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ABSTRACT 
A SUBJECT-SPECIFIC MULTISCALE MODEL OF 

TRANSCRANIAL MAGNETIC STIMULATION 

  
Brian D. Goodwin, B.S. 

 
Marquette University, 2014 

Transcranial magnetic stimulation (TMS) is a neuromodulation technique used to 
treat a variety of neurological disorders. While many types of neuromodulation therapy 
are invasive, TMS is an attractive alternative because it is noninvasive and has a very 
strong safety record. However, clinical use of TMS has preceded a thorough scientific 
understanding: its mechanisms of action remain elusive, and the spatial extent of 
modulation is not well understood. 

We created a subject-specific, multiscale computational model to gain insights 
into the physiological response during motor cortex TMS. Specifically, we developed an 
approach that integrates three main components: 1) a high-resolution anatomical MR 
image of the whole head with diffusion weighted MRI data; 2) a subject-specific, 
electromagnetic, non-homogeneous, anisotropic, finite element model of the whole head 
with a novel time-dependent solver; 3) a population of multicompartmental pyramidal cell 
neuron models. We validated the model predictions by comparing them to motor evoked 
potentials (MEPs) immediately following single-pulse TMS of the human motor cortex. 
This modeling approach contains several novel components, which in turn allowed us to 
gain greater insights into the interactions of TMS with the brain. 

Using this approach we found that electric field magnitudes within gray matter 
and white matter vary substantially with coil orientation. Our results suggest that 1) 
without a time-dependent, subject-specific, non-homogeneous, anisotropic model, loci of 
stimulation cannot be accurately predicted; 2) loci of stimulation depend upon 
biophysical properties and morphologies of pyramidal cells in both gray and white matter 
relative to the induced electric field. 

These results indicate that the extent of neuromodulation is more widespread 
than originally thought. Through medical imaging and computational modeling, we 
provide insights into the effects of TMS at a multiscale level, which would be 
unachievable by either method alone. Finally, our approach is amenable to clinical 
implementation. As a result, it could provide the means by which TMS parameters can 
be prescribed for treatment and a foundation for improving coil design. 
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PREFACE 

The overall goal of this research is to better understand the nature of TMS and its 

interactions with neural elements in the cerebrum. This dissertation examines the effects 

of TMS at the interface between the brain and imposed magnetic fields through 

computational modeling and in vivo experiments. Studying the effects at this interface 

necessitates the use of time-dependent electromagnetic field modeling and nonlinear 

dynamic system modeling of neurons. 

In this study, we applied magnetic resonance imaging (MRI), finite element 

methods, and computational neuroscience methods to quantify the immediate response 

of neural elements to TMS, with a focus on the response of pyramidal cells in motor 

cortex and adjacent regions. Pyramidal cells have been previously shown to be direct 

(and indirect) targets of TMS (Di Lazzaro et al., 2008). 

Though TMS has been shown to be an effective therapeutic treatment, the 

physiological response both among and within subjects is highly variable (Di Lazzaro et 

al., 2013). In an attempt to uncover reasons for the variability during TMS, we measured 

the amplitude of the motor evoked potential (MEP) from muscle electromyography 

(EMG) of the first dorsal interosseous (FDI) elicited from stimulation of the hand-knob in 

motor cortex. The MEP is not a direct measure of the effects in the cortex but has been 

employed as a general quantification of motor neuron recruitment during stimulation of 

the hand-knob in M1 (Vaalto et al., 2010). 
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HYPOTHESIS AND SPECIFIC AIMS 

The objective of this doctoral dissertation is to use multiscale computational 

modeling to quantify the degree, type, and location of neuromodulation during TMS. The 

central hypothesis is that the modulatory effects of TMS depend on the stimulation 

waveform and amplitude as well as the placement of the TMS coil relative to excitable 

neural elements in cortex. The rationale for this approach is that information from 

computational models can inform physiological studies of TMS and provide insights that 

would be difficult to obtain using either method alone.  

The general assumption is that activation from TMS can be estimated by action 

potential initiation in pyramidal cells in the cortex. 

Specific Aims 

Specific Aim 1: Create a multiscale, biophysically-based computational model of 
TMS 

Specific Aim 1 includes the definition, description, and model of the physical and 

biophysical parameters at the interface of the neuron and a magnetic stimulus. Two 

main components were integrated to make up this model: 1) a time-dependent 

characterization of the electromagnetic sources from the TMS coil and 2) a detailed, 

multicompartmental pyramidal cell neuron model with Hodgkin-Huxley ion channel 

kinetics. We hypothesized that a multiscale computational model with biophysically 

based properties can simulate the neural response to TMS. 

Specific Aim 2: Quantify the modulatory effects of TMS on the hand-knob of the 
motor cortex 

Using the model from Specific Aim 1, Specific Aim 2 attempts to 1) quantitatively 

describe the response of pyramidal cells surrounding the hand-knob area of the motor 
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cortex to the induced electric field determined by TMS parameters and 2) quantify the 

sensitivity of the neural response to TMS coil orientation. We hypothesized that the 

neural response to TMS is a function of the time-dependent electric field characteristics 

induced in the brain relative to the orientation of neural elements in cortex and white 

matter. 

Specific Aim 3: Quantify physiological response to motor cortex TMS 

Specific Aim 3 corroborates the model from Specific Aims 1 and 2 by performing TMS 

over the motor cortex of a healthy subject while recording the physiological response. 

We applied the computational model to quantify the activation in the hand-knob of M1 

and compared this quantity to physiological responses. We hypothesized that a subject-

specific multiscale model can quantify the physiological response to TMS.  
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SYNOPSIS 

The order of the chapters describes the chronological progression of the 

research and the development of the central hypothesis. This dissertation work was 

funded by the Clinical & Translational Science Institute of Southeast Wisconsin; 

Department of Neurology, Medical College of Wisconsin; Department of Biomedical 

Engineering, Marquette University via Falk Foundation grant: “Collaborative Research 

Integrating Neuroimaging and Neurorehabilitation.” 

Chapter 1 describes the effect of magnetic stimulation on neural elements. We 

developed a biophysically based neuron model to assess the neural response to E-fields 

produced by TMS by applying electromagnetism theory and Ampere’s law of charge 

conservation. Using this model and a novel time-dependent solver, we demonstrated 

that the transient characteristics of the induced E-field could be computed. Such a 

model is capable of simulating the neural response to a time-varying magnetic 

stimulus. 

Chapter 2 builds upon the model developed in the study described in Chapter 1 

by incorporating a subject-specific finite element model (FEM) to assess the effect of 

rotating the TMS coil on the induced E-field. In addition, the immediate response of 

biophysically based models of pyramidal cells and their axons was simulated using a 

novel multiscale approach. Changing the coil orientation resulted in distinct changes in 

the induced E-field and the response of neural elements in cortex. I found that the 

neural response depends upon the time-dependent electric field characteristics 

induced in the brain relative to the orientation of neural elements. 

The subject-specific multiscale approach is further developed in Chapter 3 with 

the addition of anisotropic material properties and formation of pyramidal cell axons 
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derived from a diffusion tensor image volume. Changing the coil orientation significantly 

influenced the depth of neural activation over the targeted area of cortex. Our subject-

specific multiscale model was corroborated by the amplitude of the motor evoked 

potential (MEP) elicited from TMS of the human motor cortex. The MEP amplitude from 

TMS was measured using EMG on the FDI muscle in the hand. The response variability 

from TMS can be explained by minor changes in stimulation parameters and by 

variations in the transmembrane potential of excitable elements in the cortex during 

stimulation. In support of the hypothesis, the findings suggested that a subject-specific 

multiscale model is capable of quantifying the physiological response to TMS.   
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BACKGROUND AND SIGNIFICANCE 

Historical Perspective in Neuromodulation 

Neuromodulation, a subfield of biomedicine, is formally defined as “technology 

impacting on the neural interface” (Krames et al., 2009) with the intention to change the 

course of recurrent brain activity by electrical, chemical, or mechanical stimulation to 

achieve improvement in neurological function and, thus, quality of life. Its methodologies 

are employed in a wide range of disciplines from psychiatry to kinesiology, and it 

incorporates the use of both implantable and non-implantable devices. Neuromodulation 

research has two primary objectives: 1) scientific investigation of brain function and 2) 

discovery of medicine or therapy for treatment (normally long-term) of neurological 

conditions. Techniques in neuromodulation have advanced to provide innovative means 

to interface with the brain via biomedical instrumentation, which has been shown to be 

especially relevant in studies pertaining to functional brain mapping. With technological 

advancements, neuromodulation research has gained momentum through 

demonstrations of improved quality of life for individuals suffering from neurological 

diseases or psychiatric illnesses. 

Today, neuromodulation almost always refers to innovations in electrical1 brain 

stimulation. The beginning of neuromodulation dates to Ancient Egypt where the 

common torpedo fish had inadvertently shocked a freed slave of Emperor Tiberius, who 

had subsequently experienced relief from painful gout (Krames et al., 2009; Stillings, 

1971).  

                                                

1 Unless otherwise mentioned, electrical stimulation refers to the stimulation of neural elements 
through the use of macro electrodes. 
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Present day advancements in neuromodulation are derived from an arguably 

unsophisticated history. Therapeutic neuromodulation has progressed from resection 

surgeries for psychiatric (e.g. lobotomy) or neurological (e.g. pallidotomy) purposes to 

less invasive and lower risk options through brain stimulation. Current neuromodulation 

techniques are based on principles originating from patient outcomes following neural 

tissue resection. In fact, the original hypothesis about the mechanisms of modern deep 

brain stimulation (DBS)2 alluded to the pallidotomy purpose through the notion that DBS 

acts as a functional lesion since its clinical responses were indistinguishable from those 

from the pallidotomy (Krames et al., 2009, p. 531).  

Most scientific theories and validation experiments in neuromodulation result 

from new developments in methodological tools that drive research. The evolution of 

tools for electrophysiology has been integral to theory and hypothesis formulation in 

neuromodulation since Guillaume Duchenne de Boulogne (1806-75) used two 

electrodes on wet skin to stimulate muscle (Walsh & Pascual-Leone, 2005). 

Neuromodulation and Magnetism 

Effective tools for magnetic brain stimulation have come on the historical scene 

fairly recently, and have opened the door to new developments in our understanding of 

the nervous system. Magnetism was employed earlier in healthcare history than 

electricity. During the Middle Ages, magnets were believed to possess outlandish 

medicinal powers3. Magnetism for neuromodulation gained popularity much later in 

history, primarily through the contributions of Michael Faraday. 

                                                

2 DBS is an effective mode of neuromodulation whereby an electrode array is surgically implanted 
into the brain near deep structures such as the subthalamic nucleus with the intent to electrically 
stimulate nearby neural elements via current injection (Recoskie et al., 2009).  
3 Even today, those looking for the “silver bullet” will turn to magnetism to improve health. 
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The science of magnetic induction began with Michael Faraday (1791-1867), 

who was the first to generate a magnetic field from electric current flowing through a 

metal coil. Scientists were unable to produce an observable response by stimulating 

neural tissue with magnetic induction until the beginning of the 20th century. Arséne 

d’Arsonval reported “phosphenes” and vertigo when an electric current of 30A at 42Hz 

flows through a large metal coil surrounding the head (Walsh & Pascual-Leone, 2005). 

Magnetic neuromodulation research consisted of eliciting visual sensations or 

phosphenes until Anthony Barker constructed a refined magnetic stimulation coil in 

1985.  

Before Barker, painless noninvasive neuromodulation of the brain was 

unachievable in a safe and robust way. The closest antecedent to Barker’s achievement 

was in 1980 when (Merton & Morton, 1980) invented transcranial electrical stimulation 

(TES), which delivers a (painful) high-voltage electric shock to the scalp to activate 

neurons in the brain (Hallett, 2000). Barker’s transcranial magnetic stimulation (TMS)4 

was painless and capable of eliciting responses similar to those from TES. By 1987, 

TMS had already been proposed as a treatment for depression (Bickford et al., 1987; 

Krames et al., 2009). 

Modern well-established modes of long-term neuromodulation for chronic 

illnesses are normally highly invasive. Compared to TMS, invasive devices have been 

shown to effectively elicit reproducible physiological responses. DBS for Parkinson’s 

disease (PD) is perhaps the most well-known and reputable application of invasive 

neuromodulation. The DBS device is a biocompatible electrode array that is surgically 

implanted into deep brain structures. Pulses of electric current are continuously 

                                                

4 Though several TMS paradigms exist, TMS is in reference to a particular mode of 
neuromodulation, namely, stimulation of the nervous system via magnetic induction. 
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delivered and recovered from its electrodes, which impact the activity of nuclei affected 

by PD. Its effects almost completely alleviate Parkinsonian symptoms when the 

electrode is placed near the subthalamic nucleus. Similarly, the cortical electrode array 

targets specific areas in the cortex and also modulates neural activity through current 

injection from its electrodes. Cortical electrodes are surgically implanted between the 

skull and cortex to achieve stimulation of neural elements in a desired area. Both 

electrical cortical stimulation (ECS)5 and DBS require the constant delivery of current 

impulses to achieve a therapeutic benefit. 

TMS is distinct from invasive electrical modes of brain stimulation in terms of 

operation, mechanisms, spread of stimulation, and lasting effects. On the other hand, 

like all modes of neuromodulation, the stimulation parameter space (waveform shape, 

amplitude, frequency, etc.) for TMS is infinite. As a result, stimulation parameters are 

empirically determined through physiological observations. TMS has been employed as 

a neurophysiological tool, and thousands of studies over the last 20 years have 

demonstrated its physiological effects and its potential for improving our understanding 

of the nervous system (Di Lazzaro et al., 2008; Fregni et al., 2005; Hallett, 2000; 

Hoogendam et al., 2010; Sampson et al., 2006; Williams et al., 2009). However, the use 

of TMS as a therapeutic or neurophysiological tool has preceded a thorough scientific 

understanding of its effects. Its growth in popularity since its invention in 1985 (Barker et 

al., 1985) can be attributed to it being safe (Rossi et al., 2009), noninvasive, outpatient, 

and effective for a range of neurological conditions including depression (Bortolomasi et 

al., 2007; O’Reardon et al., 2007), epilepsy (Nitsche & Paulus, 2009; Säisänen et al., 

2010), and tinnitus (Kleinjung et al., 2005; Langguth et al., 2008). Additionally, TMS has 

                                                

5 ECS is carried out through implanted electrodes between the skull and cortex. The implanted 
device contains one or many electrodes in an array. For therapeutic purposes, typically two 
electrodes (an anode and cathode) are implanted over a specific area of the cortex. 
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the potential for use as a screening tool to provide a measure of patient susceptibility to 

chronic electrode implant.  

During TMS, a coil of wire encased in a wand is held to the head and energized 

by the discharge of a large capacitor, causing a current flow in its windings, which in turn 

produces a magnetic field (B; B-field) normal to the plane of the coil. Induced magnetic 

fields are not deflected or attenuated by biological tissue and therefore penetrate the 

skull and permeate the brain, inducing electric currents according to the principle of 

induction. The purpose of TMS is to generate suprathreshold electric fields that cause 

stimulation to neurons in the brain. The magnitude of the induced electric field (E; E-

field) is proportional to the rate of change of B. 

∇×𝐄 =
𝑑𝐁
𝑑𝑡

 
(Eq. 1) 

The resulting current densities can have immediate effects on nearby neural 

elements similar to the way currents are applied directly to the brain using electrodes. 

Though distinct from electrical stimulation, TMS shows promise in its ability to deliver 

therapeutic treatment similar to that of ECS. Notwithstanding, the effects of TMS are 

highly variable across subject populations as in other modes of (electrical) 

neuromodulation. 

Though promising, TMS lacks repeatability both within a single subject and 

throughout subject populations. Compared to modern forms of invasive 

neuromodulation, the electric currents induced from TMS have a considerably greater 

expanse, and it is currently impossible to accurately predict the extent of modulation 

within the brain. The advantage of TMS being noninvasive is somewhat offset by the 

variability in physiological response. This variability is partially attributed to its inherent 

need to be physically placed over the scalp. Consequently, TMS has at least 6 degrees 
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of freedom (rotation, pitch, yaw, and location in 3D space). The difficulty in constraining 

these degrees of freedom is a major contributing factor to the observed variability in 

physiological response across subjects. Furthermore, the waveform shape, amplitude, 

and frequency are additional parameters that require individual constraint. 

TMS 101 

TMS requires a number of components to work properly and a number of add-

ons to work effectively. Beyond the hardware, understanding its functionality and 

physical interactions with brain can be a daunting task, and the literature often contains 

conflicting viewpoints especially in regard to the reliability of TMS, “optimal” parameters, 

and even the conventions in determining values for these parameters. 

Coil Design 

Barker’s lab developed the first modern TMS coil in 1985, and its geometry was 

purely circular. Coils of circular geometry have a high efficiency and so were an obvious 

choice. The induced electric currents follow lines concentric to the geometry of the 

windings within the coil. Sharp corners in coil geometry result in decreased current 

densities, and the electric currents, nonetheless, turn in a gradual manner near the 

corners of coil.  

The circular coil is typically referred to as a “high-powered” coil, and it is still 

utilized today. Normal Magstim6 circular coils for human use are 90 mm in diameter with 

nine copper windings. At the expense of its power, the circular coil generates high 

electric currents over a widespread area of the brain. To lessen such widespread 

                                                

6 (Trade Mark) See http://www.magstim.com/. 
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stimulation, most studies employ a figure-8 coil7, which consists of two coils that are 

placed adjacent and coplanar to one another with nine windings each. The coplanar 

coils carry current in opposing directions so that the maximum induced current is directly 

underneath the center of the coil in the direction of the wand handle. 

The focal stimulation offered by the figure-8 coil is appealing and as a result, it is 

used ubiquitously in both research and clinical environments. A great deal of 

experimental research has been invested in developing coils that target focal areas of 

the brain and deeper brain structures (Hernandez-Garcia et al., 2010; Y. Roth et al., 

2007). For example, customized deep brain “H-coils” have been used for research 

purposes, and studies are being performed to assess their efficacy in stimulating deeper 

structures (Y. Roth et al., 2014). Additionally, a new coil has been designed to remove 

the orientation dependencies of the figure-8 coil by inducing “rotating” electric fields in 

which the direction of the induced electric field is rotated between 0º and 270º 

throughout the duration of the stimulus (Rotem et al., 2014). Interestingly, coil design for 

clinical use has not significantly changed since the invention of TMS. Still, the figure-8 

coil is the most widely used coil in both research and clinical environments.  

Coil inductance is a product of coil geometry and has little impact on the 

stimulating electric field. The shape of the coil is designed to minimize inductance with 

the goal of preventing the coil from overheating. Inductance effects are negligible in 

terms of electromotive forces that oppose current flow, but inductance plays a role in 

thermal energy generation and efficiency. As a result, most present day TMS systems 

have integrated air- (or water-) cooling systems. The inductance (L) of a TMS coil having 

                                                

7 This name originates from its shape, which has the form of a “figure-of-8”. Its shape naturally 
causes more focal stimulation compared to the circular coil. 
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a coil radius of 𝑟𝑐, wire radius of 𝑟𝑤, and 𝑁 number of turns can be calculated by (B. J. 

Roth & Basser, 1990): 

𝐿 = 𝜇!𝑟𝑐𝑁! ln
8𝑟𝑐

𝑟𝑤
− 1.75  

(Eq. 2) 

The circular TMS coil has an approximate inductance of 0.189 mH (𝑟𝑐 =

45  mm;   𝑟𝑤 = 1  mm;   𝑁 = 9). The inductor “material” in the case of the TMS coil is the air 

and head, which have a relative permeability (𝜇𝑟) close to that of free space (𝜇 =

𝜇!𝜇𝑟;   𝜇! = 4𝜋 ∗ 10!!  [H/m]).  

Stimulator Unit Circuit Design 

Electric current is generated within the coil by the discharge of a large capacitor 

within a TMS stimulator unit (Figure 1). The generic circuit of a TMS stimulator unit is 

shown in Figure 2. A capacitor is charged to a high voltage and then is discharged by a 

thyristor (an electronic switch). Circuit design requires that the stimulator unit be able to 

overcome 3kV and 10kA to discharge up to 5MW of power in under 100µs (approx. total 

discharge of 500J) (Wagner et al., 2007). The discharged electric current pulse flows 

through the coil windings, producing a magnetic field that changes magnitude over time 

according to the pulse shape of the current within the coil. 

 

Figure 1 Photograph of the Front End of the Magstim Rapid Stimulator Unit. The coil is attached to the 
front of the unit (A), the stimulation intensity is set by a dial (B), and a meter indicates the charging status of 
the capacitor (C). 
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Figure 2 Schematic Diagram of Generic Circuitry for the TMS Coil (Wagner et al., 2007). 

The generic circuit is customizable to produce different shapes of current pulses 

and to account for different rates of stimuli in repetitive TMS (rTMS)8 applications. There 

are two primary types of current pulses: monophasic and biphasic (Figure 3). 

Monophasic waveforms are amenable to single-pulse or paired-pulse TMS (ppTMS)9 

whereas biphasic pulses have an efficiency advantage over the monophasic pulse and 

are therefore more frequently employed in rTMS applications. The differences between 

mono- and bi-phasic pulses are: 1) up to 60% of the energy discharged in the biphasic 

stimulus is returned to the capacitor, which provides a recharging boost for rTMS 

applications (Jalinous, 1998) and 2) the biphasic waveform has excitable capabilities for 

twice the duration of the monophasic waveform. Consequently, neural elements seem to 

show an increased sensitivity to the biphasic waveform over the monophasic (McRobbie 

& Foster, 1984; Walsh & Pascual-Leone, 2005). Reasons for this phenomenon are 

attributed to the leaky nature of the cell membrane capacitance. The quick rise time of 

the biphasic pulse (~60µs; Figure 3A) limits the time for a cell membrane to lose charge 

during stimulation, whereas the monophasic pulse is slower to rise (having a rise time of 

                                                

8 rTMS is carried out by pulse trains of magnetic stimuli usually between 1 and 10Hz. rTMS is 
known for its lasting effects on the central nervous system. 
9 ppTMS is a research methodology commonly used for investigation in intracortical inhibition or 
intracortical facilitation. Two consecutive pulses separated by a short interval (usually between 
1ms and 8ms) are delivered from a single coil. The first and second pulses are referred to as the 
conditioning stimulus and the test stimulus, respectively. 
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~100µs; Figure 3B). To compensate for this slow rise time, monophasic stimulator units 

(e.g., Magstim 200) are typically designed to output currents that induce much higher E-

field magnitude than do biphasic stimulator units (e.g., Magstim Rapid). 

Monophasic and biphasic stimulation waveform templates (Figure 3) continue to 

be used in research and clinical environments with almost no modification because of 

the effectiveness of the mono- and bi-phasic waveforms as well as the established Food 

and Drug Administration (FDA) approval for commercial instruments, which normally do 

not contain interfaces to modify waveform shapes. 

 

Figure 3 In vitro Stimulation Waveform Recordings of the Biphasic (A) and Monophasic (B) Stimulus Pulses 
from the Magstim Rapid and Magstim 200 Stimulator Units, Respectively. 
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Is it Electrical Stimulation or Magnetic Stimulation? 

The pulses of current delivered from stimulator units vary in duration between 

200 µs and 1 ms depending on the stimulator unit. Typical stimulator units have a peak 

output current of about 8 kA, which generates a time varying magnetic field having a 

peak magnetic flux of approximately 2 T. Owing to the brevity of the magnetic pulse, the 

resulting current densities in the cortex can reach 15 mA/sq-cm (Walsh & Pascual-

Leone, 2005). The resulting current densities have immediate effects on neural elements 

throughout a broad region of the brain. By stimulating isolated axons, it has been 

demonstrated that activation is likely to occur near high electric field gradients along the 

axis of an axon (Basser & Roth, 1991; Nagarajan et al., 1993). 

The classification, “magnetic brain stimulation,” is a misnomer. Neurons in the 

brain are not stimulated by magnetic fields alone, which can be demonstrated by placing 

a fixed magnet over the scalp. Without the induction of a time-varying magnetic field, no 

stimulation will occur. As previously mentioned, acute stimulation cannot occur unless 

the magnetic pulse has a fast rise time, i.e., the magnetic field does not stimulate 

neurons in and of itself, but neurons effectively respond to the behavior of the electric 

currents arising from induction. Admittedly, there is controversy about the biophysical 

mechanisms of neural excitation: are they chemical or electrical in nature? The work 

presented here assumes the chemical properties of neurons to be electrical mechanisms 

(Hodgkin & Huxley, 1952). 

There are two main distinguishing features between magnetic stimulation and 

electrical stimulation. Firstly, electrodes that interface directly with neural tissue have 

high electric field gradients near the electrode, which fall off quickly with negligible 

effects on distant axons. Electric fields from TMS are greater in magnitude, but fall off 

slowly and have stimulating effects on a large volume. Secondly, electrical stimulation 
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involves the systemic injection of charge followed by its immediate retrieval. Magnetic 

stimulation involves only the induction of an electromotive force (EMF), which moves 

charge rather than injecting it. The nature of magnetic induction is such that the induced 

electric field exists in both extracellular and intracellular space, which differs from 

electrical stimulation in that its mechanisms are purely extracellular. In other words, 

electrical stimulation does not directly interact with intracellular space as magnetic 

stimulation does, i.e., charge cannot enter (or exit) the cell unless the extracellular 

potential is such that current loops can form between intra- and extra-cellular space, 

causing voltage-gated channels to open.  

Electrodes have a clear advantage in that the waveform can be customized to 

have virtually any desired shape, whereas with commercial TMS hardware, the 

researcher is rather limited. On the other hand, TMS has versatility during stimulation in 

which the location of stimulation is immediately changeable, which is not a luxury of 

ECS. 

Excitatory or Inhibitory? 

It would be convenient if TMS could be explained in terms of excitation or 

inhibition. Plainly speaking, TMS is noise (Walsh & Pascual-Leone, 2005). Due to the 

expanse of the electric stimulation from TMS, it cannot be expected to elicit such 

discriminatory effects as excitation or inhibition. Nonetheless, studies have 

demonstrated that TMS can produce a signal, e.g., visual sensations and muscle 

twitches. It has also been shown that TMS can induce inhibitory effects, e.g., motor 

movement and muscle strength. TMS is normally described as “inhibitory” or “excitatory” 

in the context of rTMS. During rTMS, trains of magnetic stimuli are delivered at a set 

frequency. Some therapy sessions can amount to over 600 stimuli, which are delivered 

in a number of rTMS trains equal in duration. 
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The FDA has placed limits on stimulation frequency and intensity to avoid 

seizures. The FDA limits prevent most researchers from delivering >10Hz rTMS. rTMS 

frequencies are normally described using imprecise terms such as “low-frequency 

stimulation” (≤ 1 Hz) and “high-frequency stimulation” (> 5 Hz). Inhibitory rTMS has been 

associated with low-frequency stimulation whereas excitatory rTMS is achieved with 

high-frequency stimulation (Houdayer et al., 2008).  

Researchers use rTMS for interacting with neural circuitry. Stimulation 

mechanisms in this context relate to the interrupting ability of rTMS within a neural 

circuit. These mechanisms then are circuit specific and are often coupled with 

hypotheses in neuroplasticity (Hoogendam et al., 2010; Rossini & Rossi, 2007; 

Trebbastoni et al., 2013). rTMS is therefore considered “inhibitory” or “excitatory”. 

A single pulse of TMS is very likely to have multiple influences on a single cell. 

Compared to cell membrane time constants, the TMS pulse is nearly a discrete event. 

The monophasic TMS pulse duration is approximately 15-times shorter than an action 

potential. The immediate effect of TMS on cell membrane channels has been 

hypothesized to be heavily dependent on the membrane potential throughout the cell 

(Edgley et al., 1990, 1997). According to Barker’s activating function10 (Barker, 1999), 

cellular activation from a stimulus depends on the orientation and curvature of its axons 

and dendrites (Ruohonen & Ilmoniemi, 1999). Consequently, the induced electric fields 

have fortuitous hyperpolarizing and depolarizing actions throughout a single cell. 

Moreover, suprathreshold E-fields from the figure-8 coil can span the area of three 

(sometimes more) adjacent gyri, causing stimulation to occur in untargeted areas due to 

the orientation of certain neural elements. An interesting corollary to this causation is 

                                                

10 The activating function is proportional to the second spatial derivative of the voltage along the 
axis of a neuron. 
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that a single cell can be exposed to depolarizing fields11 in more than one location. Sites 

that cause membrane depolarization initiate the propagation of a bidirectional action 

potential (Basser & Roth, 1991; Pashut et al., 2011). Of course, the initiation of cellular 

depolarization or hyperpolarization will have immediate excitatory or inhibitory effects on 

the cell itself. 

Direct and Indirect Waves 

Suprathreshold TMS elicits two main types of waves that have been identified in 

electrophysiology recordings within the pyramidal tract: indirect waves (I-waves) and 

direct waves (D-waves). D-waves are the response of pyramidal cells to direct activation. 

I-waves are thought to follow trans-synaptic (indirect) activation of pyramidal cells 

(Silbert et al., 2010) or activation of interneurons that impinge on adjacent pyramidal 

cells (Davranche et al., 2007; Edwards et al., 2008; Hanajima et al., 2002). D-waves are 

necessarily earlier in latency than I-waves and are normally observed as corticospinal 

volleys via epidural recordings. The nature of D-waves and I-waves in magnetic 

stimulation differs modestly from those from electrical stimulation. Corticospinal volleys 

from TMS are considered to be either D-waves or I-waves depending on the relatedness 

to the latencies observed from ECS (Nakamura et al., 1996). 

Early studies seemed to show that TMS fails to produce the direct excitation of 

pyramidal cells that can be observed using ECS electrodes (Day et al., 1987). However, 

later studies have confirmed the D- and I-wave hypothesis for TMS demonstrated by 

corticospinal recordings of an initial D-wave followed by a series of I-waves when 

stimulating the motor cortex in macaques (Awiszus & Feistner, 1994; Baker et al., 1995; 

Nakamura et al., 1996) and humans (Burke et al., 1993). Baker et al. (1995) show 

evidence that supports the initial D-wave hypothesis that stimulation occurs very near 
                                                

11 In other words, stimulating electric fields that incur depolarization of the cell membrane. 
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the initial segment of the pyramidal cell axon (Edgley et al., 1990). In this case, direct 

activation of the pyramidal cell would depend on its membrane potential and the stimulus 

intensity. Burke et al. (1993) records D-wave latency in humans to be around 4.1 ms 

when recording from the low cervical region. The I-waves follow behind by milliseconds 

(multiple waves in increments of approx. 2 ms). 

Many studies in conscious humans employ electromyography (EMG) to 

investigate the effect of changes in TMS parameters on D-wave amplitude. Normally, 

electrodes are placed in peripheral hand muscles (e.g., first dorsal interosseous, or FDI), 

and D-waves are recorded during TMS to the primary motor cortex (M1). However, the 

muscle EMG record lacks the spatiotemporal resolution to disentangle the D-wave and I-

wave since the motor evoked potential (MEP) is a summation of the D- and I-waves 

resulting from depolarization of excitatory neurons (Cheeran et al., 2010). Parsing the D-

and I-waves would then require an undesirable deduction concerning the nature of the 

descending D-wave. 

EMG recordings are utilized universally in TMS experiments for two reasons: 1) 

to establish the resting motor threshold (RMT)12 stimulation intensity and 2) to locate the 

motor cortex as a point of reference. Motor cortex stimulation studies are able to gather 

a good deal of information by employing EMG as a measure of the robustness of motor 

pool activation (Edgley et al., 1997). As a result, using the EMG muscle record as an 

indirect measure of direct activation of pyramidal cells in M1 has become a well-

established paradigm. 

                                                

12 The minimum stimulus intensity that results in an observable EMG response evoked from TMS 
of the motor cortex. 
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Medical Imaging and TMS: “Seeing” is Believing 

TMS is both an investigatory tool and therapeutic resource for neuromodulation 

and neurorehabilitation. Its use as a research tool exceeds its use in the clinical setting 

due to the current inability to reliably predict the physiological response. Its ease of use 

outweighs its shortcomings, and it has become popular in brain-mapping research. At 

the advent of TMS navigation systems, the number of functional brain-mapping projects 

increased exponentially. TMS offers promise as a method for noninvasive brain-

mapping, e.g. motor cortex mapping of stroke patients. TMS has its greatest relevance 

perhaps in preoperative cortical mapping (Julkunen et al., 2009). Navigated TMS 

facilitates integration with acquired medical images (e.g. MRI) and provides a visual of 

the TMS coil and brain to aid in “aiming” the induced current, but it cannot predict sites of 

neural activation. 

It has been demonstrated that navigated TMS does not necessarily decrease 

variability in response (Jung et al., 2010). Many studies, therefore, recommend the 

integration of (costly) robotic arms to maintain a steady coil orientation even during head 

movement (Rotem et al., 2014; Salinas et al., 2011; Siebner et al., 2009). Most 

approaches still rely on a head localizer fixed on the subject head. Since head localizers 

are often flimsy and uncomfortable, new approaches seek to use headgear that enables 

the coil to be attached and secured in a fixed position relative to the head. TMS helmets 

are being explored to better constrain TMS parameters (Y. Roth & Zangen, 2014). 

The improvements in TMS stability provide hope for increased reliability in clinical 

applications. Nonetheless, questions remain in TMS neuromodulation: what, where, and 

how is it stimulating? Efforts to answer these questions have led to the development of 

TMS-compatible hardware for integration with current imaging modalities such as 

functional magnetic resonance imaging (fMRI) (Grefkes et al., 2010), positron emission 
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tomography (PET) (Krieg et al., 2013), magnetoencephalography (MEG) (Hallett, 2007), 

electroencephalography (EEG), and single-photon emission computed tomography 

(SPECT) (Wyckhuys et al., 2013), but these modalities have neither the spatial nor 

temporal resolution to capture the immediate effects of magnetic stimulation on neural 

tissue in the brain. However, some effects of TMS last long enough to observe neural 

network effects in, for example, fMRI via blood-oxygen-level dependent (BOLD) signals 

(Caparelli et al., 2010; Moisa et al., 2009), but the mechanisms of neural activation 

remain unidentified. Though indirect effects of TMS can be measured through medical 

imaging modalities, it remains impossible to “see” the brain respond to TMS. 

Modeling in Neuromodulation 

The present technologies in neuromodulation modeling can be traced back to the 

first nonlinear model of the cellular transmembrane potential in a large axon (Hodgkin & 

Huxley, 1952). Since then, mathematical modeling in neuromodulation has matured to a 

level of sophistication where cell activation and patient responses to neuromodulation 

therapy can be predicted with reasonable confidence (McIntyre et al., 2004; Riva-Posse 

et al., 2014). Recent techniques provide an innovative way to investigate modulatory 

effects in ways that are currently impossible with medical imaging modalities. 

Mathematical modeling is widely applied in various fields of neuromodulation including 

DBS (Butson et al., 2007), transcranial direct current stimulation (tDCS)13 (Datta et al., 

2009), and TMS (Thielscher et al., 2011). Modeling techniques in neuromodulation are 

necessarily computational in nature because of the complex geometry of the nervous 

system and the nonlinearity of neurons. It has been demonstrated that computational 

modeling in neuromodulation can provide insight into mechanisms of activation (Butson 

                                                

13 tDCS is a neuromodulation technique designed to stimulate cortical structures by means of 
current flow between two large patch electrodes (an anode and cathode) adhered to the scalp. 
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& McIntyre, 2005) as well as predict patient outcomes for therapy (Chaturvedi et al., 

2010).  

Today, models are built by integrating medical imaging modalities with modeling 

software to construct detailed models of neuroanatomical structures (Butson et al., 2011; 

Datta et al., 2009). The accuracy with which patient outcomes can be predicted seems 

to depend on the geometry of the brain. Cortical folds and nonhomogeneous material 

properties of the head have been shown to influence the electric field (Salinas et al., 

2009; Thielscher et al., 2011). For this reason, estimating electromagnetic tissue 

properties (conductivity; permittivity; permeability) in the head has become the focus of 

research (De Lucia et al., 2007; Tuch et al., 2001).  

Investigators in DBS modeling research have set a new standard for the 

predictive ability of modeling in neuromodulation. Early DBS modeling approaches 

demonstrated that a probabilistic maps of the volume of tissue activated shows 

correlations with patient outcomes (Butson et al., 2007). Recently, the approach 

developed by Butson and McIntyre (2007) has been applied to DBS for depression and 

the activation of specific fiber pathways (Riva-Posse et al., 2014). Models used in clinical 

applications are normally patient-specific14. Geometry-dependent models (e.g., 

responses that depend on the orientation of cortical folds) employ finite element 

methods15 to calculate the bioelectromagnetic fields in neural tissue. Detailed models (as 

in DBS) integrate patient-specific finite element models (FEM) and nonlinear time- 

dependent neuron models to predict areas of neural activation during stimulation (Maks 

et al., 2009). 

                                                

14 Or subject-specific. 
15 See Engineering Approaches to Modeling TMS, p. 23. 



 23 

 

Figure 4 Number of publications in TMS modeling. Publications are listed by year range (note the 
changing bin size). The number of publications for each year range was obtained through GOOGLE scholar 
search using the keywords, “’transcranial magnetic stimulation’ modeling” excluding patents and citations. 

Engineering Approaches to Modeling TMS 

The number of studies in computational modeling for TMS has dramatically 

increased in popularity since the mid 1990s (Figure 4). Early TMS modeling studies have 

a focus on analytically solving the electromagnetics of TMS (Tofts, 1990) and to the 

response of axons to magnetic stimuli (Basser, 1994; Nagarajan et al., 1993; B. J. Roth 

& Basser, 1990; Warman et al., 1992). The basic biophysical mechanism of TMS is the 

induced electric field in neural tissue. Accurate models for TMS are therefore viewed as 

necessary to provide the required improvements for its implementation (Opitz et al., 

2013).  
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Modeling in TMS is warranted by its clinical use as an outpatient, noninvasive, 

neuromodulation tool. Modeling projects in TMS aim to accomplish two main goals that 

are impossible with neuroimaging: 1) better predict areas of activation during TMS and 

2) uncover mechanisms of activation and variability in physiological response. Efforts are 

being made on these fronts to improve the reliability of TMS as a noninvasive 

therapeutic option of neuromodulation. Additionally, a better understanding of the 

mechanisms of activation would provide information about the spread of neural activity 

throughout the cortex and into deeper brain structures immediately following stimulation. 

TMS has three main parameters that influence the type, location, and intensity of 

stimulation in the brain: 1) coil geometry (dimensions; number of windings); 2) stimulus 

pulse shape, amplitude and duration and 3) coil location and orientation relative to the 

head. 

Coil and Waveform 

Salinas et al. (2007) performed x-ray measurements of the dimensions of 

commercially available coils, recorded magnetic field measurements, and developed a 

validated model of the figure-8 TMS coil. TMS coil models are designed to predict either 

the maximum B-field or the maximum magnetic vector potential (A; A-field) produced by 

the coil in 3D space during a single stimulus. According to the principle of induction, the 

magnetic field produced by the coil is linearly dependent on the electric current flowing 

through the coil windings during induction. Therefore, the magnetic field at any point 

during the stimulus can be obtained by a scalar transformation. Coil models can now be 

employed in conjunction with human experimentation since the advent of TMS 

navigation systems, which have made it easy to acquire coil positions post hoc. 

Few studies have investigated the effects of TMS by modeling the time-

dependent electric field induced in an axon or cell body (or both) (Basser, 1994; 
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Nagarajan et al., 1993; Pashut et al., 2011; Warman et al., 1992). In these cases, the 

neuron (or axon) was modeled in a uniform electric field caused by induction. To our 

knowledge, no FEM approaches employ a time-dependent waveform to estimate 

induced fields throughout its duration (Chen & Mogul, 2009; Laakso et al., 2014; Opitz et 

al., 2011, 2013; Salinas et al., 2007, 2009; Thielscher et al., 2011). Instead, these 

studies assume single-frequency conditions to compute the induced fields. 

Medical Imaging 

Medical imaging techniques play an important role in model development for 

TMS, especially in calculating the electric field induced within the brain. The induced 

electric field depends on biological tissue properties, which are normally acquired via 

medical imaging paradigms (Opitz et al., 2011; Tuch et al., 2001). Consequentially, the 

anatomical accuracy of a subject-specific model is limited by medical imaging modalities. 

In most cases, the efficacy of TMS depends on the anatomical structure of the patient. 

As a result, subject-specific modeling techniques have a key role in TMS models. 

Our knowledge of the interactions between the induced electric field and the 

physiological effect in the brain depends on anatomical connectivity16 information. In 

many applications (e.g., treatment of depression), TMS aims to innervate deeper 

structures as well as cortical structures based on anatomical connectivity. Connectivity 

information can be acquired through a diffusion-weighted image (DWI) from nuclear 

magnetic resonance (NMR)17 imaging. Additionally, the induced E-field depends on 

anisotropic material properties of the brain, especially in terms of the E-field vector 

orientation relative to conductivity tensor orientation (De Lucia et al., 2007). This 

                                                

16 The term “connectivity” is purposefully used in an ambiguous manner because of its broad 
application and relevance to both global connections (fiber pathways) and local connections 
(synapses) in the brain. See also “The Human Connectome Project” 
(http://www.humanconnectomeproject.org/). 
17 Or “magnetic resonance” (imaging), i.e., MRI. 



 26 

information is normally gathered through a diffusion tensor image (DTI) that is derived 

from the DWI. The electrical conductivity tensor is a direct map from the diffusion tensor 

obtain via NMR (Tuch et al., 1999, 2001). 

Subject-specific Finite Element Method 

Subject-specific models are based on the finite element method to estimate the 

induced electromagnetic field. The finite element method is a numerical method to 

approximate the solution to a problem that contains complex geometrical features. The 

finite element method has two main computational processes: 1) geometrical entities are 

discretized into many finite elements or “links” to create a “mesh”, and 2) a system of 

equations is solved by inverting the “stiffness” matrix (De Lucia et al., 2007). The number 

of variables in the system of equations is equal to the number of elements in the mesh. 

FEM equations are usually set up to minimize an error function (e.g., total energy of the 

system) to arrive at a numerically stable solution. The FEM approach is commonly used 

in modeling bioelectromagnetic fields for neuromodulation investigation (Chen & Mogul, 

2009; Datta et al., 2009; Güllmar et al., 2010). The finite element method for 

electromagnetic dynamics is well established (Bastos & Nelson, 2003). Since the 

induced electric field is time-dependent, simplifications are usually made to compute the 

electric field at an approximate fundamental frequency18. 

Early FEMs used simplified head geometries for predicting the magnitude of 

induced currents (Davey, 2003). The variety of brain shape and cortical structure among 

subjects limits the usefulness of simplified models. Subject-specific models have shown 

marked improvements in electromagnetic predictions due to the impact of gyral 

geometry on the induced electric field (Opitz et al., 2011). The finite element method has 
                                                

18 The fundamental frequency approach is used in most models. This particular response solves 
the FEM at the frequency having the highest amplitude on the periodogram of the TMS 
waveform. 
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become an appealing approach as advancements have been made to merge medical 

images into 3D models (Dale et al., 1999; Jenkinson et al., 2012; Tadel et al., 2011). 

Subject-specific models are built from structural MR images and then segmented to 

obtain surface boundaries among the scalp, skull, cerebrospinal fluid (CSF), gray matter 

(GM), and white matter (WM). 

Cellular Modeling 

The effects of TMS are normally reported in terms of the electric field (magnitude, 

direction, or both) that is induced in the cortex. To our knowledge, no advancement has 

been made in modeling the cellular effects of TMS beyond the activation of an axon 

under varying magnetic stimulation conditions (Nagarajan et al., 1993). Pashut et al. 

(2011) modeled the response of a pyramidal cell to an electric field induced in a 

homogeneous medium from a circular coil. Pashut and colleagues report that their 

model indicates that excitation tends to occur within the soma of the cell.  

Significance 

Neuromodulation offers promise for treatment resistant patients or patients with 

neurological diseases untreatable by pharmaceutical drugs. Many patients are 

debilitated to the point where they seek relief through chronic implants for brain 

stimulation. Today, chronic implants are more therapeutically viable than TMS, but the 

risks (short and long term) associated with invasive surgery are greater than those with 

TMS. In many cases, patients view the potential benefit of a chronic implant to outweigh 

the risks. Even though TMS has been shown to induce long-term modulatory effects for 

a range of disorders, patients are more inclined to go with a chronic implant because 

outcomes are less variable than those from TMS. In recent years, neuromodulation 

research has advanced due to the use of patient- or subject-specific approaches, 
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especially for DBS (Butson et al., 2007; Chaturvedi et al., 2010), which resulted in the 

development of techniques for improving surgical planning. However, a subject-specific 

approach for TMS treatment planning has not been developed. The long-term goal of 

this dissertation work is to develop a patient-specific tool that enables the clinician to 

form a TMS treatment strategy. 

Many published TMS studies provide a qualitative, rather than quantitative, 

description of the coil placement relative to the targeted brain region. The magnitude and 

direction (relative to neural structures) of the electric field induced by TMS is commonly 

used as a predictor of neural activation (Fox et al., 2004; Opitz et al., 2013; Salinas et 

al., 2009; Thielscher et al., 2011). Such approaches have limitations, e.g., the range of 

electric field magnitudes considered suprathreshold is a required assumption to identify 

sites of neural activation. At the same time, few studies account for the detailed 

morphology of the cortical surface or the position and orientation of individual neural 

elements in the cortex and white matter layers relative to the induced E-field. As a result, 

TMS has unrealized potential in two general scenarios: as a neuromodulation therapy 

and as a tool for neurophysiology studies. Two primary problems limit its usefulness: 1) 

the variability in physiological response within subject and subject populations and 2) the 

mechanisms and targets of TMS remain elusive. These complications hinder our current 

ability to predict the immediate effects of TMS and accurately prescribe therapy in terms 

of the free19 parameters of TMS. 

This dissertation provides a quantitative characterization of the interactions 

between the electromagnetic field and excitable neural elements in the cortex (pyramidal 

cell neurons). These results could provide information necessary to effectively activate, 

                                                

19 i.e., parameters that can be manipulated by the clinician. Free parameters are coil placement 
relative to the head, stimulation intensity, and stimulation frequency. Currently, fixed parameters 
are stimulation waveform and coil shape. 
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or avoid activating, cortical target regions using TMS. Additionally, this engineering 

approach provides detailed information about the immediate effects of TMS on a cellular 

level, which likely has value in many areas of neuromodulation research. For example, 

this approach can provide a metric of comparison between different modes of 

neuromodulation such as TMS and ECS. This comparison is especially advantageous 

for use in screening for implanted neuromodulation devices. The results of this study 

offer insights into important fundamental questions in the clinical application of TMS: 1) 

What are possible sources of variability? 2) What areas of the brain can be modulated 

using TMS? 3) Can TMS treatments be planned to ensure modulation of specific cortical 

regions?  

The long-term implications of this dissertation have an impact in TMS use for 

predicting activation within and around targeted cortical regions. This methodology is 

also translatable to other areas of neuromodulation, and could enable effective treatment 

planning for TMS, ECS, or tDCS. 

EXPERIMENTAL PROCEDURES 

The experimental procedures and protocols performed in this study (Specific 

Aims 1, 2, and 3) were carried out with Institutional Review Board (IRB) approval (HR-

2257 and PRO00014800 “Quantifying TMS Variability”) from Marquette University and 

the Medical College of Wisconsin (Milwaukee, WI). All human experiments complied with 

HIPAA and Human Subjects Research. All computational experiments are original work 

or adaptations of previously published work available for research use (Amatrudo et al., 

2012; Butson et al., 2007). 
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Motor Cortex Stimulation via TMS in Humans 

Recruitment 

Subjects were recruited via word of mouth, and then screened and given 

informed consent. Subjects did not receive a stipend for enrollment. Inclusion criteria for 

subjects were: 1) subjects may be of any ethnicity or gender, and must be 18 years of 

age or older; 2) subjects must be cognitively capable of informed consent. The strict 

exclusion criterion was: 1) any metal in the head. Subjects were considered for exclusion 

if they had: 1) cardiac pacemakers, 2) implanted neurostimulators, 3) implanted 

medication pumps, 4) intracardiac lines, 5) significant heart disease, 6) bipolar disorder 

(to reduce risk of mania), 7) history of stroke or other brain lesions, 8) history of suicide 

attempt(s) in subjects with psychiatric disorders, 9) personal history of epilepsy, 10) 

family history of epilepsy, 11) pregnant women, or 12) patients receiving tricyclic 

antidepressants or neuroleptics. 

Medical Imaging 

If the subject did not have usable available MRI scans, a protocol20 was designed 

to acquire a high-resolution anatomical volume and DTI from the ventral limit of the 

cerebrum to the dorsal limit of the scalp. Medical images were acquired prior to TMS for 

utilization with TMS navigation. Prior to imaging, the subject was screened according to 

MRI safety standards of the Medical College of Wisconsin IRB. 

Experimental Procedure 

Experiments began by seating the subject in a moderately reclined position to 

achieve a comfortable resting position. The chair position locked to prevent further 

                                                

20 See Appendix D, p. 159 for details of the medical image acquisition protocol design. 
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movement. The subject's head was placed on a padded headrest designed to limit head 

movement during the experiment. 

The subject wore an elastic headband with a localizer attached to it. The localizer 

is used by the navigation system to track the head position/orientation during the 

experiment. The position of the localizer relative to the head was determined from a 

calibration before each TMS session, which entailed gently touching a plastic stylus to 

the forehead and each ear of the subject. 

The subject’s MRI was loaded into the navigation system. The MRI may have 

been acquired as part of the study but was not required. If a subject did not have an 

MRI, an atlas brain was used instead. 

The subject had simultaneous EMG and/or EEG recordings during TMS. EMG 

recordings were made via pairs of adhesive skin electrodes that were placed over 

muscle groups on the arm or leg contralateral to the side of the brain being stimulated. 

EEG recordings were made via a 128-channel EEG cap. A conductive gel was applied 

between the EEG electrodes and the scalp using a syringe. A reference electrode was 

placed at a distant location such as the abdomen or leg. 

The subject received single (<1Hz) TMS pulses of variable intensity. The RMT 

was determined as the minimal intensity capable of evoking MEPs in 5 out of 10 

consecutive trials for a hand muscle with an amplitude of at least 50mV in the EMG 

recording, or by a observing a consistent hand/arm response, as the coil was moved 

along a regular grid over the left frontal convexity. The TMS pulse was delivered by a 

Magstim figure-8 coil. The coil handle was fixed to a mechanical arm to suppress 

movements of the coil from the original position on the scalp. 
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In order to obtain a measure of intracortical interactions, the subject received 

ppTMS. Two pulses in rapid succession were delivered (<10 ms apart); the first pulse 

below RMT and the second pulse above RMT. Paired-pulses were applied at intervals of 

2 sec or greater in order to preserve an average pulse rate <1Hz. 

Data analysis was conducted using the available medical images (MRI and/or 

DWI) of the subject’s head, and the EMG record during TMS.  

Model Corroboration 

Whole head medical image volumes (anatomical MRI and DWI) were used to 

construct a model of the subject’s head for predicting neural activation during a single 

TMS pulse. Electrophysiology recordings from human experimentation were used as a 

measure of corroboration of the subject-specific modeling approach. 

  



 33 

CHAPTER 1 

CONCEPTUALIZATION AND CREATION OF A MULTISCALE, BIOPHYSICALLY BASED, 
COMPUTATIONAL MODEL OF TMS 

 

INTRODUCTION 

Despite decades of scientific research, the mechanisms of activation during 

magnetic stimulation remain elusive. Computational models of TMS have been used to 

predict the induced electromagnetic fields and possible sites of activation. Additionally,  

modeling provides potential insights into sources of variability, which have been 

suggested to exist at the neuronal level (micro) and also at the level of gyri and sulci 

(macro) (Ahdab et al., 2010; Ridding & Rothwell, 2007). Multiscale modeling could 

bridge the knowledge gap between macro and micro level interactions. 

The mechanisms of activation during TMS are often likened to those from 

electrical stimulation (e.g. ECS) (George et al., 1999). Even the accuracy of TMS is often 

compared to that of ECS, even though there isn’t a strong rationale for this comparison. 

Although both magnetic and electrical stimulation influence neuronal activity, these 

paradigms interface with membrane ion channels in different ways. Electric stimulation 

adds charge into extracellular space whereas magnetic stimulation imposes an 

electromotive force on charge in both extracellular and intracellular space. 

During TMS, a large capacitor bank is discharged, causing rapid current flow 

through windings in a coil. Through induction, a rapidly changing magnetic field (about 2 

Tesla) permeates the cerebrum. The magnetic field (B-field) strength falls off at a rate 

∝ 1/𝑅!. The B-field varies spatially and temporally, which gives rise to an electric field 

(E-field) that exerts an electromotive force (EMF) upon charged particles within the 

brain. These immediate effects of TMS are difficult to predict due to the convolution of 
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the cortical surface and the span of high intensity E-fields induced in the brain. As a 

result, computational models have been employed more frequently to better understand 

TMS. Modeling studies normally fall into three main categories: 1) electromagnetic field 

modeling, 2) axon modeling, and 3) network models (commonly employed in rTMS 

studies) (Reis et al., 2008). The first is based on electromagnetic physics (Chen & 

Mogul, 2009; Miranda et al., 2003; Salinas et al., 2007), the second on Barker's 

activating function and cable models (Barker, 1999; Basser, 1994; Nagarajan et al., 

1993; Warman et al., 1992), and the third involves investigating brain function by 

modulation of broader networks. Recent modeling studies have aimed to physiologically 

validate a model based on electric field vector orientations relative to cortical geometry 

(Opitz et al., 2013). To our knowledge, a model that integrates E-field interactions within 

the brain with time-dependent biophysically based neuron models has not been 

developed. 

The purpose of this study was to develop a subject-specific TMS model that can 

predict the mechanisms of TMS-induced activation. We tested the hypothesis (Burke et 

al., 1993; Edgley et al., 1990, 1997) that variability in neural response can be partly 

attributed to variations in membrane potential of excitable pyramidal cells. We also 

tested the effects of two different TMS pulse waveforms from commercial stimulator 

units. 

The state of the art in TMS modeling has not yet advanced to include the E-field 

impacting neural elements within the brain. For Specific Aim 1, we created a multiscale, 

biophysically based computational model for use in TMS research. Our motivation for 

this approach is that TMS targets are not well understood and previously published 

model-based predictions rely only on the induced E-field at a single frequency. Our 

modeling approach is novel because it accounts for the time-dependent characteristics 
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of the E-field and it integrates two components that have previously been employed only 

independently: 1) a time-dependent electromagnetic field solver for any TMS waveform 

and 2) simulations of a multicompartmental pyramidal cell neuron model to TMS stimuli 

(Amatrudo et al., 2012). In summary, we define, describe, and model the physical and 

biophysical parameters at the interface of the induced E-field and neural elements. We 

hypothesized that multiscale computational models with biophysically based properties 

can accurately predict the neural response to TMS. 

METHODS 

i. Figure-8 TMS Coil Model Development 

We constructed a figure-8 TMS coil model to accurately estimate the induced 

electromagnetic fields during a single pulse stimulus. The goal was to develop an 

analytical coil model that is adaptable for subject-specific use. Since the shape of the 

coil windings play a significant role in the spread of stimulation, the model was based on 

coil measurements by Salinas et al. (2007). Salinas and colleagues measured the 

geometry of the coil windings via x-ray and recorded the spatial dependence of the 

magnetic field produced from the coil. In this study, the electrical characteristics of the 

coil were modeled according to manufacturer specifications (Jalinous, 1998) and in vitro 

recordings.  

Table 1 Coil Geometry. (From measurements by Salinas et al., 2007 for the figure-8 coil). All units are in 
millimeters. 

Coil 
Loop 

Center (x-
coordinate) 

Inner 
Radius 

Outer 
Radius 

Number 
of turns 

Wire 
Width 

Wire 
Height 

1 -46.63 28.36 44.98 9 1.5 7.25 
2 47.11 28.11 44.43 9 
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A model of the coil current pulse waveform was developed from in vitro 

recordings. The Magstim 200 stimulator unit delivers a maximum of 8 kA through its 

windings (Jalinous, 1998). The current pulse was recorded in-vitro by a custom built 

magnetometer made of a double turn wire loop (D = 2 cm). We measured the time-

varying EMF from the coil leads via Cambridge Electronics Design (CED) Power 1401 

multichannel recording system integrated with Spike2 (CED) using a sampling rate of 

100kHz. EMF transients were obtained for both the monophasic and the biphasic 

waveform, which are produced by the Magstim 200 and Magstim Rapid stimulator units, 

respectively. The TMS coil current was indirectly calculated by computing the discrete-

time integral of the measured EMF. 

An analytical model of the TMS coil windings by discretizing each coil turn was 

constructed based on previously published x-ray measurements of the coil geometry 

(Table 1). Each turn of the coil is made up of hundreds of elements that represent 

current dipoles (Q [A·m]). The induced magnetic vector potential (A [Wb/m; V·s/m]; A-

field) or magnetic field (B [T; V·s/sq-m]) can then be calculated at any point (p) in space. 

The A-field resulting from a current dipole has the relation 

𝐀 =
𝐐𝜇!
4π𝑅

 
(Eq. 3) 

where R is the distance from the current dipole to any point in space and 𝜇! is the 

magnetic permeability constant (4π ∙ 10!! H/m). The B-field is obtained by calculating 

the curl of the A-field. 

𝐁 = ∇×𝐀 (Eq. 4) 

The custom coil model was comprised of 7200 current dipoles to describe the current 

flow through the coil windings (Figure 5). The A-field at any point, p, is calculated by 

superposition. 
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𝐀𝑝 =
𝜇!
4π

𝐐𝑖
𝑅𝑖𝑖

 
(Eq. 5) 

where 𝐐𝑖 is a single current dipole and 𝑅𝑖 is the distance from the current dipole to point 

p. 

We compared our model predictions with the model developed by Salinas et al. 

(2007), which was validated by magnetic field measurements, and compared the E-field 

magnitude maps with those from Walsh and Pascual-Leone (2005). 

The objective was to develop a validated figure-8 TMS coil model to accurately 

predict the electromagnetic fields produced within the head during a single stimulus 

pulse. This model was also designed for integration with subject-specific head models 

that would be built from medical image processing software (Figure 5). 

ii. Time Dependencies: Fourier Solver vs. Single-frequency 
Approximation 

We developed a custom Fourier Solver using m-script (MATLAB v8.1, 

MathWorks Inc.) to calculate the time-dependent electromagnetic solution from a 

discrete Fourier series, to enable computation of the time-dependent electromagnetic 

field solution induced by any TMS stimulus waveform, and to work together with 

frequency domain finite element solvers. The input to the Fourier Solver is the electric 

current waveform, or the discrete-time function of 𝐐 (Eq. 3 and Eq. 5). 
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Figure 5 Figure-8 TMS Coil Model. The current dipoles to approximate the current through the coil 
windings are shown as red vectors. The coil is placed over a sample head to demonstrate its use in subject-
specific modeling. 

Previous studies reduce the TMS pulse to simple waveform features such as the 

rise-time or a single-frequency sinusoid. However, the single-frequency approximation 

oversimplifies the TMS waveform since most of the power in its spectrum is contained 

between 0 and 10 kHz.  

Many brain stimulation devices employ a square biphasic waveform where static 

assumptions apply. However, a square waveform is problematic for use in TMS since 

the induced E-field is proportional to the rate of change of the magnetic field. Magnetic 

stimulator units are designed to produce a continuously variable, transient stimulus 

waveform. Previous studies attempt to model the E-field during the instant at stimulus 

onset when the first derivative of the coil current is at its peak by assuming steady-

state21 conditions. This assumption has been widely employed in TMS modeling due to 

                                                

21 Steady-state conditions, unless noted otherwise, refers to the electric current through the coil at 
either a constant rate of change or a single-frequency sinusoid. 
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its simplicity and low computational load. Steady-state conditions have been modeled in 

two different ways in TMS literature: 1) a constant rate of change of coil current flow or 

2) a single-frequency oscillating sinusoid.  

The Fourier Solver computes the induced E-field under quasistatic conditions at 

every Fourier component in the spectrum of the TMS waveform from a 512-point 

discrete Fourier transform (DFT). The result is a frequency response that is then 

transformed back to the time-domain via the inverse DFT. The output of the Fourier 

Solver is the theoretical discrete-time solution. Procedural computations of the Fourier 

Solver are outlined in Figure 6: 1) the time-dependent stimulus waveform is transformed 

into a discrete Fourier series via the FFT (fast-Fourier Transform), 2) the 

electromagnetic solution is computed at each component of the Fourier series, and 3) 

the Fourier series of the electromagnetic solution is transformed into discrete-time via 

the inverse FFT (IFFT).  

We compared the time-dependent solutions from the Fourier Solver with those 

from previously published studies that assume steady-state conditions (and its 

respective variants). This simplification is prevalent in TMS modeling studies. For 

example, Thielscher et al. (2011) assume steady-state conditions using a fixed rate of 

change of coil current (1A/µs). Miranda et al. (2003) approximate the TMS waveform as 

a fixed rate of change of current of 100 A/µs, and Chen and Mogul (2009), as well as 

Kowalski et al. (2002), approximate the magnetic stimulus as a 2440Hz sinusoid. For the 

sake of comparison, the rise-time (from Thielscher, 2011 and Miranda, 2003) was 

converted to a single-frequency sinusoid. The Fourier Solver was implemented using a 

512-point DFT to estimate the solution from the stimulus waveform. Our objective was to 

develop a validated algorithm to compute the time-dependent solution and compare its 

results with previously published approaches.  
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Figure 6 Fourier Solver Calculation Steps. The numerical process to calculate the time-dependent 
electromagnetic solution from a transient magnetic pulse has three steps indicated by the black arrows. In 
the case of TMS, the magnetic source is the electric current flowing through the TMS coil. The Fourier 
Solver was developed for use in finite element methods (middle black arrow). 
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iii. Conceptualizing Barker’s Activating Function 

To investigate the implications of the activating function (ƒ; Eq. 6) value on 

different orientations of a straight axon relative to the fields produced by the TMS coil, 

we created a conceptual model of ƒ along a straight hypothetical axon within the 

stimulating E-field of two widely used TMS coils (figure-8 and circular). 

Barker’s activating function (Barker et al., 1985) has traditionally been used as a 

tool to explain the mechanisms of TMS on the neuronal level as it relates to the induced 

E-field. The activating function is formally defined as proportional to the transmembrane 

potential resulting from an induced E-field. 

ƒ =
𝜕!𝑉
𝜕𝑥!

=
𝜕𝐸𝑥

𝜕𝑥
 

(Eq. 6) 

The ƒ function is the first spatial derivative of the E-field along the axis (𝑥) of the 

axon, which is a coarse approach to predicting neural activation because the 

transmembrane potential is proportional only to ƒ, and it has no time-dependent term. 

However, ƒ can be calculated at discrete time points in the TMS waveform using the E-

field computed from the Fourier Solver. The activating function has usefulness as a 

predictor of activation sites during suprathreshold stimulation in tube-like neural 

elements as in the cable model (Basser & Roth, 1991). Our objective in this study was to 

build upon the activating function model by demonstrating its application in a simple 

case.  

iv. Theoretical Analysis of the Magnetic Stimulus 

In light of Barker’s activating function, the monophasic and biphasic pulses have 

biophysical implications. We therefore applied principles in electrodynamics to test the 

hypothesis of the activating function for monophasic and biphasic magnetic stimuli. The 
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forces exerted on an ion channel throughout the duration of a biphasic or monophasic 

time-varying magnetic stimulus were qualitatively described using a combination of 

Maxwell’s equations with Ampere’s law of charge conservation.  

A single neuron in the presence of a suprathreshold magnetic stimulus is 

subjected to high intensity E-fields that can cause membrane polarization. Throughout 

the stimulus duration, a single ion channel on a patch of membrane experiences a 

unidirectional or bidirectional EMF according to the stimulus waveform. Polarization 

across ion channels happens according to the induced EMF in agreement with 

Maxwell’s equations. The EMF arises from the induced E-field according to Maxwell’s 

equations and Ampere’s law of current conservation, which is computed by the Fourier 

Solver. The E-field is described in discrete-time by the A-field and the gradient of a 

scalar potential (Φ) caused by charge distribution for dynamic situations22 (see also Eq. 

4).  

𝐄 = −∇Φ −
𝑑𝐀
𝑑𝑡

 
(Eq. 7) 

Cell membrane polarizations are believed to be a function of the E-field magnitude and 

the relative structure or shape of the neural element (Barker et al., 1985). The lipid 

bilayer of the cell membrane acts as an insulator permitting electric current flow in only 

the axial direction. Therefore, a patch of cell membrane normal to the E-field direction 

would experience no current flow, but the highly conductive intracellular space would 

experience high currents in the axial direction according to the magnitude of the axial 

component of the E-field. Charge can enter or exit a system (e.g., intracellular space) in 

a manner according to Ampere’s law of charge conservation. 

                                                

22 See Appendix A, p. 158, for a description of Maxwell’s equations. 
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𝒬𝑖𝑛 − 𝒬𝑜𝑢𝑡 = ∇ ∙ 𝐉 +
𝜕𝜌
𝜕𝑡
= 0 (Eq. 8) 

Equation 8 describes charge/current conservation of a system (∇ ∙ is the 

divergence operator, 𝐉 is current density, and ρ is charge density of the system). In 

electrostatics, unless sources or sinks exist, it is normally assumed that 𝑑𝜌 𝑑𝑡 = 0. The 

current density is related to the induced E-field by 

𝐉 = 𝐄𝜎 (Eq. 9) 

and within intracellular space, this reduces to 

𝐉 = 𝐄𝑥𝜎 (Eq. 10) 

where 𝐄𝑥 is the axial component of the E-field in intracellular space. If the system is 

defined as the intracellular space of a neuron compartment having an axis (𝑥) and a 

spatially varying E-field (𝑑𝐄𝑥/𝑑𝑥 ≠ 0), it follows from Eq. 10 and Eq. 8 that the 

divergence of 𝐉 is non zero. Thus, residual charge presents itself in the system 

(𝑑𝜌/𝑑𝑡 ≠ 0) throughout the duration of the TMS stimulus. Charge either builds up or is 

removed from the inside of the membrane wall, which causes local areas of the 

membrane wall to experience depolarization or hyperpolarization. The many ion 

channels and pumps that line the membrane wall are exposed to a voltage load that 

works with or against the ionic gradients. Under these conditions, immediate cellular 

response is governed by the membrane capacitance (assuming the charge buildup is a 

transient), potassium leak channel (leakage current), and voltage gated ion channels. 

To test the hypothesis of the activating function in magnetic stimulation, we 

developed a theoretical model based on Ampere’s law of current conservation (Eq. 8). 

The activating function, ƒ, should predict the relative magnitude and polarizations of the 

transmembrane potential. 
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The cell membrane was assumed to be made up of passive ion channels within a 

membrane having electrical insulation properties. The system boundary encloses a 

volume of intracellular space in a curved axon with a 90º bend. This system design 

causes 𝑑𝐄𝑥/𝑑𝑥 to be non-zero and thus ∇ ∙ 𝐉 is non-zero. We assumed the environment 

was strictly ohmic according to quasistatic conditions. These conditions were analyzed 

at three discrete-time points throughout the monophasic and biphasic stimulus pulse in 

order to approximate the relative charge transfer during a magnetic stimulus and to 

create a conceptual base for understanding activation mechanisms of magnetic 

stimulation. 

v. The Response of a Passive Cylindrical Axon to a Monophasic 
Stimulus 

We developed a 3D cylindrical model of a bent axon segment to investigate time-

dependent effects that result from a monophasic magnetic stimulus on a passive cell 

membrane of an axon segment. The solution to Maxwell’s equations and Ampere’s law 

of current conservation was computed using the Fourier Solver in conjunction with the 

magnetic and E-field (mef) solver in COMSOL Multiphysics. The axon segment was 

modeled in an extracellular medium having material properties as defined in Table 2. 

Material properties were chosen based on consensus (Carnevale & Hines, 2006; Chen 

& Mogul, 2009; Güllmar et al., 2010; Opitz et al., 2011; Thielscher et al., 2011). 

Table 2 Material Properties of Axon Segment Model. 

 
Extracellular 
Space 

Intracellular 
Space 

Cell 
Membrane 

Conductivity 0.276 S/m 2.825 S/m 0.3 mS/cm2 
Capacitance - - 1 µF/cm2 
Permeability 1µ0 1µ0 - 
Permittivity 1ε0 1ε0 - 
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We compared the transmembrane potential from the axon segment model to the 

theoretical analysis. Model entities were assumed to have no effect on the induced 

magnetic field (𝜇 = 𝜇!) and dielectric effects of intracellular and extracellular space were 

assumed negligible (𝜖 = 𝜖!). The axon diameter was set to 𝐷 = 5µμm, its length 

𝐿 = 200µμm, and the radius of curvature at the bend was 3x the diameter (𝑟 = 15µμm). 

Membrane properties were assigned based on default passive membrane parameters 

from NEURON v7.3 (Yale, New Haven) (Thielscher et al., 2011). 

 

Figure 7 Cross-Section of Bent Axon Segment FEM Mesh. Passive axon segment with θ = 90º bend is 
shown. Axon diameter and the radius of curvature are 5 µm and 15 µm, respectively. False color map 
indicates element quality where 1 is an equilateral tetrahedron and 0 is a degenerated tetrahedron. A finer 
mesh density near the axon was employed to minimize numerical error in and around the axon segment. 

A single current dipole source was positioned 500µm above the axon segment. 

Its magnitude was assigned to mimic that of the monophasic current pulse through a 

typical TMS coil (8kA). Cylindrical axon geometry was created in COMSOL and then 
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oriented as shown in Figure 7. The induced E-field was modeled to point in the –x 

direction. Using the Fourier solver, the transmembrane potential was computed in 

discrete-time throughout the duration of the monophasic stimulus (Figure 6) for various 

bend angles (θ = 30º, 60º, 90º, 120º, 150º) to obtain a quantitative measure of the 

effects of axon bending and to attempt to corroborate the theoretical analysis23 for a 

time-dependent magnetic stimulus. 

vi. Comparison of Induced E-fields from Magnetic and Electrical 
Stimulation 

TMS is often conveyed by analogy to brain stimulation from a current controlled 

electrode. In order to quantitatively describe the spatial characteristics of the E-field 

produced by TMS, we compared the field induced by a figure-8 coil to that by an ECS 

electrode. We scrutinized the E-fields within a plane at a depth of 1cm from the 

stimulating source. The resulting E-field magnitude from both modes of stimulation is 

linearly dependent upon the magnitude of the source (current or magnetic field); 

therefore, normalized units were used. 

The E-field produced by the TMS coil was analytically calculated using the 

validated figure-8 coil model24. Since the magnetically induced E-field is independent of 

conductivity within a semi-infinite, homogenous medium, a conductive medium was not 

needed in the model. Additionally, the magnetic permeability was assumed to be that of 

free space (𝜇 = 𝜇!) on the basis of previously published work that contains models for 

TMS in biological tissue (Thielscher et al., 2011). 

The E-field produced by the ECS electrode was computed via the finite element 

method, using an FEM of an electrode (D = 5 mm; thickness = 2 mm) within a 
                                                

23 See Theoretical Analysis of the Magnetic Stimulus, p. 40. 
24 See Figure-8 TMS Coil Model Development, p. 34, 54. 
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homogenous conductive medium having the approximate conductivity of saline (σ = 0.2 

S/m). We modeled the ECS system under steady state conditions with an assumption of 

negligible dielectric effects (𝜖 = 𝜖!). The electrode was modeled as a constant current 

source (floating potential) and the outermost boundaries of the model were conditioned 

to zero potential (V = 0; ground). 

Physical principles were based on Ampere’s law. ECS effectively adds charge to 

extracellular space, which affects the transmembrane potential. No intracellular charge is 

added or displaced without membrane channels opening. For ECS, the voltage between 

any two points is path independent: 

Δ𝑉 = 𝐄 ∙ 𝑑𝐬
𝑏

𝑎
 

(Eq. 11) 

For Eq. 11 to be true, it must also be that ∇×𝐄 = 0. Conversely, in the generalization to 

electrodynamics, ∇×𝐄 ≠ 0 (see Eq. 4 & 7). Therefore, Eq. 11 is not valid in 

electrodynamics because Δ𝑉 is path dependent. Magnetic stimulation does not add 

charge into the system, but rather an induced EMF is exerted on existing charge in 

extracellular space and intracellular space.  

Our objective was to gain insight into the relatedness between magnetic and 

electric stimulation by answering the question: Are electric and magnetic stimulation 

analogous? 

vii. Development of Pyramidal Cell Model 

We adapted the pyramidal cell model published by Amatrudo et al. (2012) for the 

purpose of modeling TMS experiments. This model was made publicly available on 
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ModelDB25. Amatrudo et al. (2012) constructed this model by performing a high-

resolution 3D morphometric analysis from a layer 3 pyramidal cell within the left 

dorsolateral prefrontal cortex (dlPFC) of the monkey. This particular model was selected 

for use in TMS for four main reasons: 

1) The hypothesis that TMS has immediate and direct effects on pyramidal cell neurons 

is well supported (Arias-Carrión, 2008; Di Lazzaro et al., 2008). This could be due to 

the large density of excitatory post-synaptic connections compared to other neurons 

in cortex. Also, evidence exists that direct targets of activation are subcortical 

descending axons (Burke et al., 1993; Nowak & Bullier, 1998). 

2) The model’s size is representative of pyramidal cells anterior the central sulcus. 

Amatrudo et al. (2012) show modeled reconstructions of 10 neurons (5 from visual 

cortex (V1) and 5 from dlPFC) with an analysis of size vs. presence in cortical areas. 

3) The biophysical structure and electrical properties of the model were gathered from 

experimental data and imaging. The structural integrity of the pyramidal cell is 

paramount since activation from TMS depends on the shape of neural elements.  

4) It was built and coded in a well-established neuron modeling environment 

(NEURON) and was made readily available for customization through ModelDB25.  

5) A 20 mm synthetic axon (Mainen et al., 1995) was added, which includes an axon 

hillock, initial segment, and 200 sections of myelin and nodes of Ranvier. Cellular 

electrical parameters (space constants, time constants, etc.) were obtained by 

Amatrudo et al. (2012) for passive and active membrane properties. Neuron 

compartments were tuned to have H-H style kinetics by physiological current-voltage 

                                                

25 A database of published neuron models that were built in the NEURON environment. See 
http://senselab.med.yale.edu/modeldb/. 
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relations (Mainen et al., 1995). The final multicompartmental model contains 1392 

compartments (Figure 8).  

 

Figure 8 Pyramidal Cell Model Structure and Circuit Model. Cell body and dendritic tree of dlPFC 
pyramidal cell model created by Amatrudo et al. (2012). A synthetic axon was added. Single compartment 
circuit model describing ionic channel conductances and Nernst potentials are shown. 

Ionic currents of the compartment model have the general form of 

𝐼𝑖𝑜𝑛 = 𝑔𝑖𝑜𝑛 𝑣, 𝑡 𝑣 − ℰ𝑖𝑜𝑛  (Eq. 12) 

where 𝑣 is the intracellular potential, ℰ𝑖𝑜𝑛 is the Nernst potential of the potential from the 

ion gradient, and  𝑔𝑖𝑜𝑛 𝑣, 𝑡  is the conductance of the ion channel. The ion conductance is 

generalized by the maximum conductance (𝑔𝑖𝑜𝑛) multiplied by gating variables (𝜚) that 

range between 0 and 1.  

𝑔𝑖𝑜𝑛 𝑣, 𝑡 = 𝑔𝑖𝑜𝑛𝜚 (Eq. 13) 

By virtue of the rate constants (𝛼, 𝛽), gating variables are voltage- and time-dependent. 
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𝜏𝜚 =
1

𝛼𝜚 + 𝛽𝜚
 

𝑑𝜚
𝑑𝑡
= 𝛼𝜚 1 − 𝜚 − 𝛽𝜚𝜚 =

𝜚∞ − 𝜚
𝜏𝜚

 

(Eq. 14) 

Due to the nonlinear nature ion channels, neuron models are inherently computational. 

Simulations were performed within the NEURON environment26. Gating variables 

describe the fraction of ion channels within a membrane patch that are open at any time, 

𝑡. The opening of the ion channels relieves the membrane of the diffusion gradient and 

causes graded potentials or action potentials described by depolarization preceding 

hyperpolarization. The values of the activation (𝛼) and inactivation (𝛽) parameters are 

described below for the two membrane mechanisms implemented in this pyramidal cell 

neuron.  

Potassium (K) channel kinetics 

The ion channel current depends on the max conductance (𝑔𝐾) and its gating variable 

(𝑛), 

𝐼𝐾 = 𝑔𝐾𝑛 𝑣 − ℰ𝐾  (Eq. 15) 

and the rate constants 𝛼 and 𝛽 (units of ms!! ): 

                                                

26 NEURON script is written in a custom (and perhaps esoteric) programming language called 
“hoc”, or “high order computing” code. NEURON also works well with ion channel mechanisms 
built within other environments such as GENESIS (GEneral NEural SImulation System; 
www.genesis-sim.org/GENESIS/). 
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𝛼𝑛 =
0.02 ms!! 𝑣 − 25 mV

1 − exp − 𝑣!!" 𝑚𝑉
! !"

 

𝛽𝑛 =
−0.002 ms!! 𝑣 − 25 mV

1 − exp 𝑣!!" !"
! !"

 

𝜏𝑛 =
1

𝛼𝑛 + 𝛽𝑛
 

𝑛∞ = 𝛼𝑛𝜏𝑛 

(Eq. 16) 

The units for the terms are included in Eq. 16 and are consistent throughout. 

Sodium (Na) channel kinetics 

The ion channel current for sodium is 

𝐼𝑁𝑎 = 𝑔𝑁𝑎𝑚!ℎ 𝑣 − ℰ𝑁𝑎  (Eq. 17) 

and the rate constants for gating variable m, 

𝛼𝑚 =
0.182 𝑣 + 35

1 − exp − 𝑣!!"
!

 

𝛽𝑚 =
0.124 𝑣 − 35

1 − exp − 𝑣!!"
!

 

𝜏𝑚 =
1

𝛼𝑚 + 𝛽𝑚
 

𝑚∞ = 𝛼𝑚𝜏𝑚 

(Eq. 18) 

and the rate constants for the gating variable h. 
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𝛼ℎ =
0.024 𝑣 + 50

1 − exp − 𝑣!!"
!

 

𝛽ℎ =
0.0091 𝑣 − 75

1 − exp − 𝑣!!"
!

 

𝜏ℎ =
1

𝛼ℎ + 𝛽ℎ
 

ℎ∞ =
1

1 + exp 𝑣!!"
!.!

 

(Eq. 19) 

Table 3 Pyramidal Cell Model Parameters. 

  

Soma and 
Dendrites Myelin 

Axon Hillock 
and Initial 
Segment 

gbarNa (mS/cm2) 105 105 105000 
ENa (mV) 60 60 60 
gbarK (mS/cm2) 115 0 1916.7 
EK (mV) -90 -90 -90 
C (uF/cm2) 1 0.04 1 
EL (mV) -69 -69 -69 
gL (mS/cm2) 0.038 0.038 0.038 
Raxial (Ω-cm) 150 150 150 

 

Strength-duration Relationships 

Strength-duration relationships for the model were obtained from three 

stimulation paradigms: 1) intracellular stimulation via somatic current injection, 2) 

extracellular stimulation via ECS electrode, and 3) magnetic stimulation via a 90 mm 

diameter circular coil. 

Strength-duration relationships were quantified by rheobase (the threshold 

stimulus amplitude required to initiate an action potential with an infinitely long stimulus 

pulse) and chronaxie (the stimulus duration where the threshold stimulus amplitude is 2x 
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rheobase). This analysis was performed using well-established methods for electrical 

and magnetic stimulation of nervous tissue (Chronik & Rutt, 2001; Holsheimer et al., 

2000; McIntyre et al., 2004; Recoskie et al., 2009). We developed a custom NEURON 

script to search for the stimulus threshold for any stimulation paradigm. This script allows 

for customizing the stimulus duration, stimulus waveform shape, cell state (resting state, 

active state, passive state, etc.), and cell activity. 

For intracellular current injection (Malmivuo & Plonsey, 1995), the shape of the 

strength-duration curve follows 

𝐼! =
𝐼!!

1 − 𝑒!
!
!

 (Eq. 20) 

 where 𝐼𝑠 is the stimulus current threshold having a duration of t for a membrane having 

a time constant, 𝜏, and a rheobasic current, 𝐼𝑟ℎ. For extracellular electrical stimulation, 

the strength-duration follows the general relation  

𝑉𝑠 ≥ 𝑉𝑟 1 +
𝜏𝑐

𝑡
 (Eq. 21) 

where 𝑉𝑠 is the stimulus strength required for membrane activation, 𝑉𝑟 is the rheobase 

threshold, 𝜏𝑐 is chronaxie, and 𝑡 is the stimulus duration. Equation 21 is the 

generalization for the strength-duration relationship. The shape of the strength-duration 

curve follows an exponential relationship from Eq. 20. 

The magnetic strength-duration relationship is derived from the E-field strength-

duration equation (Recoskie et al., 2009). 

𝐸𝑠 ≥ 𝐸𝑟 1 +
𝜏𝑐

𝑡
 (Eq. 22) 

Equation 22 is then reformed for magnetic stimulation by the following proportionalities.  
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𝐄 ∝
𝑑 𝐁

𝑑𝑡
 

𝐁 ∝ 𝐼𝑐𝑜𝑖𝑙 

𝑑 𝐁
𝑑𝑡

∝
𝑑𝐼𝑐𝑜𝑖𝑙

𝑑𝑡
 

(Eq. 23) 

The strength-duration relationship27 for magnetic stimulation from a TMS coil can be 

written as 

Δ𝐼𝑠 ≥
𝑑𝐼𝑐𝑜𝑖𝑙

𝑑𝑡 𝑚𝑖𝑛
𝜏 + Δ𝐼𝑚𝑖𝑛 (Eq. 24) 

where Δ𝐼𝑠 is the rise in coil current over a time 𝜏 required for suprathreshold stimulation, 

the bracketed term is the minimum rate of change of the coil current at the upper limit of 

the coil current 𝐼𝑐𝑜𝑖𝑙 that causes stimulation, and Δ𝐼𝑚𝑖𝑛 is the minimum current rise at the 

upper limit of the current rise rate ( 𝑑𝐼𝑐𝑜𝑖𝑙 𝑑𝑡 𝑚𝑎𝑥) that causes stimulation. Chronaxie can 

be determined directly from threshold parameters by 

𝜏𝑐 =
Δ𝐼𝑚𝑖𝑛

𝑑𝐼𝑐𝑜𝑖𝑙
𝑑𝑡 𝑚𝑖𝑛

 (Eq. 25) 

where the numerator has units of [A] and the denominator has units of [A/s]. Equations 

24 and 25 are normally applied when the induced eddy currents are unknown. In order 

to compare magnetic with electric stimulation and since the E-field is not unknown, Eq. 

22 was employed to determine strength-duration relationships.  

Chronaxies from three experimental setups were determined for the purpose of 

comparison (Figure 9). Magnetic chronaxie was determined by modeling the approach 

similar to that employed by Basser and Roth (1991). Magnetic chronaxie was 

determined via a current-controlled circular stimulating coil. This coil is similar to TMS 

                                                

27 See Appendix B, p. 159, for derivation. 
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circular coils having 9 windings, a 90 mm diameter, and a maximum current delivery of 8 

kA. The coil was assumed to have a maximum rise time of 100 µs with an adjustable 

maximum current output. The pyramidal neuron was oriented in such a way that its axon 

lies in-plane with the circling E-field (Figure 9A). Chronaxie from extracellular electrical 

stimulation was obtained by modeling the scalar potential field produced a voltage-

controlled ECS electrode having cylindrical geometry (D = 5 mm). The pyramidal cell 

was placed 1 cm below the plane of the ECS electrode and oriented such that the axon 

lies within a plane parallel to the bottom of the electrode (Figure 9B). 

 

Figure 9 Strength-duration Experimental Setup. Strength-duration curves were obtained under three 
conditions shown in (A), (B), and (C). (A) Pyramidal cell is shown oriented within the induced E-field 
(concentric arrows) from magnetic induction at a depth of 1cm. (B) Pyramidal cell orientation relative to ECS 
electrode (D=5mm). (C) Pyramidal cell is shown under somatic current injection. 

These excitability characteristics would not be obtainable in-vitro without 

stimulation hardware that has modifiable stimulus waveform parameters. Only through 

modeling can a magnetically induced E-field have a semi-infinite duration. 

1cm

A

B
C Icurr



 56 

Activation Threshold Relative to Membrane Potential 

We tested the Edgley et al. (1990)28 hypothesis using the same setup illustrated 

in Figure 9A with magnetic waveforms as produced by Magstim stimulator units. We 

then examined the threshold to activation relative to varying membrane potentials within 

the cell body. In order to raise the membrane potential above resting state, varying 

degrees of sub-rheobase current injection within the soma were modeled. The current 

injection was relieved at the time of the magnetic stimulus and the intracellular voltage 

was recorded to evaluate the relationship between membrane potential at the time of the 

stimulus and stimulation threshold. Both the monophasic and biphasic magnetic stimulus 

pulses were tested. 

Our objective for Specific Aim 1 was to develop a working single-cell model of a 

pyramidal cell for experimentation in TMS to gain new insights into neural response 

variability as well as possible mechanisms of activation during TMS.  

RESULTS 

i. Figure-8 TMS Coil Model Development 

We created an analytical model of the figure-8 TMS coil to estimate the 

electromagnetic fields generated by current flow through its windings. E-field calculations 

were compared with those of the Salinas et al. (2007) validated model based on in-vitro 

magnetic field measurements; the custom coil model was found to produce E-fields 

comparable to those predicted by Salinas et al. with little discrepancy (Figure 10). E-field 

vectors and magnitude maps (Figure 11) were found to match those by Walsh and 

Pascual-Leone (2005, p. 59). The coil model produced a magnetic flux of 2.09 T directly 
                                                

28 Edgley et al. (and many others) surmise that a contributing factor to the variability observed 
from TMS is related to the membrane potential at the time of stimulus. 
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underneath the coil, which agrees with published in-vitro measurements of 2.0T 

(Jalinous, 1998).  

 

Figure 10 Coil Model Validation. E-field calculations from the model (bottom) in this study are compared 
with those from Salinas et al. (2007) (top, solid line) where the coil current rise time is assumed 100 µs at 
100% intensity. The top plot was copied from Figure 5A in Salinas et al. (2007) for the purpose of 
comparison. Plots show E-field calculations along an evaluation line 3.5mm below the plane of the coil along 
the width dimension of the figure-8 coil (x-axis). (Top plot used with permission from Salinas et al., 2007.) 

Our model predicted electromagnetic fields as expected from Maxwell’s 

equations29. The induced E-field followed streamlines that were concentric with the coil 

turns (Figure 11). Induced currents were found to flow in the opposite direction of the 

current through the coil according to Maxwell’s equations. 

                                                

29 See Appendix A, p. 158. 
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Figure 11 Induced E-field Vectors and E-field Magnitude Contour Map. Induced E-field vectors and 
relative E-field magnitude contour lines on a plane 1 cm below the plane of the figure-8 TMS coil. Dark red 
line indicates 0.9 of the max E-field magnitude. 

The measured EMF matched the waveform characteristics (Figure 12) specified 

by the manufacturer in terms of the rise time, duration, and shape (Jalinous, 1998; 

Walsh & Pascual-Leone, 2005). The actual current through the TMS coil could not be 

recorded due to the hardware casing around the stimulator unit. For this reason, the 

actual current was modeled by normalizing the measured waveforms and scaling them 

according to manufacturer specifications to enable prediction of the absolute induced 

fields. The shape of the current waveform through the coil was calculated post-hoc by 

integrating the EMF record (Figure 12). 

50mm

0.1

0.2
0.3
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Figure 12 In-vitro Recording of TMS Stimulus Waveform. In-vitro EMF records for both the biphasic (A) 
and monophasic (B) TMS stimulus. The actual current waveform (∝ B-field) was found indirectly by 
computing the integral of the Recorded EMF. 

ii. Time Dependencies: Fourier Solver vs. Single-frequency 
Approximation 

Our Fourier Solver produced the expected stimulus waveform according to 

Maxwell’s equations (Figure 13C & D) and according to published work describing TMS 

(Walsh & Pascual-Leone, 2005, p. 41-8). Comparisons were made with previously 

published E-field modeling methodologies applied for TMS (Figure 13B). The previously 

published approaches assume single-frequency conditions by simplifying the time-

dependent pulse to a signal with one frequency component (Figure 13B).  
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Figure 13 Time-dependent Analysis with Fourier Solver. Calculation steps of the custom Fourier solver 
to obtain the resulting induced E-field from a monophasic TMS pulse (A). (B) The DFT of the TMS pulse is 
calculated, (C) the E-field is calculated in the frequency domain, and (D) the inverse DFT is calculated to 
obtain the resulting waveform in time. Approximations from previously published approaches have been 
included for the purpose of comparison with the Fourier Solver calculation (Actual). 
† The Fourier Solver was designed specifically for use in the finite element method. Here, the 
electromagnetic equations are solved at every frequency in the spectrum of (B). The result is a discrete 
Fourier series of the E-field from magnetic induction. 
†† The time-dependent solution is found by calculating the inverse DFT of the discrete Fourier series in (C). 
The actual induced E-field was calculated via the Fourier Solver, which was compared with the results from 
the approach of other investigators (Jalinous, 1998; Walsh & Pascual-Leone, 2005). 

We compared the results from the Fourier Solver with those reported from single-

frequency assumptions. (This approach results in an oscillating E-field at a single 

frequency, not a transient E-field as shown in Figure 13D.) The single-frequency 

approximations were manually transformed to the shape of the TMS pulse for the 

purpose of comparison with the Fourier Solver solution (Figure 13D, Actual). The Fourier 

Solver produced a theoretical solution to the time-dependent problem by computing the 

solution within the spectrum of the TMS waveform (0-100kHz) at a negligible 

computational cost.  

The time-dependent E-field calculations differed significantly (percent difference 

of 115% to Chen and Mogul, 2009 and 213% to Miranda et al., 2003) from studies that 

reduce the monophasic stimulus pulse to a single-frequency sinusoid (Figure 13D). 

These results suggest that a single frequency component is a poor representation of the 

actual coil current pulse, and the Fourier Solver is a viable method to estimating the 

actual induced E-field in discrete-time for any TMS waveform. 

iii. Conceptualizing Barker’s Activating Function 

According to the activating function, ƒ, an axon exposed to threshold stimulus 

would be expected to depolarize where ƒ is maximum. We performed a theoretical 

analysis to provide a framework for understanding how excitation occurs from magnetic 
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stimuli. The analysis of the activating function confirmed modeled axon responses 

measured by Basser (1994) and B. J. Roth and Basser (1990).  

 

Figure 14 Activating Function of Hypothetical Axon. (A) The E-field lines of two widely used coil shapes 
in TMS are illustrated relative to hypothetical axons (“×” indicates an axon oriented normally to the plane of 
the page) that experience no activation regardless of E-field intensity, i.e., ƒ is 0 everywhere along the axis 
of each axon. (B) Different orientations of a straight axon relative to a TMS coil are shown with their 
corresponding activating function plots (C) along the length, L, of the axon. (C) Activating function plots are 
illustrated for the adjacent axon orientation in (B). Lines labeled “a” and “b” correspond to different time 
points during the TMS pulse (see (D)). (D) Monophasic TMS pulse and the induced E-field in time where 
time points “a” and “b” occur at <20 µs and 90 µs, respectively. 

Certain distinct orientations of an axon could yield no activation (Figure 14A) 

according to Eq. 6, specifically, ƒ = 0 along axons oriented perpendicular to E-field lines. 

Otherwise, due to the nonhomogenous E-field, ƒ was found be non-zero in any other 

orientation. 

The ƒ value does not contain time-dependent terms (Eq. 6). The ƒ value 

provided a valuable basis for understanding mechanisms of TMS but it was an 

oversimplification of the effects of TMS even though it has been employed for such 
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evaluations (Opitz et al., 2011; Silva et al., 2008). A more in-depth assessment of the 

excitability of an axon in an E-field would require a strength-duration analysis and time-

dependent models. 

iv. Theoretical Analysis of the Magnetic Stimulus 

Based on Ampere’s current conservation law (Eq. 8), the axial current played a 

role in initiating membrane polarizations. The magnitude of the current induced in 

intracellular space depends on the axial component of the induced E-field (Figure 15). 

Given the scenario defined in Figure 15A, the maximum axial current occurs where the 

induced E-field is collinear with the axon axis. Therefore, the axon bend was found to 

cause attenuated E-fields giving rise to distinct, concentrated increases in intracellular 

charge (ρ) to occur at the bend. 

𝑑𝜌/𝑑𝑡 = −∇ ∙ 𝐉 (Eq. 26) 

This charge build-up near the axon bend leads to membrane polarization, which, if 

above threshold, would give rise cell activation. 

The monophasic pulse created a single abrupt polarization across the cell 

membrane in a bent axon (Figure 15B), and the biphasic stimulus elicited three 

consecutive membrane polarizations that are similar in magnitude but differ in direction 

(Figure 15C). 

These results suggest that a similar effect in neuronal sections where there is a 

change in neurite30 diameter (Figure 16). This phenomenon would be expected to occur 

in dendrites or near synapses. Axons having a constant diameter (e.g., myelinated 

axons) can be polarized only at bends. 

                                                

30 A “neurite” is any projection of the cell from its cell body (e.g. dendrites, axons, etc.). 
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As demonstrated, the activating function is limited to cylindrical neural elements 

with a constant diameter. In axons with a constant diameter, the results confirm the 

activating function (Walsh & Pascual-Leone, 2005). These findings demonstrate the 

electrical forces exerted by a stimulus waveform on ion channels within a bend. 

However, Ampere’s law alone cannot explain biophysical effects of the monophasic and 

biphasic waveform on the membrane ion channels. Furthermore, these results cannot 

describe the threshold stimulus or the cellular response. 

The theoretical analysis provided an explanation of the one mechanism of 

activation within an axon that is consistent with Barker’s activation function. Furthermore, 

Ampere’s law offered a viable framework for answering questions related to the cellular 

response from a stimulus. 

v. The Response of a Passive Cylindrical Axon to a Monophasic 
Stimulus 

Finite element methodology was employed to model a bent axon in the presence 

of a time-varying magnetic field. The bend angle (θ) of the axon was varied and the 

effects were evaluated. The resulting transmembrane potential was compared to 

predictions based on Ampere’s law of current conservation (Figure 15). The results 

suggest that an isolated axon experiences a stimulus along the full length of the 

membrane, but is intensified at bends. 

The induced E-field gave rise to membrane hyperpolarization for all bend angles 

at t = 50 µs (Figure 17C). Evaluation lines around the bend (Figure 17A, dotted lines) 

yielded unequal transmembrane voltages on opposite sides of intracellular space (Figure 

17B & C). Maximum membrane hyperpolarization was found near the axon bend (cf. 

Figure 15C, middle). Hyperpolarization occurs on both sides of the cell membrane, but 

differs in magnitude. The membrane voltage response followed the shape of the 
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Figure 15 Cross-section of Single Membrane Compartment in a Curved Axon Within Uniformly 
Induced E-field. Ampere’s law of current conservation for an E-field induced within intracellular space has 
been modeled for the monophasic (B) and biphasic (C) stimulus. (A) For exemplary purposes, the induced 
E-field was assumed uniform around an axon with a 90º bend. (B & C) Black arrows indicate induced 
electric currents and blue arrows describe the driving force of ionic currents arising from membrane 
polarization. Vertical dotted lines mark the time points for the corresponding illustrations directly underneath. 
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Figure 16 Charge Conservation at Diameter Change. Ampere’s law of charge conservation applied to an 
axon having a change in diameter in the presence of a parallel E-field. Resulting axial current (J) decreases 
with decreasing diameter. This phenomenon is not detected by the activating function.  

monophasic stimulus with a phase delay. For a bend angle of θ = 90º (Figure 17B), 

transmembrane voltage has an increasing phase delay with an increasing evaluation line 

number on the side of the bend having the greatest surface area (Figure 17A, red 

points). However, this phase delay is not present on the opposite membrane (Figure 

17A, green points). The existence of a phase delay can be attributed to the capacitive 

properties of the membrane. This phase difference in the transmembrane potential 

(Figure 17B; red vs. green traces) is likely due to the larger surface area on the outside 

of the bend.  

The magnetic stimulus was found to induce non-uniform potentials along the 

circumference of the membrane cross section. The transmembrane potential varied 

along the axon axis and around its circumference (Figure 17C). These variations were 

especially apparent with greater axon bend angles. The direction of the E-field played a 

significant role in membrane polarization during a magnetic stimulus. Bent axons 

experienced increased polarization with increasing bend angles. Importantly, these 

findings support predictions based on a theoretical approach (cf. Figure 15 & Figure 16).  

Axial models such as the activating function cannot account for the asymmetric 

activation of ion channels around the axis of an axon (Figure 14). However, an axial 

J
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model would capture the net effect of the stimulus on all channels within or near the 

axon bend. Therefore, a model of this detail is unneeded in order to describe loci of 

activation along the axial direction of an axon. 

vi. Comparison of Induced E-fields from Magnetic and Electrical 
Stimulation 

We compared the induced E-field produced by a figure-8 TMS coil with that 

produced by an ECS electrode (D = 5 mm), and the magnetically induced E-field was 

analytically computed using the figure-8 coil model. The E-field produced by a current-

controlled ECS electrode was computed within COMSOL using the finite element 

method. The E-field magnitude was plotted on a line (L = 40 mm) positioned 10 mm 

below the plane of each source (coil and electrode) (Figure 18). 

The ECS E-field was axisymmetric whereas the E-field from the TMS coil was 

symmetric only about the x-axis (or xz-plane) (Figure 19). At a depth of 10 mm, the area 

containing at least 80% of the maximum E-field for magnetic stimulation was 15.9 sq-cm 

(Figure 19, 0.8 contour) and the ECS counter-part (Figure 18 and Figure 19, dotted-line) 

was 1.2 sq-cm (13.2x smaller). 

These results suggest that ECS is not analogous to TMS. E-field calculations 

demonstrate large differences in E-field distribution between TMS and ECS. At 10 mA 

delivery, the ECS electrode produced a maximum E-field of 26 V/m (depth of 10 mm). At 

the same depth, the TMS coil to produced a maximum E-field of 432 V/m from a max-

intensity monophasic stimulus. Though the E-field delivered by the figure-8 coil is greater 

in magnitude, its E-field gradient magnitude was lesser than that from ECS.  
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Figure 17 Transmembrane Potential at the Bend in Axon FEM Model. Transmembrane potential was 
computed relative to extracellular space. (A) Axon schematic with a right-angle bend (θ = 90º) and 
evaluations lines 1-7 is shown relative to the direction of the induced E-field. The transmembrane potential 
was evaluated at the red and green dots. The angle convention is also shown. (B) Resulting transmembrane 
potential for θ = 90º at each evaluation point during a monophasic magnetic stimulus. (C) The 
transmembrane potential at evaluation points (dotted vertical lines) at time t = 50 µs as indicated in (B).  
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Figure 18 Normalized E-field Magnitude from TMS Coil and Electrode. The resulting E-field produced by 
a magnetic (figure-8 TMS coil) and electric (cylindrical ECS electrode) source was compared. E-field 
magnitude was computed on an evaluation line positioned 10 mm below the plane of each source. The 
center of the evaluation line (0 mm) intersects the vertical midline of each source.  

i. Development of Pyramidal Cell Model 

The pyramidal cell model was adapted from the model created by Amatrudo et 

al. (2012), with the addition of a synthetic axon (L = 2 mm) developed by Mainen et al. 

(1995). Modifications of the Amatrudo et al. model included mechanisms to 

accommodate for either electric or magnetic stimulation. We performed two 

computational experiments of the effect of the E-field from TMS and ECS on the neuron 

model. For the first, the strength-duration relationship for the neuron was obtained under 

three conditions: 1) stimulation from magnetic induction via a circular coil (D = 90mm) 

elevated from the plane containing the neuron by 10 mm, 2) stimulation from cylindrical 
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ECS electrode (D = 5 mm) elevated from the plane containing the neuron by 10 mm, 

and 3) stimulation from a current injection within the soma of the cell. 

 

Figure 19 Contour Plot of E-field Magnitude from Figure-8 TMS Coil. Normalized (E/Emax) contour plot of 
the E-field magnitude is plotted with the 80% E-field contour from the ECS electrode (dotted line). The large 
transparent half circles illustrate coil windings of the figure-8 coil.  

In the second experiment, the response of the neuron to a magnetic stimulus at 

different transmembrane voltages was simulated. The threshold stimulus (stimulus 

amplitude required to cause soma depolarization) was found at different transmembrane 

potentials, and the simulated response to the threshold stimulus was recorded. This 

experiment was carried out for both the biphasic and monophasic stimulus waveform 

using the same setup as in the strength-duration experiment. Transmembrane potential 

was modulated prior to the magnetic stimulus by injecting sub-rheobase current into the 

soma. 
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Strength-duration Relationships 

Strength-duration curves were obtained (Figure 20) and chronaxies were 

normalized to rheobase. The rheobasic E-fields for magnetic and electric stimulation 

were 241.0 ± 0.4 V/m and 243.8 ± 32.0 V/m, respectively. Chronaxies from TMS and 

ECS were found to have lesser durations than that from intracellular stimulation (current 

clamp). Respective chronaxies are shown in Table 4. 

Table 4 Chronaxie and Rheobase for Tested Stimulation Paradigms. 

 Chronaxie Rheobase 
Circular Coil 0.791 ms 241.0±0.4 V/m 

ECS Electrode 1.072 ms 243.8±32.0 V/m 
Somatic Current Clamp 5.675 ms 0.289 nA 

 

Electric and magnetic stimulation produced very different E-fields around the 

neuron. The magnitude of the stimulating E-field from the ECS electrode had a standard 

deviation 91x greater than that from TMS. In other words, the E-field was more uniform 

during TMS than during ECS. Chronaxie of the pyramidal cell was dependent upon the 

stimulation paradigm. 

I found that an action potential was initiated at varying latencies following the 

onset of the stimulus (step function). Stimulus durations of even 100 ms (above 

rheobase) caused no additional depolarization after the first spike. Conversely, 

intracellular stimulation greater than rheobase caused a train of periodic action potentials 

to spread throughout the cell. 
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Figure 20 Strength-duration Relationship of Pyramidal Cell Model. Strength-duration curves are shown 
for the pyramidal cell under three stimulation conditions: 1) magnetic stimulation via a circular coil, 2) 
electrical stimulation via an ECS electrode, and 3) intracellular stimulation via somatic current clamp. Twice 
the rheobase is indicated by the horizontal dotted line. Vertical dotted lines are chronaxies for respective 
stimulation paradigms. 

Membrane Potential Influences Activation Threshold 

It has been hypothesized that the variability in neural response to TMS can be 

ascribed to variability in cell membrane potential at the time of the stimulus (Walsh & 

Pascual-Leone, 2005). This hypothesis was tested in this study by means of the 

pyramidal model oriented in an induced E-field as illustrated in Figure 9A. The 

magnitude of the threshold stimulus was found to depend upon the transmembrane 

potential at the time of the stimulus (Figure 21A). Additionally, the latency of soma 

depolarization varied with respect to both the stimulus waveform shape and 

transmembrane potential (Figure 21B). Mean latencies of soma depolarization following 

the stimulus were 2.60 ms and 3.91 ms for the monophasic and biphasic waveform, 
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respectively. Intracellular potential prior to stimulation was found to be unrelated to the 

latency of soma depolarization.  

 

Figure 21 Threshold Stimulus as a Function of Intracellular Potential. (A) Threshold stimulus was found 
relative to soma membrane potential at stimulus onset (resting potential = -70mV). (B) The soma response 
to a biphasic (top) and monophasic (bottom) stimulus at the threshold stimulus for each case. Marker colors 
in (A) correspond to (B). Circled data in (A) are points of interest and have been analyzed further (see 
Figure 22). Note the relative order of their action potential times in (B). 
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Figure 22 Pyramidal Cell Response to Biphasic and Monophasic Stimulus. Pyramidal neuron response 
to biphasic and monophasic stimulation is shown for data points of interest (circled points in Figure 21A). 
(A) False color map of intracellular response to threshold stimulus. Cell compartments of interest are marked 
numerically (1, 2, and 3). Compartments of interest include (1) an upper compartment of the apical dendrite, 
(2) a compartment within a basal dendrite, and (3) a node of Ranvier at 3 mm depth (arrow indication not to 
scale). (B) Transmembrane responses are shown for compartments of interest. Black arrows indicate times 
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of depolarization in compartments that send excitatory input to the soma. Subsequently, the soma 
depolarizes, which leads to a spread of depolarization throughout the cell. 

The cellular response from a monophasic stimulus had marked differences to 

that from a biphasic stimulus. Neurites extending from the soma showed sensitivity to 

stimulus waveform. Pyramidal cell simulations indicate that, for the given stimulation 

condition (Figure 9A), apical dendrites are more sensitive to biphasic stimulation 

whereas basal dendrites are more sensitive to monophasic stimulation. This result 

suggests that the structure of a dendrite relative to the induced E-field influences its 

susceptibility to activation (Figure 22).  

Cell simulations show that the threshold stimulus of neural elements varies with 

membrane potential (Figure 21 & Figure 22). In addition, increasing the soma 

transmembrane potential caused both the biphasic and monophasic threshold to 

decrease. The biphasic threshold was found to decrease more than the monophasic 

threshold.  

In summary, our model simulations suggest that 1) the threshold stimulus varies 

with induced E-field (Figure 20), 2) the threshold stimulus decreases with increasing 

intracellular potential of the soma (Figure 21), 3) the neuron response varies with 

respect to stimulus waveforms (Figure 21A and Figure 22), and 4) the susceptibility of a 

neurite to activate depends upon stimulation waveform and transmembrane potential at 

the instant of the stimulus. 

DISCUSSION 

In this study, electromagnetic theory has been applied to the analysis of 

magnetic stimulation of neurons and techniques in computational neuroscience have 

been applied to simulate the response of a single pyramidal cell to a time-varying E-field 
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from magnetic induction. Our modeling approach offers a number of advantages over 

previous methods in TMS modeling: 1) the E-field produced by Magstim stimulator 

units31 can be accurately predicted in space and time, 2) the effects of TMS on neurons 

with complex structures can be assessed, and 3) the time-dependent neuron response 

to a defined magnetic stimulus can be simulated. Using this novel approach, the model 

has been demonstrated to be viable in simulating the response of a single cell to electric 

or magnetic stimulation. Transmembrane responses of individual neural elements 

following a magnetic stimulus were presented. These techniques were implemented to 

obtain: 1) a comparison between electric and magnetic stimulation via the strength-

duration relationship, 2) a comparison between the biphasic and monophasic threshold 

stimulus, and 3) a relationship between threshold stimulus and transmembrane potential 

at the stimulus onset.  

Time Dependencies: Fourier Solver vs. Single-frequency 
Approximation 

We compared our Fourier Solver calculations of the E-field stimulus with 

calculations from past studies that employ a single-frequency approximation. Thielscher 

et al. (2011), Miranda et al. (2003), and Chen and Mogul (2009)32 modeled the TMS 

pulse as a single-frequency sinusoid. TMS model parameters vary among studies, but 

the single-frequency simplification is congruous throughout the TMS literature because 

of its simplicity and low computational load. For most cases, induced E-fields can be 

approximated by this simplification due to the ohmic nature of biological tissue. It has 

                                                

31  The work presented in this chapter and subsequent chapters did not involve investigation of 
any other TMS systems. 
32 See also Kowalski et al. (2002). 
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been shown that electric permittivity (ϵ) and permeability (µ)33 have negligible effects on 

the E-field induced in the head during TMS (Thielscher et al., 2011). Non-negligible 

effects have been found to occur when permittivity values approach 10!𝜖!, which is well 

beyond the electrical properties of biological tissue (Heller & van Hulsteyn, 1992). 

Therefore, the frequency dependent material properties can be safely assumed as 

linear. For example, Thielscher et al. (2011) report E-field magnitudes in terms of 𝐄/

𝐄𝑚𝑎𝑥, not in absolute units. 

Though single-frequency conditions can be assumed for quantifying the 

normalized E-field throughout the brain, this assumption is incompatible when either the 

absolute E-field (V/m) or neuronal influences are of interest. The time course of the 

induced stimulus has biophysical ramifications (Thielscher et al., 2011) and could 

significantly affect the spatial extent of stimulation. As a result, using the E-field solution 

from a single frequency with Barker’s activating function is an oversimplification of the 

effects of TMS on neural elements, and this was confirmed by our model of a TMS pulse 

on a multicompartmental pyramidal cell neuron model shown in Figure 21 and Figure 22. 

The Fourier Solver has versatility as an analytical tool for computing the effects 

of any TMS waveform, which is a pivotal advantage over steady-state (or single-

frequency) solvers. Further investigation can be carried out to better understand the 

effects of waveform shape on neural elements, and it enables the TMS waveform to be 

optimized for either targeting or not targeting certain neuronal elements. How different 

waveform shapes can influence the modulatory effects of TMS remains to be seen. We 

made the strategic decision to constrain our analyses to widely used stimulus waveforms 

that are integrated into clinical TMS systems. This decision was made for two related 

                                                

33 Permeability and permittivity material constants are defined in relative terms (𝜇! and 𝜖!) where 
𝜇 = 𝜇!𝜇! and 𝜖 = 𝜖!𝜖!. 
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reasons: 1) to design an approach that is clinically translatable and 2) to provide insights 

that directly impact the clinical implementation of TMS. 

Comparison of Induced E-fields from Magnetic and Electrical 
Stimulation 

Our results suggest that the E-field produced by an ECS electrode is not 

analogous to that produced by TMS. These E-fields were found to have substantial 

dissimilarities in terms of magnitude and spatial attributes. Additionally, magnetic 

induction gives rise to E-fields in intracellular space, which are not present during ECS 

due to high membrane resistance to current flow. Since ECS adds charge into 

extracellular space, electrical interactions with ion channels are extracellular in nature. 

Conversely, magnetic stimulation exerts an EMF on existing charge in both intracellular 

and extracellular space. By theoretical and finite element analysis, this study 

demonstrated that mechanisms of magnetic stimulation can be explained in terms of 

intracellular interactions (Figure 15 and Figure 16). This understanding of TMS 

mechanisms is consistent with findings from Day et al. (1989) that different modes of 

stimulation preferentially modulate different neural elements. 

Our results also suggest that the spatial extent of stimulation from ECS 

electrodes is much more focal than that of TMS. The E-field magnitude from ECS is 

∝ 1 𝑅! and as a result, the E-field is almost completely diminished at 𝑅 = 15  mm from 

the electrode. On the other hand, human TMS coils are much larger and the magnitude 

of the induced E-field is ∝ 1 𝑅. Neural activation via TMS seems to rely more on 

pyramidal cell structure and orientation whereas neural activation via ECS depends on 

absolute voltage and the spatial derivative of the E-field. Previous studies support this 

notion (Krieg et al., 2013; Opitz et al., 2011; Ruohonen & Karhu, 2010; Thielscher & 

Wichmann, 2009; Thielscher et al., 2011). 
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Development of Pyramidal Cell Model 

We developed a novel approach to modeling the time-dependent response of a 

neuron to induced E-fields from any stimulation paradigm. A computational model of a 

pyramidal cell neuron from the dlPFC of a monkey (Amatrudo et al., 2012) was adapted 

to simulate the response of a cell to E-fields induced from TMS. Only one other study 

has been published utilizing a multicompartmental pyramidal cell model to simulate its 

response to TMS (Pashut et al., 2011). Pashut and colleagues simulate the cellular 

response to the E-field produced by a stimulating solenoid within a homogenous 

medium. Our study builds upon this approach by adding a human TMS coil model, time-

dependent TMS stimulus waveform model, and pyramidal cell model with a threshold 

finder. Our computational modeling approach possesses the flexibility to simulate the 

response to any time-dependent stimulating E-field. It remains to be seen how the E-

fields in the brain influence neuron response simulations. 

The pyramidal cell model developed in this study is limited in that it does not 

account for the induction of non-uniform transmembrane potentials around the 

circumference of a membrane (Figure 17C). However, results from the cylindrical axon 

FEM suggest that this limitation is not detrimental to the neural response prediction. The 

resulting transmembrane potential from a TMS pulse has asymmetric characteristics 

around the membrane circumference at only the axon bend. This voltage differential 

around the membrane circumference was found to be insignificant compared to the net 

hyperpolarization (Figure 17B). Therefore, the induced potentials were assumed to have 

a uniform effect on ion channels around the circumference of the membrane. 

Our results suggest that pyramidal cell sensitivity to a magnetic stimulus depends 

significantly on its structure. Simulations indicate that dendrites have differing 

susceptibilities to activation for differing stimulus waveforms. Dendrites extending from 
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the apical stem were sensitive to biphasic stimulation whereas basal dendrites were 

sensitive to monophasic stimulation (Figure 22B). Assuming activation occurs in the 

dendrites, the latency of soma depolarization would be a function of its length and time 

constant. Dendrites in pyramidal cells have lower length constants and slower time 

constants than other elements such as the soma, axon hillock, and axon. Perhaps the 

earlier I-waves from motor cortex TMS are related to activation of various dendritic 

branches, which are responsible for varying latencies of soma depolarization and thus 

earlier I-waves (Figure 21B & Figure 22). 

We recognize that these model results depend on the surrounding E-field as 

described by Figure 9A. Based on the results, we nevertheless expect any neural 

element to have a susceptibility to activation that is dependent upon the stimulus.  

We have presented a novel approach with the primary aim to define, describe, 

and model the physical and biophysical parameters at the interface of the neuron and a 

magnetic stimulus. With this model, our objective is to help elucidate possible 

mechanisms responsible for the variability of the physiological response during TMS. 

The results suggest that at least three interrelated factors contribute to the response 

variability of a single pyramidal cell: 

1) The precise site(s) of activation depends on the membrane potential of the cell body, 

stimulus intensity, and stimulus waveform. Soma depolarization was found to depend 

on the collective responses of the neural elements branching from the cell body. 

Pyramidal cell dendrites show unique excitatory or inhibitory responses and vary in 

susceptibility to activation. 

2) Cell body depolarization depends at least on the net excitatory contribution from 

connected neurites. It follows that excitation of the cell body occurs at irregular 

latencies as confirmed by our modeling results. The latency from suprathreshold 
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stimulation depends on the specific time and length constants of the excited 

elements and their distance away from the soma.  

3) The spread of depolarization through the cell depends on the refractory state of each 

individual neural element. Our results show that the sites of activation are in 

refractory periods during action potential initiation in the soma, which leads to certain 

dendrites having immunity to the spread of action potentials through the cell. 

TMS is a relatively mature intervention (>30yrs) in neuromodulation that requires 

further study to better understand mechanisms of activation on the cellular level. The 

modeling approach presented in this study offers versatility for experimentation in 

mechanistic research that would be impossible with current neuroimaging technology. 

Whether or not these results extend to other neurons, as they would reside in the cortex, 

remains to be seen.  

This modeling study was limited to investigating the response of an isolated 

pyramidal cell. Future work might use this model to further test the hypothesis by 

integrating synaptic connections into the pyramidal cell model, which could provide 

insights into additional sources of variability during TMS. A strong case has been made 

for trans-synaptic stimulation during TMS, which is fundamental to the I-wave hypothesis 

and remains to be confirmed through validated models (Edgley et al., 1997; Nakamura 

et al., 1996).  
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CHAPTER 2 

MODELING CHANGES IN MODULATORY EFFECTS IN THE HAND-KNOB OF MOTOR CORTEX 
FROM CHANGING COIL ORIENTATIONS  

 

INTRODUCTION 

Despite the overall promise of TMS as a neurophysiological tool, it is limited by 

considerable variability in physiological response within and among subjects. As a result, 

it is difficult to predict the response(s) to TMS on an individual subject basis. The 

variability in the physiological response to TMS could be due to a wide range of factors 

including coil placement relative to the head, the stimulation waveform (e.g. monophasic 

or biphasic) and the neurophysiological state of the subject (Jung et al., 2010). Our 

understanding of the effects of TMS is partly limited by the inability to quantitatively 

describe the effects and locations of stimulation both within cortex and deeper structures 

like white matter. 

Currently, there is debate about the sites of neural modulation resulting from 

supra-threshold TMS. It is well accepted that pyramidal cells are one of the neural 

targets of TMS (Herbsman et al., 2009). Stimulation of pyramidal cells could occur within 

the soma, descending axon, or both (Di Lazzaro et al., 2004; Pashut et al., 2011). The 

neural response most likely varies relative to stimulation parameters. Evidence exists for 

pyramidal cells as the origin of direct-waves (D-waves), which elicit robust motor 

responses (such as muscle twitches) during motor cortex stimulation. Accordingly, the 

stimulation threshold for the D-wave is lower than that for indirect waves (I-waves) (Hern 

& Landgren, 1962; Terao & Ugawa, 2002). Excitation of white matter has been 

hypothesized to cause ascending and descending action potentials that innervate cell 

bodies and distal interneurons (B. J. Roth & Basser, 1990).  
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The mechanisms of stimulation outside of the motor cortex are mostly unknown 

since the vast majority of our knowledge has been gathered from electrophysiology 

recordings from descending corticospinal neurons and terminal muscles (Di Lazzaro et 

al., 2008). Describing the neural targets of TMS remains a challenge due to limitations in 

functional imaging and the inherent diffuseness of stimulation. Imaging modalities such 

as functional magnetic resonance imaging (fMRI) (Caparelli et al., 2010) and positron 

emission tomography (PET) (Krieg et al., 2013) have been employed for locating 

affected areas. However, functional imaging modalities lack the temporal resolution 

required to observe the immediate neuronal effects of TMS. TMS studies combined with 

electroencephalography (EEG) aim to examine the immediate responses of TMS, but 

are largely interrupted by the robust stimulation pulse artifact. Even with an absent 

artifact, the immediate neural response diffuses throughout the scalp and is mixed with 

corticocortical dynamics from large surrounding regions of cortex. 

Computational models have been used to predict and visualize many types of 

neuromodulation therapy like DBS and direct current stimulation (Butson et al., 2007; 

Datta et al., 2009). Detailed models can provide imaging of dynamics that are impossible 

to record with neuroimaging modalities alone. Computational approaches are more 

frequently employed in neuromodulation because of their ability to make predictions and 

gain insight into mechanisms of modulation. Models for neuromodulation normally 

employ anatomical and functional imaging with finite element methods (FEM).  

The large parameter space for TMS (stimulus intensity, pulse waveform, pulse 

frequency, coil geometry, coil placement relative to cortex, coil orientation, etc.) makes 

computational modeling an attractive approach for better understanding its effects. Past 

efforts to elucidate the effects of TMS have relied heavily on FEM (Chen & Mogul, 2009; 

De Lucia et al., 2007; Güllmar et al., 2010; Miranda et al., 2003; Opitz et al., 2011; 



 84 

Rullmann et al., 2009; Silva et al., 2008). These studies have led to a number of 

hypotheses about the mechanisms for neuromodulation at the interface of the brain and 

the electromagnetic field elicited by TMS (Silva et al., 2008; Terao & Ugawa, 2002). 

Detailed computational models have confirmed that the effects of TMS depend strongly 

on non-homogenous properties of the brain and surrounding cerebrospinal fluid (Opitz et 

al., 2013). Even the morphology of the pial surface has significance pertaining to 

neuronal excitation during TMS, and estimating locations of activation requires realistic 

field calculations combined with detailed neural models (Opitz et al., 2011). 

The fundamental goal of this project was to predict and visualize the neural 

targets of TMS within a target region of cortex on a subject-specific basis. A review of 

TMS literature indicates that the importance of the precise coil placement is 

underestimated (Hoogendam et al., 2010). The motivation for this study was to 

understand the effects of changing coil orientation on the targeted region of cortex. Our 

approach is similar to that of past models for TMS (Thielscher et al., 2011), where we 

integrate anatomical imaging data to generate a subject-specific finite element mesh of 

the whole head. Our method is novel because it integrates a subject-specific finite 

element model of the whole head with multicompartmental neuron models to predict the 

neural targets of single-pulse TMS. This novelty allows for investigation into our 

hypothesis that accurately predicting neural activation from TMS requires a subject-

specific model. Our neuron model is an adaptation of a previously published 

multicompartmental model of a pyramidal cell (Amatrudo et al., 2012) (Figure 23C). The 

scope of this project is limited to the elicitation of D-waves by single-pulse TMS. Using 

this computational approach, we aimed to provide a basis to realize the immediate 

effects of TMS including 1) reasons for the variability in physiology response, 2) 
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diffuseness of excitation, and 3) sites of depolarization within cells across the targeted 

cortical region. 

We designed our modeling process to be tightly integrated with TMS navigation 

systems, which provide image-guided placement of the coil relative to the subject’s 

brain. We applied our model to assess neural response relative to changes in coil 

orientation as would be recorded by navigation systems.  

For this study, we focused our attention on motor cortex stimulation due to its 

immediate measurable physiological response. Furthermore, complex cortical activity 

(e.g. D- and I-waves) can be observed using this approach (Day et al., 1989; Edgley et 

al., 1997). 

METHODS 

Our experimental approach was designed to achieve two primary objectives. 

First, a prediction of the electromagnetic field in the brain using a model that can easily 

accommodate changes in biophysical parameters and coil position without the need to 

re-create the FEM mesh. This prediction facilitates testing a wide range of material 

properties (e.g., tissue conductivity and non-homogeneity) and TMS parameters (coil 

position, orientation, stimulation waveform, etc.). Second, assess the effects of changes 

in these parameters on the activation of model pyramidal cell neurons in cortex. 

Simulating neuromodulation during TMS required the use of three primary model 

components:  

1) Model of the figure-8 TMS coil to estimate the magnetic field produced during 

stimulation.  
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2) Subject-specific head FEM (Figure 23) to model the time-dependent 

electromagnetic field produced in the head. We employed a novel Fourier FEM 

solver to obtain the time-dependent electromagnetic solution within the head. 

3) A population of cortical pyramidal cell model neurons that are oriented 

perpendicularly to the pial surface and are modulated during TMS. 

 

Figure 23 Finite Element Model. (A) A FEM head model was generated from an MRI and segmented into 
several tissue types. A coronal slice through the FEM is shown with colors indicating the different domains 
within the mesh: WM (orange), GM (red), CSF (light blue), skull (yellow), and scalp (blue). (B) Close-up of 
GM with high mesh density for in regions containing the pyramidal cell models. (C) Cell body of pyramidal 
cell neuron model (axon not shown). The black dots indicate biophysical compartments for simulating 
intracellular response and the red dots indicate the nodes of the cell that are represented in the mesh, which 
causes higher mesh density in areas of the GM where the neurons exist. 

Figure-8 TMS Coil Field Model 

The effects of TMS depend on both fixed and adjustable parameters. Fixed 

parameters include coil geometry and the number of coil windings. Adjustable 

parameters include the coil position, coil orientation (θ), stimulus intensity, and stimulus 

waveform. In order to increase computational efficiency we developed a novel technique 

that requires only the head to be included in the FEM mesh, which avoids meshing of 

the coil and surrounding air (Thielscher et al., 2011). 

To avoid having to include magnetic induction sources within the mesh, we 

employed a custom figure-8 coil model based on x-ray measurements (Salinas et al., 
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2007). It was designed34 to analytically compute the magnetic vector potential (A-field, 

Wb/m) for FEM boundary conditions. 

The coil orientation is defined as the angle between the coil handle and the 

interhemispheric fissure. This specific coil orientation is shown in Figure 24 and is 

defined as the 45º-coil orientation, which is typical for motor cortex stimulation. We 

adopted the orientation and coordinate frame from clinical neurophysiology. 

 

Figure 24 TMS Coil Model. The TMS coil is approximated by current dipoles that represent the wire 
windings; each red arrow represents a single dipole. This image shows the representation for a coil position 
of 45º above the hand-knob of the motor cortex. 

Subject-Specific Finite Element Head Model 

A subject-specific FEM was generated from an image volume acquired from a 

healthy adult subject. The whole-head T1 MR image was acquired on a 3T scanner at 

0.86 x 0.86 x 1 mm voxel resolution (217 x 251 x 180 voxels). Individual tissue types 

were segmented from the high-resolution anatomical MRI volume using Brainstorm 

(Tadel et al., 2011) and FreeSurfer (Dale et al., 1999). The Iso2Mesh toolbox (Martinos 

Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical 

School) was used with MATLAB (MathWorks Inc, Natick, MA) to generate a tetrahedral 

                                                

34 See Chapter 1, p. 42 for TMS coil model design methodology. 
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mesh of the head. “Typical” isotropic conductivity values were applied to the head model 

based on mean values from multiple studies (Wagner et al., 2004). Our subject-specific 

head model contains white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), 

skull, and scalp with isotropic conductivities of 0.126, 0.276, 1.654, 0.010, and 0.465 

S/m, respectively (Pashut et al., 2011; Thielscher et al., 2011). The head model was 

discretized into approximately 1.75 million tetrahedral elements. 

The FEM method for electromagnetodynamics is well established (Bastos & 

Nelson, 2003). We employed the Magnetic and Electric Fields physics module within 

COMSOL Multiphysics version 4.3 (COMSOL Inc, Burlington, MA) to solve the 

electromagnetic fields within the conductive FEM. The electromagnetic field equations 

were solved using an FGMRES (Flexible Generalized Minimum RESidual) iterative 

solver. 

In these experiments we specifically targeted the hand knob area of the motor 

cortex due to its common use in TMS research: this landmark is used for TMS 

approximating brain regions and finding tuning parameters such as resting motor 

threshold (RMT). The hand-knob is also used to measure changes in cortical excitability 

due to an immediately observable response (Day et al., 1989; Pascual-Leone et al., 

1994; Stinear et al., 2009; Thickbroom et al., 2006; Vaalto et al., 2010). Our approach 

enables the FEM solver to converge toward the time-dependent electromagnetic field 

solution for any coil orientation and stimulation waveform using the same discretization. 

Ampere’s law with current conservation was applied to all domains within the model.  
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The time-dependent electromagnetic field produced by the TMS coil relative to 

the stimulus waveform by an adaptation of a time-dependent Fourier FEM solver 

(Butson et al., 2007)35.  

Neuron Model 

We implemented a biophysically based model of a pyramidal cell located in 

cortex. We adapted a model originally created by Amatrudo et al. (2012) using the 

NEURON simulation environment (Yale, New Haven). This model was chosen based on 

the microstructure of a real pyramidal cell from layer 3 dorsolateral prefrontal cortex 

(dlPFC) in a rhesus monkey brain and its biophysical properties. This pyramidal cell 

model is made up of 1342 neuron compartments wherein biophysical properties are 

defined. We elected to employ a pyramidal cell model on the basis that pyramidal cells 

are one of the primary stimulation targets during TMS. The pyramidal cell model was 

adapted to include extracellular mechanisms in which the cell responds to an externally 

applied, time-dependent E-field (obtained from head FEM). We embedded a custom 

threshold stimulus finder, which searches for the minimum stimulation amplitude to 

depolarize the soma of the pyramidal cell. With this design, it is also possible to record 

the location of action potential initiation on the neuron and the time-dependent response 

of every compartment in the neuron model for any possible TMS waveform.  

Cortex Model 

We modeled a patch of cortex using replicates of the pyramidal cell and its axon. 

Axons of each replicate were modeled to simulate a realistic axons projecting normally 

from the gray matter and curving into the white matter. The pyramidal cell model was 

replicated approximately 2000 times within the gray matter in both the targeted and 

surrounding untargeted region of cortex (Figure 26). The targeted region is indicated by 
                                                

35 See Chapter 1, p. 45 for Fourier Solver design methodology. 
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the red surface and untargeted regions of the pial surface by the blue surface in Figure 

25. The combined red and blue surfaces spread approximately 60 sq-cm. For each 

positioned neuron, the threshold stimulus was found for every tested coil orientation. 

Threshold stimuli were obtained by simulating neuron responses within the NEURON 

environment using a high-performance computing cluster (HPC) (Pére, MUGrid, 

Marquette University).  

 

Figure 25 Cortical Target Region. The folded pial and unfolded (obtained from Freesurfer) pial surfaces 
are shown with the area being analyzed. Neurons were modeled underneath the cortical areas contained by 
the blue and red surfaces. The red area contains the hand-knob of the motor cortex, which is the target 
area. A total of 2000 neurons were modeled underneath the shown colored surfaces. 

 

Figure 26 Pyramidal Cell Models in Cortex. Pyramidal cell models with axons are shown inside the 
transparent pial surface (2000 total neurons). The electric potential (V) solution from the -90º coil orientation 
is overlaid on the neurons for the purpose of example. Each pyramidal cell has a unique response to 
extracellular stimulation from TMS for all tested coil orientations. 

The threshold stimulus provides a description of the “excitability” of 

corresponding pyramidal cells for any given coil location and orientation. Using this 

measure, as the threshold stimulus decreases, the excitability increases. We 

Electric Potential
-0.55 V 1.72 V
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constructed excitability maps using the threshold stimulus measure. A unique map was 

generated for each tested TMS coil orientation. 

RESULTS 

Our modeling approach provided E-field estimates more efficiently than 

traditional approaches that require the TMS coil to be included in the FEM mesh. The 

traditional approach requires an FEM mesh that encompasses the head, coil, and 

surrounding air space. We found that a mesh of this size requires >3 million elements, 

and a new mesh must be generated for every change in TMS coil location and 

orientation, a process that takes about 10 minutes on a high-end OSX workstation. We 

designed an equivalent model that requires only a single FEM mesh of the head with 1.5 

million elements, and does not require a new mesh for each coil orientation. The major 

advantage to this approach is that we can much more easily accommodate changes in 

coil position, a capability that we believe is necessary for the model to be integrated with 

TMS navigation systems. 

To test the accuracy of our novel approach, we constructed a traditional FEM 

mesh that contained a spherical model of the head, windings of the TMS coil, and 

surrounding air in a semi-infinite medium. We compared the electromagnetic solution 

from the traditional model to our new approach. The mean percent difference between 

the two solutions was found to be 0.41% with a standard deviation of 0.29%. The key 

efficiency improvement came from calculating the A-field, which is an intermediate 

representation of the magnetic field imposed on the head. However, this A-field is an 

additional step that is not required for the traditional model, so we next compared the 

amount of time required to solve the electromagnetic field equations using each 

approach on a quad-core OSX workstation with quad-core Xeon CPUs (2.66GHz). We 



 92 

found that the traditional approach required about 1 hour to solve the E-field for each coil 

position. This amount of time was required to position the coil relative to the head in 

COMSOL, create the FEM mesh, and solve for the E-field. In contrast, our approach 

required about 13 minutes for each coil position and can be automated to solve for 

multiple coil positions. Using our approach, the FEM mesh was generated once for the 

head. The TMS coil position was determined using an ANT navigation system; this 

position data was fed into a custom MATLAB script that calculated the A-field (approx. 

10 seconds). The A-field was used as a source boundary condition in COMSOL, which 

calculated the E-field (approx. 11 minutes). Hence, the additional time to calculate the A-

field was offset by the savings in computational time provided by creating only a single 

FEM mesh. 

We first assessed electric field magnitudes in the cortical target region as a 

function of coil orientation. Our results show subtle changes in E-field magnitude inside 

the targeted area and adjacent gyri as the coil angle θ was varied. The hand-knob gyrus 

contains the largest E-field magnitudes as θ increases from -15º to +45º. The largest E-

fields within the targeted hand-knob were observed with coil orientations where the 

primary direction of the induced E-field is roughly perpendicular to the central sulcus 

(between -135º & -165º and between 15º & 45º) (Figure 27). Other coil orientations 

resulted in lower E-field magnitudes around the targeted region. E-field magnitudes 

within the white matter were found to be comparable to magnitudes observed in gray 

matter. Finally, the E-field magnitudes were identical for opposing coil orientations (e.g. 

45º and -135º). 
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Figure 27 Electric Field Magnitude Maps Relative to Coil Orientation. Coil orientations are shown 
relative to the interhemispheric fissure. At 0º, the coil handle (black lines) is parallel to the interhemispheric 
fissure and facing posterior. The orientation of red TMS coil is indicated by the red line and is the most 
common coil orientation for motor cortex stimulation. Each coil orientation has 2 corresponding surfaces: 1) 
the folded pial surface containing the targeted and untargeted areas, and 2) the unfolded pial surface 
containing the exact same map as the folded pial surface. False color maps show the maximum E-field 
magnitude induced on the pial surface that results from the monophasic TMS pulse obtained from the FEM. 
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Figure 28 Activation Threshold Maps Relative to Coil Orientation. Coil orientations are shown relative to 
the interhemispheric fissure. At 0º, the coil handle (black lines) is parallel to the interhemispheric fissure and 
facing posterior. The orientation of red TMS coil is indicated by the red line and is the most common coil 
orientation for motor cortex stimulation. Each coil orientation has 2 corresponding surfaces: 1) the folded pial 
surface containing the targeted and untargeted areas, and 2) the unfolded pial surface containing the exact 
same map as the folded pial surface with a black outline of the hand-knob region of the motor cortex as 
shown in Figure 26. “Excitability” describes the stimulation (monophasic TMS pulse) threshold of the neuron 
directly underneath a given area of the surface. Areas in pink contained neuron models that possessed low 
stimulation thresholds, being more excitable than neurons located under blue areas that had high stimulation 
thresholds. 

The electric potential solution was obtained via FEM. We then interposed the 

electric potential on pyramidal cell NEURON models replicated within the gray matter 

surrounding the targeted area (Figure 26). The electric potential was obtained from the 
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electromagnetic FEM solutions of each coil orientation. The minimum stimulus intensity 

required to depolarize the soma (or threshold stimulus) was found to measure the 

excitability of the pyramidal cells. Neurons that had low (below the mean) thresholds 

were deemed more excitable than areas with high (above the mean) thresholds. 

Threshold results are represented as a false color map of the pial surface that contained 

NEURON models directly underneath (Figure 28). Approximately 2000 neuron models 

were placed underneath the pial surface. Contrary to E-field maps, excitability maps 

between opposing coil orientations (180º difference) differed from each other. 

Our results confirm past RMT measurements where the most robust motor 

response is observed when the coil is oriented at 45º (Figure 29). However, 

discontinuities exist between excitable areas at 45º and other orientations (Figure 28). 

Neurons within the hand-knob (Figure 25) have high thresholds for coil orientations 

between +75º and +135º. 

 

Figure 29 Threshold Stimuli for Monophasic and Biphasic Waveform. Fraction of neurons (out of 2000) 
for each coil orientation that have stimulation thresholds below the global mean threshold (the mean 
threshold of all neurons from every coil orientation and each TMS waveform), which we calculated from a 
total of 96,000 neurons. The biphasic and monophasic TMS waveforms were obtained from in-vitro 
recordings from the Magstim Rapid and Magstim 200, respectively. The empty markers on the right side of 
the plot are copies of the 0º quantities on the far left of the plot. 
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We compared monophasic and biphasic TMS waveforms delivered by stimulator 

units Magstim 200 and Magstim Rapid (Magstim Company Limited, Carmarthenshire, 

UK), respectively (Figure 29). We found that changes in coil orientation similarly affect 

thresholds for both monophasic and biphasic waveforms (Figure 29). Importantly, the 

biphasic waveform has a comparatively lesser activating effect on pyramidal cells than 

the monophasic waveform. However, there were exceptions to this general finding.  

At 0º-coil orientation, low thresholds were observed in areas on the posterior side 

of the hand-knob gyrus. Orientations near 180º elicited low thresholds on the anterior 

side (Figure 28). This finding suggests that the location of maximum E-field is a coarse 

predictor of the location of stimulation from TMS. Electrophysiology studies (Butson et 

al., 2007) confirm that threshold values in the hand-knob are sensitive to coil orientation 

and not just positional placement over the scalp. Our results indicate that a 30º-coil 

orientation has the greatest excitatory effect whereas an orientation of 150° produces a 

threshold map with the fewest neurons below mean threshold (Figure 29).  

For most neuron response simulations, supra-threshold stimulation elicited an 

action potential originating in the axon separated by a varying number of nodes of 

Ranvier from the hillock. Action potentials initiated deeper within the white matter or 

within gray matter, very close to or within the axon hillock. More than 5% of modeled 

neurons show initiation of two action potentials at different sites along the curved axon. 

DISCUSSION 

The fundamental goal of this project was to develop and test a methodology that 

would enable prediction and visualization of neural targets within a patch of cortex on a 

subject-specific basis. To achieve this goal, we developed a detailed subject-specific 

model that simulates the response of pyramidal cells in the motor cortex to TMS. We 
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build upon past models that have relied on FEM to compute E-fields (Chen & Mogul, 

2009; De Lucia et al., 2007; Güllmar et al., 2010; Miranda et al., 2003; Opitz et al., 2011; 

Rullmann et al., 2009; Silva et al., 2008). Our aim was to use the E-field to realize the 

immediate effects of TMS including 1) reasons for the variability in physiology response, 

2) span of excitation, and 3) sites of depolarization within cells in the targeted cortical 

region. 

Non-magnetic forms of brain stimulation inject charge (current) into the brain 

(and then retrieve it), which gives rise to focal changes in voltage and causes activation 

of neural elements nearby. The electric field gradients elicited from TMS are 

comparatively less than those elicited from non-magnetic sources. Consequently, the 

effects of magnetic stimulation are a function of brain anatomy, especially the shape of 

neural elements. Our approach demonstrates that the use of neuron models and FEM 

provide insights into mechanisms of magnetic stimulation. 

Numerous cell types exist in cortex, but we focused on synaptically isolated 

pyramidal cells, which are believed to mediate the direct response to TMS of motor 

cortex (Di Lazzaro et al., 2004; Herbsman et al., 2009; Pashut et al., 2011). Although 

synaptically isolated cells do not represent the full repertoire of the neural response, our 

approach is an important step in characterizing the cellular effects of TMS. In future work 

we will examine the neural response of synaptically connected circuits in cortex. 

Our current model accounts for non-homogeneous, isotropic conductivities. Work 

is currently underway to employ MRI techniques such as diffusion-weighted imaging 

(DWI) to accurately assign appropriate material properties for each head segment. This 

approach would allow for the inclusion of anisotropic conductivities. 

Importantly, our modeling results do not have explicit validation but are based on 

theoretical analysis. Our subject-specific model suffers from several limitations, but it 
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confirms physiological observations for motor cortex stimulation. Specifically, 

electrophysiology studies confirm that the most robust response is elicited with a coil-

orientation that is roughly 45º (Kammer et al., 2007). Our model additionally confirms 

this physiological phenomenon by quantifying the overall effect of TMS relative to coil 

orientation (Figure 29). 

We observed a strong correlation between coil-orientation and thresholds across 

the targeted region (Figure 29). However, individual maps (Figure 28) of local thresholds 

have complex features that make it difficult to draw broad conclusions about activated 

regions. Here, we expanded upon existing models for TMS by implementing neuron 

modeling, which has been more frequently used in neuromodulation over the last 

decade (Butson & McIntyre, 2005; Chaturvedi et al., 2010; Walsh & Pascual-Leone, 

2005). 

Previous studies have simplified the TMS pulse by modeling it as a single 

fundamental frequency (Thielscher et al., 2011). This simplification is valid for 

electromagnetic theory since permittivity values have negligible effects on the electric 

field during TMS. Our results indicate that this is an over-simplification of the waveform 

dynamics in simulating the response of neural elements (Figure 28). Our time-dependent 

model provides insight into the advantages or disadvantages of certain TMS waveforms. 

We have reported threshold maps for only the monophasic waveform (Figure 28), but we 

have shown comparisons between the effects of mono- and bi-phasic waveforms (Figure 

29). 

Our results suggest that when modeling TMS, close attention should be given to 

the orientation of neural elements, the morphology of the cortical surface, and coil 

geometry. We found that rotating the coil 15º caused changes in thresholds both inside 

and outside the target region, which suggests that locations of neural activation have an 



 99 

acute sensitivity to coil position and orientation. The fraction of neurons below total-

mean threshold (the mean from all coil-orientations combined) was quantified for each 

coil-orientation (Figure 29). These quantities suggest that a preferred coil-orientation for 

the hand-knob target exists (approx. 30º).  

E-field maps indicate that focal stimulation of the hand-knob can be achieved 

with certain coil-orientations. With E-field alone, however, it is difficult to predict whether 

untargeted areas are being avoided. For example, E-field maps (Figure 27) show that 

coil-orientations between +75º and +135º would be ineffective in stimulating the hand-

knob whereas orientations between 0º and 90º would be more effective. However, 

excitability maps (Figure 28) indicate that no coil-orientation focally stimulates the hand-

knob region while avoiding other regions. 

Excitability maps (Figure 28) from opposing (180º apart) coil-orientations have 

noticeable differences, which do not appear in E-field maps. This discrepancy 

demonstrates the importance of time-dependent modeling to assess neural responses in 

areas of interest. Excitability maps illustrate the complexity of TMS and the inherent 

difficulty there is in constraining stimulation. The corollary is that the E-field, though 

simpler, does not provide an accurate prediction of stimulated brain regions according to 

our model. Our modeling technique could also validate motor-mapping outcomes when 

dealing with large coil position datasets acquired from TMS navigation systems. 

For each threshold map (Figure 28), we quantified the overall effect of TMS by 

counting the number of pyramidal cell neurons that had a threshold below the mean 

threshold (from all maps combined) (Figure 29). We recognize that this quantity is not a 

measure of the effectiveness of a certain TMS coil position since both targeted and 

untargeted areas are included in this quantification. Interestingly, this measure seems to 

coincide with the consensus in motor mapping applications: a coil angle near 45º elicits 
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robust responses in the hand-knob. However, the degree to which adjacent brain 

regions are affected seems significant, and our approach provides the means to test 

different coil geometries for stimulating specific neural structures while avoiding others. 

Lastly, broad threshold measures in Figure 29 suggest that the biphasic pulse has a 

lesser effect on pyramidal cell models underneath the coil for all orientations compared 

to the monophasic pulse for a given stimulus intensity. This dichotomy could possibly be 

explained in terms of the inherently greater E-fields induced by the monophasic 

waveform, but reasons for this remain to be investigated. 

Our results suggest that small changes in TMS parameters can affect stimulation 

targets, and that these changes could result in variability in the location of energy 

delivery and the degree of neuromodulation within cortex. In addition, we have 

demonstrated that TMS navigation data combined with subject-specific modeling can be 

used to quantify the excitability of pyramidal cells around the targeted area. Our 

modeling approach enables the evaluation of a broad range of coil positions and 

orientations with only a single finite element mesh, which is advantageous when 

performing analysis on a per-pulse basis. Lastly, we found that accurately modeling the 

electromagnetic interactions within the brain requires close attention to 1) the geometry 

of the cortex and white matter surfaces, 2) the TMS parameters that are both fixed (coil 

winding geometry) and adjustable (coil position and orientation relative to the head), and 

3) orientation of excitable neural elements in cortex and white matter.  



 101 

CHAPTER 3 

QUANTIFYING PHYSIOLOGICAL RESPONSE TO MOTOR CORTEX TMS 
 

INTRODUCTION 

TMS has the potential to become a widely used tool in neuromodulation for 

therapy, brain-mapping, screening, and neurorehabilitation purposes (Grefkes & Fink, 

2011; Grefkes et al., 2010; Vaalto et al., 2010; Wagner et al., 2006, 2007). Our 

understanding of TMS and its effects have limited its utilization beyond research 

investigation (Thielscher et al., 2011). A great deal of effort has been invested in TMS 

research to arrive at a validated model for predicting targets of activation (Fox et al., 

2004; Opitz et al., 2013). A primary motivator is that we currently lack a reliable model 

that is amenable to clinical use. Advancements in computational modeling have 

demonstrated it to be a viable means for TMS to transition into the clinical environment 

as reliable tool. 

TMS modelers have acknowledged that changing the orientation of the coil will 

alter the primary induced E-field (Basser & Roth, 1991). As demonstrated in Chapter 2 of 

this study, changing the direction of the E-field changes the E-field magnitude within the 

brain, especially when oriented perpendicularly to the targeted gyrus. This phenomenon 

introduced researchers to the complex interactions during TMS that give rise to neural 

activation. As a result, a great deal of work has been invested in making geometrically 

accurate models of the head (Thielscher et al., 2011). 

Early TMS models employed spherical geometries to estimate induced E-fields in 

the head from TMS via Maxwell’s equations (Bohning et al., 1997; Tofts, 1990). In some 

sense, the TMS modeling community has advanced beyond employing E-fields as a 
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predictor of the target region. Although, E-fields are still remains the most important 

measure in many studies (Laakso et al., 2014; Wagner et al., 2006). The focus of TMS 

modeling has since shifted toward studying activation in terms of the E-field along 

hypercolumns, which have also been modeled by employing the activating function 

along hypothetical columns or axons emanating from white matter within the gray matter 

(Fox et al., 2004; Krieg et al., 2013; Thielscher et al., 2011). The most well-known model 

for predicting activation is the cortical column cosine (or C3) model, which accounts for 

the E-field magnitude and the orientation of hypercolumns in the cortex (Fox et al., 

2004). C3 model predictions are based on the E-field component along the pial surface 

normal vector (hence the “cosine” in C3). This model says activation occurs if the C3 E-

field is suprathreshold. This predictor and its respective variants have been standard in 

TMS modeling.  

Almost all models for TMS research employ nonhomogenous finite (volume or 

boundary) element models for estimating induced E-fields (Chen & Mogul, 2009; Salinas 

et al., 2009). Few studies have developed models that account for the anisotropic 

conductivity of the head (De Lucia et al., 2007; Opitz et al., 2011). The spatially 

dependent conductivity within the brain is derived from diffusion coefficients obtained via 

diffusion weighted MRI (DWI) (Tuch et al., 2001).  

Interestingly, the predictive power of TMS models is based on the presupposition 

that excitation does occur. In other words, models are able to predict possible locations 

of stimulation based on the presupposition that a suprathreshold E-field is induced. 

Unlike probabilistic models employed for DBS (Butson et al., 2007), models for TMS 

have not matured enough yet to enable predictions based on probabilistic approaches 

that regard precise stimulation parameters.  
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In this study, we present a multiscale, subject-specific modeling methodology 

with corroboration from physiology. We quantified the physiological response to motor 

cortex TMS using the MEP amplitude from FDI EMG. In this study, we report one subject 

from a population with corresponding subject-specific model predictions corroborated by 

physiology. Four novel contributions to neuromodulation research are presented in this 

study: 1) an anatomical and functional imaging based model of the whole head and 

excitable neural element within cortex and white matter, 2) predictions of specific sites of 

activation within gray and white matter, 3) quantitative description of the immediate 

neural response and extent of activation, and 4) physiological corroboration of model 

predictions. Our motivation for this study is that TMS is limited because of two unknown 

variables during stimulation: 1) the loci of activation during TMS and 2) the extent of 

modulatory effects proceeding from stimulation of neural elements in the brain. 

METHODS 

Motor Cortex Stimulation 

Multiple subjects were enrolled for motor cortex TMS experimentation, but 

methods from one subject are reported in this study. Our goal was to develop a model 

corroborated by physiology; efficacy of intervention was not within the scope of this 

study. We specifically focused on the immediate neurophysiological effects from TMS, 

and constrained our human subject experimentation in four ways: 1) single-pulse TMS 

(less than 0.5 Hz), 2) motor cortex stimulation, 3) monophasic or biphasic stimulus only 

(Magstim Stimulator units), and 4) figure-8 coil. 
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First, MR images including a high-resolution (0.86 x 0.86 x 1 mm; 217 x 251 x 

180 voxels) T1 anatomical scan and DWI were acquired of the whole head.36 MRI scans 

were utilized in two ways: 1) to integrate with TMS navigation software for real-time 

anatomical targeting and 2) to construct a subject-specific head model medical imaging 

software and post-processing.  

Second, motor cortex TMS was carried out for each subject. MR image volumes 

were loaded into TMS ASA navigation software (ANT Neuro, Enschede, Netherlands)37 

navigation software for targeting the hand-knob of the motor cortex. ANT Neuro TMS 

navigation was utilized to provide real-time anatomical targeting. The subject was 

equipped with bipolar surface EMG electrodes on the (right) arm contralateral to the 

targeted hemisphere. EMG electrodes were adhered to the FDI, bicep, tricep, and 

extensor indicis (EI) muscles. The head of the subject was registered with the image 

volume using TMS navigation. Specific landmarks according to the nasion coordinate 

system were used to register the head with the image volume: nasion, left pre-auricular, 

and right pre-auricular. The hand-knob of M1 was then identified within the image 

volume and 3D coordinates (nasion coordinate system) were logged into TMS 

navigation software for targeting purposes. 

Third, the resting motor threshold (RMT) was obtained for both the biphasic and 

monophasic stimulus. The RMT was defined as the minimum stimulus intensity that 

elicits a visible involuntary hand twitch in at least 5 out of 10 trials. RMT was obtained 

using a coil orientation of 0º relative to the interhemispheric fissure (or PA). Angles were 

measured relative to the plane of the interhemispheric fissure where the coil handle 

                                                

36 See Appendix D, p. 168 for detailed description of MRI and DWI protocol. 
37 Advanced Source Analysis (ASA) software is developed by ANT Neuro for integration with 
TMS Navigation (http://www.ant-neuro.com/products/asa). See http://www.ant-
neuro.com/products/tms-coil-navigation. 



 105 

points posteriorly, and angles increase counter-clockwise from the perspective of the 

experimenter. We measured coil orientations according to this convention established 

for clinical use (Julkunen et al., 2009). The RMT for the monophasic (Magstim 200 

Stimulator unit) and biphasic (Magstim Rapid Stimulator unit) stimulus were measured to 

be 40% and 55% of maximum stimulation intensity, respectively.  

Fourth, single-pulse TMS was administered over the targeted area (hand-knob of 

M1) while simultaneously recording EMG according to protocol38. Four stimulation 

scenarios were carried out: 1) 110% RMT monophasic stimulation, 2) 140% RMT 

monophasic stimulation, 3) 110% RMT biphasic stimulation, and 4) 130% RMT biphasic 

stimulation. The MEP was acquired from the FDI EMG response. The immediate 

physiological response was quantified by the EMG amplitude of the MEP in FDI (units: 

mV; EMG response). This muscle was used to quantify the MEP due to the consistent 

triphasic shape of the FDI EMG waveform compared to other recorded muscle groups 

(Figure 33), and the FDI muscle represents a larger area of the hand-knob compared to 

the other recorded muscle groups. The EMG responses were acquired via Spike2 

(Cambridge Electronic Design)39 system. Single pulses were delivered at less than 0.5 

Hz. MEPs were acquired for multiple coil orientations ranging from -180º to 0º for two 

stimulation intensities (110% and 140% RMT). More than 300 stimuli were delivered, 

and their corresponding MEPs and coil placements relative to the head were acquired.  

Data Analysis 

Over 200 trials40 were analyzed (approx. 100 trials were discarded due to TMS 

navigation errors or outliers), each having a unique coil placement and EMG response. 

Trials were separated into 13 stimulation groups according to similarities in coil 
                                                

38 See Experimental Procedures, pg. 27. 
39 Cambridge Electronic Design (CED) develops Spike2 software. 
40 One trial is the evoked response from a single TMS pulse. 
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placement over the scalp. Each group contained a collection of trials that correspond to 

an identical stimulation waveform (monophasic or biphasic) and intensity (percentage of 

RMT). Each group contains similar coil orientations (approx. ±5º) and positions 

(maximum ±8 mm). The amplitude of the MEP in FDI was used to quantify the 

immediate physiological response (units: mV). The purpose of the data analysis was to 

obtain a measure of the immediate physiological response that describes the size of the 

population of recruited upper motor neurons within the hand-knob from a single TMS 

pulse. Our underlying assumption was that the amplitude of the MEP in FDI is directly 

proportional to the population size of pyramidal cells activated within the hand-knob. 

The MEP from each group (13 total groups) of trials was averaged. The coil 

placement from each trial was reduced to a single coil position/orientation by satisfying 

least-squares criterion for 6 degrees of freedom (roll, pitch, yaw, and 3D spatial 

coordinates) through a custom-made iterative algorithm developed in m-script for use in 

MATLAB. 

In summary, stimulation data were reduced to 13 stimulus experiments, which 

were employed for model validation by comparing model simulations with the 

physiological response. Each stimulus experiment is associated with a monophasic or 

biphasic stimulus waveform and a single unique coil position, coil orientation, mean 

MEP, and stimulation intensity. 

Subject-specific Model 

Our goal was to build a subject-specific model to enable estimation of 

electromagnetic fields occurring within the head for each stimulus experiment.41 To 

accomplish this goal, we used the subject’s MR image volumes (high resolution 

                                                

41 See Appendix C, p. 165 for flow diagram of model development. 
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anatomical MRI and DTI) and utilized open-source software packages42 for volumetric 

image extraction, surface building, surface processing, and mesh discretization. TMS 

navigation data were used to extract coil placements to estimate the actual E-fields 

produced within the head for each stimulus experiment. The finite element method was 

employed to compute the electromagnetic fields produced by the coil during a single 

stimulus43. This subject-specific modeling approach entails the construction of a 

tetrahedral mesh of the segmented head volume as well as the application of 

nonhomogeneous anisotropic material properties measured from DWI. 

Finite-Element Approach 

A subject-specific, non-homogeneous, anisotropic FEM was generated from an 

image volume acquired from a healthy adult subject. Individual tissue types were 

segmented from the high-resolution anatomical MRI volume using Brainstorm (Tadel et 

al., 2011) and FreeSurfer (Dale et al., 1999). The Iso2Mesh toolbox (Martinos Center for 

Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School) was 

used with MATLAB (MathWorks Inc, Natick, MA) to generate a tetrahedral mesh of the 

head. Specifically, CGal’s mesh generator (Alliez et al., 2000) was employed to generate 

a sub-millimeter scale tetrahedral mesh from a volumetric image. Head segments of the 

scalp, skull, CSF, GM, and WM were included within the volumetric image and 

discretized within the mesh. 

Following initial tetrahedral mesh generation, we prepared the mesh for inclusion 

of pyramidal cells and their descending axons using TETGEN (Weierstrass Institute for 

Applied Analysis and Stochastics, Berlin) to build a custom adaptive meshing algorithm 

                                                

42 FMRIB Software Library (FSL), Freesurfer, Brainstorm, Iso2Mesh (MATLAB toolbox), 
TETGEN, and Cgal Mesher. 
43 See Chapter 1, p. 33, for a description of the analytical coil model used to calculate the A-field 
produced by the figure-8 TMS coil for integration with an FEM. 
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in m-script, which increases the mesh density near the magnetic sources (TMS coil) and 

within the brain volume containing pyramidal cells. The final mesh contained 1.05 million 

tetrahedral elements. 

Though neuron model resolution (µm scale) exceeds that of mesh resolution 

(mm scale), E-field gradients from TMS are so gradual (Figure 18, pg. 69) that the effect 

of mesh resolution on the solution becomes negligible at a limit (Eq. 27). In general, our 

adaptive meshing algorithm follows the rule, 

𝜌𝑚𝑒𝑠ℎ =
∇𝑉

∇𝑉𝑚𝑎𝑥
∙ 𝑛 

(Eq. 27) 

where 𝜌𝑚𝑒𝑠ℎ is linear mesh density at a mesh node, ∇𝑉 is the voltage gradient (or E-

field), and 𝑛 is the number of edge elements per millimeter (mm-1). Using a 2D 

axisymmetric mesh of a circular TMS coil (D = 90 mm), we found that ∇𝑉 is negligibly 

affected (<0.1% difference) with 𝑛 > 0.5  mm!! for high power frequencies within the 

TMS waveform spectrum. We employed a value of 𝑛 ≈ 2  mm!! for adaptive meshing 

within the tetrahedral head model. 

The final head mesh was loaded into COMSOL and material properties were 

assigned. Relative permeability and permittivity were set to unity within all head 

segments. We assumed isotropic properties in materials other than the brain. Isotropic 

electrical conductivity was set to 0.465, 0.010, and 1.654 S/m for the scalp, skull, and 

CSF, respectively. Anisotropic conductivities within white and gray matter were extracted 

from the volumetric diffusion tensor image. FMRIB Software Library (FSL) (Jenkinson et 

al., 2012) was employed to process and extract diffusion tensors (FDT44), conduct 

volumetric registration with gray/white matter (FLIRT45), and apply conductivity tensors 

                                                

44 FMRIB’s Diffusion Toolbox.  
45 FMRIB’s Linear Image Registration Tool.  
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to tetrahedral elements of the mesh (Figure 31, left). Diffusion tensors were extracted 

using the FDT pipeline recommended by FMRIB, which includes functions for eddy 

current correction and diffusion tensor fitting within a brain volume.  

Tuch et al. (2001) have shown that a diffusion tensor from a diffusion weighted 

MRI of the brain is linearly proportional to the estimate of the electrical conductivity 

tensor. The estimate of the conductivity tensor is obtained from the linear mapping, 

𝜎
𝑑
= 0.844   S ∙ s ∙mm!!  (Eq. 28) 

where 𝜎 is the electrical conductivity (S/mm) and 𝑑 is the diffusion coefficient (sq-mm/s). 

By definition, the diffusion coefficient is one-third the water particle velocity (𝑣) times the 

mean free path (ℓ𝓁) (Graessner, 2011). 

𝑑 =
1
3

𝑣ℓ𝓁 
(Eq. 29) 

FEM Electromagnetic Field Solution 

For each stimulus experiment, FEM boundary conditions were applied from 

analytical computations of the A-field carried out using a custom made figure-8 coil 

model46 based on x-ray measurements by Salinas et al. (2007).  

For each coil orientation, the frequency-dependent electromagnetic field solution 

was obtained via an iterative solver employed by COMSOL. We employed the magnetic 

and electric field (mef) physics interface within COMSOL, which solves the time-

harmonic (Fourier domain) equation47 

𝑗𝜔𝜎 − 𝜔!𝜖 𝐀 + ∇× 𝜇!!∇×𝐀 = 𝐉𝑒 = 0 (Eq. 30) 

                                                

46 See Chapter 1, p. 34. 
47 See Appendix A, p. 162 for a description of Maxwell’s equations. 
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where 𝜔 is frequency, 𝜖 is permittivity, 𝐀 is the A-field, 𝜇 is magnetic permeability, and 𝐉𝑒 

is the external current density. At the external boundary,  

𝐉 ∙ 𝐧 = 0 (Eq. 31) 

where 𝐧 is the surface normal vector at the boundary and 𝐉 is current density. 

Throughout the conductive medium, current is conserved (∇ ∙ 𝐉 = 0). 

Using the Fourier Solver, the electromagnetic FEM solution was computed at 

1024 frequencies within the TMS waveform spectrum. The discrete time-step was 

Δ𝑡 = 50  µμs and the frequency step was Δ𝑓 = 1 2 ∙ 1024 ∙ Δ𝑡 = 49  Hz. The solutions at 

each frequency were then transformed into the time domain via the Fourier Solver48.  

 

Figure 30 Sample Pyramidal Cell Neuron between Pial and White Matter Surface. One out of 6111 cells 
is shown oriented perpendicularly to the pial surface for exemplary purposes. Full axon is not shown. 

Cortical Model 

The pyramidal cell model (Amatrudo et al., 2012) was replicated 6111 times 

across the cortex within the hand-knob and surrounding areas. The population of 

pyramidal cells occupied 6454 sq-mm (64.54 sq-cm) of the pial surface. Cells were 

oriented perpendicularly to the pial surface, and their cell bodies were placed at a depth 

of 1.125mm (Figure 30). At this depth, the cell dendrites are approximately situated 

                                                

48 See Chapter 1, p. 35. 

Pial Surface

White Matter Surface
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within Nissl stain layers I and II. From the soma to the tip of the highest dendrite 

measures 800 µm. 

Axon Tractography Near Cortex 

Axon tractography was performed using SCIRun’s (SCI Institute, University of 

Utah, Salt Lake City) interface with Tend Fiber (TEEM49), which uses Westin’s linear 

tensor-line algorithm (Westin et al., 2002). A point cloud was generated around the 

neuron cell bodies to provide seeds for the axon tractography algorithm. Fiber tracts 

were generated with the termination criteria that fibers must have minimum length of 

20mm and FA must be >0.5. Connections were formed between the cell bodies and fiber 

tracts via a custom algorithm in m-script that employs Hermite splines50. This algorithm 

ensures that axon trajectories are void of sharp curves (Figure 31). All pyramidal cells in 

the population had axons 20 mm in length. 

 

Figure 31 Use of DTI for Anisotropic Conductivity and Neuron Axon Tractography. (Left) Acquired DTI 
was applied to the 3D head model for the inclusion of anisotropic conductivity. (Right) Diffusion tensors were 
employed for axon tractography to construct descending axons from the pyramidal cell bodies. Four out of 
6111 neurons are shown for the purpose of example. 

                                                

49 http://teem.sourceforge.net/ 
50 A Hermite spline is a 3D spline generated from Hermite’s polynomials, which requires the 
location and spline trajectory (vector) of two points. 
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Neuron Model Simulations 

The time-dependent E-field solution (from the FEM) from each stimulus 

experiment was extracted and applied to each neuron compartment within the 

population (6111 neurons; 1342 compartments per neuron). Neuron responses from 

each stimulus experiment were simulated within the NEURON environment using HPCs 

(Pére, MUGrid, Marquette University; SCI Institute, University of Utah). For each 

stimulus experiment, we found the monophasic and biphasic threshold stimulus. The 

threshold stimulus is the minimum stimulus amplitude that results in depolarization of the 

soma. This quantity was employed as a measure of the excitability of a cell to TMS. The 

cellular response to the threshold stimulus was then simulated and exported for data 

analysis. Approximately 158,800 neuron model simulations were carried out (6111 

neurons; 13 stimulus experiments; 2 stimulus waveforms).  

 

Figure 32 Example Data Maps on Folded and Inflated Pial Surfaces. (Left) A false color map of a sample 
data set is shown via surface nodes on the pial surface. A single node represents the pyramidal cell located 
directly underneath it within the grey matter. (Right) An identical data set on surface nodes of the inflated 
pial surface. Vacant blotches on the inflated pial surface are the result of the unequal surface mesh density 
due to the inflation of sulci where surface elements are denser. Experimental data are displayed in this 
manner throughout the study. 

The intracellular response of each cell was analyzed and the site of action 

potential initiation at threshold was recorded. Neuron response data were organized 
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according to stimulus experiment. Our experimental results are presented as: surface 

node plots (Figure 32) and scatter plots.  

Model Comparison with Electrophysiology 

We compared model predictions with physiological responses from TMS of the 

hand-knob of human motor cortex. A well-established visualization methodology was 

employed to localize the hand-knob (Yousry et al., 1997). We compared the amplitude of 

the MEP (FDI EMG) elicited from TMS of the hand-knob with the threshold stimulus of 

pyramidal cells computed within the NEURON environment. Pyramidal cell thresholds 

were computed by simulating the response of the population of cells in the hand-knob for 

each stimulus experiment.  

Model Corroboration 

We compared the MEP amplitude with the model simulation for each modeled 

stimulus experiment and analyzed the threshold stimuli (𝛎, “nu”) from neurons located 

only in the hand-knob of motor cortex (approx. 660 neurons; 1/10th of all models within 

the cortex) (Figure 38). Firstly, a threshold cut-off value (𝜈) was determined by a 

qualitative analysis of possible model predictions, 

𝜈 = 𝑘 ∙median(𝛎𝕌) (Eq. 32) 

where 𝛎� is the set of all threshold stimuli from all stimulus experiments (𝛎 has Poisson 

distribution properties). The constant, 𝑘 (0 < 𝑘 ≤ 1), was included in Eq. 32 to describe 

the stimulation intensity for the biphasic and monophasic waveform; 𝑘 increases with 

increasing intensity. Secondly, the cortical area containing neurons where 𝜈 < 𝜈 was 

computed (each neuron makes up an average of 1.0562 sq-mm of pial surface),  

𝐴𝜈!𝜈 ≈ sum 𝛎!" < 𝜈 ∙ 1.0562  mm! (Eq. 33) 
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where 𝛎!" is an array of the threshold stimulus of every neuron in the hand-knob, the 

logical quantity is an array of ones and zeros, the summation is an integer value of the 

number of neurons having a threshold stimulus below 𝜈, and the constant term is the 

average area of the pial surface occupied by a single neuron model. Lastly, the model 

prediction (ℱ) was computed as a function of 𝐴𝜈!𝜈, 

ℱ 𝛎!", 𝜈 = 𝑤𝐴𝜈!𝜈 (Eq. 34) 

where ℱ 𝛎!", 𝜈  is a prediction of the FDI EMG amplitude and 𝑤 is a weighting variable 

that contains statistical measures and a scaling factor. 

𝑤 =
10

𝜇𝜈𝜎𝜈
! (Eq. 35) 

where 𝜇𝜈 and 𝜎𝜈
! are threshold stimulus mean and variance of the population within the 

hand-knob. In this sense, 𝑤 is a measure of the collective excitability of the hand-knob.  

𝜈 was assumed to be a measure of the excitability of the cell. The distribution of 𝛎 

conforms to a Poisson distribution [0,+∞] where 𝜎 increases with increasing 𝜇. We 

elected to include a model weighting to tilt the prediction so that ℱ 𝛎!", 𝜈  is dependent 

not only upon 𝐴𝜈!𝜈, but also upon the distribution of 𝛎!". 

Justification 

Our approach is based on motor pool recruitment principle. Motor signals 

originate from upper motor neuron pools and terminate at muscles. It follows that the 

amplitude of the muscle EMG is proportional to size of the recruited motor pool 

(Fuglevand et al., 1993; Pascual-Leone et al., 1994; Yao et al., 2000). Based on this 

rationale, we elected to form model predictions according to the proportionality (cf. Eq. 

34): 
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ℱ 𝛎!", 𝜈 ∝ 𝐴𝜈!𝜈 (Eq. 36) 

RESULTS 

Motor Cortex Stimulation 

We found that EMG responses depend on coil orientation (Figure 39) and that 

EMG responses to have variable amplitudes throughout single trials with unchanging coil 

orientations (Figure 33). The EMG response in FDI maintained a consistent shape but 

other EMG responses exhibited diminished signal, with a low signal-to-noise (SNR) ratio. 

 

Figure 33 Sample Muscle EMG Responses and Their Time-triggered Average from Five Consecutive 
Stimuli. Sample traces of the EMG response of the first dorsal interosseus (FDI), extensor indicis (EI), 
tricep, and bicep immediately following TMS of the motor cortex are shown. Data are shown for five trials 
along with their mean EMG response. Time series data were filtered using a 750 Hz lowpass filter. The 
shape of the FDI trace conforms to those reported in previous publications. 

Single-pulse TMS was administered over the hand-knob of motor cortex. To 

localize the hand-knob, we employed a well-established medical image visualization 

technique and validated this target by TMS navigation with simultaneous EMG. For 

almost all measured stimuli, post hoc analyses of coil placement data confirmed that the 

coil was placed in a manner that targeted the hand-knob (Figure 34). Coil placement 
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was such that the normal vector from the coil-plane intersected the hand-knob area. No 

correlation was found between pial surface targets and EMG response. 

 

Figure 34 Coil Position During Recorded Stimuli. Delivered stimuli as shown from TMS navigation output 
in the form of cones in 3D space relative to the head. (Left) Red cones indicate normal vector projecting 
from the coil-plane toward the targeted area. (Right) Colored spheres indicate projections from the 
corresponding arrow vectors onto the cortical surface. Spheres (and arrows) are colored according to the 
robustness of the muscle EMG response. Spheres have been sized according to the stimulus amplitude. 
Data were analyzed for comparison with model predictions. 

The EMG response amplitude increased with increasing stimulation intensity and 

varied with changes in coil placement. TMS navigation data were consistent with data 

obtained during experimentation. However, TMS navigation reported spatial locations 

inside the scalp in a consistent manner. To account for this offset, placements were 

moved outside of the scalp surface by translation along the line of the coil-plane normal 

vector. Coil placements were repositioned so that the coil-plane was raised a minimum 

of 2 mm from the scalp. 

Subject-specific Model Results 

E-field intensities and directions agreed with those from previously published 

anisotropic, non-homogenous conductivity models (Opitz et al., 2011). I found that both 

E-field intensity and direction were modulated within the targeted gyrus by changing coil 

orientation (Figure 35).  
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Figure 35 E-Field Within the Cortex for Three Coil Orientations. (Top left) The location of the data plane 
(red) relative to the pial surface is shown with the coordinate frame. E-field magnitude maps are shown at 
peak E-field during the stimulus pulse. Conductivity tensors are superimposed over E-field maps within the 
data plane. FEM results are shown for three stimulus experiments (biphasic @ 130% RMT). Coil placements 
are shown in the left panes with the primary direction of the induced E-field. 
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E-field magnitudes were computed at maximum output from the Magstim 200 

(monophasic) and Magstim Rapid (biphasic) units. E-fields produced by the Magstim 

Rapid were found to be significantly less than those produced by the Magstim 200.  

Our results suggest that at least 90% of the maximum E-field can be present at 

depths up to 25 mm within the targeted gyrus (measured from the pial surface) for coil 

placements where the induced E-field is normal to the central sulcus (Figure 35, -18º). 

Though these results seems contrary to Maxwell’s equations (E∝ 1/R), the induced B-

field causes current to flow along a path that contains rapidly changing conductivities, 

which results in augmented E-fields at deeper levels. When the induced E-field is 

perpendicular to a gyrus, charge is induced at the boundary of the GM and CSF (Tofts, 

1990) where there is a rapid change in conductivity. The E-field then gets deflected at 

these boundaries (on both sides of the gyrus). At first, this seems counter-intuitive since 

the A-field is not influenced by biological tissue, but the E-field is induced in a 

nonhomogeneous medium and current must be conserved (∇ ∙ 𝐉 = 0). As a result, stray 

charge is induced where the conductivity changes along the electric current path. 

Therefore, the nonhomogeneities and anisotropies in CSF, GM, and WM cause the E-

field to augment in the middle of a gyrus at a deeper level than expected. This 

phenomenon was not observed for coil orientations that do not induce current flow 

perpendicular to the targeted gyrus. E-fields that were induced parallel to the gyrus were 

less than those perpendicular to the gyrus at deeper levels because no significant 

changes in conductivity exist along the axis of the gyrus. The E-field magnitude was 

found to depend on its direction relative to the orientation of the targeted gyrus and its 

conductivity tensors (Figure 35 and Figure 36A). Both Figure 35 and Figure 36A show 

results within the same slice or data plane. 
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Figure 36 Sample Neuron Response. (A) The orientation of a sample pyramidal cell within the hand-knob 
is shown relative to the surrounding conductivity tensors and induced E-field. The neuron is colored 
according to E·ds (voltage) along the axis of each neuron segment. The color bar is scaled to the threshold 
stimulus for both the monophasic and biphasic stimulus. (B) The corresponding response of the neuron to 
the threshold stimulus. Action potential originates within the axon and within the dendrites for the biphasic 
and monophasic threshold stimulus, respectively. 

Our axon tractography method generated axons that are consistent with diffusion 

tensor directions (Figure 36A; cf. Figure 31). We simulated the response of a sample 

neuron at threshold for the monophasic and biphasic waveform stimulus (Figure 36B). At 

threshold, the monophasic stimulus produced a net hyperpolarization within the axon 
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while causing excitation within dendrites. Conversely, the biphasic stimulus elicited a 

depolarizing effect within the axon. Due to the direction of the induced E-field at stimulus 

onset, only the second phase of the biphasic waveform would cause depolarizing 

membrane currents. 

Model Comparison with Electrophysiology 

Simulations of the pyramidal cell response to magnetic stimuli were carried out 

for each stimulus experiment. We compared our model results with muscle EMG 

amplitudes in FDI. Only model neurons located within the hand-knob were scrutinized 

(Figure 38). For each stimulus experiment, ℱ 𝛎!", 𝜈  was calculated (Figure 39). 𝑘 

values (Eq. 32) were found to be directly proportional to stimulus intensity (Table 5) but 

less in magnitude for monophasic stimulation. 

Table 5 k Constant for Model Prediction. Value of the constant (k) applied in Eq. 32 for predicting EMG 
amplitude in FDI. 

 Biphasic Stimulus Monophasic Stimulus 
Intensity (% RMT) 110 130 110 140 

𝑘 0.9 1.0 0.5 0.6 
 

For all stimulus experiments, threshold stimuli of the monophasic pulse were 

generally less than those from the biphasic pulse (Figure 37). 

Our computational model is amenable to time-dependent visualizations of 

population responses for stimulus experiments (Figure 38). The total surface area of the 

pial surface that contains modeled pyramidal cells was 6454 sq-mm (64.54 sq-cm). Of 

this area, the neurons within the hand-knob occupied 696 sq-mm (Figure 38).  
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Figure 37 Histogram of Threshold Stimuli of Modeled Pyramidal Cells. A sample histogram from a 
stimulus experiment (biphasic @ 130% RMT -18º) is shown to demonstrate threshold stimulus distribution 
among pyramidal cell simulations. All 6111 pyramidal cell thresholds were placed in 300 bins according to 
threshold stimulus values. 

 

Figure 38 Pyramidal Cells Located Within the Hand-knob Area. Pyramidal cells within the hand-knob are 
shown colored according to intracellular potential @ t = 1ms post stimulus (biphasic @ 130% RMT -18º). 
The cells shown here occupy 696 sq-mm of the pial surface. 

Model predictions (ℱ 𝛎!", 𝜈 ; Eq. 34) were found to follow the general trend of 

the FDI EMG amplitude with changing coil orientation (Figure 39). Predictions and 

electrophysiology were presented in terms of the coil orientation (rotation angle about 

the coil-plane normal vector), which is one of six degrees of freedom. It should be noted 

that minor differences in coil placement exist between stimulus experiments.  

Using MATLAB, we employed a linear regression model fit and F-test to quantify 

model prediction strength (Figure 40); model predictions were corroborated by 

electrophysiology (𝑝 < 0.0001). The model cannot forecast (or quantify) the precise EMG 

amplitude so a validated model of the physics and physiology of TMS should supply a 

quantitative prediction that agrees with the physiological response measure (FDI EMG) 
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relative to changing stimulation parameters. We assumed that the robustness of the 

EMG response was proportional to the population size of recruited motor neurons. 

Model predictions poorly reflected lower EMG amplitudes (Figure 39), especially for 

those orientations <-135º. Conversely, the model predicted a slight change in mean 

EMG amplitude over a small coil orientation change (Figure 39, biphasic @ 110% RMT). 

Though coil orientations closest to 0º generally gave rise to robust physiological 

responses and ℱ values, the model predicted an attenuated response from -80º to -15º 

for the monophasic @ 110% RMT stimulus experiments (Figure 39). 

 

Figure 39 EMG vs. Coil Orientation Superimposed with Model Results. Muscle EMG (black dots) results 
are shown with model predictions (colored squares) for all orientation experiments. Biphasic and 
monophasic stimulus model predictions are shown in blue and red, respectively. 
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Figure 40 Linear Regression of Mean FDI EMG Amplitude vs. Model Predictions. The linear regression 
model is shown with F-test p-value to demonstrate model prediction significance. 

Of the entire section of the modeled pial surface, a maximum area of 4000 sq-

mm contains neurons having thresholds below 𝜈 during monophasic stimulation and 

3100 sq-mm during biphasic stimulation (Figure 41A).51 Model simulations indicate a 

1000 sq-mm (𝐴𝜈!𝜈) difference in area of activation between -18º and -124º coil 

orientations for biphasic stimulation. We observed a strong correlation between EMG 

amplitude and 𝐴𝜈!𝜈 value within the hand-knob for biphasic stimulation (Figure 41A).  

The threshold value, 𝜈, was employed as an excitability measure. The threshold 

stimulus maps (Figure 41B) were detailed and complex. Significant differences were 

apparent between biphasic and monophasic threshold maps. Similarly, threshold maps 

between -124º (Figure 41B, left) and -75º (Figure 41B, middle) showed substantial 

differences in excitability. Minor discrepancies were observed between -75º and -18º 

(Figure 41B, right) excitability maps. The excitability of neurons within the post-central 

gyrus had threshold values similar to those for neurons within the hand-knob (Figure 

41B; -18º) for both biphasic and monophasic stimulation.  

                                                

51 In order to compare thresholds between monophasic and biphasic stimulation, we set 𝜈 equal 
to median(𝛎𝕌). In other words, threshold stimuli below 𝜈 are in the bottom 50% of 𝛎𝕌. Here, 𝛎𝕌 is 
a 158,886 element vector array (6111 neurons; 13 stimulus experiments; 2 waveforms). The 
specific (unitless) quantities of median(𝛎𝕌), mean(𝛎𝕌), and STD(𝛎𝕌) were 40.0, 45.0, and 24.1, 
respectively. 
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Figure 41 Excitability Maps for Three Coil Orientations. (A) Surface area containing neurons with 
thresholds below 𝝂 within the hand-knob and within the total analyzed surface is overlaid with EMG 
response amplitude in FDI. (B) Surface nodes represent neurons beneath the pial surface. Nodes are 
colored according to the threshold stimulus. Here, the threshold, ν, is employed as a measure of the 
excitability. In this sense, red nodes are neurons that were found to be most excitable (low thresholds) 
whereas blue nodes indicate neurons that were found to be least excitable (high thresholds). Nodes are 
shown on both the folded pial and inflated pial surface. (Bottom) Coil orientations corresponding to color 
maps are shown column-wise. Coil orientations correspond to model outcomes in (A). Arrows point in the 
direction of the induced E-field at the stimulus onset. 

Sites of high excitability were found to be more sporadic with a -124º orientation. Our 

results suggest that it would be difficult to target the hand-knob while avoiding other 

areas using the figure-8 coil. Furthermore, excitability maps show complex details that 

depend on cell morphology. 

We compared thresholds between monophasic and biphasic stimulation (Figure 

42) and found the biphasic waveform to be more efficient than the monophasic 

waveform. The minimum slope of biphasic versus monophasic threshold (0.58) was 

found to be precisely the ratio between the induced E-field strength of biphasic and 

monophasic waveform (approx. 0.6:1) (Figure 42). Monophasic thresholds rarely defied 

this ratio: 

𝐄𝑚𝑜𝑛𝑜𝑝ℎ𝑎𝑠𝑖𝑐 = 0.60 ∙ 𝐄𝑏𝑖𝑝ℎ𝑎𝑠𝑖𝑐  (Eq. 37) 

 

Figure 42 Monophasic Threshold vs. Biphasic Threshold. A comparison between thresholds from 
monophasic and biphasic stimulation is shown for all neurons for three stimulus experiments (biphasic @ 
130% RMT). The dense data points have a slope that represents the E-field strength ratio of biphasic to 
monophasic stimulation. 
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Figure 43 Pial Surface Maps of Depth of Activation. Each surface node represents a single neuron 
directly underneath the pial surface. Nodes are shown on both the folded pial and inflated pial surface. 
Nodes have been colored according to depth of activation relative to the pial surface. Node resizing was 
done to emphasize those neurons that were found to be more excitable, i.e., node size is inversely 
proportional to threshold (size ∝ 1/ν). In this sense, a large node indicates a low threshold stimulus. 
Surfaces are shown for both the biphasic and monophasic stimulus.  
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In contrast, biphasic thresholds often defied the ratio of Eq. 37, which suggests that E-

field strength plays only a partial role in exciting pyramidal cells, but that the waveform is 

critical to the extent of stimulation. 

We measured the depth of activation relative to the pial surface along the axis of 

the pyramidal cell and found that depths of activation from monophasic stimulation are 

shallower on average than those from biphasic stimulation (Figure 43). In general, the 

axon was more sensitive to the biphasic stimulus compared to the monophasic stimulus 

(Figure 43). Activation sites in the dendrites were more common from monophasic 

stimulation compared to biphasic stimulation. Similar to excitability maps, activation 

depth maps were found to be complex and detailed. Our results indicate that activation 

depths within the hand knob are deeper for -124º compared to -18º on average. 

However, depths increased from -124º to -18º within the sulcal wall on the posterior side 

of the hand-knob.  

 

Figure 44 Depth of Activation vs. Threshold Stimulus. Scatter plots of the depth of activation relative to 
threshold stimulus (blue: biphasic; red: monophasic) for modeled neurons. Depth is shown relative to the 
soma (0 mm), which is positioned approximately 1.5 mm into the gray matter. Depth values below zero 
indicate axon activation and those above zero indicate activation in the ascending dendrites.  
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Figure 45 Distance from Coil to Point of Activation. Scatter plots portray distance from the center of the 
coil to the point of activation for three coil orientations from 130% RMT biphasic stimulus experiments. 
Model simulation results are shown for both the biphasic (blue) and monophasic (red) case. Coefficients of 
determination (R2) are shown to demonstrate the lack of relationship between threshold stimulus and the 
reach of the coil. Here, 𝝂 is the median 𝝂 of all plotted data points. (Bottom) A sphere illustrates the reach of 
the coil for each orientation. The radius of the sphere is equal to the maximum distance (54 mm @ -18º; 
56mm @ -75º; 59 mm @ -124º) below 𝝂. 

The depth of activation showed no correlation with stimulus threshold (Figure 

44). Interestingly, there was also no significant correlation between threshold and coil 

distance from activation site (Figure 45). Nevertheless, an increase in distance generally 

resulted in an increased threshold.  

The dense cluster of points near 0 mm (Figure 44) indicates that many neurons 

are oriented within the gray matter in such a way that activation occurred within the axon 
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hillock. However, the 0 mm mark is an ambiguous reference point since basal dendrites 

also extend into this region. Threshold stimuli were found to be comparably larger when 

activation initiated within the dendritic tree (depth > 0 mm). 

To illustrate sites of activation in the brain, we generated a point cloud of 

locations where action potentials initiated for two stimulus experiments (Figure 46; 

biphasic @ 130% RMT, -124º & -18º). Activation sites contained substantial 

discrepancies between waveform stimuli and coil orientation (Figure 46). Unintended 

activation sites (outside of hand-knob) were widespread. These results suggest that 

widespread untargeted cortical elements experience excitation at thresholds comparable 

to those within the hand-knob. 

The coil orientation was found to have an influence on the latency of soma 

depolarization. The latest depolarizations resulted from activation at depths > 15 mm in 

the axon. Latencies in the mid range (2 ms < t < 6 ms) were found to be due to activation 

originating in dendrites or at various depths of the axon. 

Depth of activation was related to the soma depolarization latency, except in the 

case of dendritic activation, and sites of activation within the white matter caused 

propagation of efferent and afferent action potentials. Model results show a 7 ms range 

of soma depolarization latency. It should be noted that the depolarization latency is not 

proportional to the latency of efferent signals that would be observed in the pyramidal 

tract because of the bidirectional propagation of action potentials when the axon is 

activated. For example, excitation in the axon could cause soma depolarization at the 

same latency resulting from dendritic excitation. The minimum latency was 0.6 ms. The 

earliest depolarizations resulted from activation of the axon hillock, which was more 

common at lower biphasic threshold stimuli. The monophasic stimulus caused no 
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activation in axon hillocks (𝜈 > 𝜈 for latencies < 0.7 ms) for coil orientations of -75º and -

18º (Figure 47, bottom). 

 

Figure 46 Sites of Action Potential Initiation. Sites where action potentials initiated are shown in the form 
of point clouds relative to the white matter surface. Point cloud nodes have been colored according to 
stimulus threshold. Nodes from neurons where ν > 𝝂 have been removed. Model simulation results are 
shown for two stimulus experiments (column-wise) for biphasic and monophasic stimuli. 
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Figure 47 Latency of Soma Depolarization vs. Threshold Stimulus. Soma depolarization at threshold 
stimulus occurs at latencies as long as 8 ms.  

We measured the effect of anisotropic conductivity on the threshold stimulus and 

found that fractional anisotropy (FA) has a minor influence on the threshold (Figure 48). 

Though insignificant, thresholds were found to generally decrease with increasing FA. 

However, it remains to be seen whether or not a change in tensor properties has a direct 

impact on the threshold. It would make sense that the conductivity along the principle 

eigenvector would influence the threshold since it is heavily dependent upon the axial E-

field (Basser & Roth, 1991). Moreover, the axon tractography algorithm (Westin et al., 

2002) we employed relies on the principle eigenvalue. Therefore, an increase in the 

principal eigenvalue along an axon would result in a compensatory decrease in the E-

field. 

Based on coefficients of determination (R2), the threshold stimulus shows a small 

dependence upon E-field magnitude at the site of activation (Figure 49). The y-intercepts 

and slopes of linear trend lines (Figure 49) indicate that biphasic E-fields caused 

stimulation at lesser magnitudes compared to monophasic induced E-fields. Trend line 
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slopes were minimal for the -18º coil orientation, which corresponds to the stimulus 

experiment that yielded the most robust physiological response (Figure 39, biphasic @ 

130% RMT). These results demonstrate that pyramidal cells are sensitive to directional 

and time-dependent properties of the induced E-field and not the E-field magnitude 

alone. Our results suggest that the E-field should not be the only consideration when 

predicting activation sites.  

 

Figure 48 Conductivity Tensor Fractional Anisotropy at Activation Site vs. Threshold Stimulus. 
Threshold stimulus shows a minor dependence on FA value for all coil orientations. Model results from the 
130% RMT stimulus experiment (-18º) are shown for both biphasic and monophasic stimuli. These data 
typify results from all stimulus experiments. 

Finally, we compared predictions of pyramidal cell thresholds with predictions 

from the cortical column cosine (C3) model (Figure 50). The C3 model and its respective 

variants have been employed for predicting activation and comparison with physiology 

(Fox et al., 2004; Opitz et al., 2013). The C3 model outcome measure is defined as the 

E-field component in the direction of cortical hypercolumns or the “effective E-field” 

(𝐄!""). 

Our model predictions indicate weak correlations with the C3 outcome measure. 

The correlation of the measure with monophasic thresholds was found to be greater, on 

average, than with biphasic thresholds. This relationship was most apparent for the -18º 

monophasic pulse. The C3 model does not account for deeper sites of activation, which 
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is an important feature of our multiscale approach. These results suggest that the C3 

model is not a comparable representation of the pyramidal cell population model.  

 

Figure 49 E-field Magnitude at Site of Activation vs. Threshold Stimulus. Magnitude of threshold E-field 
at activation site is shown relative to the stimulus threshold. 

DISCUSSION 

Motor Cortex Stimulation 

Di Lazzaro et al. (2004) report observations that indicate the orientation of fibers 

in the hand-knob area is susceptible to stimulation from posterior-to-anterior (PA) current 

flow. The PA orientation corresponds to 0º for the figure-8 coil according to our angle 

convention. Both our model simulations and MEP recordings confirm this notion, which 

also seems apparent from previous studies (Sakai et al., 1997; Werhahn et al., 1994). 

Axon tractography within the hand-knob indicates that pyramidal cells are oriented in a 

way that favors depolarization during PA current flow from a monophasic stimulus.  
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Figure 50 C3 Model Measure vs. Threshold Stimulus. The cortical column cosine (C3) model prediction is 
the “effective E-field” (Eeff), which is equivalent to the component of the E-field in the direction of the 
extending apical dendrites or hypercolumns normal to the pial surface. Though all trend lines indicate 
negative slopes as expected, R2 values indicate that the models are incompatible. Comparisons between 
the C3 E-field and pyramidal cell thresholds are shown for the three stimulus experiments (biphasic @ 130% 
RMT). 

We reported results from one of four subjects, and data between subjects 

contained no significant differences in the MEP variability. FDI EMG response latencies 

agreed with previous publications that reported latencies between 20 and 26 ms (Di 

Lazzaro et al., 2001; Sakai et al., 1997). This range of latencies appears in modeled 

stimulations (Figure 47). In fact, model predictions of depth of activation (Figure 44) and 

soma depolarization latency (Figure 47) corroborate observations by Di Lazzaro et al. 

(2001) and Sakai et al. (1997) who note an earlier latency of 4 ms with PA (0º) coil 

orientation compared to anterior-posterior (AP; 180º) coil orientation (using a 

monophasic stimulus). Figure 44 (bottom, red) illustrates a possible reason for this 

phenomenon. Model simulations indicate that a coil orientation of -124º (approx. AP) 
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tends to excite (𝜈 < 𝜈) dendritic elements (depth > 0 mm) as opposed to the axon, 

whereas -18º results in a large number of neurons experiencing activation near the axon 

hillock or initial segment (-3 mm < depth < 0 mm). Later latencies would correspond to I-

wave recruitment and earlier latencies to D-wave recruitment.  

Our model expressed aspects of the EMG response variability through soma 

depolarization latency (Figure 47). A large sample of neurons showed latencies between 

1 ms and 4 ms for a PA orientation (Figure 47, bottom, right) whereas an AP orientation 

(Figure 47, bottom, left) resulted in later, more sporadic response latencies. These 

results do not fully capture the latency that would be observed within the hand-knob. 

Conversely, it would be expected that early latencies would be observed with deep 

activation. More work is necessary to enable forecasting the response that would be 

observed in the medullary pyramid. Further investigation could be done to better 

understand recruitment size from stimulation and how it interacts with lower motor 

neurons in the brainstem.  

Kammer et al. (2001) compared the effectiveness of the monophasic stimulus 

with the biphasic stimulus and found that the biphasic waveform achieves stimulation of 

the motor cortex more efficiently. Additionally, Kammer and colleagues found that the 

biphasic stimulus is more effective with an AP (180º) coil orientation. This technique 

utilizes the second, more powerful, phase of the waveform, which would then induce 

current in the PA direction. We did not observe this phenomenon during TMS of human 

motor cortex, but it might have been apparent had I employed coil orientations that 

exceed -180º (e.g., -200º). Model simulations supported the findings of Kammer et al. 

(2001) (Figure 49; cf. Figure 42). Though threshold stimuli were found to be generally 

lower for monophasic stimulation, the magnitude of the E-field at the stimulation site was 

found to be significantly less during biphasic stimulation, which is reflected by both the 



 136 

slope and y-intercept of scatter plot trends in Figure 49. It remains to be seen how 

different waveforms influence various neural elements. Though the parameter space for 

waveform design is infinite, further research in waveform design could enable selective 

targeting of specific neural elements. 

Cortical Model 

We found the FEM to produce E-field estimates in agreement with previously 

published work. While these results suggest that anisotropic conductivity is a necessary 

model component (Figure 35), two published models have attempted to integrate DTI to 

model anisotropic conductivities of the head (De Lucia et al., 2007; Opitz et al., 2011). 

Electromagnetism theory requires the E-field to increase when the current flows in 

resistive directions. Apart from the inclusion of a DTI conductivity model, essential 

features in the E-field for predicting activation would be absent. Our model generated 

more detailed E-field estimates than isotropic modeling approaches (Chen & Mogul, 

2009; Laakso et al., 2014; Salinas et al., 2009; Thielscher et al., 2011).  

In a previous iteration of our head FEM52, we employed an isotropic medium and 

found that the E-field estimate differs from that using an anisotropic medium, which 

shows that the E-field is more concentrated at depths up to 25mm within the targeted 

gyrus when current flow is induced perpendicularly to the targeted gyrus (Figure 35). 

This phenomenon affected neuron model simulations by a decrease in thresholds and 

deeper activation within the hand-knob (Figure 43). Our anisotropic FEM results confirm 

physiological observations that show an increase in D-wave recruitment during PA 

current flow compared to lateral-medial current flow (Dubach et al., 2004), and they 

provide an explanation for the effectiveness of PA current flow for exciting neurons in the 

                                                

52 See Chapter 2, p. 70. 
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hand-knob (Figure 46). The PA coil orientation has been a general guide for targeting 

the hand-knob, but now, through our subject-specific, anisotropic model, the 

effectiveness of PA current flow can be quantified and explained. 

Neuron thresholds were computed relative to the actual stimulation intensity as 

would be dialed on either the Magstim 200 (monophasic) or Magstim Rapid (biphasic) 

stimulator units. Consequently, thresholds for the monophasic waveform were found to 

be typically lower. On the other hand, the peak E-field during the biphasic stimulus at 

threshold was found to be typically less than that of the monophasic pulse (Figure 49), 

which suggests that the biphasic waveform requires less energy to cause excitation of 

pyramidal cells, possibly due, in part, to the stimulus giving rise to bi-directional 

transmembrane fluctuations. Cell compartments influenced by the biphasic stimulus 

experience both hyperpolarization and depolarization. The depolarizing phase may be 

responsible for pushing the transmembrane potential above the threshold of the voltage-

gated ion channels.  

Our results suggest that the reach of TMS is uncorrelated with neuron thresholds 

(Figure 45). In other words, neurons that are closer to the TMS coil are not necessarily 

more susceptible to stimulation. For all tested coil placements, neuron stimulations 

indicated that neurons closest to the coil center have comparable thresholds to neurons 

at least 50 mm from the coil center. 

Previous studies have modeled stimulation sites as a function of the E-field 

direction relative to hypercolumns or pyramidal cells in the cortex. Opitz et al. (2013) and 

Fox et al. (2004) surmise that activation sites can be explained in terms of the current 

flowing axially along hypercolumn orientations or in the direction of the principal 

eigenvector of the diffusion tensor (as from DWI). Laakso et al. (2014) generated a 

highly detailed FEM of the head and have similarly hypothesized that potential sites of 
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activation can be explained in terms of a cortical column cosine model. However, these 

models are limited to cortical E-fields. Our results suggest that no significant correlation 

exists between pyramidal cell activation thresholds and E-field direction along pyramidal 

cell orientation (Figure 50). Neurons within the hand-knob situated on the gyral crown 

were found to have similar thresholds to those with sharp bends situated within sulcal 

walls (Figure 41 & Figure 46). Additionally, neurons situation in gyral crowns were more 

prone to deeper (> 10 mm) activation. However, a general trend between pyramidal 

thresholds and the C3 model was apparent in the case where the primary induced E-field 

is perpendicular to the central sulcus (Figure 50; -18º).  

We compared the population response of neurons to FDI EMG amplitude, which 

does not fully represent the size of motor neuron recruitment in the hand-knob during in-

vivo TMS. Perhaps model comparisons could be further validated by more thorough use 

of EMG responses throughout muscles. Model validations could be expanded as a 

function of multiple muscle EMG responses within the hand. If our modeling approach is 

further validated by a more sophisticated method, it may be possible, for example, to 

map the hand-knob with sub-millimeter resolution, and inferences can be made about 

network interactions using DWI. With advancements in the NIH Human Connectome53 

project (Setsompop et al., 2013), our approach could enable precise predictions of 

activated areas and provide new insights to better understand both the pathophysiology 

of neurological disorders and the extent of neuromodulation. 

Model comparisons were limited in that a quantification of possible inhibitory 

responses is absent from the model. Were inhibitory neurons (or responses) adequately 

accounted for, the model prediction would inevitably change. More work is needed for 

                                                

53 A project funded by NIH with the overall aim to map the human brain 
(http://www.humanconnectomeproject.org/). 
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the development of these details. However, we elected to include a model weight (𝑤) to 

account for the net inhibitory response of the neuron population. Model weights quantify 

this measure in a coarse, non-specific manner, but the average response of neurons 

having a threshold (𝜈 value) is greater than one standard deviation. Neurons with 

considerably high thresholds experience pronounced hyperpolarization in either dendritic 

branches or axon. We tried to capture this inhibitory effect through a model weight, 

which is a function of the inverted product of threshold mean (𝜇𝜈) and variance (𝜎𝜈
!) (Eq. 

35). Hyperpolarizing responses are reflected in these statistical measures for a Poisson 

distribution. If model predictions (ℱ 𝛎!", 𝜈 ) were a function only of 𝐴𝜈!𝜈 (Eq. 33), which 

describes only the area of cortex containing neurons below 𝜈 (Eq. 32), the distribution of 

𝜈 is neglected. Model weights described distinguishing features between stimulus 

experiments. High 𝜎𝜈
! and 𝜇𝜈 indicated a net hyperpolarizing response within the neuron 

population. Conversely, low 𝜎𝜈
! and 𝜇𝜈 reflected a net depolarizing response of the 

neuron population. It is possible that the model weight provides a description of the 

recruited motor pool size within a cortex ROI (such as the hand-knob). The inclusion of a 

model weight resulted in modest, yet compensatory changes in the model prediction 

trend compared to a prediction that is restricted to the 𝐴𝜈!𝜈 value. Furthermore, the 

presence of a model weight resulted in a model prediction that was found to better 

describe the measured MEP.  

Our results show that waveform shape design has significant implications in 

terms of stimulation efficiency and cortical sites of activation. Monophasic pulses seem 

to preferentially excite cells that are oriented such that only depolarization, not 

hyperpolarization, can occur. Our results suggest that a biphasic waveform would excite 

neurons in a similar manner as the monophasic pulse if the coil could be oriented in two 

opposing directions at once (e.g., 0º and 180º). Depending on the desired target, it 
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would be advantageous to consider waveform design. A target that includes a gyrus and 

adjacent sulci would be amenable to a biphasic stimulus. On the other hand, a 

monophasic stimulus would selectively target a neuron oriented in such a way that its 

apical dendrite is oriented into the induced E-field and its axon bends sharply into the 

white matter volume. 

Though model predictions appear to support findings from previous studies and 

correlate with trends that follow observations from electrophysiology, our modeling 

approach contains limiting assumptions. Most simulated E-fields that cause excitation 

were unrealistic (Figure 49), a possible consequence of model limitations. We assumed 

that direct activation during TMS could be modeled by stimulating neurons at resting 

state, which is approximately -70mV for our pyramidal cell model. We also performed 

neuron simulations using an adaptation of well-established techniques in modeling DBS 

activation in axons (Butson et al., 2007; Chaturvedi et al., 2010; McIntyre et al., 2004). 

Both native and custom extracellular mechanisms were employed within NEURON to 

simulate pyramidal cell responses and determine their activation threshold stimulus. 

Further investigation into what an ion channel actually “sees” in adjacent extracellular 

and intracellular space during TMS could address the current model limitations. 

Only one type of cell was used to compute estimates of the excitability of a large 

area of cortex (65 sq-cm of pial surface). Even though many types of cells experience 

effects from TMS, our cortical model is limited to clones of a single pyramidal cell. The 

size of this particular cell model is dwarfed by Betz cells,54 which are almost certainly 

targets of D-wave and I-wave recruitment (Vaalto et al., 2010). It remains to be seen 

whether the cell type would significantly influence our model outcomes. 

                                                

54 Betz cells are prevalent gigantopyramidal cells in the primary motor cortex. They represent 
approximately 10% of the pyramidal cell population in the motor cortex. Some Betz cells have 
soma diameters of 100µm in the human motor cortex. 
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Precise origins of I-wave recruitment during TMS remain elusive. Our cortical 

model is limited to investigating D-wave recruitment, and perhaps the first and second I-

waves (I1 and I2; between 3 and 5.5 ms). Our model simulations suggest that 

stimulation of pyramidal cells results in highly variable soma depolarization latencies, 

and latencies were modulated by changes in activation sites within the dendrites. Model 

simulations indicate a latency range of 6 ms, which covers the range of the first and 

second I-waves. However, I3 and I4 waves (6 to 9 ms) are beyond latencies observed in 

this model. Later I-waves are likely the result of afferent signals from interneurons 

impinging on pyramidal cells. More work would be necessary to include excitation of 

interneurons and the resulting excitatory post-synaptic potentials (EPSPs) or inhibitory 

PSPs (IPSPs) (Maier et al., 2002). 

We found that quantifying the physiological response and predicting sites of 

activation to TMS would be impossible without a multiscale modeling approach due to 

the size of the TMS coil relative to the size of the neuron structures being stimulated. 

This dissertation work is the first to bring forth a validated model that incorporates 

subject-specific, multiscale, anisotropic features to predict the immediate effects and 

quantify the physiological response of single-pulse TMS. It has potential benefit by 

enabling the clinician to more precisely prescribe TMS treatment through means that are 

personalized to his/her patient and the researcher to further investigate the mechanisms 

of stimulation and better understand targets of activation under given stimulation 

parameters. 

Variability During TMS 

We have demonstrated through detailed multiscale modeling that variability in 

physiological response among subjects is likely due to a number of related factors. 

Firstly, this study and previously published studies have demonstrated that cortical 



 142 

geometry influences the induced E-field. Secondly, model results were affected by 

diffusion coefficients obtained from DWI to model the anisotropic nature of the head. 

Thirdly, the shape of the pyramidal cell axon has an effect on the depth of activation or 

the “reach” of TMS. Fourthly, sites of activation at threshold stimulus were variable, even 

between neighboring neurons. Activation sites were found to vary between individual 

basal dendrites as well as dendrites extending from the apical branch. Lastly and 

perhaps most obviously, minor changes in coil orientation resulted in changes in model 

prediction and EMG response (see Figure 39, top right). These factors explain the 

variability between subjects, not within a single subject. 

Unknown neural interactions, residual effects from previous stimuli, and 

refractory effects are undoubtedly contributing factors. To demonstrate the effect of the 

cell state on its excitability, we revisited the hypothesis set forth by Edgley et al. (1990, 

1997). We varied the intracellular (or transmembrane) potential of the soma of two 

sample neurons exposed to E-fields from a random stimulus experiment (Figure 51). 

Depending on the site of activation, even an increase in transmembrane potential by 8 

mV (via sub-rheobase current injection) can decrease the biphasic threshold stimulus by 

45%. Depending on the neuronal target of stimulation, the cell state could influence its 

threshold stimulus. For example, the biphasic threshold changes equally for both 

neurons 1 and 2 (Figure 51) because the site of activation is close to the soma within the 

axon. On the other hand, the monophasic stimulus causes excitation at a distant point 

within the axon in neuron 2, so the transmembrane potential has no effect on its 

threshold. For unknown reasons, the monophasic stimulus has a lesser effect on neuron 

1 than the biphasic stimulus. Additionally, the sensitivity of neuron 1 to activation via 

monophasic stimulation varied with increasing transmembrane potential. 
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Figure 51 Threshold Stimulus vs. Soma Transmembrane Potential at Stimulus Onset. Threshold 
stimuli from two model neurons within the hand-knob were found with respect to varying transmembrane 
potentials at the stimulus onset. Variations in membrane potential substantially affect the biphasic threshold 
stimulus. The site of activation in neuron 2 (right) via monophasic stimulus occurs deep enough within white 
matter that changes in soma membrane potential have no effect on threshold. 

Thresholds from these two neurons suggest that the cell state plays an important 

role in its excitability from TMS. However, our approach cannot provide direct estimates 

of the response variability when the coil placement is unchanging between stimuli. 

Burke et al. (1993) report corticospinal volleys from magnetic stimulus in 

anesthetized humans, and point out that I-waves could not be identified at intensities 

lower than D-wave threshold. Burke and colleagues found that when isoflurane is 

withdrawn, I-wave amplitude is dramatically augmented. Based on mechanisms of 

isoflorane (Hemmings et al., 2005), I-waves appear to originate from corticocortical 

interactions, which has become a frequently researched hypothesis. The robustness of 

EMG responses indicates D-wave recruitment, so it is unlikely that I-waves can influence 

the consistency of the immediate motor response from motor cortex stimulation. Nuclei 

in the brainstem may cause some of the variability during TMS. Brainstem activity 

indicates that it participates in performing anticipatory modifications (Drew et al., 2004). 

Perhaps the state of lower motor neurons affects the signal transmission from upper 
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motor neurons. Interestingly, the Burke et al. (1993) results appear to show increased 

variability in D-wave responses in the corticospinal tract when isoflorane was withdrawn, 

which suggests that an active brainstem could play an important role in the observed 

variability between TMS stimuli. Future investigations that study the response variability 

during TMS should include components that can compare activity of brainstem nuclei 

with the efferent D-wave. 
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FUTURE DIRECTIONS 

Four important future directions or applications of our subject-specific multiscale 

modeling approach should be considered. 

Firstly, the concept of a “dose” in neuromodulation remains to be quantified. 

Implanted devices deliver constant stimulation when turned on whereas TMS is 

administered periodically. In some cases, the physiological response is 

indistinguishable, especially in the case of depression. Do both TMS and a chronically 

implanted device issue the same “dose” of neuromodulation therapy? Perhaps there is 

measurable physiological quantity that describes changes in neural activity similar to 

what is observed during stimulation of the human motor cortex. When stimulation is 

delivered at even low frequencies, the MEP attenuates and its latency increases over 

time throughout stimulation. Since clinical TMS is normally carried out in some form of 

rTMS, the dosage quantity could perhaps be a measure of a difference in neural activity 

before and after treatment using functional imaging modalities (e.g., MEG). Another 

potential option is to explain TMS dosage in terms of the energy delivered to the CNS. 

Even so, this approach begs the question: what exactly is the “energy” and what are its 

units? This question is appropriate since the scientific community has rather 

painstakingly demonstrated that activation in the hand-knob, for example, does not 

depend only on the magnetic and electric energy delivered by the TMS unit. 

Nevertheless, this energy delivery concept does not necessarily simplify the TMS 

dosage problem. We propose using our subject-specific multiscale approach as a start. 

The model could be employed to quantify the “energy” on a per unit area (of pial surface) 

basis. Perhaps the model prediction quantity, ℱ 𝛎, 𝜈 , would provide a unitless prototype 

to quantify the dosage or energy delivered from TMS. Furthermore, our modeling 

approach is not limited to TMS, but is translatable across neuromodulation platforms. Its 
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translatability enables development of a reference point or “gold standard” of therapy. 

Due to the success of DBS for many disorders, it could be the most logical candidate to 

provide a reference point for defining the “dose” or  “energy” unit. 

Secondly, our method could enable prediction of stimulated areas for other 

neuromodulation paradigms such as tDCS, ECS, and ECT. For example, focal epilepsy 

resection surgeries employ implantable cortical electrode arrays to identify cortical areas 

contributing to seizures. Preoperative brain stimulation is carried out via the implanted 

electrode array. One by one, a suprathreshold stimulus is delivered from each electrode 

in the array while the corresponding physiological responses are observed. Electrodes 

that elicit observable spasms are recorded, and these electrodes provide a localization 

of malfunctioning brain tissue. This brain tissue is then identified by the surgeon, and is 

ultimately subject to resection. Our modeling approach could provide detailed 

information about the precise locations and spatial extent of neural activation by the 

preoperative electrodes and model could be employed to help reduce the possibility of 

surgical error resulting from using only electrode locations to infer the site and spatial 

extent of the malfunctioning neural tissue. Therefore, surgery could be performed after 

having gathered detailed information regarding the precise sites of neural elements to be 

resected. Further validation of the model is essential for it to be employed for such a 

serious operation. 

Similarly, utilizing the model in conjunction with TMS could meet the need for a 

reliable, noninvasive, functional brain-mapping tool as an alternative to invasive 

approaches. Like most methods of neuromodulation, the site of modulation is often 

elusive. The multiscale approach presented in this work could provide the means to 

elucidate the site of modulation during TMS. Without information about stimulus targets 

during TMS, it will remain unfit as a brain-mapping tool. With further advancements, our 
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model could enable TMS to be reliably employed as an interface to the brain for use in 

functional brain-mapping. Since functional imaging modalities lack the time constant 

required to measure the immediate neural response from TMS, our approach would act 

as a neuroimaging method for brain-mapping.  

Thirdly, by virtue of the time-dependent features of our modeling approach, the 

model could be employed to solve the forward problem for electrophysiology 

applications such as EEG or MEG. In other words, instead of modeling the effects of 

electrical stimulation on neural elements, the model could be employed to investigate the 

effect of various neural activities on electrophysiology transducers such as EEG 

electrodes or MEG SQUIDs (superconducting quantum interference device). Detailed 

electrophysiology recordings could be estimated by modeling the activity of a single 

pyramidal cell or a population of cells throughout a large area of cortex. This experiment 

could be performed using spatially dependent multicompartmental neuron models such 

as the pyramidal cell employed in this study. A detailed forward model could improve our 

understanding of signals recorded by SQUIDs or EEG electrodes. Both SQUIDs and 

EEG electrodes could be relatively manageable additions to our FEM approach for this 

forward problem. 

Lastly, in regard to stimulation at the cellular level, two high-impact directions 

should be considered. First, our model has been built (or coded) in such a way that is 

amenable to experimentation with any cell model that is constructed within the NEURON 

environment. Comparing the threshold stimuli of the pyramidal neuron employed with 

that of other neurons could provide contrast information about the susceptibility of 

different cell types to excitation from electrical stimulation. As mentioned, the Betz cell 

would be an appropriate candidate for inclusion due to its potential increased 

susceptibility to excitation. Second, the NEURON simulation environment offers a high 
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degree of versatility for examining cellular dynamics, especially those arising from 

postsynaptic potentials. Further investigation is still necessary to test the I-wave 

hypothesis that corticocortical interactions between pyramidal cells and interneurons 

give rise to delayed volleys in the pyramidal tract. Postsynaptic potentials (and 

interneurons) could be included in our model to carry out investigation into this I-wave 

hypothesis. The current state of the model is limited to quantifying the susceptibility of 

pyramidal cells to excitation only, and little insight can be gained about the origin and 

behavior of I-waves. Interneurons that have postsynaptic inputs to pyramidal cells could 

be incorporated into the model to better understand the observed latencies of I-waves 

that follow motor cortex stimulation. A primary challenge of this endeavor would pertain 

to the placements and types of synaptic connections. How many synapses would be 

required? How many give rise to EPSPs? How many give rise to IPSPs? And, how 

would modulation be characterized in such a detailed model? 
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Appendix A 

The following are Maxwell’s equations and general field equations for application 

the Fourier (frequency) domain. The following equations were implemented for 

electromagnetic field calculations by the TMS figure-8 coil model and subject-specific 

FEM. 

The magnetic vector potential (𝐀) is related to the current dipole (𝐐) by 

𝐀 =
𝜇!𝐐
4𝜋𝑅

 
(Eq. A.1) 

where 𝜇! is the magnetic permeability of free space, and 𝑅 is the distance from 𝐐 to any 

point in space. The magnetic field (𝐁) is related by the A-field by  

𝐁 = 𝛻×𝐀 (Eq. A.2) 

The magnetically induced E-field is described by 

𝐄 = −∇Φ −
𝑑𝐀
𝑑𝑡

 
(Eq. A.3) 

where the scalar potential, 𝛷, results from charge distribution due to model boundaries 

and dielectric effects. The E-field is related to the B-field by 

∇×𝐄 = −
𝜕𝐁
𝜕𝑡

 
(Eq. A.4) 

The electric displacement (𝐃) field follows Gauss’ law 

∇ ∙ 𝐃 = 𝜌 (Eq. A.5) 

where 𝜌 is the charge density. It follows that the B-field be conserved. 

 

∇ ∙ 𝐁 = 0 (Eq. A.6) 
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The equation of continuity for current density (𝐉): 

∇ ∙ 𝐉 = −
𝜕𝜌
𝜕𝑡

 (Eq. A.7) 

The current density follows 

𝐉 = 𝜎𝐄 (Eq. A.8) 

where 𝜎 is the electric conductivity. FEM software (COMSOL) employed in this study 

solves the time-harmonic (Fourier domain) equation 

𝑗𝜔𝜎 − 𝜔!𝜖 𝐀 + ∇× 𝜇!!∇×𝐀 = 𝐉𝑒 = 0 (Eq. A.9) 

where 𝜔 is the frequency, 𝜖 is the permittivity, and 𝐉𝑒 is the external current density. 

From 𝐀, the E-field and electric potential can be obtained from Eq. A.3. For TMS 

applications, 

∇ ∙ 𝐉 = 0 (Eq. A.10) 
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Appendix B 

The following is a derivation of the strength-duration curve for magnetic 

stimulation. This approach is a well established one, and it is used especially in 

magnetic stimulation of tissue by eddy currents from the switching on and off of gradient 

coils in MRI (Hemmings et al., 2005). This derivation has been modified specifically for 

stimulation from TMS rather from MRI gradient coils, which produce highly uniform B-

fields relative to TMS. The mean E-field magnitude during supra-threshold stimulation is 

defined as 

𝐄 𝑠 ≡
1
𝜏

𝐄 𝑡
𝜏

!
𝑑𝑡 ≥ 𝐄 𝑟ℎ 1 +

𝜏𝑐

𝜏
 

(Eq. A.11) 

where 𝐄 𝑡  is the magnitude of the E-field in time throughout the duration of the 

stimulus 𝜏, 𝐄 𝑟ℎ is the minimum E-field magnitude to cause activation at constant . As 

previously shown, the E-field at any point in space having a distance 𝑟 from the coil is a 

function of the coil current. 

𝐄 = −
𝑑𝐀 𝑟

𝑑𝑡
∝ −

𝑑𝐼𝑐𝑜𝑖𝑙

𝑑𝑡
 

(Eq. A.12) 

where 𝐀 𝑟  is a function of position and represents the contributions of the A-field and 

scalar potential (∇Φ) to the E-field the magnetic vector potential. Inserting Eq. A.12 into 

Eq. A.11 yields 

𝑑𝐼𝑐𝑜𝑖𝑙

𝑑𝑡

𝜏

!
𝑑𝑡 ≥

𝑑𝐼𝑐𝑜𝑖𝑙

𝑑𝑡
𝜏 +

𝑑𝐼𝑐𝑜𝑖𝑙

𝑑𝑡
𝜏𝑐 

(Eq. A.13) 

𝛥𝐼𝑠 ≥
𝑑𝐼𝑐𝑜𝑖𝑙

𝑑𝑡 𝑚𝑖𝑛
𝜏 + 𝛥𝐼𝑚𝑖𝑛 (Eq. A.14) 

where the coil current rise 𝛥𝐼𝑠 is required cause stimulation over a time 𝜏. Here, 𝛥𝐼𝑚𝑖𝑛 is 

the minimum current step at the upper limit of 𝑑𝐼𝑐𝑜𝑖𝑙 𝑑𝑡 required to cause stimulation. The 
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bracketed term in Eq. A.14 is the minimum rate of change of the coil current at the upper 

limit of 𝐼𝑐𝑜𝑖𝑙 required to cause stimulation. The chronaxie can be determined directly from 

the minimum threshold parameters (Drew et al., 2004). 

 

 

 

 

Appendix C 

The model construction flow diagram is shown on the following two pages. This 

flow diagram is presented to provide an illustration of the general flow of data to arrive at 

a subject-specific multiscale model. Furthermore, this diagram illustrates that our model 

is a product of the work of many other scientists who developed software enabling the 

construction of this model. 

𝜏𝑐 =
𝛥𝐼𝑚𝑖𝑛

𝑑𝐼𝑐𝑜𝑖𝑙
𝑑𝑡

 (Eq. A.15) 
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Appendix D 

The following medical image protocol is chronologically enumerated. Full image 

acquisition time was approximately 30 minutes. 

1. Scan #1: 3 plane localizer scan; scan time 45 sec; FOV: 24; slice thickness: 10 mm; 

5 mm spacing, matrix 256-by-128, 1NEX, no. slices: 13. 

2. Scan #2: Spoiled Gradient (SpGr); scan time 8 min 10 sec; TE-min full TR -9.7, prep 

time 450 ms, Flip angle 12, FOV: 22, slice thickness: 1.0, no. slices: 180, matrix: 

256-by-224, phase FOV: 0.80, frequency direction: AP. 

3. Scan #3: High order shim; calibration scan; no images saved. 

4. Scan #4: EPI; scan time: 8 min. TE: 25, TR: 2 sec; Flip angle: 77; FOV 22, thickness: 

4mm, 32 slices, no. of excitations: 1; reps: 240, matrix 64-by-64, frequency direction: 

right-to-left. 

5. Scan #5: DTI; scan time: approx. 8mins; run once; TE: min, TR: min; FOV: 256 mm; 

slice thickness: 2.0; in plane resolution: 2 mm; align slices AC-PC, collect as many to 

cover whole brain, matrix 128-by-128, no. of excitations: 1; b-value: 900; diffusion 

tensor; no. of diffusion directions: 60; disable twice refocusing. 
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