4,376 research outputs found

    Out-of-sample generalizations for supervised manifold learning for classification

    Get PDF
    Supervised manifold learning methods for data classification map data samples residing in a high-dimensional ambient space to a lower-dimensional domain in a structure-preserving way, while enhancing the separation between different classes in the learned embedding. Most nonlinear supervised manifold learning methods compute the embedding of the manifolds only at the initially available training points, while the generalization of the embedding to novel points, known as the out-of-sample extension problem in manifold learning, becomes especially important in classification applications. In this work, we propose a semi-supervised method for building an interpolation function that provides an out-of-sample extension for general supervised manifold learning algorithms studied in the context of classification. The proposed algorithm computes a radial basis function (RBF) interpolator that minimizes an objective function consisting of the total embedding error of unlabeled test samples, defined as their distance to the embeddings of the manifolds of their own class, as well as a regularization term that controls the smoothness of the interpolation function in a direction-dependent way. The class labels of test data and the interpolation function parameters are estimated jointly with a progressive procedure. Experimental results on face and object images demonstrate the potential of the proposed out-of-sample extension algorithm for the classification of manifold-modeled data sets

    Content adaptive single image interpolation based super resolution of compressed images

    Get PDF
    Image Super resolution is used to upscale the low resolution Images. It is also known as image upscaling .This paper focuses on upscaling of compressed images based on Interpolation techniques. A content adaptive interpolation method of image upscaling has been proposed. This interpolation based scheme is useful for single image based Super-resolution (SR) methods .The presented method works on horizontal, vertical and diagonal directions of an image separately and it is adaptive to the local content of an image. This method relies only on single image and uses the content of the original image only; therefore the proposed method is more practical and realistic. The simulation results have been compared to other standard methods with the help of various performance matrices like PSNR, MSE, MSSIM etc. which indicates the preeminence of the proposed method

    Information-Theoretic Registration with Explicit Reorientation of Diffusion-Weighted Images

    Full text link
    We present an information-theoretic approach to the registration of images with directional information, and especially for diffusion-Weighted Images (DWI), with explicit optimization over the directional scale. We call it Locally Orderless Registration with Directions (LORD). We focus on normalized mutual information as a robust information-theoretic similarity measure for DWI. The framework is an extension of the LOR-DWI density-based hierarchical scale-space model that varies and optimizes the integration, spatial, directional, and intensity scales. As affine transformations are insufficient for inter-subject registration, we extend the model to non-rigid deformations. We illustrate that the proposed model deforms orientation distribution functions (ODFs) correctly and is capable of handling the classic complex challenges in DWI-registrations, such as the registration of fiber-crossings along with kissing, fanning, and interleaving fibers. Our experimental results clearly illustrate a novel promising regularizing effect, that comes from the nonlinear orientation-based cost function. We show the properties of the different image scales and, we show that including orientational information in our model makes the model better at retrieving deformations in contrast to standard scalar-based registration.Comment: 16 pages, 19 figure

    Assessment of hemodynamic conditions in the aorta following root replacement with composite valve-conduit graft

    Get PDF
    This paper presents the analysis of detailed hemodynamics in the aortas of four patients following replacement with a composite bio-prosthetic valve-conduit. Magnetic resonance image-based computational models were set up for each patient with boundary conditions comprising subject-specific three-dimensional inflow velocity profiles at the aortic root and central pressure waveform at the model outlet. Two normal subjects were also included for comparison. The purpose of the study was to investigate the effects of the valve-conduit on flow in the proximal and distal aorta. The results suggested that following the composite valve-conduit implantation, the vortical flow structure and hemodynamic parameters in the aorta were altered, with slightly reduced helical flow index, elevated wall shear stress and higher non-uniformity in wall shear compared to normal aortas. Inter-individual analysis revealed different hemodynamic conditions among the patients depending on the conduit configuration in the ascending aorta, which is a key factor in determining post-operative aortic flow. Introducing a natural curvature in the conduit to create a smooth transition between the conduit and native aorta may help prevent the occurrence of retrograde and recirculating flow in the aortic arch, which is particularly important when a large portion or the entire ascending aorta needs to be replaced

    Interpolation of Low-Resolution Images for Improved Accuracy Using an ANN Quadratic Interpolator

    Get PDF
    The era of digital imaging has transitioned into a new one. Conversion to real-time, high-resolution images is considered vital. Interpolation is employed in order to increase the number of pixels per image, thereby enhancing spatial resolution. Interpolation's real advantage is that it can be deployed on user end devices. Despite raising the number of pixels per inch to enhances the spatial resolution, it may not improve the image's clarity, hence diminishing its quality. This strategy is designed to increase image quality by enhancing image sharpness and spatial resolution simultaneously. Proposed is an Artificial Neural Network (ANN) Quadratic Interpolator for interpolating 3-D images. This method applies Lagrange interpolating polynomial and Lagrange interpolating basis function to the parameter space using a deep neural network. The degree of the polynomial is determined by the frequency of gradient orientation events within the region of interest. By manipulating interpolation coefficients, images can be upscaled and enhanced. By mapping between low- and high-resolution images, the ANN quadratic interpolator optimizes the loss function. ANN Quadratic interpolator does a good work of reducing the amount of image artefacts that occur during the process of interpolation. The weights of the proposed ANN Quadratic interpolator are seeded by transfer learning, and the layers are trained, validated, and evaluated using a standard dataset. The proposed method outperforms a variety of cutting-edge picture interpolation algorithms.

    GAGAN: Geometry-Aware Generative Adversarial Networks

    Full text link
    Deep generative models learned through adversarial training have become increasingly popular for their ability to generate naturalistic image textures. However, aside from their texture, the visual appearance of objects is significantly influenced by their shape geometry; information which is not taken into account by existing generative models. This paper introduces the Geometry-Aware Generative Adversarial Networks (GAGAN) for incorporating geometric information into the image generation process. Specifically, in GAGAN the generator samples latent variables from the probability space of a statistical shape model. By mapping the output of the generator to a canonical coordinate frame through a differentiable geometric transformation, we enforce the geometry of the objects and add an implicit connection from the prior to the generated object. Experimental results on face generation indicate that the GAGAN can generate realistic images of faces with arbitrary facial attributes such as facial expression, pose, and morphology, that are of better quality than current GAN-based methods. Our method can be used to augment any existing GAN architecture and improve the quality of the images generated

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure
    • …
    corecore