1,189 research outputs found

    Edge Video Analytics: A Survey on Applications, Systems and Enabling Techniques

    Full text link
    Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. The basic concepts of EVA (e.g., definition, architectures) were not fully elucidated due to the rapid development of this domain. To fill these gaps, we provide a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.Comment: 31 pages, 13 figure

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    Trustworthy Federated Learning: A Survey

    Full text link
    Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL increases, addressing trustworthiness issues in its various aspects becomes crucial. In this survey, we provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy . Despite the growth in literature on trustworthy centralized Machine Learning (ML)/Deep Learning (DL), further efforts are necessary to identify trustworthiness pillars and evaluation metrics specific to FL models, as well as to develop solutions for computing trustworthiness levels. We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy. Each pillar represents a dimension of trust, further broken down into different notions. Our survey covers trustworthiness challenges at every level in FL settings. We present a comprehensive architecture of Trustworthy FL, addressing the fundamental principles underlying the concept, and offer an in-depth analysis of trust assessment mechanisms. In conclusion, we identify key research challenges related to every aspect of Trustworthy FL and suggest future research directions. This comprehensive survey serves as a valuable resource for researchers and practitioners working on the development and implementation of Trustworthy FL systems, contributing to a more secure and reliable AI landscape.Comment: 45 Pages, 8 Figures, 9 Table

    A Machine Learning Enhanced Scheme for Intelligent Network Management

    Get PDF
    The versatile networking services bring about huge influence on daily living styles while the amount and diversity of services cause high complexity of network systems. The network scale and complexity grow with the increasing infrastructure apparatuses, networking function, networking slices, and underlying architecture evolution. The conventional way is manual administration to maintain the large and complex platform, which makes effective and insightful management troublesome. A feasible and promising scheme is to extract insightful information from largely produced network data. The goal of this thesis is to use learning-based algorithms inspired by machine learning communities to discover valuable knowledge from substantial network data, which directly promotes intelligent management and maintenance. In the thesis, the management and maintenance focus on two schemes: network anomalies detection and root causes localization; critical traffic resource control and optimization. Firstly, the abundant network data wrap up informative messages but its heterogeneity and perplexity make diagnosis challenging. For unstructured logs, abstract and formatted log templates are extracted to regulate log records. An in-depth analysis framework based on heterogeneous data is proposed in order to detect the occurrence of faults and anomalies. It employs representation learning methods to map unstructured data into numerical features, and fuses the extracted feature for network anomaly and fault detection. The representation learning makes use of word2vec-based embedding technologies for semantic expression. Next, the fault and anomaly detection solely unveils the occurrence of events while failing to figure out the root causes for useful administration so that the fault localization opens a gate to narrow down the source of systematic anomalies. The extracted features are formed as the anomaly degree coupled with an importance ranking method to highlight the locations of anomalies in network systems. Two types of ranking modes are instantiated by PageRank and operation errors for jointly highlighting latent issue of locations. Besides the fault and anomaly detection, network traffic engineering deals with network communication and computation resource to optimize data traffic transferring efficiency. Especially when network traffic are constrained with communication conditions, a pro-active path planning scheme is helpful for efficient traffic controlling actions. Then a learning-based traffic planning algorithm is proposed based on sequence-to-sequence model to discover hidden reasonable paths from abundant traffic history data over the Software Defined Network architecture. Finally, traffic engineering merely based on empirical data is likely to result in stale and sub-optimal solutions, even ending up with worse situations. A resilient mechanism is required to adapt network flows based on context into a dynamic environment. Thus, a reinforcement learning-based scheme is put forward for dynamic data forwarding considering network resource status, which explicitly presents a promising performance improvement. In the end, the proposed anomaly processing framework strengthens the analysis and diagnosis for network system administrators through synthesized fault detection and root cause localization. The learning-based traffic engineering stimulates networking flow management via experienced data and further shows a promising direction of flexible traffic adjustment for ever-changing environments

    Artificial Intelligence in the development of modern infrastructures

    Get PDF
    Artificial intelligence (AI) makes it possible for machines to learn from experience, adjust to new inputs and perform tasks as human beings. Most of the examples of AI you hear about today - from computers playing chess to autonomous driving cars - rely heavily on deep learning and natural language processing

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things
    • …
    corecore