of 0.5 mm were limited to amplitudes below 5 mA per electrode.  
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Figure 4. Stimulation amplitude limits. Maximum stimulation amplitude (for a biphasic 

waveform with a 90 μs initial pulse) was calculated for each lead design using a charge 

storage capacity of 150 μC/cm
2
 and a safety factor limit of k = 2.0 (A). RoAs resulting 

from stimulation amplitude limits for several example DBSA lead designs (B). 

2.4.2.  Steering, shifting and sculpting activation with single-cathode monopolar DBS 

Lateral shift, angular shift, and aspect ratio were used to evaluate the ability of each lead 

to shift, steer, and sculpt a RoA using monopolar stimulation within the range of 1–5 mA. 

Lateral shift for cylindrical shell electrodes did not significantly vary from zero as they 

produced a radially symmetric RoA. For all DBSA lead designs, at 1 mA, lateral shift 

increased from 0 mm to ~1.1 mm, regardless of the number of radial electrodes (Figure 

1) or electrode height. Lateral shift increased moderately from 1.1 mm to 1.3 mm with 

stimulation amplitude increasing beyond 1 mA for all DBSA lead designs. Aspect ratio 

increased with stimulation amplitude at a similar rate for DBSA lead designs with the 

same electrode height (Figure 5). Electrodes with shorter heights were found to produce a 

slightly more circular RoA resulting in an aspect ratio closer to 1. For instance, the mean 

aspect ratio at 1 and 5 mA increased from 0.48 and 0.63 for DBSAs with 1.5 mm 

electrodes to 0.51 and 0.65 for DBSAs with 0.5 mm electrodes. 
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Figure 5. Monopolar single-cathode lateral shift and aspect ratio. RoA lateral shift and 

aspect ratio for monopolar single-cathode stimulation using DBSA lead designs with 1.5 

mm electrode height within the range of 1–5 mA. Similar RoAs were produced from all 

DBSA designs (A). As stimulation amplitude was increased, lateral shift and aspect ratio 

both increased at similar rates (B,C). 

Angular shift varied in accordance with angular separation of electrodes (Figure 6). For 

example, the six radial electrode lead incorporated electrodes separated by 60° and the 

RoA CoM angular shift resulting from stimulation through neighboring contacts was 

calculated to be 60°. Angular shift did not vary for leads with different electrode height 

nor did it vary with stimulation amplitude. 

 
Figure 6. Monopolar single-cathode steering. Angular shift for monopolar single-cathode 

stimulation using DBSA lead designs with 1.5 mm electrode height within the range of 1 

to 5 mA. DBSA leads with more electrodes were capable of finer RoA CoM angular 

shifting (A) in accordance with electrode angular separation (B). 
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None of the stimulation configurations tested resulted in complete coverage of a rotated 

target region without moderate to large overspill (Figure 7). The dual cathode 

configuration performed the best overall. The angular shift for this configuration was 

closest to 45° and target coverage was highest with the lowest spillover. 

 
Figure 7. Steering toward an offset target region. Steering activation toward a target 

region between electrodes was investigated using DBSA–e4–h1.5 with single-cathode 

and multi-cathode stimulation configurations (A). The multi-cathode configuration 

performed best with a 45° angular shift (B) and exhibited the largest overlap and smallest 

overspill for any given stimulation amplitude (C). 

2.4.3.  Shifting and sculpting activation with multi-cathode monopolar DBS 

For each DBSA lead design, uniform multi-cathode stimulation using a larger proportion 

of available radial electrodes enabled shifting of the RoA CoM from 0, lead-center, to 

~1.3 mm in the direction of the primary cathode. The resolution with which RoA CoM 

could be shifted from one extreme to the other increased as the number of radial 

electrodes increased (Figure 8). Lateral shift increased slightly for larger stimulation 

amplitudes and did not change with electrode height. Increasing the proportion of active 

electrodes first decreased then increased aspect ratio for leads with more than four radial 

electrodes. The initial decrease in aspect ratio was a result of added cathodes facing the 

same direction as the center-most cathode. In general, increasing the proportion of active 

electrodes increased the aspect ratio toward one, indicating a more radially uniform RoA. 

These trends were found to be consistent for DBSA lead designs with different electrode 

heights.  
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Figure 8. Incremental CoM shifting using monopolar multi-cathode stimulation. 

Monopolar stimulation currents were uniformly split across an increasing number of 

radial electrodes for each DBSA (A). DBSAs with more radial electrodes enabled 

shifting within the same range but at improved resolution (B). Aspect ratio decreased 

initially for DBSAs with more than 4-radial electrodes and increased from ~0.5 to 1 as 

the proportion of active electrodes increased (C). 

Non-uniform multi-cathode stimulation enabled RoA CoM shifting within the same range 

as uniform current shifting, but with improvement in shifting resolution (Figure 8). 

Shifting resolution approximately doubled non-uniform multi-cathode stimulation using 

DBSA–e4–h1.5 in comparison to uniform multi-cathode stimulation using DBSA–e8–

h1.5. The aspect ratio range was approximately the same for uniform and non-uniform 

multi-cathode stimulation; however, the aspect ratio profile shifted to the left indicating 

that the non-uniform multi-cathode stimulation produced more circular RoAs (Figure 9). 

 
Figure 9. Multi-cathode, non-uniform current shifting of the CoM. Monopolar 

stimulation currents uniformly split across an increasing number of radial electrodes 
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using DBSA–e8–h1.5 compared to monopolar stimulation non-uniformly split across 

electrodes using DBSA–e4–h1.5 (A). Non-uniform configurations using DBSA–e4–h1.5 

resulted in improved shifting resolution in comparison to uniform configurations using 

DBSA–e8–h1.5 (B). Aspect ratio profile was similar for the two strategies but was 

shifted for non-uniform current shifting indicating more circular RoAs were generated 

from non-uniform shifting (C). 

2.4.4.  Classification 

Cross validation using 10 folds was performed using three feature sets in combination 

with five machine learning algorithms. In general, high mean classification accuracy was 

achieved with low standard error across the 10 folds. The random forest classification 

algorithm, which involves automated feature selection, performed best, achieving perfect 

classification using any of the three feature sets (Figure 10). Of the remaining classifiers 

where no feature selection/reduction was performed: the neural network classifier 

achieved perfect accuracy and the naïve Bayes classifier achieved accuracy above 0.95 

using the RPFS. Classification using the RPFS produced the highest accuracy for all 

except in the case of the k-nearest neighbors classifier. The LPFS and 7 HuIM feature set 

achieved similar accuracy when used in combination with the neural network, naïve 

Bayes and k-Nearest neighbors classifiers.   

 
Figure 10. Classification accuracy. Mean classification accuracy and accuracy standard 

error (represented by error bars) were calculated for each classifier/feature set 

combination across 10-folds. Perfect classification of monopolar stimulation settings was 

achieved with the random forest classifier using any of the three feature sets. The neural 

network, naïve Bayes and random forest classifiers achieved perfect or near perfect 

accuracy using the region properties feature set. 
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2.4.5.  Feature importance 

Sequential forward selection and results from the random forest classification algorithm 

were used to evaluate feature importance. Mean accuracy was calculated as an indicator 

of feature importance at each stage of the forward selection for both the neural network 

and naïve Bayes classifiers. From the random forest algorithm, mean effect on prediction 

error resulting from random permutation of each feature across the out-of-bag samples 

was used as an indicator of feature importance. A low standard error was calculated for 

all indicators of feature importance. Using either the neural network or naïve Bayes 

classifier, mean accuracy converged to one after the addition of the same four features: 

CoM x-coordinate, CoM y-coordinate, ellipse fit eccentricity and ellipse fit orientation. 

These same four features were ranked as the most important by the random forest 

algorithm (Figure 11). Although all features were included in the analysis, forward 

selection using the neural network and naïve Bayes classifiers resulted in the most 

important features being from only the RPFS.   

 
Figure 11. Feature importance. Sequential forward selection accuracy converged to one 

after the addition of features 1, 2, and 4 using both the neural network and naïve Bayes 

classifiers. From the random forest algorithm, the effect on classification error was 

increased most by the random permutation of features 1, 2, 3, and 4. Features 1: CoM x-

coordinate, 2: CoM y-coordinate, and 4: ellipse fit orientation were found to be the most 

important features and using only these three features in combination with the neural 

network and naïve Bayes classifiers enabled perfect classification. 

2.5. Discussion 

While DBS therapy is often successful in managing the symptoms of a range of 

medication-refractory brain disorders, the spatial precision with which the therapy can be 

delivered using a conventional lead with cylindrical shell electrodes can be limiting for 

cases of slight neurosurgical targeting error or for brain regions with complex 
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morphologies. Previous studies have developed methodologies to steer and direct 

activation volumes along a DBS lead studies [30–33,85], but less is known about 

programming stimulation settings around a DBS lead [101]. The results of this study 

show for a DBS lead embedded within or near a fiber tract that: (1) four ellipsoidal 

electrodes around a DBS lead provided good flexibility to steer, sculpt, and shift a region 

of neural activation without exceeding the charge storage capacity of platinum-iridium 

electrodes or charge injection limits for neural tissue, and (2) a small feature set, 

including only three geometric features representing a target region enabled robust 

machine learning classification of electrode stimulation configuration. 

2.5.1.  DBS array design considerations 

Microfabrication processes enable new opportunities to develop stimulating probe 

technology with many more electrode sites than what is currently in clinical use for DBS 

applications [101,133,134]. Increasing the number of electrodes and in turn decreasing 

the size of electrodes has several important effects on the region of neural tissue 

including limiting the spatial extent of the RoA due to charge storage capacity and charge 

injection limits [30,125]. Previous preclinical studies in animal models of neurological 

disorders have also noted that DBS therapy is partially based on modulating the neuronal 

firing patterns of a fairly large volume of tissue [98,99] within a target volume [29]. 

Thus, while increasing the number of electrodes may provide more spatially focused 

stimulation, generating a therapeutic effect through DBS arrays is likely to require 

grouping electrodes together for high-density DBS arrays. This grouping approach would 

be complicated by radial diffusion properties that result in higher charge densities near 

the edges of each electrode in a group [30,118]. 

In this study, we extend these results showing that charge storage capacity and charge 

injection are limiting factors, though to different extents as the number of radially 

electrodes is increased. For DBSA designs with small electrode surface areas, advanced 

electrode coatings [126,135,136] may address the issue of charge storage capacity, but 

the charge injection limits will remain an issue as was shown for DBSA lead designs with 

five or more radial electrodes. Elliptical electrodes with height ranging from 0.5 to 1.5 
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mm and width ranging from 0.2 to 0.9 mm were used in this study. For electrodes with 

the largest height and the smallest width, it is possible that these highly eccentric 

electrodes would have higher charge density values at the ends of the electrode major 

axis [137] similar to how large current density values are found at the corners of 

rectangular electrodes [30]. 

2.5.2.  Shaping the region of activation 

One of the primary motivations for advances in DBS lead and stimulator designs is to 

enable compensation for sub-optimally placed leads. Ideally, leads with cylindrical shell 

electrodes are implanted with one of the electrodes at the geometric center of the neural 

target enabling good stimulation coverage with minimal overspill. With targets that are 

several centimeters deep and only millimeters across, precise lead placement can be 

challenging. With a cylindrical shell electrode, a small offset in the final lead location 

may significantly limit stimulation efficacy and result in stimulation induced side effects 

resulting from activation of nearby pathways. DBSAs have been proposed as able to 

compensate for such placement issues [101,110,112]. As we have shown, monopolar 

stimulation through a single radial electrode resulted in a 1–1.3 mm RoA CoM lateral 

shift and increasing stimulation amplitude minimally affected the CoM location. 

Additional radial electrodes or proportional current steering provided options to 

incrementally shift the RoA CoM with sub-millimeter resolution, but in cases where 

more than a 1 mm shift in the RoA CoM is needed for compensation of lead 

misplacement, this need would not be adequately addressed by any of the DBSA designs 

evaluated in this study. The results showed that uniform multi-cathode stimulation 

enabled incremental CoM shifting, but was limited by the number of available radial 

electrodes. Non-uniform multi-cathode stimulation resulted in better shifting resolution 

with four radial electrodes than could be achieved using uniform multi-cathode 

stimulation with eight radial electrodes. From this we conclude that fewer electrodes does 

not limit shifting if non-uniform stimulation strategies are used. However, practical 

implementation of non-uniform stimulation requires fine and independent control of 

multiple stimulation channels. In regard to lead design, leads with fewer radial electrodes 

may be preferable because of larger electrode surface areas and possibly less complex 
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manufacturing processes. In regard to implantable pulse generator design, fewer 

independent current sources may be preferable to allow for device miniaturization. 

Stimulators with independent current-regulated channels are well-established in the fields 

of spinal cord stimulation for pain mediation [138], auditory nerve stimulation for 

hearing restoration [139], and retinal stimulation for vision restoration [107]. The advent 

of stimulators with independent channels in these fields have prompted significant 

research into the utility of various stimulation strategies for directing and focusing 

current, particularly in the case of auditory nerve stimulation, where highly conductive 

fluid separates the stimulating electrodes from the stimulation target [140]. Strategies for 

steering and focusing stimulation include the use of multiple sources to steer a region of 

neural activation and the use of bipolar stimulation to narrowly focus current [106,141]. 

These strategies have been implemented with varying degrees of success for cochlear 

implants and spinal cord stimulation. These strategies have also been investigated in DBS 

systems via modeling studies [31,85] and clinical studies [32,33] for the purpose of 

steering neural activation along the length of a conventional DBS lead. Our results 

indicate that for steering, shifting, and sculpting of neural activation around the lead, a 

DBSA with four electrodes per row combined with a pulse generator that has 

independent current sources for each electrode would be highly effective at steering and 

shifting a region of neural activation around a DBSA lead. Our results also indicate that 

more than four electrodes would be minimally advantageous. 

Radial shifting and steering have potential to benefit clinical outcomes for a number of 

DBS targets [142]. For instance, the subthalamic nucleus target for Parkinson's disease is 

adjacent to the corticospinal tract of internal capsule [31] and non-motor territories of the 

subthalamic nucleus [67] that when stimulated can lead to adverse side effects. The 

ventral intermediate nucleus of thalamus, which is the primary target for treating 

Essential Tremor, is adjacent to the internal capsule, the somatosensory nucleus of 

thalamus, and non-motor pathways involved in language and cognition [143]. Similarly, 

the pedunculopontine tegmental area is replete with adjacent fibers of passage including 

the superior cerebellar peduncle, medial and lateral lemnisci, and the central tegmental 
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tract among others that may have confounding effects on treatment of medication-

refractory gait disorders [87]. Radial current shifting and steering may also have 

important applications to DBS targets that are embedded within fiber tracts including 

those for depression [144], obsessive compulsive disorder [145], and memory disorders 

[12]. 

2.5.3.  Machine learning to facilitate programming 

Along with greater flexibility in directing neural activation, DBS arrays present 

exponentially more options during programming. This necessitates the use of (1) guided 

programming through computational algorithms [114,115], and (2) empirical algorithms 

that rely on the spatial distribution of electrophysiological biomarkers [146]. Here, we 

investigated feature sets to be used in building machine learning classifiers for predicting 

DBSA stimulation settings. These feature sets were constructed from the two-

dimensional computational modeling results of axonal activation using the DBSA–e4–

h1.5 lead and relied upon computer vision feature extraction techniques. In computer 

vision, feature extraction is commonly performed to identify objects that may be 

“viewed” by a machine using images or video that was captured and processed internally. 

Robust computer vision identification requires that objects be identifiable when viewed at 

different distances, angles, and locations within the field of view requiring the use of 

scale, rotation, and translation invariant feature sets [130]. The feature sets we have 

designed for use in machine learning classifiers for DBS rely on these same principles, 

but include a center of mass estimate that is relative to the lead-center so that changes in 

the RoA direction and shift may be detected. In addition to investigating the value of 

various features for such classification algorithms, we have demonstrated robust machine 

learning classification of electrode stimulation configuration using a single row of 

electrodes. Our investigation into feature sets revealed that excellent classification could 

be achieved using a small number of two dimensional geometric features that may be 

readily translated in three-dimensional geometric measures. Running axon model 

simulations, feature extraction, and classifier training required significant computation 

time, but the resulting five classification algorithms were able to be deployed in less than 

1 min using a conventional desktop computer. The speed with which such algorithms can 
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be deployed demonstrates the power and practicality of such algorithms for use in clinical 

DBS programming. 

2.5.4.  Limitations 

The quasistatic finite element models used for predicting tissue voltage in this study were 

idealized as isotropic and were homogeneous within bulk neural tissue. Increasingly 

complex models that more precisely model tissue conductivity using diffusion weighted 

imaging have been introduced in the past decade and have been shown to impact 

biophysical simulation results [29,147,148], particularly for modeling of electrical 

stimulation near white matter fiber tracts [29,149]. Further, the conductance values 

utilized in the tissue models presented here rely on experimentally determined values for 

conductance that are subject to uncertainty as evident by the range of values reported 

within the scientific literature [82,150]. Variations of tissue conductance within the range 

of reported values have been shown to lead to significant uncertainty in the activation 

predictions of biophysical models [151]. Additionally, stimulus waveforms propagating 

through encapsulation and brain tissue are likely to be influenced reactive tissue 

impedances [152–155] and the quasistatic model does not incorporate this feature. Using 

the modeling framework presented here, future work may assess the impact of variations 

in conductance, brain anisotropy, and reactive tissue response on the DBSA design and 

feature selection for model based programing algorithms. 

The multi-compartment axon models used in this study were idealized straight cables 

coursing parallel to the DBS lead. Modeling work with straight axons has potential utility 

for DBS targets that are within or near large fiber tracts that have minimal curvature 

[12,144,145,156]. However, it is important to consider that this idealized model geometry 

lacks the anatomical trajectories known to occur in many targets of DBS. In these cases, 

factors such as stimulating regions with networks of cellular and axonal processes [87], 

inducing complex cellular entrainment patterns [7,157], and increasing the likelihood of 

axonal conduction failure due to axonal branching [158], lack of myelination [159], and 

synaptic fatigue [160] should be considered. 
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Elimination of the ETI from the finite element models relied on a subset of simulations 

that incorporated an ETI equivalent circuit model that assumed the electrode material was 

platinum-iridium. To avoid exceeding the charge storage capacity of the electrodes with a 

clinically acceptable factor of safety, realistic lead designs with small electrodes would 

likely require the use of coatings such as iridium oxide [126], PEDOT [161], or TiN 

[162] for which lumped ETI equivalent circuit model values would likely differ.  

2.6. Conclusions 

DBS arrays with radially distributed electrodes have potential to improve patient 

outcomes by enhancing the flexibility of directing stimulation around an implanted DBS 

lead. Clinical DBS leads with cylindrical shell electrodes do not exceed electrode charge 

storage capacity or charge injection limits due to the large surface area and existing 

voltage or current compliances of current implantable pulse generators. However, 

segmenting the cylindrical shell electrode design into two or more electrodes around the 

lead circumference would bring these stimulation limits into consideration. For DBSAs, 

monopolar single-cathode stimulation was useful for shifting the RoA CoM from lead-

center to 1.3 mm in the direction of the stimulating electrode. Shifting resolution on the 

scale of 0.1 mm was achievable with four radial electrodes using non-uniform 

distribution of current, suggesting a higher density DBSAs would not be needed to 

achieve clinically relevant RoA shifting if independent current sources are utilized. A 

simple feature set consisting of the RoA center of mass and orientation enabled robust 

machine learning classification with accuracy equal to 1 for a range of monopolar 

stimulation settings. 
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3. Evaluation and analysis of personalized computational models of DBS 

Teplitzky BA, Johnson LA, Zhang S, Zitella LM, Patriat R., Nebeck S, Connolly AT, 

Yacoub E, Adriany G, Harel N, Vitek JL, Johnson, MD. Evaluation and analysis of 

factors contributing to variance in computational models deep brain stimulation. In 

Preparation. 

 

3.1.Overview 

3.1.1. Objective 

The goal of this study was to validate predictions from a series of computational models 

using in vivo electrophysiological recordings and behavioral assessment during deep 

brain stimulation of the globus pallidus internus. 

3.1.2. Approach 

Stimulation thresholds for evoking motor contractions during globus pallidus internus 

deep brain stimulation were evaluated in two non-human primates, one with a 

miniaturized DBS lead and one with a DBS array. In the subject with the DBS array, 

cortical recordings were used to generate a prediction of percent activation within the arm 

representation of the corticospinal tract. Subject-specific computational models using the 

scaled eigenvalue, the volume constraint, and the normalized volume constraint methods 

to represent tissue conductivity were constructed and used to predict activation within the 

arm representation of the corticospinal tract. Model results using the three different 

methods were compared to motor contraction thresholds and, in one subject, compared to 

stimulation induced cellular activation measured in motor cortex. 

3.1.3. Main Results 

Stimulation induced activation in motor cortex at the motor contraction threshold 

amplitude was measured within the range of 8-16% for distal electrodes and 0% for most 

proximal electrodes. Motor contractions were able to be induced using all electrodes, but 

higher stimulation amplitudes were required for increasingly proximal electrodes. In 

comparison to motor contraction thresholds, model predictions using the DBS array 

strongly over predicted the degree of directional steering. Error between model 

predictions and motor cortex recordings was lowest for models that relied on the 
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normalized volume constraint and was largest for models that relied on the scaled 

eigenvalue method. 

3.1.4. Significance 

The finding that the normalized volume constraint method for modeling brain tissue 

conductivity generated model predictions that best align with experimental data has 

important implications for the DBS modeling community, which has in the past relied 

primarily on the scaled eigenvalue method for modeling brain tissue conductivity. 

Additionally, the misalignment between behavioral outcomes and model predictions 

suggests that more comprehensive and anatomically correct representations of model cell 

distributions may be required to generate clinically relevant model outcomes.  

3.2.Background 

The clinical success of deep brain stimulation (DBS) therapy largely depends on the 

accuracy of DBS lead implantation and the degree to which stimulation settings can be 

adjusted without eliciting adverse side effects. Computational models of DBS that 

integrate both predictions of the induced electric field in brain tissue and predictions of 

biophysical neuron responses to electric fields [122] have provided notable successes in 

advancing DBS therapy. These models have supported (1) studies investigating the 

therapeutic mechanisms of DBS in preclinical animal models [99,163,164] and in 

humans [8,65,68,144,165] (2) development of neurosurgical planning software [69], (3) 

retrospective identification of neural pathways underlying side effects of DBS [66,67], 

(4) prospective approaches to optimize stimulation settings on an individual basis 

[114,115], and designing and evaluating novel DBS lead and stimulation technology [70–

72]. While such modeling efforts rely on bioelectric principles and assumptions that have 

been characterized in part in vivo [66,86], the overall modeling framework has yet to 

undergo rigorous behavioral and electrophysiological validation.  

To date, the most advanced models of DBS attempt to accurately incorporate subject-

specific brain anatomy at submillimeter resolution using high-field magnetic resonance 

imaging [148]. Such imaging approaches provide important context for constructing 
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inhomogeneous and anisotropic conductivity maps of brain tissue as well as 

morphological rendering of fiber tracts within the brain using diffusion weighted imaging 

[166–169]. Finite element models incorporating these conductivity maps in the context of 

a subject’s DBS lead implant(s) are then integrated with multi-compartment equivalent 

circuit models of neurons and fiber tracts. This framework thus facilitates predicting 

transmembrane currents imposed by stimulation [93,94,170,171] and whether or not 

those perturbations result in stimulation-induced action potential generation or other 

modulation of ongoing neuronal activity [8,172]. 

Quantification of the population response to stimulation is generally made using either a 

VTA or an activation profile curve. VTAs specific to an electrode or stimulation 

waveform can be created and overlaid onto medical imaging to visualize brain regions 

that may be modulated by different stimulation configurations. An activation profile 

represents a percent of neurons activated within a specific fiber tract or brain region by a 

particular stimulation configuration. Percent activation can be a useful measure for 

optimizing stimulation parameters, particularly in situations where side-effect regions 

cannot be completely avoided. Because of their complexity, many parameters contribute 

to the predictions from these models and although individual aspects of these models 

have been examined, such as the FEA tissue voltage predictions in the subthalamic 

nucleus area and thalamus [86], the VTA and activation profile approaches have yet to be 

rigorously validated.  

The goal of this study was to evaluate computational model predictions by comparing 

activation profiles from various tissue conductivity maps to in vivo electrophysiological 

recordings and behavioral assessments in the context of globus pallidus internus (GPi) 

deep brain stimulation leads. Two non-human primates were chronically implanted with 

either a DBS lead consisting of eight stacked cylindrical electrodes [99] or a radially 

segmented deep brain stimulation array (DBSA) [134]. In both cases, stimulation was 

delivered at amplitudes above and below the threshold for evoking muscle contractions 

resulting from putative activation of the adjacent corticospinal tract (CST) of the internal 

capsule (IC). The choice of the GPi target, as opposed to the subthalamic nucleus (STN) 
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for example, was motivated by the fact that the GPi (unlike the STN) does not have direct 

projections two or from the cortex. In one primate, single cell recordings in the arm 

representation of motor cortex (M1arm) were acquired during stimulation using a 100-

channel microelectrode array. Cortical recordings were analyzed in order to identify 

stimulation induced antidromic activity, from which a percent activation of the arm 

representation within internal capsule was inferred. Additionally, subject-specific 

computational models of DBS were generated for each primate in order to compare 

predictions to muscle contraction thresholds (both subjects) and M1arm recordings (one 

subject). 

3.3.Methods 

3.3.1. Experimental procedure 

3.3.1.1.Subjects 

Two rhesus macaque monkeys, macaca mulatta, were subjects in this study: Monkey N 

(18 year old female, naïve) and Monkey J (15 year old female, rendered parkinsonian 

with the neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine, MPTP [157]). Both 

animals took part in other parallel studies and the modeling results were retrospective in 

context. All procedures were performed in compliance with the United States Public 

Health Service policy on the humane care and use of laboratory animals, and were 

approved by the University of Minnesota Institutional Animal Care and Use Committee. 

3.3.1.2.Preoperative imaging 

Preoperative MRI was acquired using a passively shielded 7 Tesla magnet (Magnex 

Scientific) at the University of Minnesota Center for Magnetic Resonance Research. 

Subjects were anesthetized with Isoflurane (2.5%) and monitored for depth of anesthesia 

during imaging sessions. Imaging acquisition included computed tomography (CT), T1-

weighted imaging (T1-W), T2-weighted imaging (T2-W), susceptibility-weighted 

imaging (SWI), and diffusion-weighted imaging (DWI) (Table 3). SWI was acquired 

with a 3D flow-compensated gradient echo sequence. 

Table 3. Subject and imaging sequence information  (iso: isometric). 
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Subject Sex Age 

(years) 

Anatomical imaging Diffusion weighted imaging 

T1-W 

(mm3) 

T2-W 

(mm3) 

SWI 

(mm3) 

b-value 

(s/mm2) 

# of 

directions 

FOV 

(mm3) 

Resolution 

(mm3) 

J F 15 0.469×0.469
×0.5 

0.357×0.357
×0.8 

0.4 iso 1500 132 144×88×
50 

1.1 iso 

N F 18 0.469×0.469
×0.5 

0.5 iso 0.4 iso 1500 110 144×88×
50 

1.1 iso 

3.3.1.3.DBS chamber placement 

Microelectrode mapping of the brain and DBS lead implantation were guided using 

surgically implanted chambers. A coordinate system was established using the surgical 

planning software, Cicerone (Miocinovic et al., 2007), by co-registering preoperative CT 

of the cranium and anatomical MRI of the brain in AC-PC space. The zero coordinate in 

AC-PC space was defined as the midpoint of an imagined line in the brain’s sagittal plane 

connecting the anterior and posterior commissure tracts. Coordinates for the chamber 

implant location were determined by aligning the central axis of chamber with the GPi. 

Chambers and head restraints were implanted during an aseptic surgical procedure as 

described previously [99,174]. Briefly, craniotomies were made under stereotactic 

guidance leaving the underlying dura intact, and cephalic recording chambers were 

secured in place using a combination of surgical bone screws and dental acrylic. Subject J 

was implanted with one chamber oriented along the parasagittal plane at an anterior angle 

of 38 degrees to target the GPi. Subject N was implanted with a chamber oriented along 

the coronal plane at a lateral angle of 32 degrees, with the latter used for targeting the 

sensorimotor external and internal segments of globus pallidus. 

3.3.1.4.Mapping, lead implantation, and postop imaging 

Microelectrode mapping of the brain was used to determine the precise lead implant 

location using techniques similar to those using in human functional neurosurgery [175]. 

The borders of the GPi were mapped in each subject by recording cell activity using 

tungsten microelectrodes that were advanced through uniformly spaced grid sections in 

the cephalic chambers (Narishige Scientific Instruments). The GPi and subregions within 

the GPi were identified by their characteristic firing patterns in response to sensorimotor 

manipulation [176]. Microstimulation (10–100 μA) was used to identify the corticospinal 

tract of IC. Once the boundaries of the GP were established and sensorimotor territory 
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identified, a final recording track was performed to determine the target depth for lead 

implantation. The tungsten microelectrode was then removed and the DBS lead was 

implanted to the target depth using an insertion cannula (Subject J) or stylet (Subject N). 

Subject J was implanted with a 0.625 mm diameter eight electrode lead (NuMED, 

Hopkinton, NY). Each cylindrical shell electrode was 0.625 mm in diameter, 0.5 mm tall, 

and separated by 0.5 mm (Figure 12, top left). Electrode contacts were labeled 0 (distal) 

through 7 (proximal). Subject N was implanted with a 0.6 mm diameter 32 electrode 

DBSA [134] (Figure 12, bottom left). DBSA electrodes were arranged with eight rows 

distributed along the length of the lead and separated by 0.28 mm. Each row consisted of 

four columns separated by 90 degrees. Each electrode was elliptical (0.36 x 0.47 mm) 

with the major axis aligned with the length of the lead body. The final lead location was 

verified using post-operative CT, which was acquired approximately one week after the 

lead implant procedure and co-registered to preoperative MRI (Figure 13). 

In a separate surgical procedure after DBS implantation, the right hemispheric arm 

representation in primary motor cortex (M1arm) of Subject J was implanted with a 96-

channel Utah microelectrode array (Figure 12, right) (Pt-Ir, 1.5 mm depth, 0.4 mm inter-

electrode spacing, Blackrock Microsystems) using methods described previously 

[177,178]. M1 was identified by sulcal landmarks (i.e. central sulcus, arcuate sulcus and 

precentral dimple) and the arm representation was identified through intra-operative 

stimulation of the cortical surface using a stainless steel ball electrode (Grass 

Technologies Corporation). 
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Figure 12. Stimulation and recoding implants. Subject J was implanted with an eight 

cylindrical electrode DBS lead (top left) and a 96-channel Utah microelectrode array 

(right). Subject N was implanted with a 32 ellipsoidal electrode DBS array (bottom left). 

 

 
Figure 13. Image co-registration and model lead placement. Preoperative MRI was co-

registered with postoperative CT in order to confirm the location of the implanted lead 

(left). The lead, the globus pallidus (GP), and the arm representation within the 

corticospinal tract (CSTarm) were constructed for each subject (right).  

3.3.1.5.Assessment of thresholds for stimulation-induced motor contractions 

Subjects were trained to allow passive manipulation of the limbs using positive 

reinforcement techniques. Stimulation pulse trains were delivered through each electrode 

at varying amplitudes in order to determine electrode-specific stimulation thresholds for 

inducing involuntary motor contractions in each subject. Current-regulated charge-

balanced waveforms were delivered using an external waveform generator and a current 

isolator (Subject J: IZ2H, Tucker Davis Technologies; Subject N: S88X, Grass 

Instruments with a Model 2200, A-M Systems,). Two slightly different stimulation trains 

were used for the two subjects. For Subject J, the stimulation pulse consisted of an 80 

sec cathodic pulse followed immediately by an anodic pulse with equal width and 

amplitude. In Subject N, the stimulation pulse was a 90 sec cathodic pulse followed by a 

20 sec interstimulus interval and then a 90 sec anodic pulse with equal magnitude to 

the initial cathodic pulse. Both subjects received monopolar stimulation with the cranial 

chamber serving as the return electrode. Stimulation thresholds for evoking motor 

contractions were determined in a blinded manner such that the observing researcher was 

unaware of the stimulation settings while evaluating the presence of involuntary muscle 

contractions. For Subject N, motor contraction thresholds were collected using 16 
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electrode configurations. Each configuration included two impedance matched electrodes 

in the same column that were electrically shorted such that stimulation was delivered 

simultaneously through both electrodes. In Subject J, stimulation was delivered using 

electrodes 0 (distal) through 5 (proximal). 

3.3.1.6.Quantification of electrophysiological recordings 

In Subject J, electrophysiological recordings were collected from the M1arm 

microelectrode array a TDT workstation (RZ2 DSP, PZ5 Neurodigitizer, Tucker Davis 

Technologies), with both recording and stimulation operating on the same ~25 kHz 

sample clock. The cortical microelectrode recordings were acquired for DBS amplitudes 

approximately 75%, 100%, and 125% of the motor contraction stimulation amplitude 

threshold for each electrode. Cortical recording trials consisted of a baseline off-DBS 

period (~30 sec in duration), followed by an on-DBS block at each of the three 

stimulation amplitudes. Each block consisted of a 5 second stimulation period, followed 

by 5 seconds off stimulation, repeated 5 times.  Raw data were filtered 0.5 Hz-12.5kHz 

and saved to hard disk for offline analysis. The following processing steps were 

performed for each of the 96 microelectrode array channels. First, a digital bandpass filter 

(300 Hz-3 kHz) was used to extract spike activity from the raw recording (Figure 14A). 

Second, DBS artifacts present in the recording were removed by a simple blanking 

procedure (Figure 14A). The preamplifier used had a large ±500 mV input range and 

artifacts did not cause saturation, so the artifact duration was brief (0.5-1 ms) and was 

removed by setting sample points during this period to zero. Third, spikes outside of 

background activity were identified in Offline Sorter (Plexon, Inc., Dallas, Texas, USA) 

based on a spike detection threshold set manually for each channel, ≥6 standard 

deviations below mean of the peak-heights histogram. Spike times typically reflected the 

activity of 1-3 cells and were saved for subsequent analysis. Recording channels with no 

clearly discernable cells outside the background (45 of 96 channels) were excluded. 

Finally, a peristimulus time histogram (PSTH, bin size = 0.2 msec) triggered to 

stimulation pulses was examined for each electrode configuration and stimulus amplitude 

and classified as putative antidromic based on whether short latency, low temporal jitter, 

high firing activity was detected following the DBS pulses (Figure 14B). The qualifier 
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“putative” is used because classification is based solely on the PSTH, and collision 

experiments were not conducted to confirm that DBS-evoked activity was definitively 

antidromic. The firing rate in each PSTH bin was converted to a z-score relative to 

baseline firing rate bins taken from the off-DBS period, based on a PSTH triggered to 

virtual stimulation pulses. If there was a peak in the resulting PSTH with a maximum z-

score >10, latency <3 msec, and low temporal jitter (width at half-max ≤3 bins), the 

stimulation evoked activity was classified as putative antidromic. This analysis is based 

in part on the assumption that neural recordings included activity from layer V pyramidal 

cells with axonal projections making up part of the internal capsule, which is not 

unreasonable given the electrode array depth of 1.5mm and the fact that putative 

antidromic activity was observed on many recording channels. The percentage of 

recording channels with putative antidromic activity was calculated (Figure 14C) and 

used for comparison to model predictions. 

 

Figure 14. Antidromic activity detected in M1 during GP stimulation. (A) Example raw 

(top) and processed (bottom) signal from one of the channels on the 96 channel M1 

microelectrode array, illustrating a putative antidromic firing in response to GP DBS. (B) 

Peristimulus time raster plots and histograms time locked to stimulation pulses (time = 0) 

were created for each recording channel and classified as antidromic or not as described 

in the Materials and Methods. (C) Illustration indicating the location of the M1 array on 

the cortical surface. Gray squares indicate channels with detectable single or multi-unit 

spiking activity (51/96 channels). For each stimulation configuration, neuronal responses 

to DBS at current levels of 75, 100, and 125% CST were characterized and the 

percentage of channels with antidromic responses was calculated. Additional plots show 
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channels with antidromic spike activity (orange) at each current level for the Monopolar 

C1 DBS configuration. 

3.3.2. Computational modeling 

Subject-specific computational models of DBS were constructed such that lead geometry, 

stimulation waveform, and stimulation configuration were consistent with those used 

during the assessment of stimulation induced muscle contractions in the two subjects. 

Each computational model included a finite element model of the brain and a population 

of multi-compartment axon cable models representing reconstructions of the arm 

representation within the corticospinal tract of internal capsule (CSTarm). Several versions 

of the finite element model were created in order to evaluate the effect of increased 

model complexity and different approaches for calculating anisotropic tissue conductivity 

maps. 

3.3.2.1.Image registration, brain segmentation, and lead placement 

Three-dimensional brain reconstructions and the placement of leads in each model were 

performed using co-registered pre- and postoperative subject imaging. A common 

coordinate system was established in DWI-space by aligning preoperative MRI and 

postoperative CT to the DWI dataset using Amira v6.0 (FEI, Hillsboro, OR). Digital 

representations of the implanted lead and chamber were aligned to the co-registered 

imaging data using Cicerone (Miocinovic et al., 2007) (Figure 15A). From the co-

registered T1-W, T2-W, and SWI data, the brain white matter, gray matter, and the lateral 

ventricles were manually segmented using Mimics v15.0 (Materialise, Leuven, Belgium) 

(Figure 15B). Regions modeled as gray matter included the cortical and cerebellar gray 

matter, the basal ganglia, and thalamus. A digital representation of the chamber and lead 

were placed in reference to the co-registered postoperative CT data. 

3.3.2.2.Tissue conductivity tensor maps 

Subject specific tissue conductivity tensor maps were calculated using three approaches 

(Sections 3.3.2.2.1-3.3.2.2.3), each of which relied on diffusion tensors estimated from 

DWI (Figure 15C). Processing of the DWI was performed using FSL [179] and included 

eddy current correction using FDT [180], brain extraction using BET [180], estimation of 
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diffusion parameters using BEDPOSTX [181], and fitting of the diffusion tensor model at 

each voxel using DTIFIT [181]. The diffusion tensor eigenvalues and eigenvectors 

calculated using DTIFIT were used in the calculation of the tissue conductivity tensors at 

respective voxels. The term, tissue conductivity tensor map, referred to the entire set of 

tissue conductivity tensors calculated at each DWI voxel for a single subject. At each 

voxel, a tissue conductivity tensor (Σ) was calculated from its eigendecomposition: 

Σ = 𝑉𝜎𝑉𝑇     (23) 

where V is the matrix of tensor eigenvectors and σ is the diagonal matrix of conductivity 

tensor eigenvalues. Tissue conductivity tensor eigenvectors were assigned as equal to the 

diffusion tensor imaging eigenvectors [182].  In two of the approaches, isotropic 

conductivity and relative permittivity for gray and white matter were calculated using the 

Gabriel et al. Cole-Cole dispersion functions [83]. For the models that fully incorporated 

dielectric dispersion, tissue properties were calculated at frequencies between 1 kHz and 

512 kHz at 1 kHz increments. For all other models, tissue properties were calculated at 

the estimated median normalized frequency of a single stimulation pulse (Table 4). In all 

approaches, gray matter was assumed isotropic, and cerebrospinal fluid (CSF) was 

assumed isotropic, frequency independent, and purely resistive (σ = 1.79 S/m, ɛr = 0) 

[183]. 

 

Table 4. Isotropic tissue properties at the stimulation pulse median estimated frequency 

for each subject. 

 

Subject 

Stimulation 

pulse estimated 

median 

frequency (Hz) 

Gray matter White matter 

Conductivity 

(S/m) 

Relative 

permittivity 

Conductivity 

(S/m) 

Relative 

permittivity 

J 5530 0.110 38570 0.067 19452 

N 4200 0.108 49600 0.066 23734 

 

3.3.2.2.1. Scaled eigenvalue (SE) conductivity tensor map 
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The scaled eigenvalue (SE) conductivity tensor map was calculated using the linear 

cross-property relationship between conductivity and diffusion tensors [88]. The tissue 

conductivity tensor eigenvalues were calculated by scaling the diagonal matrix diffusion 

tensor eigenvalues (λ1, λ 2, and λ 3) by a factor s: 

𝜎 = 𝑠 ∗ [
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

]    (24) 

where s was 0.844 S s/mm
3
. The resulting diagonal matrix of conductivity tensor 

eigenvalues (σ) was used in Equation 23 to calculate the tissue conductivity tensor (Σ) for 

each voxel.  

3.3.2.2.2. Normalized volume (NV) conductivity tensor map 

The normalized volume (NV) conductivity tensor map [90,149] was calculated by scaling 

each diffusion tensor eigenvalue (λi) by the ratio of the geometric volume of the isometric 

conductivity tensor to the geometric volume of the diffusion tensor:  

𝜎𝑖 =
4

3
𝜋 ∗ 𝜎𝑖𝑠𝑜

3

4

3
𝜋 ∗ 𝜆1𝜆2𝜆3

𝜆𝑖    () 

where σiso is the isometric conductivity of white matter and λ1, λ2, and λ3 are the tensor 

primary, secondary, and tertiary eigenvalues. The diagonal matrix of conductivity tensor 

eigenvalues (σ): 

𝜎 = [
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

]    () 

was used in Equation 23 to calculate the tissue conductivity tensor (Σ) for each voxel. 

3.3.2.2.3. Volume constraint (VC) conductivity tensor map 
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The volume constraint (VC) conductivity tensor map, described previously by [89], 

was calculated by constraining the geometric volume of the anisotropic conductivity 

tensor to equal the geometric volume of the anisotropic conductivity tensor:  

4

3
𝜋𝜎∥𝜎⊥

2 =
4

3
𝜋𝜎𝑖𝑠𝑜

3      () 

where σ∥ is the conductivity of white matter in the direction parallel to a fiber tract, σ⊥ is 

the conductivity of white matter in the direction perpendicular to a fiber tract, and σiso is 

the isotropic conductivity of white matter. The ratio of parallel to perpendicular 

conductivity (r) was used to calculate conductivity in both directions: 

𝜎∥ = √𝜎𝑖𝑠𝑜
3 𝑟2

3
      () 

𝜎⊥ = √𝜎𝑖𝑠𝑜
3

𝑟

3

       () 

where r was 9 [84]. The calculated value for parallel conductivity was used as the 

primary conductivity tensor eigenvalue and the calculated value for perpendicular 

conductivity was used for both the secondary and tertiary conductivity tensor 

eigenvalues. The diagonal matrix of conductivity tensor eigenvalues (σ) was then used in 

Equation 23 to calculate the tissue conductivity tensor (Σ) for each voxel. 

Table 5. Anisotropic tissue properties at the stimulation pulse median estimated 

frequency for each subject. 

Subject 

Stimulation pulse 

estimated median 

frequency (Hz) 

White matter conductivity 

(S/m) 

Parallel Perpendicular 

J 5530 0.290 0.0322 

N 4200 0.286 0.0317 

3.3.2.3.Multi-compartment axon models 

Topographic subsections of the corticospinal tract of the IC were segmented through 

probabilistic tractography performed using FSL [179]. Probabilistic tractography was 

guided by seed and way masks that were defined within the T2-W images of each subject 
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in reference to an atlas of the rhesus macaque brain [184] and a reference text on the fiber 

tracts of the rhesus macaque brain [185]. A seed mask was created in the right 

hemispheric M1arm and a way mask was created within the right hemispheric internal 

capsule, slightly posterior and ventral of the subthalamic nucleus (STN). Masks were 

transformed from the T2-W coordinate system into the diffusion coordinate system using 

FLIRT [180,186] in FSL. The transformed mask and the output of BEDPOSTX (Section 

3.3.2.2) were used by PROBTRACKX [187] in FSL to produce probabilistic maps of the 

region of the internal capsule that projects from M1arm to the spinal cord.  A digital 

rendering of the CSTarm was generated by thresholding the probabilistic tractography map 

in reference to the previously cited reference text on the fiber tracts of the rhesus 

macaque brain [185]. The surface reconstruction was then used to guide construction of a 

population of multi-compartment axons (Figure 15D).  

Each fiber tract reconstruction was pseudo-randomly populated with 1000 multi-

compartment axon models. Results from simulations with 100 to 1000 axons were 

compared and the resulting activation profiles converged to within 1% when 500 or more 

axons were modeled. To prevent artifacts relating to model axon density the full 

population of 1000 axons were used in subsequent stimulations. The population of multi-

compartment axons was constrained by cross-sectional contours from the digital surface 

reconstruction of the CSTarm. Axial contours separated by 5 mm were generated using 

Rhinoceros3D v4.0. Each contour was discretized into 100 points and the coordinates of 

these points were imported to Matlab R2015a. Using Matlab, each contour was populated 

with 3000 randomly distributed points. Splines connecting the nearest points from 

neighboring contours were calculated and the first 1000 splines were used to define the 

geometries of the 1000 modeled axons. Axons were modeled with a myelinated diameter 

of 2 µm in alignment with measurements taken from the internal capsule in the rhesus 

macaque [121]. Each axon was populated with compartments representing nodes of 

Ranvier, myelin attachment segments, paranode main segments, and internode segments 

connected by an axial resistance. Axon compartment properties and order were consistent 

with the multi-compartment axon cable model developed previously [99,122,147,164].  
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Figure 15. Brain tissues were segmented manually and multi-compartment axon tracts 

were created using probabilistic tractography. Preoperative MRI was co-registered with 

postoperative CT (A). Gray matter, white matter, and the lateral ventricles were 

segmented using the co-registered MRI, and a digital representation of the DBS lead was 

placed in accordance with the co-registered postoperative CT imaging (B). Probabilistic 

tractography was performed using DWI (C) to segment the CSTarm within the right 

hemisphere (D). The segmented region of the internal capsule was used to guide the 

pseudorandom creation of 1000 multi-compartment axon geometries.  

 

3.3.2.4.Finite element model 

A finite element model was created for each subject in Comsol Multiphysics v5.2. 

Each model was created in alignment with the original DWI coordinate system so that no 

transformation of the tissue conductivity tensor map was required.  

3.3.2.4.1. Model geometry 

The geometry of the model included a smoothed reconstruction of the subject’s brain, a 

surface representation of the cephalic chamber, the DBS(A) lead. A reconstruction of 

each brain was smoothed to the extent that the cortical sulci were no longer visible on the 

surface. The smoothed brain was used in order to simplify meshing while maintaining the 

overall shape. Brain reconstructions were imported using Comsol Multiphysics CAD 

import module. The cephalic chamber was represented as distinct region on the surface of 

the brain as a circle with an outer diameter of 1 cm. It should be noted that in the 

experimental preparation, the cephalic chamber rests on the skull; however, granulation 



 

56 

tissue and residual fluid provide a conductive path between the chamber and brain. The 

DBS(A) lead was manually constructed within Comsol and included the lead body, the 

electrodes, and a 0.1 mm thick encapsulation layer. The location and orientation of the 

chamber and lead were determined using postoperative CT imaging. Depending on model 

complexity, the lead and electrodes were either included as volumetric entities or 

subtracted from the surrounding volume, leaving surface representations of the lead and 

electrodes. 

3.3.2.4.2. Boundary conditions 

The surface representation of the cephalic chamber was assigned as ground via the 

Dirichlet boundary condition of zero volts. The remainder of the brain surface was 

assigned the Neumann boundary condition of zero flux. In models where the lead and 

electrode geometries were modeled as surfaces rather than volumes, the lead body and 

inactive electrodes were assigned the Neumann boundary condition. Depending on model 

complexity, current-regulated stimulation was applied as a normal current density or 

using an equivalent circuit model of the electrode tissue interface (ETI). Both methods 

were implemented as boundary conditions on the surface of the stimulating electrode(s). 

In the case of the DBSA, the stimulation amplitude was evenly split across paired 

electrodes. Normal current density was calculated by dividing the maximum stimulation 

amplitude by the geometric surface area of the electrode. The equivalent circuit model 

was applied as a terminal boundary condition using the Comsol Multiphysics AC/DC 

module. The electrode tissue interface (ETI) was modeled as a three element Randles 

equivalent circuit model connected to a current-regulated source. The equivalent circuit 

model consisted of an access resistance, Ra, in series with a faradaic resistance, Rf, and 

double layer capacitance, Cdl connected in parallel. Ra was calculated by assigning 1 volt 

to the stimulating electrode (via the Dirichlet boundary condition), using Comsol to 

calculate normal current density during stimulation, calculating the effective applied 

current by integrating across the electrode surface, and dividing the stimulation voltage 

by the effective applied current. Rf was calculated by dividing the distributed faradaic 

resistance of platinum electrodes (150 Ω-cm
2
 [119]) by the electrode surface area. Cdl 
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was calculated by multiplying the electrode surface area by the distributed double layer 

capacitance of platinum electrodes (30 μF/cm
2
 [119]).  

3.3.2.4.3. Mesh 

Meshing was performed via Delaunay triangulation using Comsol. Mesh element size 

and growth parameters for the brain were varied depending on model complexity. To 

account for the small size and radius of the lead, electrodes, and encapsulation layer, the 

minimum and maximum mesh element size of these model domains was 0.01 and 0.1 

mm. A small-domain mesh refinement study was performed for these small domains and 

further refinement of the mesh changed the average FEA results by less than 1%. The 

shape function order used was the Comsol default (quadratic) except where specified 

otherwise. 

3.3.2.4.4. Material properties 

Text files containing the brain tissue conductivity tensor maps and relative permittivity 

values at a given frequency were automatically imported to Comsol as spatially 

dependent variables using the Comsol module, Livelink with Matlab. The tissue 

properties of the brain were assigned by interpolating the tissue conductivity tensor map 

and relative permittivity onto the finite element mesh using the nearest neighbors 

function. The encapsulation layer conductivity and relative permittivity were assigned 

isotropic values of white matter in order to represent the presence of a glial scar [155]. In 

models where the lead and electrodes were included as volumes, the material properties 

were assigned in accordance with previous DBS modeling work (lead body: σ = 1e-13, ɛr 

= 2) and (electrodes: σ= 5e-6, ɛr = 1) [188,189]. 

3.3.2.5.Predicting stimulation induced axonal activation 

3.3.2.5.1. The Fourier finite element method (FFEM) 

The Fourier finite element method (FFEM), described by Butson and McIntyre [190], 

was used to incorporate reactive tissue components and dielectric dispersion, both of 

which have been shown to significantly contribute to waveform shaping [190,191]. The 

FFEM was implemented as follows: A subject-specific stimulation waveform (1 msec in 
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duration and discretized into 1024 points) was created in Matlab (Figure 16A). The 1024 

point discrete Fourier transform (DFT) of the stimulation waveform was calculated using 

Matlab, producing estimates of the stimulation pulse phase and magnitude at 513 

frequencies: 0 through 512 kHz at 1 kHz increments (Figure 16B,C). At the same 513 

frequencies, the FEA was used to solve the time harmonic electroquasistacic equation: 

−∇[𝜎(𝜔) + 𝑗𝜔𝜀0𝜀𝑟(𝜔)]∇Φ = 0    () 

where σ is conductivity, ω is angular frequency, ɛ0 is the permittivity of free space (8.85 

x 10
-12

 F/m), ɛr is relative permittivity, and Φ is scalar electric potential. FEA was 

performed using the direct MUltifrontal Massively Parallel sparse direct Solver 

(MUMPS) in Comsol Multiphysics v5.2 on clusters at the Minnesota Supercomputing 

Institute at the University of Minnesota. In the dielectric dispersion model, tissue 

property maps were incorporated that were consistent with the frequency being solved. In 

all other models, the tissue property maps were consistent with the estimated normalized 

median frequency of the stimulation pulse regardless of the frequency being solved. The 

real and imaginary components of the calculated tissue potential (Figure 16D,E) were 

interpolated at the three-dimensional coordinate of each axon compartment using Comsol 

LiveLink with Matlab. A stimulation waveform for each compartment of each axon 

model was reconstructed by scaling the simulation pulse DFT by the compartment 

potential at each frequency, and performing the inverse DFT on the result (Figure 16F). 

The resulting waveform was duplicated and concatenated nine times to create a ten pulse 

stimulation train at 130 Hz.  

3.3.2.5.2. Multi-compartment axon modeling 

Stimulation pulse trains were simultaneously played into each compartment of a given 

axon using the NEURON v7.3 programming environment [192]. This was performed by 

perturbing the axonal membrane voltage using the extracellular mechanism 

(e_extracellular), in a manner consistent with previous modeling work [193]. Using 

NEURON, action potential counters were attached to each node and simple thresholding 

was used to detect stimulus driven spike activity. An axon was considered ‘activated’ if 
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an action potential was detected within 3 msec following 80% of stimulation pulses. 

Stimulation amplitude was varied until the threshold for activation was narrowed to a 

window of +/-0.05 mA. Activation profiles were then created for using all 1000 axons 

(Figure 16G).  

 

Figure 16. Axonal activation was modeled using the Fourier finite element method. The 

1024-point discrete Fourier transform (DFT) of the stimulation pulse (A) was used to 

calculate magnitude (B) and phase (C). The time harmonic Laplace equation was solved 

in the frequency domain using FEA at each frequency represented within the stimulation 
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pulse DFT (D and E). The stimulation pulse DFT was scaled by the FEA result at the 

location of each axon model compartment and the inverse DFT was performed to 

generate a compartment-specific stimulation pulse (F). Simulations of multi-compartment 

axons exposed to trains of compartment-specific stimulation pulses were performed using 

the NEURON programing environment and used to generate activation profiles (G) for 

each electrode stimulation configuration. 

3.3.3. Model comparison to experimental data 

For both subjects, model predictions were compared to in vivo motor contraction 

thresholds for stimulation through each electrode by calculating percent error. Percent 

error was calculated between the motor contraction stimulation amplitude threshold and 

the model-predicted stimulation amplitude required to achieve 10, 15, and 20% 

activation, per the activation profile curve. This resulted in three values for percent error, 

which were calculated for each conductivity map. In Subject J, model predictions using 

each conductivity map were compared directly to in vivo cortical recording results by 

calculating root mean squared error (RMSE) across trials. Each trial consisted of 

stimulation through a single electrode at a specific stimulation amplitude. As described 

previously, stimulation was delivered using C0 through C5 at three different stimulation 

amplitudes resulting in 18 trials. Error was calculated for each trial (indicated by the 

subscript i) as the difference between the calculated percentage of experimentally 

recorded M1arm cells with putative antidromic activity (yi) and the model-predicted 

percent activation (𝑦𝑖̂) during stimulation.  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖 )2𝑛

𝑖=1      () 

where n is the number of trials. 

3.4.Results 

3.4.1. GPi-DBS motor contraction thresholds and electrophysiology in M1arm (Subject 

J) 

GPi-DBS induced motor contractions in the contralateral upper extremity of Subject J 

(Table 6), including elbow, wrist, and finger flexion and extension. Stimulation 

thresholds for inducing muscle contractions were higher for electrodes located proximally 
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along the DBS lead, which not surprisingly corresponded to the electrodes with the 

largest spatial separation to the CST. 

Table 6. Subject J motor contraction stimulation amplitude thresholds and M1arm percent 

activation. 

Electrode 

Motor contraction 

stimulation 

amplitude 

threshold (mA) 

Motor contraction 

Percent activation 

calculated from 

M1arm recordings 

(%) 

C5 0.8 Elbow extension 0 

C4 0.7 Finger extension 0 

C3 0.6 Elbow extension 8 

C2 0.5 Elbow extension 10 

C1 0.3 Elbow flexion 16 

C0 0.2 Elbow flexion 12 

Zero percent M1arm activation was recorded at the motor contraction stimulation 

amplitude threshold of the two most proximal electrodes, C4 and C5. Across electrodes 

C0 through C3, the average percent activation recorded from cortex at the motor 

contraction threshold was 11.5 percent. For the electrodes where stimulation at the motor 

contraction threshold was greater than zero, C0 through C3, M1arm percent activation was 

impacted by electrode location and stimulation amplitude (Figure 17). For each electrode, 

increasing stimulation to 125% of threshold and decreasing stimulation to 75% of 

threshold increased and decreased M1arm percent activations respectively. For all 

electrodes, M1arm percent activation decreased for electrodes that were further from the 

target, but this effect was most dramatic for stimulation at 125% of threshold. 
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Figure 17. Motor contraction stimulation thresholds increased for more proximal 

electrodes. Percent activation of M1arm at the motor contraction stimulation threshold was 

highest and was within the range of 7-16 % for electrodes C0 through C3. 

3.4.2. GPi-DBS conventional lead model predictions (Subject J) 

DBS lead model predictions of activation (Subject J) using the three different 

conductivity tensor maps differed significantly within the stimulation amplitude range of 

0-1 mA (Figure 18). For stimulation using any of the four most proximal electrodes, zero 

percent activation was predicted for stimulation ≤1 mA. Additionally, simulations using 

the SE conductivity map failed to reach 10% activation for stimulation ≤1 mA using any 

electrode. Considering only the four most distal electrodes, the magnitude of the average 

difference between activation profiles produced using the NV and VC conductivity maps 

was 6 percentage points. The average difference between activation profiles produced 

using the SE conductivity map and the VC and NC conductivity maps were 40% and 

47%, respectively.  

For the purposes of analysis 10% activation was selected for detailed consideration based 

on the percent activation range that was calculated from cortical recordings (Table 6). 

Stimulation at 0.1 mA using the most distal electrode (C0) resulted in approximately 10% 

activation for both the NV or VC conductivity maps; however, the two model predictions 

diverged as stimulation amplitude increased. The difference in percent activation 

increased to approximately 15 percentage points at 1 mA with the NV map producing a 

higher prediction of activation. The difference in activation between models 

incorporating the NV and VC conductivity maps for stimulation using the C1 and C2 

electrodes was zero to five percentage points.  
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Figure 18. Activation profiles generated from models using the NV, VC and SE 

conductivity maps. Predictions of activation were significantly higher for the NV and VC 

conductivity maps in comparison to the SE map. 

3.4.3. DBS model validation in reference to cortical recording results (Subject J) 

Comparisons between percent activation from the M1arm recording array and model 

predictions of percent activation showed that models using the NV conductivity map 

produced results that best aligned with the experimental results in Subject J (Figure 19). 

Only stimulation using the three most distal electrodes: C0, C1, and C2 produced results 

where both model predictions of percent activation and M1arm calculations of zero 

percent activation were non-zero (Figure 19, left). The SE conductivity map performed 

poorest with a RMSE equal to 11.8. The NV conductivity map performed best with a 

RMSE equal to 6.08 (Figure 19, right). Prediction errors from the SE conductivity map 

were positive indicating the models under predicted percent activation. Prediction errors 

from the NV and VC conductivity maps were positive except for stimulation using C0 at 

75% and 100% of the motor contraction threshold and stimulation using C1. Considering 
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only electrodes C0, C1, and C3, the VC conductivity map modeling results produced 

slightly more accurate predictions of percent activation than the NV conductivity map in 

all cases except for the 75% and 100% of the motor contraction thresholds using C0.  

 

Figure 19. The NV conductivity map out performed both the SE and VC conductivity 

maps in terms of both RMSE and the coefficient of determination. The models under 

predicted activation except in the case of stimulation using C1 and stimulation using C0 

at 75% and 100% of the motor contraction threshold.  

3.4.4. Directional effects of GPi-DBS on motor contraction thresholds (Subject N) 

Directional stimulation induced motor contractions were observed in Subject N using the 

radially segmented DBS array (Figure 20). The observed motor contraction was flexion 

of the fingers. Stimulation thresholds were highest for stimulation configurations using 

electrodes facing away from internal capsule (anterior). The lowest stimulation thresholds 

were consistently from stimulation configurations that included only electrodes nearest 

internal capsule (posterior). The directional bias was greatest for the most distal 

electrodes and decreased for more proximal rows that were farther from the internal 

capsule, which is consistent with the results from Subject J described above. On average, 

the stimulation threshold was 30% higher for electrodes facing away from the internal 

capsule (anterior) than for electrodes facing the internal capsule (posterior). Additionally, 

the difference between the stimulation threshold from the column with the highest 

threshold and the column with the lowest threshold was 0.12 mA on average.  
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Figure 20. Motor contraction stimulation thresholds were observed to be lowest for 

stimulation through the posterior facing electrodes and highest for stimulation through 

the anterior facing electrodes. GP = globus pallidus, IC = internal capsule, A = anterior, P 

= posterior, M = medial, L = lateral. 

3.4.5. GPi-DBS array model predictions (Subject N) 

Similar to the conventional DBS lead model predictions, predictions of axonal activation 

with the DBS array differed significantly amongst the three different conductivity tensor 

maps (Figure 21). Within the 0-1 mA stimulation amplitude range, >10% activation was 

predicted only using the NV and VC tissue conductivity maps for the two most distal 

electrode groups and only for electrodes in the two columns closest to the IC. Simulations 

using the SE conductivity map failed to reach 10% activation for stimulation ≤1 mA 

using any electrode. Considering only the electrode configurations where >10% 

activation was predicted within 0-1 mA, the VC conductivity map predicted percentages 

that were 10-60 points higher that predictions produced using the NV conductivity map. 

Increasing the modeled stimulation amplitude range to 0-5 mA enabled for visual 

inspection of the model prediction trends and enabled quantification of the stimulation 

amplitude required to achieve 10% using the three most distal electrode groups as was 

done in the case of the conventional DBS lead modeling results. Within the 0-5 mA 

range, higher activation was predicted for the more distal electrode groups. For distal 

electrode groups, the activation profile plateaued when it neared 100% activation, while 

for more proximal electrode groups, the activation profiles were much more linear and 

did not plateau and/or did not near 100% activation.  



 

66 

The stimulation amplitudes needed to achieve 10% activation using the DBSA model 

were much higher than those using the DBS lead. For all electrode groups using both the 

NV and VC conductivity maps, the models predicted an extreme directional bias. Using 

any of the conductivity maps, stimulation within 0-5 mA using the most proximal 

electrodes did not result in predictions of at least 10% activation in all directions, and 

therefore, this group of electrodes was not plotted nor quantified in detail. Additionally, 

using the SE conductivity map, stimulation within 0-5 mA did not result in predictions of 

at least 10% activation in all directions for any of the electrode groups, and therefore, this 

group of electrodes was not plotted nor quantified in detail. On average, for both NV and 

VC conductivity maps, stimulation amplitude was approximately 300% higher for the 

electrode column with the highest required amplitude (anterior) in comparison to the 

electrode column with the lowest required stimulation amplitude (posterior). The range of 

the stimulation amplitude differential was smaller for the NV conductivity map (226-

365%) than for the VC conductivity map (150-503%). 

 

Figure 21. Model predictions of the stimulation amplitude required to reach 10% CSTarm 

activation models of Subject N using the NV and VC conductivity maps. Stimulation 

amplitudes predicted using the SE conductivity map was greater than 4 mA in at least one 

direction for each stimulating row, and therefore was excluded. 

3.4.6. DBS conventional lead model predictions versus motor contraction thresholds 

(Subject J) 

Model results were considered in the context of DBS lead motor contraction thresholds in 

two ways. First, by evaluating the model predicted percent activation at the motor 

contraction stimulation amplitude threshold using each conductivity map; and second, by 

calculating the percent error between the motor contraction stimulation amplitude and the 
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model predicted stimulation amplitude required to activate 10, 15, and 20% of modeled 

axons (Figure 22). Using the SE conductivity map, predictions at the motor contraction 

threshold were less than 5% for the most distal electrode (C0) and were zero for all other 

electrodes. For electrodes C0 through C2, model predictions using the NV and VC 

conductivity maps were within 5 percentage points; however, the predicted percent 

activation was not consistent across electrodes. Further, comparing the results from the 

NV or VC conductivity maps, neither produced a consistently higher or lower prediction 

of activation. Percent activation predicted using either the NV and VC conductivity maps 

fell within the following ranges C0: 16.4 to 19.8% | C1: 24 to 27.7% | C2: 5.5 to 9%. The 

lowest percent error between the motor contraction stimulation amplitude and the model 

predicted stimulation amplitude changed for different electrodes (Figure 22). For C0 and 

C1 the stimulation amplitude required to activate 20% of axons using either the NV or 

VC conductivity maps had the lowest error, while 10% activation using either the NV or 

VC conductivity maps resulted in the lowest error for C2. Where the models did not 

predict activation of at least 10% within the 0-1 mA range, 1 mA was used to calculate 

the minimum error. For C3, the magnitude of the minimum error using any of the three 

conductivity maps was greater than 67%. For the more distal electrodes: C0, C1, and C2, 

models using the SE conductivity map did not predict at least 10% activation within the 

0-1 mA range and, therefore, the minimum magnitude of the error was greater than 

100%. 
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Figure 22. Model predictions of percent activation at the motor contraction threshold. 

Using the SE conductivity map, activation was predicted to be < 3%. Activation 

predicted using the NV or VC map was 5-28% and neither map resulted in predictions of 

consistently higher predictions. The percent error between the motor contraction 

stimulation amplitude and the model predicted stimulation amplitude required to activate 

10, 15, and 20% exceeded 50% for all electrodes. Using the NV or VC map, error was 9-

10% comparing the motor contraction threshold to the model predicted stimulation 

amplitude required to achieve 20% activation. 

3.4.7. DBS array model predictions verses behavioral thresholds (Subject N) 

Model results using the DBS array were evaluated using the same methods that were 

utilized for the DBS conventional lead model comparison. For all but three stimulation 

configurations, the models predicted zero percent activation at the motor contraction 

threshold. Within these three configurations, only models using the VC conductivity map 

predicted greater than zero percent activation, and the model predictions were less than 

10%.  

The magnitude of percent error between the motor contraction stimulation amplitude and 

the model predicted stimulation amplitudes required to activate 10, 15, and 20% of 

modeled axons were much higher in all cases than the percent error calculated from 

models of the DBS lead ( 

Figure 23). Where the models did not predict activation of at least 10% within the 0-5 

mA range for all four directions, error was not plotted. These models included models 

that relied on the SE conductivity map, and models of simulation using the most proximal 

group of electrodes. The range of minimum errors from using the SE conductivity map 

was 650-1250% depending on electrode configuration. For all electrode configurations, 

percent error was lowest when comparing the motor contraction stimulation amplitude 

and the model predicted stimulation amplitude required to activate 10% of modeled 

axons using the VC conductivity map. Considering only the NV and VC conductivity 

maps using only the three most distal electrode groups, percent error was lowest, on 

average, for the most distal group of electrodes, which was closest to the CSTarm tract, 

and increased with distance as the electrode groups that were used were further from the 
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CSTarm tract. Additionally, percent error was lowest for electrodes in columns facing the 

CSTarm tract and increased strongly for electrodes facing away from the CSTarm tract. 

 

Figure 23. The magnitude of percent error between the motor contraction stimulation 

amplitude and the model predicted stimulation amplitude required to activate 10, 15, and 

20% of the CSTarm fibers. Note that posterior and lateral columns faced the CSTarm tract. 

3.5.Discussion 

Models of DBS have been increasingly utilized in research and clinical practice over the 

past two decades. To be properly utilized, it is important to understand the accuracy of 

model outcomes and to understand precisely how model predictions of cellular activity 

relate to behavioral outcomes. This understanding is vital in circumstances where models 

are used to guide clinical decision making. For example, in the scenario where models are 

used to guide or optimize stimulation parameters; a practice that may become necessary 

for next-generation DBS leads with many electrodes that cannot be feasibly programed 

using conventional trial-and-error programming strategies. Previous studies have 

compared computational modeling results to therapeutic effects and side-effects in 

patients [66,147] and preclinical animal models [99,148,164]. However, these studies are 

severely limited by the lack of model validation and the unclear relationship between 

model predictions of cellular activation and behavioral or clinical outcomes.  

Previous DBS computational modeling studies have established that subject-specific 

inhomogeneous and anisotropic tissue properties significantly impact model predictions 

[85,87]. This effect is due primarily to the inhomogeneous conductance of the brain as a 

whole and the close proximity of DBS target brain structures to highly anisotropic axon 

tracts such as the internal capsule. Several methods have been proposed within the brain 
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modeling literature for calculating subject-specific anisotropic tissue conductivity maps 

[88–90]. With only a few exceptions, [149,194], DBS models have relied upon the 

method described by Tuch et al. for calculating subject-specific anisotropic tissue 

conductivity maps [66,147,148]. Comparative modeling studies using different methods 

for calculating subject-specific anisotropic tissue conductivity maps are rarely performed 

in the context of DBS and therefore model sensitivity to this parameter remains unknown.   

The results of our study include: (1) stimulation induced activation in motor cortex at the 

motor contraction threshold amplitude was measured within the range of 8-16% for distal 

electrodes and 0% for most proximal electrodes. (2) Motor contractions were able to be 

induced using all electrodes, but higher stimulation amplitudes were required for 

increasingly proximal electrodes. (3) In comparison to motor contraction thresholds, 

model predictions using the DBS array strongly over predicted the degree of directional 

steering. (4) Error between model predictions and motor cortex recordings was lowest for 

models that relied on the normalized volume constraint method and was largest for 

models that relied on the scaled eigenvalue method.  

3.5.1. Relating M1arm activity patterns to behavior 

In both subjects, the stimulation amplitude required to evoke muscle contractions 

increased for proximal electrodes and decreased for distal electrodes. This increase was 

most obvious and consistent in Subject J, where the threshold stimulation amplitude 

increased at increments of approximately 0.1 mA as the stimulating electrode was 

changed from one electrode to an adjacent and more proximal electrode. It was 

anticipated that regardless of which electrode was used for delivering stimulation, CSTarm 

predictions of activation from cortical recordings would be generally consistent if similar 

motor contractions were observed. However, CSTarm predictions were inconsistent 

between distal and proximal electrodes. On average, in Subject J, 11.5% activation within 

CSTarm was measured at the stimulation amplitude threshold using the four most distal 

electrodes. In contrast, 0% activation was measured during stimulation using the two 

most proximal electrodes. This result suggests that (1) the brain area within M1 covered 

by a single cortical array was not sufficient to capture the full extent of antidromic 
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CSTarm activation that resulted from stimulation and/or (2) stimulation of pathways other 

than the CSTarm were responsible for generating motor contractions during stimulation 

using the two most proximal electrodes. Alternative pathways that may have been 

stimulated include those at various levels within the CST, such as fibers from premotor 

cortex and supplementary motor area, which are known targets of cerebellar output [195–

197]. In this study, GPi was selected as the target rather than STN or thalamus in order to 

limit the potential for stimulating complex fiber pathways; however, projections to 

different cortical regions are not precisely segmented within the CST [185] making 

isolation of single CST subregion in this manner difficult.  

3.5.2. Relating M1arm activity patterns and behavior to model predictions  

Results from cortical recordings best aligned with model predictions of percent activation 

that were generated using the NV conductivity map. The error in SE map model 

predictions was found to be much higher than either the NV map or the VC map model 

predictions. Both the NV and VC maps were generated using DWI data in combination 

with the Gabriel dispersion model, suggesting that conductivity maps that leverage both 

inputs generate more accurate tissue conductivity maps. Comparing the VC and NV map 

errors, the different was smaller but the NV map generated a lower estimate of error. This 

finding indicates that the normalized DTI eigenvalues provide a better estimate of 

anisotropy in brain tissue conductivity than artificially imposed anisotropy using the 9:1 

ratio described by Nicholson in 1965 [84]. This outcome is perhaps not surprising as the 

measurements taken by Nicholson did not sample enough brain areas to generate an 

estimate of variance; however, this observation is notable considering that it is commonly 

cited used to define white matter anisotropy in models of the brain.  

Model predictions of activation at the stimulation thresholds for inducing motor 

contractions differed strongly between the DBS lead and the DBSA. NV map model 

predictions of activation during stimulation using the DBS lead (Subject J) were 19.8% 

for electrode C0, 24% for electrode C1, 9% for electrode C2 and 0% for all other 

electrodes. Overall, error was lowest for model predictions using the NV conductivity 

map; however, M1arm activation was approximately 10 percentage points lower than the 
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NV model predicted percent activation for subthreshold stimulation and threshold 

stimulation using electrodes where both experimental and model predicted percent 

activation were greater than zero. Alternatively, for suprathreshold stimulation, model 

predictions were 2-5 percentage points higher than M1arm percent activation. These 

results suggest that the overall shape of the model generated activation curve is 

inconsistent with the experimental results. In each of the presented models, the activation 

curve generated by model predictions increased gradually as stimulation amplitude 

increased in a near-linear manner. The experimental data suggest that the activation 

profile curve should rise more quickly at low stimulation amplitudes and rise more 

slowly at high stimulation amplitudes but not fully plateau within the range so 

stimulation amplitudes evaluated. However, the currently available experimental data are 

insufficient to define an experimental activation profile. Future validation studies may 

address this issue by collecting experimental data at motor contraction stimulation 

thresholds and at a range of sub/supra threshold stimulation amplitudes. Additionally, 

future work should incorporate more samples in order to allow for the distribution and 

variance of an experimental activation to be characterized and considered in the context 

of model validation. Assuming the true activation profile rises sharply at low stimulation 

amplitudes and levels off near the behavioral threshold, one consideration that could 

change the shape of the model generated activation profile is the anatomical 

representation of the CSTarm, which was generated by thresholding probabilistic 

tractography results. This procedure generates a single three-dimensional surface, which 

was uniformly populated with multi-compartment axons. The surface provides a 

convenient means to geometrically constrain the creation of a population of model axons; 

however, this may not capture the true distribution of axons that project from a single 

cortical region within the CST. Retrograde tracing studies have shown these topographic 

representations of CST fibers to be density distributed in one region of the CST, but then 

be more sparsely represented throughout the full extent of the CST [185]. This in mind, 

perhaps probabilistic tractography should be utilized seed the density, rather than simply 

the primary location, of different fiber projections within various CST topographical 

regions. It is reasonable to hypothesize that a CSTarm representation with graded axon 

density could generate an activation profile curve with a steeper accent at slow 
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stimulation amplitudes. However, extensive modeling would be required to show this 

effect, given the dependence of model outcomes on other parameters such as the brain 

tissue conductivity map. Comparisons between retrograde tracing studies and model axon 

trajectories generated using the proposed approach would provide valuable insight 

regarding the sensitivity of model outcomes to the anatomical representation of fiber 

tracts in the brain. 

Model predictions of activation during stimulation using the DBS array (Subject N) were 

zero at the motor contraction threshold for all configurations using any of the tissue 

conductivity maps. In order to make a comparison between the models and experimental 

data, the stimulation amplitude required to generate 10% activation in the model was 

selected as a conservative threshold for generating a stimulation induced motor 

contraction. Modeling results indicated that the stimulation amplitudes required to 

achieve 10% activation were larger than 1 mA in all directions but posterior, the direction 

of the electrode facing the CSTarm. Comparing the model predicted stimulation 

amplitudes required to achieve 10% activation to the stimulation amplitudes required to 

induce motor contractions, the model required much higher (an order of magnitude in 

some cases) stimulation amplitudes. The model also resulted in a higher degree of  

directional steering than was observed in the experimental results. The large difference in 

stimulation amplitude makes interpreting these results difficult; however, it should be 

noted that the degree of model predicted steering using the DBSAs is consistent with 

previous DBSA experimental work [101,110,112]. This finding suggests that shorting or 

capacitive coupling between densely distributed conductors may be responsible for the 

limited directional steering observed in vivo. Despite the potential advantages with 

DBSA, by design these devices have many more failure points than conventional leads. 

Additionally, size limitations associated with increasing the number of electrodes 

requires the dense packaging of insulated conductors, and in some cases, required 

manufacturing techniques such as thin-film microfabrication that have not be proven 

clinically viable for long-term implanted devices. These factors are important 

considerations, and although they must be considered by device manufacturers, 
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packaging and biocompatibility should be more thoroughly considered in early 

investigational studies of novel electrode designs for neural stimulation. 

3.5.3. Model validation 

To date, only one attempt at in vivo electrical field validation has been performed in the 

context of deep brain stimulation [86]. In this study, microelectrode recordings of tissue 

voltage during DBS were compared to FEA predictions using a homogenous tissue 

conductivity map and using a subject-specific inhomogeneous and anisotropic tissue 

conductivity map of the brain. The results of this study further established the importance 

of incorporating subject-specific inhomogeneous and anisotropic tissue properties into 

models of DBS to accurately predict stimulation-induced electric fields in the brain. Of 

particular interest, the study demonstrated very good alignment between the experimental 

measures of voltage in the brain during stimulation and FEA results using the SE tissue 

conductivity map. Our behavioral results in both animals suggest that the SE map 

produced overprediction of the stimulation threshold necessary to generate a motor 

contraction. Comparisons between the two studies are difficult to make because of 

several key differences: (1) Thalamus and STN were targeted rather than GPi, (2) DWI 

was captured at 3 Tesla rather than 7 Tesla, (3) a very low subthreshold stimulation 

amplitude, 0.03 mA, was used, (4) the model did not incorporate tissue capacitance, and 

(5) a 0.25 mm encapsulation layer was assigned a conductivity of 0.18 S/m rather than a  

0.1 mm encapsulation layer with a conductivity of 0.066 S/m.  

In an attempt to compare model results between studies we ran our DBS lead model 

using a 0.03 mA amplitude stimulation waveform and captured the peak voltage of the 

stimulation waveform in tissue. On average, the peak voltage was 54% higher in for the 

models using the NV and VC conductivity maps in comparison to the model using the SE 

conductivity map. Using the SE conductivity map, the peak potential in tissue ranged 

from 1 to 8 mV within a distance of 1 to 6 mm from the stimulation electrode. These 

values were similar to the in vivo peak voltage observed by Miocinovic et al. in thalamus, 

1 to 6 mV within a distance of 1 to 6 mm from the stimulation electrode. This comparison 

indicates that the SE conductivity map may best reflect in vivo voltage measures while 
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model predictions of cellular activation using the NV or VC conductivity maps more 

accurately reflect cortical recordings. However, it is not possible to conclude this using 

only the data provided especially for low stimulation amplitudes, where model 

predictions in our study are most similar. Additionally, clear differences in contrast 

between GP and thalamus were observable in the DWI suggesting a significant difference 

in conductivity between the two brain regions that could significantly affect the measured 

stimulation waveform amplitude. Although these experiments are extremely difficult to 

perform, full validation may require replication of the Miocinovic et al. for GPi 

stimulation using a range of stimulation amplitudes that include values near a behavioral 

threshold.  

3.5.4. Limitations 

There are several key limitations of this study. Although our models did include an 

inhomogeneous and anisotropic representation of the electric properties of brain tissue, 

our models excluded several tissue types including the skull, meninges, vasculature, and 

CSF surrounding the brain. We assumed that high conductivity pathways exist between 

the brain and cephalic chamber, which was used as ground, due to the presence of 

granulation tissue and residual fluid; however, stimulations were not conducted to 

confirm the validity of this assumption. The NV and VC conductivity maps assumed the 

ventricles to be isotropic and purely resistive. We observed that the lateral ventricles in 

both subjects to be extremely narrow and considered that the choroid plexus could take 

up large proportion, by volume, of the ventricles potentially invalidating the assumption 

that the ventricles were purely resistive, homogenous, isotropic, and non-reactive. 

Additionally, each of the conductivity maps relied on DWI imaging with 1.1 mm 

isotropic resolution to represent the anisotropy of fiber tracts within the brain. The size of 

myelinated axons within the rhesus macaque CST; however, are on the order of microns 

[121]. Due to the limitations associated with DWI resolution, therefore, our conductivity 

maps and probabilistic tractography are both too course to capture the precise directional 

contributions of individual fibers. 
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This study included one subject with each style DBS lead, only subject with a cortical 

array, and involved the targeting of a single brain region, GPi. It is therefore not possible 

difficult to generalize our findings to other targets or to other subjects. However, the 

difference in predictions between models using the SE and the other conductivity maps 

was large enough that variance due to factors such as model complexity and uncertainty 

in the conductivity values are unlikely to account for this difference [151,194]. 

Additional validation studies will be required to determine if the measures of model 

validity described here are generalizable across brain regions and across subjects. This 

validation study, being the first of its kind, outlines a technique and provides baseline 

measures of error for use in future validation studies and model optimization studies.  

Histological evaluation was not used to verify the locations of the DBS leads and the 

cortical recording array.  Currently, both subjects in this study are participants in parallel 

studies preventing histological confirmation of electrode locations. Although verification 

of lead location is commonly performed using fused preoperative MRI and postoperative 

CT, reports estimate DBS lead localization error to be in the range of 1-2 mm [198–201]. 

Computational modeling studies have demonstrated that lead misplacement within 1 mm 

can significantly impact model outcomes [87,100]. Additionally, the analysis of cortical 

activity relies on the assumption that neural recordings were captured from cortical layer 

V pyramidal cells. This assumption is reasonable given the electrode array depth of 

1.5mm and the fact that putative antidromic activity was observed on many recording 

channels; however, histological verification is required to verify, with absolute certainty, 

the cortical layer from which the microelectrode recordings originated. 

3.6.Conclusions 

Model predictions using the NV and VC conductivity maps aligned well with predictions 

of cortical activation from M1arm while predictions using the SE conductivity map 

strongly under predicted activation. This finding suggests that future DBS modeling 

studies should utilize tissue conductivity models that incorporate measures of 

conductivity rather than relying on the more commonly utilized scaled eigenvalue 

method. M1arm percent activation required to evoke motor contractions were within the 
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range of 8-16% for the four most distal electrodes, which were nearest to the CSTarm, and 

0% for the two most proximal electrodes. For brain targets within several millimeters of a 

stimulating electrode, the range of 8-16% activation establishes a soft benchmark for 

assessing meaningful behavioral outcomes from model generated activation profile 

curves. Model results using the DBS array suggest a much greater directional bias than in 

vivo behavioral outcomes. However, the model predicted directional bias seems 

consistent with the limited published data demonstrating directional thresholds for 

stimulation induced motor contractions. These findings suggest that more work is 

required to quantify, in vivo, the degree of current steering that is possible using DBS 

arrays and suggests that more comprehensive models that include highly conductive 

paths between electrodes and capacitive coupling between densely distributed conductors 

may be required to model current steering with DBS arrays.  

3.7.Supplement: Model complexity analysis 

Previous DBS modeling work has evaluated the impact of model complexity for human 

DBS leads with cylindrical shell electrodes [155,191,202]. In accordance with this work, 

an analysis was performed to determine the appropriate complexity for running models of 

GPi-DBS with small electrodes in the rhesus macaque brain. The analysis was performed 

using a model of the subject with the implanted DBSA, Subject N. The following 

parameters were varied in the complexity analysis: brain mesh element size, mesh 

element shape function order, inclusion of the ETI equivalent circuit model, inclusion of 

dielectric dispersion. The five models that were compared to evaluate complexity were 

labeled: standard model, fine resolution, cubic shape order, ETI, and dielectric dispersion 

(Supplementary table 1).  

Supplementary table 1. Details of model complexity study. 

Model label 

Mesh element size 

(mm) 
Shape 

function 

order 

Number of 

elements 

Conductiv

ity model 
ETI 

Maximum Minimum 

Standard 5 0.1 Quadratic 271754 
Median 

frequency 
No 

Fine resolution 2 0.04 Quadratic 464111 
Median 

frequency 
No 

Cubic shape 5 0.1 Cubic 271754 Median No 
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function frequency 

ETI 5 0.1 Quadratic 342858 
Median 

frequency 
Yes 

Dielectric 

dispersion 
5 0.1 Quadratic 271754 

Frequency 

dependent 
No 

The results from models of varying complexity were compared by calculating the mean 

difference (MD) between the standard model activation profile and the activation profile 

from each of the other models. The mean difference was calculated within 0-1 mA at 

0.025 mA increments using both the NV and VC conductivity maps. The SE conductivity 

map did not produce activation within 0-1 mA. Although the standard model was selected 

as the basis for comparison, but it was not assumed to produce results that represented the 

true activation profile. Therefore, variation in activation profile that could be attributed to 

complexity was considered in the context of the model validation results. 

Overall, electrode-tissue interface and finite element model complexity (beyond the 

standard model parameter settings) was found to have a minimal effect on the activation 

profile (Supplementary figure 1). For both the VC and NV tissue conductivity models, 

the activation profiles from the fine resolution mesh and the cubic shape order models 

differed on average by less than one percentage point from the standard model, with the 

fine resolution model predicting slightly lower activation and the cubic shape order 

model predicting slightly higher activation. The ETI and dielectric dispersion models 

differed by as much as 2.62 percentage points on average from the standard model. 
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Supplementary figure 1. Activation profiles from models with varied complexity differed 

by up to 2.62 percentage points on average in comparison to the standard model. 

Previous studies have evaluated the extent to which complexity affects model results and 

have concluded that highly complex models are necessary to achieve accurate results 

from models of DBS [118,194]. Examples of these highly complex models include those 

with higher order shape functions than what are mathematically required to solve the 

model [118], equivalent circuit models of the electrode tissue interface [118], and fully 

incorporated models of dielectric dispersion [191]. In such studies, error is commonly 

quantified with respect to the most complex model and using voltage predictions from the 

entire head or brain model or using a waveform reconstructed at a single point within the 

model. Calculations which use these techniques may generate measures of error that (1) 

are heavily biased by errors far from the stimulating electrode, (2) are too local and 

therefore not representative of error throughout the models, and (3) may have no bearing 

on the model outcome measure of interest, such as percent activation of a particular 

axonal pathway or VTA. Our results indicate that the general shape of percent activation 

curve for a population of axons within approximately 1 cm of the stimulating electrode 

was not affected by increasing model complexity by increasing mesh resolution, 

increasing shape order, including a model of the ETI, or including dielectric dispersion. 

Further, our results suggest that our standard model could have been further simplified by 

using a more coarse mesh. 

In previous studies, it has been assumed that more complex models generate superior 

results [118,194]; however, variance in model outcomes must be considered in the 
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context of the model goals, outcome measures, and the certainty of input parameters 

[86,181,203]. The simplest model we evaluated was selected as a reasonable predictor of 

the activation profile based on our findings that varying model complexity produced 

activation profile curves that were extremely similar in shape, and the range of values 

within the curves was approximately centered on the values predicted by the most simple 

model. Although these findings are specific to the models presented here, they have 

important implications. For example, assessing the precision of models, which use a 

similar framework where complexity is limited by computational resources and 

knowledge of electrode material properties, the former being highly relevant to models 

used in clinical practice and research studies that do not focus on model development. 
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4.1.Overview 

4.1.1. Objective 

Deep brain stimulation (DBS) therapy currently relies on a transcranial neurosurgical 

technique to implant one or more electrode leads into the brain parenchyma. In this study, 

we used computational modeling to investigate the feasibility of using an endovascular 

approach to target DBS therapy. 

4.1.2. Approach 

Image-based anatomical reconstructions of the human brain and vasculature were used to 

identify 17 established and hypothesized anatomical targets of DBS, of which five were 

found adjacent to a vein or artery with intraluminal diameter ≥ 1 mm. Two of these 

targets, the fornix and subgenual cingulate white matter (SgCwm) tracts, were further 

investigated using a computational modeling framework that combined segmented 

volumes of the vascularized brain, finite element models of the tissue voltage during 

DBS, and multi-compartment axon models to predict the direct electrophysiological 

effects of endovascular DBS. 

4.1.3. Main results 

The models showed that: (1) a ring-electrode conforming to the vessel wall was more 

efficient at neural activation than a guidewire design, (2) increasing the length of a ring-

electrode had minimal effect on neural activation thresholds, (3) large variability in 

neural activation occurred with suboptimal placement of a ring-electrode along the 

targeted vessel, and (4) activation thresholds for the fornix and SgCwm tracts were 

comparable for endovascular and stereotactic DBS, though endovascular DBS was able 

to produce significantly larger contralateral activation for a unilateral implantation. 

4.1.4. Significance 
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Together, these results suggest that endovascular DBS can serve as a complementary 

approach to stereotactic DBS in select cases. 

4.2.Background 

The use of neuroendovascular techniques to deliver therapeutic electrical stimulation to 

deep brain structures has been proposed several times within the literature [204–207]; 

however, the feasibility of this technique has never been investigated in the context of 

known deep brain stimulation (DBS) targets and current state-of-the-art endovascular 

technology. Previous studies have established proof-of-concept demonstrations for 

navigating recording electrodes to cerebral capillaries in baboons [205] and humans 

[204]. A number of more recent studies have described recording neural activity using 

electrodes placed within larger vessels in the brain, including the middle cerebral artery 

[208–210], callosomarginal artery [210], basilar artery [210], middle meningeal artery 

[210–212], middle cerebral artery [209,210,213], and cavernous sinus [214,215]. Most 

recently, a study comparing endovascular sinus and subdural surface recording electrodes 

found similar results using the two modalities during seizure monitoring in an 

anesthetized swine model [62]. Endovascular electrodes have also been used to 

electrically stimulate cranial nerves, including the parasympathetic efferents of the vagus 

nerve from within the superior vena cava for cardiac rhythm management [216], and the 

phrenic nerve from within the brachiocephalic vein for respiratory maintenance [217]. 

Surprisingly, while many studies have focused on recording neural activity from within 

the vasculature, little is known about the mechanistic feasibility of electrically stimulating 

brain tissue using an endovascular electrode. 

In this study, we developed a computational modeling framework to investigate the 

proximity of major blood vessels to known DBS targets and to estimate the intensity of 

stimulation necessary to modulate these DBS targets using endovascular electrodes. A 

three-dimensional reconstruction of the brain—including the parenchyma, vasculature, 

and ventricles—was coupled with a multi-compartment cable model of myelinated axons 

in the context of an inhomogeneous finite element model of the tissue voltage generated 

around a stimulating electrode [98,122,164]. Models of transvascular electrical 
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stimulation were generated for two clinical DBS targets: (1) the fornix for memory 

disorders [218], and (2) the subgenual cingulate white matter (SgCwm) for treatment-

resistant depression [219,220]. 

4.3.Methods 

4.3.1. Human subject imaging 

Retrospective data analysis was performed using anatomical T1-weighted magnetic 

resonance imaging (MRI) (Figure 24a) and gadolinium enhanced magnetic resonance 

angiography (MRA) (Figure 24b) from a single subject (51-year-old female). The 

subject's data showed no evidence of vascular damage/deformity in the deep cerebral 

veins or anterior cerebral arteries (ACAs); thus our analysis was constrained to these 

areas. Both imaging datasets were captured in the sagittal plane using a clinical 1.5 T 

scanner with slice thickness = 0.9 mm, field of view = 23 × 23 cm, matrix = 256 × 256 

voxels. 

 
Figure 24. Image alignment and reconstructed anatomical surfaces. Sagittal T1-weighted 

MRI from a single subject (a). Sagittal gadolinium contrast enhanced MRA (b) aligned 

by three-dimensional co-registration to the MRI. Surface reconstructions of the brain 

anatomy (c), including ventricles (green), cerebral veins and sinuses (blue), ACAs (red), 

cerebellum (orange), thalamus (yellow), and brainstem (pink), overlaid onto the MRI. 

4.3.2. Anatomical surface reconstructions 

Three-dimensional surface representations of the cranial anatomy were constructed for 

the purpose of generating axonal tracts and anatomically correct boundaries to regions 

with different electrical conductance values. In order to establish a common coordinate 

system for the entire analysis, the subject MRA was co-registered to the subject MRI in 

three dimensions. Surface representations of the ventricles and brain areas were 
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reconstructed from the subject MRI in reference to the Mai human brain atlas [221] and 

surface representations of the cerebral veins and arteries were reconstructed from the 

MRA in reference to the Cerefy human cerebral vasculature atlas [222]. All surfaces were 

constructed using Mimics Innovation Suite (v15.0, Materialise, Leuven, Belgium). Image 

resolution enabled reconstruction of cerebral vasculature ≥1 mm in diameter. Surface 

reconstructions of the cerebral veins, arteries, ventricles, and brain regions were 

combined into a single three-dimensional anatomical model (Figure 24c). 

4.3.3. Electrode construction and placement 

Three-dimensional electrode models were digitally constructed and oriented within the 

anatomical model using Rhinoceros3D (v4.0, McNeel, Seattle, WA). An endovascular 

guidewire electrode, a compliant endovascular ring-electrode, and a clinical DBS lead 

were investigated. The cylindrical (diameter = 0.127 mm; length = 1 mm) guidewire 

electrode was constructed to model the exposed metallic tip of a 4 French (Fr) 

endovascular guidewire. An annular ring-electrode, which was morphed to the retaining 

vessel shape, was constructed (0.5–4.5 mm length; 0.1 mm wall thickness) to model a 

compliant endovascular snare or tightly meshed stent-style electrode. Only the macro 

features of each electrode were modeled. The primary coils of a guidewire, the primary 

coils of a snare, and the individual struts of a stent were not modeled because two-

dimensional simulations incorporating these fine features showed the effect to be 

negligible in the tissue conductance model solution. In each rendition, the stimulating 

surface of the endovascular ring-electrode was created by sectioning and radially scaling 

the internal wall of the encapsulating vessel to 75% of its original diameter. This method 

produced electrodes that maintained the intraluminal shape of the surrounding vessel and 

that could be nested within the finite element mesh used to calculate the tissue voltage 

during stimulation. Because the model electrodes were inspired by actual endovascular 

devices, the surface areas of each electrode were not equal. The clinical DBS lead model 

was designed to replicate the quad-contact 3387 DBS lead (Medtronic Inc., Minneapolis, 

MN) with an electrode contact diameter of 1.27 mm, length of 1.5 mm, and inter-

electrode spacing of 1.5 mm. 
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Model fornix and SgCwm tracts were targeted bilaterally using both endovascular and 

stereotactic approaches. Endovascular electrodes targeting fornix and SgCwm were 

positioned within the ipsilateral internal cerebral vein (ICV) and the ipsilateral A2 

segment of ACA, respectively. For both endovascular targets, the electrode was initially 

placed within the vessel at the midpoint of the shared vessel/target border. Clinical DBS 

leads targeting the SgCwm were introduced through the superior frontal gyrus along a 

slight lateral to medial paracoronal trajectory [219]. For this trajectory, the active contact 

resided at the sagittal midpoint between the anterior commissure and the anterior aspect 

of the genu of the corpus callosum. Clinical DBS leads targeting the fornix were 

introduced through the superior frontal gyrus and lateral ventricles parallel to the anterior 

aspect of the fornix such that the ventral tip of the lead lay in close proximity to optic 

tract [218]. In this trajectory, the lead was external to the fornix and the three most 

ventral contacts were at equal distances from the target. The two most ventral contacts 

were in, or in close proximity to, the hypothalamus, and the more dorsal of the two center 

contacts was set as the active contact. 

4.3.4. Axon models 

Bilateral surface reconstructions of the fornix and SgCwm tracts were independently 

populated with 400 three-dimensional, multi-compartment axon cable models [75]. Axon 

geometries were bound by contours generated from cross-sections of the anatomical MRI 

reconstructions of each target. Each contour was populated with 500 uniformly 

distributed seed points using a Jordan curve algorithm [223], and the closest points from 

adjacent contours were connected using a nearest neighbor algorithm [87] in Matlab 

(vR2011b, Mathworks, Natick, MA). Fornix axon seed points were bounded by 16 

contours (~1 mm separation) along the axial centerline of the tract in each hemisphere. In 

fornix only, axons were allowed to cross hemispheres to reflect anatomy described in 

retrograde labeling studies [224]. SgCwm axon seed points were bounded by five 

parasagittal contours (1 mm separation) in each hemisphere. Spline fits were applied to 

each set of connected points resulting in 500 three-dimensional traces, of which the 400 

shortest length splines were used to create axon cable model compartments. The 2 µm 

diameter myelinated axon cable model consisted of nodes of Ranvier, myelin attachment 
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segments, paranode main segments, and internode segments with each compartment 

connected through an axial resistance. These axonal equivalent circuit models included 

membrane capacitance, linear leakage properties, and nonlinear sodium and potassium 

conductances that were consistent with previous studies [96,98–100,122,164]. 

4.3.5. Predicting tissue voltage during DBS 

Separate three-dimensional tissue conductance models of the brain were developed for 

each simulation. Anatomical surface reconstructions of the cerebral vasculature, 

ventricles, electrodes, and an implantable pulse generator (IPG) were nested within a 

cylindrical boundary (radius = 30 cm; height = 55 cm) and combined to form a single 

non-manifold assembly surface mesh. The model IPG was a 76 × 61 × 13 mm3 

rectangular cuboid with rounded edges and was centered 33 cm below and 3.75 cm to the 

right of the geometric center of the head model. The resulting nested surface mesh was 

transformed to a volumetric mesh of tetrahedral elements using 3-Matic (Materialise Inc., 

Leuven, Belgium). Depending on electrode complexity, each volumetric mesh consisted 

of between 95,300 and 115,000 elements, with finer resolution near the electrode surface 

and more coarse resolution near the model perimeter. The conductance of blood, 

cerebrospinal fluid (CSF) and bulk tissue were modeled as 0.7 S/m [82]
 
, 1.8 S/m [183], 

and 0.3 S/m [79,80], respectively. The model assumed ideal electrode behavior, isotropic 

conductances, and linear scaling of electric potentials in the tissue. Voltage sources were 

specified at the surface of each electrode and the IPG surface was set to ground while the 

outer surface of the bounding cylinder was assigned the condition of zero-flux. The tissue 

voltage solution (Figure 25a) for each electrode configuration was calculated by solving 

Poisson's equation using the finite element method (FEM) with Comsol Multiphysics 

(v4.0a, Comsol Inc., Burlington, MA). 
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Figure 25. Modeling tissue and extracellular axonal cable model voltages during DBS. 

The FEM tissue voltage solution superimposed onto the anatomical surface mesh of the 

cranium, ventricles, and major blood vessels from 1 V stimulation applied across an 

endovascular ring-electrode in the ICV (a). The FEM solution from (a) superimposed 

onto a bilateral subpopulation (20/400) of model axons representing the fornix tract (b). 

The FEM solution from 1 V applied across a single contact of a clinical DBS lead 

targeting the fornix superimposed onto a bilateral subpopulation (20/400) of model axons 

representing the fornix tract. 

4.3.6. Predicting axonal responses to DBS 

Thresholds for driving axonal action potentials were calculated using the Neuron v7.2 

programming environment [124]. Each axonal compartment of each axon was perturbed 

using the inserted extracellular mechanism by driving the variable, e_extracellular with 

the calculated peri-stimulation extracellular membrane potential. Conductance values 

required for the application of extracellular stimulation in this manner were assigned 

values consistent with previous work [122]. The applied extracellular membrane potential 

was consistent with a 130 Hz voltage-controlled stimulation waveform and scaled 

according to the FEM solution (Figure 25b and c). The voltage waveform was derived 

from an experimental recording of a voltage-controlled IPG (Medtronic, Minneapolis, 

MN), which exhibited a charge-balanced 90 µs cathodic pulse followed by a 400 µs 

interphase delay and a 3 ms anodic pulse. Electrical capture of axonal output with DBS 

was defined by axonal action potentials occurring within 1 – 3 ms following the 

application of the stimulus with a probability ≥ 0.8. The percentage of the neural 

population activated by stimulation amplitudes between 0 and 10 V was calculated at 

0.125 V increments and used to generate an activation profile for each simulation. 
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Activation plots were calculated for unilateral and bilateral stimulation of each target 

using both endovascular electrodes and stereotactic leads for delivering DBS. 

4.4.Results 

4.4.1. Endovascular stimulation targets 

Seventeen known or hypothesized therapeutic targets for DBS were investigated in the 

context of the human neural vasculature. For each target, adjacent blood vessels with 

intraluminal diameters of ≥1 mm (Table 7) were identified using a three-dimensional 

atlas [222] of idealized cerebral blood vessels joined with T1-weighted anatomical MRI 

from a single subject. No large cerebral arteries or veins (≥1 mm diameter) were found 

directly adjacent to the following 12 targets: anterior limb of the internal capsule, 

centromedian/parafasicularis nucleus of the thalamus, globus pallidus internus, 

hippocampus, hypothalamus, inferior thalamic peduncle, lateral habenula, periaqueductal 

gray/periventricular gray, subthalamic nucleus, ventralis caudalis nucleus of the 

thalamus, ventrolateral intermedus nucleus of the thalamus, and the ventral 

posterolateral/ventro-posteromedial nucleus of the thalamus. Either the ICV or the A1/A2 

segments of the ACA were found to directly border some aspect of the remaining five 

targets (Table 7). The dorsal aspect of the ICV was found to border the ventral aspect of 

the ipsilateral fornix, and the ventral aspect of the ICV was found to border the dorsal 

aspect of the ipsilateral anterior nucleus of thalamus. The dorsal border of the A1-ACA 

was found to border the ventral aspect of the ipsilateral nucleus accumbens and the A2-

ACA was found to border the medial aspect of the subgenual cingulate and ventral 

capsule. 

Table 7. Adjacent blood vessels to known and putatively therapeutic DBS targets. 

Targeted neural region Clinical disorder(s) [13–17] 
Adjacent 
blood 
vessels [222] 

Intraluminal 
vessel diameter 
[222] (mm) 

Anterior limb of the internal capsule TRD, OCD -  
Anterior nucleus (Thal.) Epilepsy ICV 0.4-1.4 

Centromedian/parafasicularis (Thal.) PD, ET, TS, Epilepsy, DoC -  
Fornix AD ICV 0.4-1.4 
Globus pallidus internus PD, dystonia, TRD, TS -  
Hippocampus Epilepsy -  
Hypothalamus Aggressive behavior, obesity, AM -  
Inferior thalamic peduncle TRD, OCD -  
Lateral habenula TRD, obesity, AM -  
Nucleus accumbens TRD, OCD, addiction, obesity,AM A1-ACA 2.2-2.6 
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Periaqueductal gray/periventricular 
gray 

Chronic pain -  

Subgenual cingulate white matter TRD A2-ACA 1.9-2.2 
Subthalamic nucleus PD, dystonia, TRD, OCD, epilepsy -  
Ventralis caudalis nucleus (Thal.) Chronic pain -  

Ventral capsule OCD A2-ACA 1.9-2.2 
Ventrolateral intermedus (Thal.) ET -  
Ventral posterolateral/ventro-
posteromedial (Thal.) 

Chronic pain -  

A1 = A1 segment and A2 = A2 segment of the ACA = anterior communicating artery, AD 

= Alzheimer's disease, AM = anorexia mentosa, ICA = internal carotid artery, ICV = 

internal cerebral vein, Thal. = thalamus, TRD = treatment resistant depression, OCD = 

obsessive-compulsive disorder, PD = Parkinson's disease, ET = essential tremor, TS = 

Gilles de la Tourette Syndrome, DoC = disorder of consciousness. 

4.4.2. Endovascular navigation to the fornix and SgCwm 

Theoretical endovascular implantation paths from the internal jugular to the ICV (to 

stimulate fornix) and from the internal carotid artery to the A2-ACA (to stimulate 

SgCwm) were characterized using the Cerefy human cerebral vasculature atlas [222]. 

Overall path length, vessel branching angles, and intraluminal vessel diameters were 

measured for right-sided endovascular access to each target. Fornix and SgCwm were 

selected for further investigation because (1) each is directly adjacent to a ≥1 mm 

diameter vessel, (2) each has shown potential efficacy in long-term (≥12 month) clinical 

trials [218,225], (3) together they include both venous and arterial approach paths, and 

(4) they present two extremes of relative axon-to-vessel angle. 

The approach path to fornix was characterized by navigation through the right internal 

jugular vein, sigmoid sinus, transverse sinus, straight sinus, great cerebral vein of Galen, 

basal vein, and terminated in the ICV (Figure 26a, left). This implantation path would 

involve maneuvering through the large diameter, yet highly tortuous, sigmoid sinus and 

through four obtuse branching angles. The proposed electrode target was within a 1 mm 

diameter section of the ICV at the most anterior aspect of the shared ICV/fornix border 

(Figure 26a, right). At the site of the endovascular electrode implantation, the right ICV 

also bordered the ventral edge of the interventricular foramen and the dorsomedial aspect 

of the anterior thalamus. The approach path to SgCwm was characterized by navigation 

through the right internal carotid artery, A1-ACA, and terminated in the A2-ACA. 

Catheterization of the A2-ACA would require maneuvering through the tortuous carotid 
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artery and two slightly obtuse branching angles (Figure 26b, left). The proposed electrode 

target was within a 2 mm diameter section of the A2-ACA just beneath the genu of the 

corpus callosum (Figure 26b, right). 

 
Figure 26. Endovascular targeting of the fornix (a) and SgCwm (b). Vascular 

reconstructions with estimated path length, vessel diameter, and vessel branching angles 

(left). Combined vascular and brain reconstructions (center). Ring-electrode model 

implant location (right). 

4.4.3. Optimizing model features and electrode geometries 

Pilot simulations were run to evaluate model sensitivity to tissue conductance 

homogeneity and multi-compartment axon population size. For endovascular stimulation, 

the addition of blood to an otherwise homogenous bulk neural tissue conductance model 

resulted in activation of an additional 5–25% of the axonal population. The inclusion of 

CSF resulted in activation of an additional 2–20% of the axonal population for fornix and 

resulted in no change in the activation profile for SgCwm. For stereotactic DBS, the 

predicted activation was not affected by the inclusion of blood or CSF in the tissue 

conductance model. Sensitivity to the number of axons for each target was evaluated by 

quantifying activation using 100, 200, 300, 400, and 500 axons in the model. For both 

targets, the amplitude-dependent activation predictions differed by ≤5% of the total 
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population for models containing 300, 400, or 500 axons. Final model parameters 

included inhomogeneous tissue conductance models consisting of bulk neural tissue, 

blood, and CSF with 400 multi-compartment axons per target, per hemisphere. 

Transvascular electrical stimulation from endovascular electrodes that utilized passive 

radial force for securing contacts against the vessel wall have been shown experimentally 

to drive behavioral effects with lower stimulation amplitudes in comparison to guidewire 

electrodes [226]. To evaluate this effect for endovascular SgCwm and fornix stimulation, 

model predictions of neural activation were calculated for ring-electrodes and free-

floating guidewire electrodes at stimulation amplitudes from 0 to 10 V. Endovascular 

electrodes targeting SgCwm and fornix were positioned within the ipsilateral A2-ACA 

and the ipsilateral ICV, respectively, at the midpoint of the shared vessel/target border. 

Predicted activations were calculated using a 1 mm long endovascular ring-electrode and 

1 mm long guidewire electrode, placed at five different locations within the target vessel 

(Figure 27). The model-predicted activation from an endovascular ring-electrode was 

consistently higher than guidewire electrodes in both targets. In SgCwm, predicted 

activation from guidewire electrodes increased with stimulation amplitude, but at a 

slower rate in comparison to the ring-electrode. The predicted SgCwm activation 

increased at approximately the same rate for each guidewire electrode. Guidewire 

stimulation activated axons at lower amplitudes for electrodes placed closer to the neural 

target (Figure 27a). In fornix, the predicted activation from the ring-electrode increased 

sharply between 1 and 2 V and increased at a slower rate between 2 and 10 V (Figure 

27b). The activation profile of the guidewire nearest to the fornix mimicked that of the 

ring-electrode, with a sharp increase between 2 and 4 V and slower increase between 4 

and 10 V. The models predicted much lower levels of activation from all other guidewire 

electrodes targeting fornix. 
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Figure 27. Ring-electrodes produced higher estimates of axonal activation than guidewire 

electrodes. Stimulation through a ring-electrode within the right A2-ACA produced 

approximately four times greater activation in the right SgCwm than guidewire electrodes 

for stimulation at high amplitudes (a). Stimulation through a ring-electrode within right 

ICV produced approximately two times greater activation in the right fornix than 

guidewire electrodes for stimulation at high amplitudes through all electrodes but the 

most dorsal, which produced nearly equivalent levels of activation for amplitudes beyond 

4 V (b). 

Previous modeling work has shown electrode length to be an important factor for 

optimizing the volume of tissue activated by DBS [227]. To evaluate the effect of 

electrode length in endovascular stimulation in these two targets, model predictions of 

neuronal activation of SgCwm and fornix were calculated for ring and guidewire 

electrodes measuring 0.5, 1.5, 2.5, 3.5, and 4.5 mm in length at stimulation amplitudes 

between 0 and 10 V. For all electrodes, the longitudinal midpoint was centered at the 

midpoint of shared vessel/target border, and guidewire electrodes were placed along the 

intraluminal wall closest to the shared vessel/target border (Figure 27a blue, Figure 27b 

yellow). Stimulation through longer electrodes yielded a ≤10% increase in the predicted 

levels of activation in both targets across the stimulation amplitude range (Figure 28). 
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Figure 28. Endovascular ring-electrode length effect on predicted neural activation of the 

SgCwm (a) and fornix (b). 

Precise lead implantation is known to be vital for delivering therapeutic stereotactic DBS. 

To determine the optimal location within each target vessel for delivering endovascular 

DBS, and to evaluate neural activation sensitivity to sub-optimal endovascular electrode 

placement, the location of a 1 mm long endovascular ring-electrode was systematically 

varied in 1 mm increments along the target vessel length from 5 mm posterior/ventral to 

5 mm anterior/dorsal to the midpoint of the shared vessel/target border. Predictions of 

neural activation were generated at stimulation amplitudes between 0 and 10 V for each 

target at each location. For both targets, the models predicted the optimal ring-electrode 

placement to be anterior to the midpoint of the shared vessel/brain target border and that 

1 mm deviations from the optimal location resulted in a minimal reduction in the 

predicted activation (Figure 29). For the SgCwm, the highest levels of activation were 

achieved using electrodes placed 0–2 mm dorsal to the midpoint of the shared 

vessel/brain target border. For the fornix, the optimal location was 3–4 mm anterior to the 

midpoint of the shared vessel/brain target border. Fornix stimulation at this placement 

involved delivery of current through the CSF-filled intraventricular foramen (Figure 26a). 

In both targets, across the entire stimulation amplitude range, placement of the 

endovascular electrode 1 mm away from the optimal location decreased the predicted 

neuronal activation by 1–10% of the total population, and placement 5 mm away from 

the optimal location decreased the predicted neuronal activation by 30–60% of the total 

population. 
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Figure 29. Endovascular ring-electrode placement effect on predicted neural activation of 

the SgCwm (a) and fornix (b). Asterisks (*) indicate optimal axial placements. 

4.4.4. Comparing endovascular DBS to stereotactic DBS 

To compare endovascular to stereotactic DBS, endovascular ring-electrodes and 

stereotactic DBS leads were placed within the model and stimulation was delivered using 

both unilateral and bilateral configurations. Ring-electrodes were placed anterior to the 

midpoint of the shared vessel/target border, in accordance with previous model 

predictions of optimal placement (Figure 30a and b, left). Stereotactic DBS leads were 

placed along the clinical implantation trajectory described previously (Figure 30a and b, 

right). 
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Figure 30. Comparison of predicted neuronal activation for stimulation delivered using 

unilateral and bilateral endovascular ring-electrodes (left) and stereotactic leads (right). 

Activation profiles for all stimulation configurations (center) were predicted for the 

SgCwm (a) and fornix (b). 

For SgCwm, unilateral stimulation through an endovascular ring-electrode activated 10% 

less of the neuronal population than unilateral stimulation through the stereotactic DBS 

lead at low amplitudes, but activated 10% more of the neuronal population at high 

amplitudes, with an inversion in the activation profiles occurring at 4.25 V. With the 

endovascular electrode, the contralateral SgCwm was also activated, but at 10% less of 

the total population than the ipsilateral SgCwm. Contralateral activation was not 

achievable with a stereotactic DBS electrode (Figure 30a). At amplitudes below 1.25 V, 

bilateral stereotactic DBS activated a larger portion of the neural population than bilateral 

endovascular DBS. Above 1.25 V, however, bilateral endovascular stimulation activated 

10–30% more of the total population than bilateral stereotactic DBS. 

In the fornix, unilateral stereotactic DBS activated 10–30% more of the ipsilateral 

neuronal population than did unilateral endovascular stimulation across the 0–10 V range. 

Unlike in the SgCwm, unilateral stereotactic DBS activated a small portion of the 
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contralateral fornix axons at large amplitudes, and remained significantly lower than the 

activation resulting from unilateral endovascular DBS. Neuronal activations from 

bilateral stimulation were comparable between endovascular and stereotactic DBS at 

amplitudes below 5 V. Above this threshold, stereotactic DBS activated more of the 

neural population than endovascular stimulation. 

4.5.Discussion 

This study provides a theoretical foundation for evaluating an endovascular approach to 

targeting DBS therapy. The purpose was to formally examine the feasibility of using an 

endovascular approach to implant electrodes within two vascular targets to modulate 

neural activity in nearby brain regions: the fornix and SgCwm, both of which are current 

targets of stereotactic DBS therapies. 

4.5.1. Opportunities for neuroendovascular targeting 

Neurovascular disorders including intracerebral aneurysm and ischemic stroke are 

routinely treated with endovascular techniques that deliver conductive devices, such as 

platinum aneurysm coils, Nitinol stents, and tungsten snares for mechanical occlusion or 

recanalization of the neural vasculature [228]. In these procedures, wire-guided 

microcatheters under fluoroscopic navigation enable device deployment to sub-millimeter 

diameter cerebral blood vessels by way of tortuous implantation trajectories in the 

presence of acute branching angles [229]. Several of these vascular targets are 

noteworthy given their proximity to established and investigational targets of DBS 

therapy. For example, the anterior communicating artery (ACoA), which demarcates the 

A1 and A2 segments of the ACAs, is a common target of neuroendovascular intervention 

that necessitates a complex implantation path [230], and it lies just proximal to the A2 

segment of the ACA, the proposed vascular target for delivering endovascular DBS to the 

SgCwm. The ACoA has an intraluminal diameter of approximately 1 mm [231] and 

current technologies in endovascular intervention allow for catheter-based implantation 

of devices such as aneurysm coils, stents, and balloons into this target [232–234]. 

Delivery of a coil- or stent-shaped electrode into the A2 segment of the ACA would 

require navigation through or around the ACoA to a point with an approximately equal 
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diameter that is approximately 2 cm distal to this more conventional target. To our 

knowledge, device implantation to within the deep cerebral veins, including the ICV, has 

not been described within the clinical literature. However, endovascular thrombolysis for 

the treatment of deep cerebral vein thrombosis involves catheter navigation to the straight 

sinus and/or great cerebral vein of Galen [235–239], 2–3 cm proximal to the ICV. 

Neuroendovascular navigation to deep cerebral veins may increase risk due to veins 

generally having thinner walls than arteries [240]; however, current technologies enable 

device implantation to arteries with equivalent diameters [233,241]. Navigating 

endovascular devices to neurovascular targets that are several centimeters distal to 

commonly catheterized vessels may increase targeting complexity, require novel designs 

for endovascular devices, and carry higher risk for some patients. 

4.5.2. Transvascular stimulation feasibility 

Although limited, in vivo demonstrations have established feasibility for delivering 

transvascular electrical stimulation. Direct, low frequency vagal nerve electrical 

stimulation (20 Hz) has been shown to induce acute bradycardia in humans [242–246], 

and subsequent studies have reproduced this effect with transvascular stimulation in 

canine and porcine models [247,248]. These studies show comparable degrees of cardiac 

modulation through direct vagal nerve stimulation using a nerve-cuff and transvascular 

vagal nerve stimulation using a multipolar diagnostic catheter. Studies investigating 

endovascular electrode design factors evaluated the use of a basket electrode [249–252] 

and a flexible-loop electrode lead [226,253]. They found that transvascular stimulation 

thresholds for modulating neural activity could be greatly reduced by using bipolar 

stimulation from electrodes that conform to the vessel wall, in comparison to monopolar 

stimulation delivered through a guidewire or diagnostic catheter, thus minimizing 

electrode-to-target proximity and securing the electrode within the vessel. 

4.5.3. Electrode design for neuroendovascular stimulation 

Our comparison of guidewire electrodes placed at different radial positions within the 

vasculature confirmed that target-to-electrode proximity plays a large role in neural 

activation thresholds. This result is somewhat surprising, considering that the relatively 
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high conductive environment of the blood could cause the voltage distribution within the 

vessel to be relatively uniform. These results indicated that electrical stimulation in the 

presence of blood and blood vessel walls may not differ fundamentally from intra-

parenchymal stimulation, and principles such as current steering may apply to 

transvascular electrical stimulation in the same manner as stimulation through 

stereotactically-placed DBS leads [87,100]. The models also indicated that, in 

comparison to guidewire electrodes, a ring-electrode ensured close proximity to the 

neural target and allowed for lower stimulation charge densities given the ring-electrode's 

larger surface area. Existing stents and some snare designs would fall into such a 

category [254]. 

When designing electrodes for endovascular DBS, several other specifications must be 

considered, given that the human neurovasculature is replete with small vessel diameters, 

tortuous vessels, and acute vessel branching angles that can impede navigation and 

deployment of endovascular devices. The models showed that, assuming a vascular 

implant position proximal to the neural target, increasing the length of the ring-electrode 

did not have a significant effect on neural activation thresholds. This is noteworthy 

because longer electrodes impose challenges with navigability through tortuous vessels. 

While shorter length designs provide similar activation levels to longer ones, 

misplacement due to migration of the electrode along the vessel, larger charge densities 

due to smaller surface area, and higher neural activation threshold sensitivity to off-target 

implantations may limit practical implementation of small device length designs. Though 

not specifically modeled in this study, mechanical and electrochemical material 

properties of endovascular devices, as well as their ability to migrate into the intimal 

layer of the vessel, will also have important implications in terms of electrode material 

sustainability and biocompatibility [255,256]. 

4.5.4. Comparison to current stereotactic DBS procedures 

The model simulations also compared stimulation threshold amplitudes between 

endovascular and stereotactic DBS, showing comparable thresholds for unilateral DBS 

cases and potential for significant contralateral activation with unilateral endovascular 



 

99 

DBS cases targeting midline structures. Bilateral activation from unilateral stimulation 

could be advantageous because it would reduce potential complications resulting from 

implantation of two devices. While the target areas modeled in this study were limited to 

midline structures in close proximity to vessels with intraluminal diameters ≥1 mm, other 

targets may be accessible provided that neurovascular targeting techniques are advanced; 

however, charge density limits with small endovascular electrodes may limit the overall 

volume of tissue activation and therefore reduce the ability to deliver effective therapy 

with stimulation. 

The low surgical complication rates for stereotactic DBS [257] reflect years of experience 

perfecting the surgical procedure and the strict patient selection criteria. Indeed, 

complications associated with craniotomy, meningeal damage, micro bleeds, ventricular 

penetration, and risk of severe hemorrhage can disqualify patients from surgical 

candidacy. Risk factors for the occurrence of hemorrhage in DBS surgery have been 

studied extensively and are correlated with the use of microelectrode recording, sulcal 

incursion, and breaching the ventricular walls during implantation [36–41]. The reported 

symptomatic effects of clearly observable vascular events following DBS surgery include 

increased relative risk of post-operative seizure [42], permanent neurological deficit [43], 

post-operative confusion [44], and subsequent extended hospital stays [45]. Reports on 

the symptomatic effects of small bleeds exist, but remain difficult to interpret as small 

bleeds are likely underreported [38] due to a lack of blood-sensitive pre- and post-

operative imaging [36,46]. Increased risk of hemorrhage has been shown to vary across 

anatomical targets [51,52] and may relate to lead trajectory and target proximity to large 

blood vessels. For example, GPi-DBS for PD carries a higher risk of hemorrhage than 

STN-DBS [52–54,258] and this may be related to the close proximity of the A1 segment 

of the ACA to the ventral border of GPi. Alternatively, reports of cognitive complications 

with STN-DBS are higher in comparison to GPi-DBS and are correlated with the use of 

transventricular [44] and transcaudate [259] lead implantation trajectories. 

For those cases that do not fit the selection criteria for stereotactic DBS or that seek to 

target heavily vascularized brain regions, endovascular DBS approaches may provide a 
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suitable alternative. However, further study is needed to evaluate risks associated with 

endovascular targeting procedures, including vessel wall damage, vasospasm, occlusion, 

and hemorrhage. While there is the possibility that thrombosis and vasoconstriction could 

occur with electrical stimulation [260], some studies have shown that cathodic electrical 

stimulation can prevent thrombosis formation due to the effect of the applied negative 

charge on blood cells [261,262]. Since the clinical DBS waveform utilizes a large 

amplitude cathodic pulse followed by a low amplitude anodic pulse, the likelihood of 

stimulation-induced clot formation may not be significant, but still needs to be verified. 

4.5.5. Model limitations 

The computational modeling approach used here made several assumptions worth 

discussing. While the reconstructions were specific for the two DBS targets, anatomy of 

the cerebral veins, arteries, and sinuses can differ significantly among subjects [263–

267]. While our models showed that inhomogeneity of the vessel wall did not have a 

large effect on the parenchymal tissue voltage during endovascular DBS, studies 

performing simultaneous subdural and endovascular EEG from within arteries and 

venous sinuses suggest that the vessel wall acts as a low-pass filter but does not 

completely attenuate high frequencies [62,209,214,215]. The traditional DBS tissue 

conductance model did not include the low conductance encapsulation tissue which can 

reduce the volume of tissue activated by up to 50% [91]. Also, because diffusion tensor 

MRI was not available in the patient data, anisotropic conduction was not included in the 

tissue conductance model. The effect of higher conduction along the fiber tracts is 

difficult to estimate in general terms; however, based on the axon-to-electrode orientation 

slightly lower than predicted voltages would likely occur within the fornix tract and 

slightly higher than predicted voltages would occur within the SgCwm. Additionally, the 

absolute neural activation percentages calculated by the models are based on the 

excitability of multi-compartment axons, which are in turn determined by model 

parameter assumptions [96,268] that do not fully represent the true diversity of neuronal 

membrane dynamics and cellular morphologies. 
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Scaling of the ring-electrode was also required in order to properly generate an 

inhomogeneous mesh with which to perform the finite element modeling. In reality, a 

stent would tightly conform to the vessel wall, securing it in place and reducing the 

electrode-to-target proximity. The modeling of the ring-electrode in this study did not 

include the mesh structure of a stent that would be required for insertion using an 

endovascular technique or the primary coils of an endovascular snare that would increase 

the electrode surface area. Modeling these features in a two-dimensional setting, we 

found that due to the high conductance of blood and the reduction in the scaling of the 

stent-electrode, the effects of the lattice structure and primary coils were negligible. Even 

so, it is worth noting that a stent-electrode with a large free cell area may result in higher 

charge densities at the lattice struts. 

4.6.Conclusions 

Endovascular delivery of DBS electrodes may provide a complementary technique for 

treating a number of neurological disorders. This study investigated endovascular DBS 

through a computational modeling approach. The models predicted that activation of 

neural targets using an endovascular device is feasible using current catheter technology 

for midline thalamic and cortical targets. In comparison to endovascular guidewire 

designs, endovascular ring-electrode designs were found to allow for reduced electrode-

to-target distance, more robust anchoring to the vessel wall, and increased predicted 

levels of neural activation. Using endovascular ring-electrodes to target specific neural 

structures (fornix and SgCwm), the models predicted neuronal activation comparable to 

that achieved following stereotactic DBS implantation, suggesting further research in this 

alternative targeting strategy for clinical DBS applications. 
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5. Conclusions and future directions 

Deep brain stimulation is a valuable therapy that provides to the means to target specific 

brain regions and disrupt pathologic activity. In the US, DBS is currently approved or 

granted exemption for the treatment of four disorders. However, ongoing studies are 

exploring many more applications and brain targets for DBS. These investigational 

applications are primarily composed of treating disorders for which medication is 

ineffective or not well tolerated by patients. In such cases, neurosurgical intervention 

could greatly benefit patient quality of life by reducing symptoms and improving the 

efficacy of pharmaceutical intervention, as is the case for DBS to treat Parkinson’s 

disease. Successful implementation of DBS relies on the precise placement of stimulating 

electrodes within small and deep brain structures.  

Studies investigating complications associated with DBS have established suboptimal 

lead placement and lead migration to occur at a rate somewhere between 1-5% [269–

272]. However, the vast majority of these analyses are performed at academic centers by 

clinicians who specialize in DBS. In a recent study, which analyzed complication rates 

between 2004 and 2013 using data from the Centers for Medicare and Medicaid Services 

and the National Surgical Quality Improvement Program, it was estimated that 15-34% of 

DBS procedures were performed for the purpose of revising the lead placement or lead 

removal [273]. The authors highlight the contrast between the occurrence of suboptimal 

placement within academic centers and the nationwide occurrence. These data suggest 

that suboptimal lead placement is, by far, the most prevalent complication in DBS. 

Additionally, these data suggest that this complication rate is likely to increase over time 

due to the increasing popularity and applications of DBS and due to an increase in the 

number of non-academic clinical practices performing DBS surgery. For these reasons it 

is imperative that next-generation DBS technology be able to compensate for suboptimal 

lead placement, or be delivered using novel methods that improve targeting success. 

Computational models of DBS can facilitate the process of designing and evaluating 

next-generation DBS technologies by enabling high-throughput studies which explore the 

impact of changing lead design features within a large design feature parameter space. 
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Models can also generate predictions of stimulation efficacy and be used to guide 

programming of next-generation DBS technologies which may offer an increasingly 

complex assortment of stimulation configurations.  

This thesis leverages computational modeling to prospectively evaluate novel electrode 

designs and to retrospectively evaluate model parameters in the context of experimental 

data. These studies show how independent current controlled stimulation with advanced 

machine learning algorithms can negate the need for highly dense DBS arrays to shift, 

steer, and sculpt regions of modulation within the brain. Additionally, these studies show 

that while advanced and personalized computational models of DBS can predict many of 

the behavioral and electrophysiological outcomes of DBS, there are remaining 

inconsistencies that suggest there are additional physiological mechanisms of DBS that 

are not yet well understood. Finally, the results show how computational models can be 

beneficial for prospective development of novel approaches to neuromodulation prior to 

large-scale preclinical and clinical studies.  

5.1.Designing deep brain stimulation arrays 

In the past five years, several novel DBS array designs have entered clinical trials. These 

innovative designs and clinical trials are motivated by the need for DBS leads that can 

radially steer current in order to compensate for suboptimal lead placement. Recent 

publications describing clinical demonstrations using DBS arrays have shown improved 

short-term outcomes in single patients [110,112]. However, studies have not 

demonstrated that current DBSA designs are optimal, nor have studies demonstrated that 

any single design is maintains equivalent efficacy when used to target brain regions with 

different geometry and cellular makeup. The computational modeling study in chapter 2 

takes a first step toward optimizing DBSA lead design by comparing electrode charge 

storage capacity, electrode charge injection limit, and radial steering capacity for DBS 

leads and DBS arrays with different numbers of electrodes. In this study, radial steering 

capacity was evaluated using groups of electrodes in a single plane within a population of 

lead-parallel axons. A natural extension of this work to be considered in future studies is 

the ability of DBSA leads with different designs to steer current in three-dimensions in 
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the context of specific brain targets with anatomically correct electrical properties and 

distributions of cells and fiber pathways. This work also demonstrated the successful 

classification of stimulation settings using various machine learning algorithms that could 

feasibly be used to guide programming of stimulation parameters in patients implanted 

with a four radial electrode DBSA. Perfect classification was achieved using only a 

simple feature set to consisting of the RoA center of mass and orientation. Again, a 

natural extension of this work to be considered in future studies is classification accuracy 

using three-dimensional representation of features in subject-specific models. This work 

will be crucial for determining the degree to which machine learning classification for 

programming DBSAs is generalizable and clinically applicable. Therefore, in order 

expand on this work, personalized models of DBS were created using various proposed 

methods and a validation study was conducted in a preclinical model of DBS. 

5.2.Validation of computational models of DBS 

Personalized models of deep brain stimulation rely on a model framework that includes 

volume conductor models of the brain and multi-compartment cell models to predict 

cellular responses to stimulation. Outcome measures from computational models of DBS 

include activation curves and spatial activation profiles. Although certain aspects of these 

models have been validated, no studies have directly compared model predicted cellular 

responses to experimentally acquired measures of cellular responses during stimulation. 

Additionally, the imprecise relationship between model results and behavioral outcomes 

limit the usefulness of personalized computational modeling results.  

While a limited number of studies have attempted to relate model predictions of cellular 

activation to behavioral outcomes [100,148], no current studies have established a robust 

guideline for relating percent activation to the occurrence of some side-effect. The study 

detailed in chapter 3 compared model predictions of activation to cortical recordings of 

activation at the stimulation threshold for inducing a motor contraction. Results from this 

study suggest that although results from one of the models aligned with experimentally 

acquired cortical recording data, no percent activation threshold was found to be 

consistently predictive of motor contractions induced by stimulation. This finding may be 
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related to the conventional technique for modeling the distribution of fibers within the 

corticospinal tract and suggests the new for novel techniques to determine personalized 

anatomically correct fiber distributions that can be directly incorporated into models of 

the brain. 

The commonly proposed use-case for the spatial activation profile, RoA in two-

dimensions and volume of tissue activated (VTA) in three-dimensions, is to superimpose 

the spatial activation profile onto preoperative patient imaging and select the stimulating 

electrode and amplitude that precisely fills the targeted brain region. Spillover into 

nearby brain regions that might induce side-effects is avoided, but some spillover is 

generally unavoidable due to the axisymmetric VTA generated by conventional DBS 

being superimposed onto brain targets with asymmetric geometry. To address this issue, 

deep brain stimulation arrays with thousands of electrodes have been proposed [71,133]. 

In chapter 2, we used computational modeling to show that leads with radial four 

electrodes around the lead provide a reasonable balance between electrode surface area, 

which allows for safe stimulation at conventional amplitudes with capacity to steer and 

shift a RoA. However, in chapter 3, our results indicated that model predictions of radial 

current steering may significantly over predict the capacity to steer current, although 

comparisons with recent studies suggest that issue related to lead design may be 

responsible for the lack of current steering observed in vivo. This contradiction illustrates 

the need for model validation and suggests the need for incremental advancement of deep 

brain stimulation arrays that can leverage conventional manufacturing and materials in 

their construction.  

As DBS arrays enter the market, clinical programing and hardware design will rely on 

computational modeling more than ever. Validation of these model outcomes will be key 

for regulatory body acceptance and integration into clinical practice. Studies on 

computational models of DBS have been established that model predictions are sensitive 

to the electric parameters of tissue [190], which are not well established and are subject to 

significant uncertainty [151].  Further, it remains unclear how precisely to interpret model 

outcomes in the context of behavioral effects. In Chapter three, we demonstrate a first 
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attempt at model validation by comparing model predictions of cellular activation to in 

vivo cortical recordings and behavioral outcomes. We found that one model aligned best 

with the cortical recording data and was, in general, consistently predictive across 

electrodes. However, behavioral outcomes were not consistently associated with a 

specific percent activation. This finding suggested, in the case of the two most proximal 

electrodes, that stimulation of circuits other than the CSTarm/M1arm were responsible for 

driving the upper limb motor contractions that were observed. Currently we can only 

speculate as to which circuits may be involved, but future validation work might 

circumvent this issue using functional imaging such as fMRI or PET to gain a more 

complete picture of brain regions that are modulated by stimulation. Functional imaging 

may also play a role in validating the relationship between therapeutic effectiveness and 

model predictions of spatial activation profile coverage of the targeted brain region (STN, 

GPi, and VIM Thalamus). It should be noted, however, that electrophysiological studies 

have provided evidence that the therapeutic effect of stimulation may be related to 

stimulation driving action potentials in a manner that disrupts information flow, termed 

an information lesion [7,8]. Stimulation therefore, may not simply have the effect of 

suppressing or enhancing overall activation in a particular brain region, making 

functional imaging measures difficult to interpret.  

5.3.Endovascular DBS 

Although several studies investigating endovascular neural stimulation have been 

conducted in the past several decades, this method for delivering stimulation has yet to be 

translated into clinical practice. Previous studies investigating the endovascular 

electrodes for stimulating neural tissue have relied on custom electrodes, which were 

used for stimulating cranial nerves [216,217]. In the past five years, a growing interest in 

endovascular electrodes has been motivated by the prevalence of neuroendovascular 

procedures, the need for less invasive cortical recording devices for use in epilepsy 

monitoring prior to resection surgery, and the need for less invasive neural stimulation 

technologies. In addition to the computational modeling study in chapter 4, experimental 

work by Bower et al. and Oxley et al. have demonstrated the feasibility of delivering 

recording and stimulating electrodes to the brain using an endovascular approach 
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[62,64,274]. Together this work establishes an exciting foundation for endovascular 

approaches to neural stimulation; however, such electrodes currently exist only as a 

research tool. Continued research focusing on device refinement and endovascular 

stimulation efficacy in preclinical models are required before these devices can be 

evaluated in human subjects and validated personalized computational models of 

endovascular DBS may help to drive these efforts forward.  
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6. Appendix I: Immunohistochemical markers of neural activation for DBS  

6.1.Introduction 

Deep brain stimulation (DBS) is an enabling technology used to treat a range of brain 

disorders; however, its therapeutic mechanisms remain poorly understood. Current 

hypotheses are primarily supported by single-cell electrophysiological recordings in 

preclinical animal models of DBS. While electrophysiological recordings provide cell-

specific high-resolution temporal data, broad spatial cell sampling is generally 

impractical. Immunohistochemistry (IHC) complements electrophysiology by providing 

broad spatial sampling of single-cells at a single time point, but is extremely 

underutilized in preclinical animal model studies of DBS. In this study we hypothesized 

that unilateral electrical stimulation of the anterior limb of the internal capsule would 

drive cellular activation and increase the number of cells expressing the immediate-early 

genes cFos and EGR-1 in the non-human primate. 

6.1.1. Methods  

A small-diameter (0.635 mm) 8-electrode version of a clinical DBS lead was 

stereotactically implanted into the anterior limb of the internal capsule ALIC of an 

anesthetized rhesus macaque. Charge-balanced monopolar current-regulated 100 sec 

digital pulses were delivered at 130 Hz through an electrode in the ALIC for 1.5 hours. 

Transcardial perfusion with 25mM phosphate buffered saline (PBS) followed by 4% 

paraformaldehyde in 25mM PBS (PFA) was performed 1 hour after stimulation was 

stopped. The brain was postfixed, cryoprotected, and sectioned at 50 m in the coronal 

plane using a freezing microtome. Blockface photos were captured during sectioning 

through the entire brain so that three dimensional reconstructions could be used to verify 

lead location. Immunohistochemistry (IHC) was performed using the avidin-biotin-

peroxidase complex method on free-floating sections. Primary antibody incubations were 

performed for 48 hours at 4°C and consisted of a polyclonal anti-cFos primary antibody 

(1:1000, Abcam, Cat #: ab7963) or a monoclonal anti-EGR1 antibody (1:1000, Cell 

signaling, Cat #: 15F7). Secondary antibody incubations were performed for 45 minutes 

at room temperature using a biotinylated goat anti-mouse antibody (1:200, Vector 



 

132 

laboratories, BA-9200).  Sections were processed using the Vector laboratories ABC kit 

and reacted with a solution of 3% H2O2, 73µg/ml DAB in 0.05 M Tris. Section images 

were captured using a transparency scanner and microscopy was performed using a Leica 

TCS SPE. 

6.1.2. Results 

The final DBS lead location was visually confirmed to be in the anterior limb of the 

internal capsule. More specifically, most distal electrode, which was used to deliver 

stimulation, was confirmed to in the ALIC directly between the thalamus and putamen 

(Figure 31). 

 

Figure 31. DBS lead and implant location. Visual inspection using three-dimensional 

reconstructions of blockface images from sectioning confirmed the lead location. The 

location of the stimulating electrode within the ALIC was confirmed through visual 

inspection of reconstructed blockface images. 

ALIC stimulation resulted in unilateral staining of cFos and EGR-1 -like expression in 

two cortical regions: SMA and M1 (Figure 32 and Figure 33). Expression was only found 

in the hemisphere ipsilateral to stimulation and was completely lacking in the non-

stimulated hemisphere. The location and region where expression was detected was 

comparable between cFos and EGR-1; however, more background staining was observed 

in the case of cFos. Expression of cFos and EGR-1 were also detected in the basal 

ganglia and limbic system, but with no clear hemispheric-bias in expression. 
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Figure 32. Results of cFos staining. cFos-like immunoreactive cells was observed 

ipsilateral to electrical stimulation. Brain regions with the most prominent staining 

included primary motor cortex (top) and supplementary motor area (middle and bottom). 
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Figure 33. Results of EGR-1 staining. EGR-1-like immunoreactive cells were observed 

only ipsilateral to electrical stimulation. Brain regions with the most prominent staining 

included primary motor cortex (top) and supplementary motor area (middle and bottom). 
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6.1.3. Discussion 

IHC can produce whole-brain analysis that provide detailed information about the spread 

and network effects of DBS. ALIC stimulation resulted in unilateral cFos and EGR-1 

expression in two cortical regions: SMA and M1. Studies using anterograde tract-tracer 

labeling have demonstrated the existence of white matter projections through the ALIM 

to M1 and SMA in the rhesus macaque [185].  Immunohistochemical staining using 

antibodies targeting both cFos and EGR-1 generated results that are in alignment with 

anterograde tract-tracer labeling and suggest that increased cFos and EGR-1 expression 

in the brain hemisphere ipsilateral to stimulation identified cortical cells that are actively 

driven by DBS within the ALIC. Further, these results demonstrate that IHC can be a 

powerful tool for determining which brain regions are driven during deep brain 

stimulation.    

7. Appendix II: Endovascular neural stimulation in a rabbit 

7.1.Introduction 

Although transvascular brain stimulation has never been formally investigated, 

demonstrations of transvascular VNS in dogs [247] and transvascular brain recording in 

pigs [62] provide a basis for developing such a technique. The goals of this work include 

development of a rabbit model of transvascular neural stimulation by determining a 

vascular approach to from the rabbit femoral vein/artery to the brain and demonstrating 

transvascular neural stimulation in the periphery.  

7.2.Methods 

7.2.1. Subject and imaging 

CT angiography was performed on one New Zealand White rabbit. Anesthesia was 

initiated by intramuscular injection of ketamine-xylazine (34 mg/kg-5 mg/kg) and 

maintained with isoflorine (1.5-3.0%) delivered via nose cone. In each animal, the 

femoral vein was catheterized, standard CT was captured, and CT angiography was 

captured at 10, 20, and 30 seconds following contrast injection (Figure 34a). The 

skeleton, veins, arteries, and the brain were reconstructed using a combination of 
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thresholding and dynamic region growing using Mimics Innovation Suite (v15.0, 

Materialise, Leuven, Belgium). 

7.2.2. Surgical procedure and stimulation protocol 

An endovascular approach was used to implant a 36 AWG 316 stainless steel Teflon 

insulated wire electrode (Cooner Wire Company, Chatsworth, CA) to the internal jugular 

vein in an anesthetized New Zealand White rabbit. The electrode was prepared by 

removing precisely 1 mm of insulation from the distal tip of the transvascular guidewire. 

Using a femoral approach, a 4 french endovascular catheter was placed adjacent to the 

vagus nerve in right side internal jugular vein, just distal of the internal and external 

branches. Transvascular electrical stimulation was delivered using an external waveform 

generator and dual current isolation units (S88X and SIU-C, Grass Technologies, West 

Warwick, RI) using a monopolar, charge-balanced, repeating waveform (135 Hz, 90 µs 

cathodic pulse width). A veterinary patient monitor (BM5Vet, Bionet America, Inc, 

Tustin, CA) was used to record SpO2 and EKG before, during, and after a 15-second 

transvascular stimulation block. 

7.3.Results 

7.3.1. Anatomical rabbit reconstructions 

The endovascular trajectory for reaching the sigmoid sinus in the rabbit was found to 

require navigation through the external jugular vein as opposed to the internal vein as in 

humans. In alignment with previous reports on rabbit vascular anatomy [275,276], the 

external jugular vein was found to follow the lateral edge of the neck and enter the skull 

near the base of the skull at the mandibular joint (Figure 34b). Reconstructions estimated 

the diameter of the sigmoid sinus to be approximately 2 mm in diameter. 
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Figure 34. Vascular reconstruction of the New Zealand white rabbit. Radiopaque CT 

angiography (a) in a single subject and subsequent reconstructions of the skeleton (b), 

veins, arteries, and the brain (c). 

7.3.2. Transvascular vagus nerve stimulation 

Respiration rate was observable within the SpO2 and EKG traces and stimulation 

artifacts were observable within the EKG trace, only. No clear behavioral outcome was 

observed during low amplitude, ≤ 2 mA stimulation (0.1 mA shown); however, counts of 

the visible cardiac R-waves during stimulation indicate the occurrence of stimulation 

induced bradycardia (Figure 35, top). Moderate stimulation amplitudes, 3-5 mA 

increased respiration rate (Figure 35, bottom) and high stimulation amplitudes, ≥ 5 mA 

produced visible neck muscle contractions. The cardiac rhythm and repertory pattern 

observed during low and moderate stimulation were rhythmic, but neither was 

synchronized to stimulation frequency.  
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Figure 35. Endovascular vagus nerve stimulation in the rabbit. Low amplitude 

transvascular electrical stimulation delivered via endovascular internal jugular vein wire 

electrode produced no clear behavioral effect (top). Moderate amplitude stimulation 

modulated respiration rate. 

7.4.Discussion 

Bradycardia and altered respiratory patterns are commonly reported effects of 

transvascular vagus nerve stimulation (VNS) in healthy anesthetized animal preparations 

[75, 128]. These data indicate that the effects of low and moderate electrical stimulation 

were a result of successful neuromodulation through transvascular VNS in an 

anesthetized rabbit preparation. 


