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Out-of-sample generalizations for supervised
manifold learning for classification

Elif Vural and Christine Guillemot

Abstract—Supervised manifold learning methods for data
classification map data samples residing in a high-dimensional
ambient space to a lower-dimensional domain in a structure-
preserving way, while enhancing the separation between different
classes in the learned embedding. Most nonlinear supervised
manifold learning methods compute the embedding of the man-
ifolds only at the initially available training points, while the
generalization of the embedding to novel points, known as the
out-of-sample extension problem in manifold learning, becomes
especially important in classification applications. In this work,
we propose a semi-supervised method for building an interpola-
tion function that provides an out-of-sample extension for general
supervised manifold learning algorithms studied in the context
of classification. The proposed algorithm computes a radial basis
function (RBF) interpolator that minimizes an objective function
consisting of the total embedding error of unlabeled test samples,
defined as their distance to the embeddings of the manifolds of
their own class, as well as a regularization term that controls the
smoothness of the interpolation function in a direction-dependent
way. The class labels of test data and the interpolation function
parameters are estimated jointly with a progressive procedure.
Experimental results on face and object images demonstrate the
potential of the proposed out-of-sample extension algorithm for
the classification of manifold-modeled data sets.

Index Terms—Manifold learning, supervised learning, out-of-
sample extensions, pattern classification.

I. INTRODUCTION

THE recovery of low-dimensional structures in data sets
not only allows understanding the data but also provides

useful representations for their treatment in several problems.
Data classification is among the applications that benefit from
the identification of low-dimensional structures in data. Unlike
unsupervised manifold learning methods such as [1], [2],
[3], which only take the geometric structure of data samples
into account when learning a low-dimensional embedding,
many recent supervised manifold learning methods seek a
representation that not only preserves the manifold structure
in each class, but also enhances the separation between differ-
ent class-representative manifolds in the learned embedding.
Meanwhile, an important problem in data classification with
supervised manifold learning is the generalization of the
learned embedding to novel data samples. In this work, we
address the problem of constructing a continuous mapping
between the high-dimensional original data space and the
low-dimensional space of embedding for data classification
applications.

Supervised manifold learning methods can be categorized
into two groups as linear and nonlinear algorithms. Linear
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methods such as [4], [5], [6], [7], and [8] learn a linear
projection that maps data into a lower-dimensional space such
that the proximity of neighboring samples from the same
class is preserved, while the distance between samples from
different classes is increased. Nonlinear methods such as [9]
have a similar classification-driven objective, while the new
coordinates of data samples in the low-dimensional space are
computed with a nonlinear learning process based on a graph
representation of data. As linear dimensionality reduction
methods compute a linear projection, they have the advantage
that the generalization of the embedding for initially unavail-
able data samples is immediate and given by the learned linear
operator. However, with linear methods samples from different
classes are not linearly separable in the learned embedding,
unless they are already linearly separable in the original high-
dimensional space, which is rarely the case. The separation
between different classes is an important factor that influences
the performance of classification. Nonlinear dimensionality
reduction methods achieve a better separation as a result of
their relative flexibility in learning the coordinates. In fact,
nonlinear methods such as [9], or nonlinear adaptations of
the above linear methods, typically learn data representations
where different classes become even linearly separable. How-
ever, one difficulty of using nonlinear methods is that they
compute an embedding only in a pointwise manner, i.e., data
coordinates in the low-dimensional domain are computed only
for the initially available training data and are not generalizable
to the test data in a straightforward way. Hence, an important
issue that needs to be addressed in order to benefit from
nonlinear manifold learning methods in classification is the
generalization of the embedding to novel data samples.

The generalization of the learned embedding to new samples
is referred to as the out-of-sample extension problem in mani-
fold learning. Several previous works have addressed the out-
of-sample problem. The study in [10] focuses on the extension
of manifold learning methods that compute data coordinates
in the form of the eigenvectors of a data kernel matrix. It is
shown that in such a setting the Nyström method can be used
to compute eigenfunctions that coincide with the eigenvectors
on the training samples and generalize them to the continuous
domain. In fact, the out-of-sample extension with the Nyström
formula as proposed in [10] can also be derived from the kernel
ridge regression framework, by removing the regularization
term and imposing the constraint that the data coordinates of
training samples be given by the eigenvectors of the data kernel
matrix [11]. Next, several out-of-sample extension algorithms
rely on the construction of an interpolation function between
the high- and low-dimensional domains. Some families of
interpolation functions used in manifold learning extensions
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are polynomials [12], sparse linear combinations of functions
in a reproducing kernel Hilbert space (RKHS) [11], and sparse
grid functions [13]. In [14], the out-of-sample extension of
general manifold learning methods is achieved by computing
a local projection of the high-dimensional space to the low-
dimensional domain with a similarity transformation of the
local PCA bases. There are also some extension methods
designed for particular manifold learning algorithms. The
study in [15] proposes an out-of-sample generalization of the
multidimensional scaling (MDS) method, which is based on
an interpretation of MDS as a least squares problem. Similarly,
the method proposed in [16] presents a generalization for
maximum variance unfolding [17].

Meanwhile, all of the above methods address the out-of-
sample extension problem in an unsupervised setting, i.e., no
class label information of input data samples is used. In a
classification problem, on the other hand, different classes are
often assumed to lie on different manifolds, e.g., in a face
recognition problem, the face images of each individual form a
different manifold, and supervised manifold learning methods
map these class-representative manifolds to different manifolds
in the low-dimensional domain. Therefore, class labels of data
samples and the fact that different classes are concentrated
around different low-dimensional structures should be taken
into account when constructing an out-of-sample extension for
classification applications. Besides this, many of the above
unsupervised extension methods are even not applicable in
the supervised setting. For instance, the popular Nyström
extension [10] considers embeddings given by the eigenvectors
of a symmetric kernel matrix. Then, in order to embed a novel
point, the kernel is evaluated between the novel point and each
training point. Meanwhile, in supervised manifold learning, the
value of the kernel depends not only on data sample pairs but
also on the class labels of the samples. The kernel usually
takes positive values for sample pairs from the same class and
negative values for those from different classes, e.g., as in [9].
Hence, the Nyström method does not have a straightforward
generalization for supervised manifold learning.

In this paper, we propose a method for constructing out-
of-sample generalizations of supervised manifold learning
algorithms for classification. In order to extend the embedding
(learned with any supervised algorithm) to novel points, we
compute a radial basis function (RBF) interpolation function
from the high-dimensional space to the low-dimensional one.
We optimize the parameters of the interpolation function such
that it maps initially unavailable test points as close as possible
to the embeddings of the manifolds of their own class in the
low-dimensional domain. This is achieved with a progressive
estimation of the class labels of test points while gradually up-
dating the parameters of the interpolation function at the same
time. As the proposed method makes use of test points in the
construction of the interpolation function, it can be considered
as a semi-supervised solution for obtaining an out-of-sample
extension. Another criterion that is taken into account in the
optimization of the parameters of the interpolation function
is the regularity of the interpolation function. We find that
the regularity of the interpolation function can be adjusted by
optimizing its scale parameters to minimize a regularization

objective, which controls the magnitude of the interpolation
function gradient, while allowing sharp directional derivatives
to occur only along the class separation boundaries in order
to attain an effective separation between different classes.
Experimentation on several image data sets shows that the
proposed method can be effectively used in the classification
of data of intrinsic low dimension. The proposed out-of-sample
extension method is general and can be coupled with any
supervised manifold learning algorithm.

The rest of the paper is organized as follows. In Section
II we briefly overview some supervised manifold learning
methods and formulate the out-of-sample extension prob-
lem. In Section III we describe the proposed method for
classification-driven out-of-sample extensions for supervised
manifold learning. In Section IV we discuss some aspects
of the proposed algorithm, where we analyze its complexity
and interpret it within the context of regression. In Section V
we present some experimental results and in Section VI we
conclude.

II. OVERVIEW OF MANIFOLD LEARNING

A. Manifold learning for classification

Given a set of data samples {xi}Ni=1 ⊂ Rn that reside in
a high-dimensional space Rn, manifold learning computes a
new representation yi ∈ Rd in a lower-dimensional domain Rd
for each data sample xi. Manifold learning methods generally
assume that the samples {xi} come from a model of low intrin-
sic dimension and search for an embedding that significantly
reduces the dimension of the data (d � n) while preserving
certain geometric properties. Different methods target different
objectives in computing the embedding. The ISOMAP method
computes an embedding such that Euclidean distances in
the low-dimensional domain are proportional to the geodesic
distances in the original domain [1], while LLE looks for an
embedding that preserves local reconstruction weights of data
samples in the original domain [2]. The Laplacian eigenmaps
algorithm [3] first constructs a graph from the data samples
where nearest neighbors are typically connected with an edge.
The graph Laplacian matrix is given by L = D−W , where W
is the N×N weight matrix whose entries are usually computed
based on a kernel Wij = K(xi, xj), and D is a diagonal
degree matrix given by Dii =

∑
jWij . The embedding with

Laplacian eigenmaps is then learned by solving

min
Y ∈RN×d

tr(Y TLY ) s.t. Y TDY = I

where I is the identity matrix. The solution to this problem
is given by the d eigenvectors corresponding to the smallest
nonzero eigenvalues of the generalized eigenvalue problem
Lz = λDz, where the coordinate vector yi for each data
sample xi is given by the i-th row of Y . Intuitively, such an
embedding seeks data coordinates that have a slow variation
on the data graph, i.e., two neighboring points on the graph are
mapped to nearby coordinates. There exist linear versions of
the Laplacian eigenmaps method as well. The above problem
is solved under the constraint that Y be given by a linear
projection of X onto Rd in [18], which is applied to face
recognitions problems in [19] and [20].
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Recently, many extensions have been proposed for man-
ifold learning for classification. Most of these methods are
supervised adaptations of the Laplacian eigenmaps algorithm.
In order to achieve a good separation between the classes,
an embedding is sought where data coordinates vary slowly
between neighboring samples of the same class and change
rapidly between neighboring samples of different classes. The
algorithm proposed in [9] formalizes this idea by defining two
graphs that respectively capture the within-class and between-
class neighborhoods. Denoting the weight matrices of these
two graphs by Ww and Wb, and the corresponding Laplacians
by Lw and Lb, the method seeks an embedding that solves

min
Y ∈RN×d

tr(Y TLwY )− µ tr(Y TLbY ) s.t. Y TDwY = I

(1)
where µ > 0. The method proposed in [21] employs an
alternative Fisher-like formulation for the supervised manifold
learning problem where the embedding is obtained by solving

max
z

zTLbz

zTLwz
. (2)

However, the problem is solved under the constraint zT =
vTX in order to obtain a linear embedding, where X =
[x1 . . . xN ] is the n × N data matrix and v ∈ Rn×1 defines
a projection. Variations over this formulation can be found in
several other works such as [4], [5], [6], [7], [22] and [8].

B. Out-of-sample extensions
While most manifold learning methods learn the coordinates

of only initially available data samples, in many applications
including classification, the generalization of the learned em-
bedding to the whole data space is an important problem.
Given a set of data samples {xi}Ni=1 ⊂ Rn in the high-
dimensional ambient space and their corresponding coordi-
nates {yi}Ni=1 ⊂ Rd in a low-dimensional space, the out-of-
sample extension problem consists of constructing a mapping
f : Rn → Rd such that f gives the learned embedding
f(xi) = yi on the available data samples while generalizing
the embedding to all points in Rn.

A popular out-of-sample generalization algorithm is pre-
sented in [10], based on the Nyström formula. This method
proposes a generalization for manifold learning algorithms
that compute the coordinates based on an eigenvalue problem
Myk = λk y

k, where the symmetric matrix M is given
by a data-dependent kernel Mij = M̃(xi, xj) and yk is
the kth eigenvector of M , which defines the kth dimension
of the data coordinates. The exact expression of the kernel
matrix M as a function of the weight matrix W depends
on the manifold learning algorithm to be generalized, as
different algorithms target different objectives. The out-of-
sample extension proposed in [10] is then given by the function
f(x) = [f1(x) . . . fd(x)], where

fk(x) =
1
λk

N∑
i=1

yki M̃(x, xi) (3)

and yi = [y1
i . . . y

d
i ] are the coordinates of the embedding

of xi in Rd. This defines a continuous function that co-
incides with the embedding at the initially available points

f(xi) = yi. While this popular method provides straightfor-
ward generalizations of many manifold learning algorithms
such as ISOMAP, LLE, and Laplacian eigenmaps, it cannot
be used with most supervised manifold learning methods. The
reason is that, although the data kernel matrix M is assumed
to be a general symmetric matrix (not necessarily positive
semi-definite) in [10], the entries of this matrix in supervised
methods are not only dependent on the data samples xi, but
also on their class labels. For instance, in (1), the kernel matrix
M is a normalized version of the matrix Lw − µLb, which is
determined with respect to data class labels. In this case, the
Nyström formula (3) cannot be applied as M̃(x, xi) is not
priorly known for a test sample of unknown class.

Several out-of-sample extension methods such as those
based on fitting a particular type of interpolation function as in
[11], [12], and [13] can be applied for generalizing supervised
embeddings by fitting a function f to the priorly learned
(xi, yi) pairs. However, as this gives a generalized embedding
based only on an approximation objective that does not take
into account the class information of data, its classification
performance is likely to be suboptimal.

In this paper, we propose to learn an interpolation function
in an application-aware manner. The proposed method not
only makes use of the initially available training samples
(xi, yi), but also exploits the test samples of unknown class
in the learning, by jointly estimating the interpolation function
parameters and the class labels of test samples. We describe
this method in Section III.

III. OUT-OF-SAMPLE EXTENSIONS FOR CLASSIFICATION

A. Formulation of the out-of-sample problem

We begin with a formalization of the classification-based
out-of-sample extension problem. Let M1,M2, . . .MM ⊂
Rn be M compact manifolds representing M different classes
in the original ambient space Rn. Let E be an embedding of
the manifolds {Mm} in a lower-dimensional space Rd

E :
⋃
m

Mm → Rd

such that each manifold Mm ⊂ Rn is mapped to E(Mm) ⊂
Rd. The restriction of E to each manifold is assumed to be
continuous and the embeddings of different manifolds are
assumed to be disjoint. We consider that the data samples
are drawn from a probability measure ν on Rn such that the
samples of each class m are concentrated around the manifold
Mm. Let νm denote the probability measure of class m having
a support region Sm in Rn, where Mm ⊂ Sm. We denote by
PMm(x) a projection of the point x onto the manifold Mm,
which is a point on Mm of minimal distance to x

‖x− PMm
(x)‖ = min

x′∈Mm

‖x− x′‖.

Here ‖ · ‖ denotes the usual `2-norm in the Euclidean space.
As for the solution set of interpolation functions, we con-

sider a compact set H of differentiable functions from Rn
to R, where f : Rn → Rd belongs to Hd given by the d-
dimensional Cartesian product of H. An interpolation function
that is suitable for classification should map points x from
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class m as close as possible to the set E(Mm), so that they
can be correctly classified with respect to their representation
in Rd. We thus define the embedding error of f with respect to
its deviation from the embedding of the projection of a point
onto the manifold of its own class. The total embedding error
of a function f over all classes is then given by

E(f) :=
∑
m

∫
Sm

‖f(x)− E (PMm
(x)) ‖2 dνm(x). (4)

The distributions νm are usually not explicitly known in
practice. In order to avoid overfitting to training data, it is
useful to enforce some regularity properties for the interpola-
tion function f . A smoothness constraint can be imposed by
controlling the total gradient magnitude. Meanwhile, nonlinear
supervised manifold learning methods, whose extensions are
targeted in this paper, typically learn a representation where
different classes are likely to become linearly separable in
the learned embedding. The coordinates defining the em-
bedding are orthogonal when given by the eigenvectors of
a symmetric kernel, or “nearly orthogonal” when given by
the generalized eigenvalue problem (1). Different groups of
classes are then expected to become separable along different
dimensions of the learned embedding, which is also easy to
confirm experimentally (see, e.g., Figure 3(a)). Thus, when
learning an interpolation function f , in order to enhance the
separation between different classes, it is desirable to have
sufficiently strong derivatives along the directions defining
the boundaries of the distributions of different classes in the
ambient space, especially for the components fk of f for
which the considered classes are separable at dimension k
of Rd. This is illustrated in Figure 1. Given a dimension
k ∈ {1, . . . , d}, let

Ik = {(m, p) : max Ek(Mm) < min Ek(Mp)

or max Ek(Mp) < min Ek(Mm)}

denote the set of indices of manifold pairs whose embeddings
are separable at dimension k, where Ek(Mm) denotes the kth
dimension of the embedding E(Mm). Let ∇vfk denote the
directional derivative of fk along the direction v. For a point
x from class m, let

up(x) :=
x− PMp(x)
‖x− PMp

(x)‖

denote the unit vector corresponding to the direction of
projection of x onto the manifold Mp of class p, where
p 6= m. Then, we would like to learn an interpolation function
f such that the directions along which fk has the strongest
derivatives coincide with the directions of the projections of
points onto the manifolds of other classes. The total derivative
magnitude along the directions of projection onto other classes,
normalized by the average derivative magnitude is given by

D(fk) :=
∑

(m,p)∈Ik

∫
Sm

∥∥∇up(x) f
k(x)

∥∥
Ev‖∇v fk(x)‖

dνm(x) (5)

where fk is assumed to have nowhere vanishing gradient
and Ev‖∇v fk(x)‖ denotes the mean directional derivative
magnitude, induced from the overall distribution of data over

x
u v f(x)

M 1

M 2

E (M 1)

E (M 2)
f 
1

f 
2

Fig. 1. Illustration of supervised manifold learning and out-of-sample
interpolation. Manifolds M1 and M2 representing two different classes are
embedded in a lower-dimensional domain such that they are separable along
dimension k = 2, but not along dimension k = 1. The second component
f2(x) of the interpolation function f(x) = [f1(x) f2(x) . . . fk(x)] should
then have a sufficiently strong directional derivative ∇uf2(x) along direction
u at x, in order to reinforce the separation achieved by the supervised
embedding, while it should vary smoothy along direction v. Meanwhile,
the first component f1(x) of the interpolation function should have a slow
variation along both directions u and v as the embeddings E(M1) and
E(M2) are not separable along dimension k = 1.

all classes.1 The normalization of the directional derivative
by the average derivative aims to measure the derivative
magnitude along separation boundaries relatively to the mean
derivative magnitude.

While the presence of sufficiently strong directional deriva-
tives along separation boundaries is expected to enhance the
separation between classes with the learned function, it is
useful to control the smoothness of the interpolation func-
tion by preventing it from attaining arbitrarily high gradient
magnitudes. We thus define the total gradient magnitude

G(fk) :=
∑
m

∫
Sm

‖∇fk(x)‖
Ev‖∇v fk(x)‖

dνm(x) (6)

which is also normalized by the average directional derivative
so that it is comparable to the term in (5).

From (5) and (6), one can define an overall regularization
objective R that increases with the total gradient magnitude G
and decreases with the directional derivative magnitude along
separation boundaries D. One way to define the regularization
objective R is as

R(f) =
d∑
k=1

(
G(fk)− λD(fk)

)
where λ > 0.

Finally, combining the embedding error in (4) and the
above regularization term, we formulate the search of the

1The mean directional derivative can be formally defined as follows. Let
pν denote the probability density function corresponding to the probability
measure ν, and let St(x) ⊂ Rn denote the n-dimensional sphere of radius t
centered at x. The expected value of the directional derivative of fk at x is
then given by

Ev‖∇v fk(x)‖ = lim
t→0

R
St(x)

pν(x+ tv) ‖∇v fk(x)‖dSR
St(x)

pν(x+ tv) dS

where v denotes the unit surface normal in the direction of the surface element
dS.
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interpolation function f as the optimization of the following
problem

f = arg min
h∈Hk

(∑
m

∫
Sm

‖h(x)− E (PMm(x)) ‖2 dνm(x)

+ αR(h)
)

(7)

where α > 0. A solution to the above problem exists as Hk
is compact and the objective function is continuous.

In a real setting, the distributions νm of data are often not
explicitly known and one has access to a set of samples X =
{xi}Qi=1 drawn from these distributions. Let Ci ∈ {1, . . . ,M}
denote the class label of the data sample xi, and N (xi) be
the set of nearest neighbors of xi in X (which can be chosen
for instance as the K-nearest neighbors of xi with respect to
the Euclidean distance in Rn). Let

n(xi) =
{

xi − xj
‖xi − xj‖

: xj ∈ N (xi)
}

denote the set of unit vectors that indicate the directions of
the neighbors of xi, and

np(xi) =
{

xi − xj
‖xi − xj‖

: xj ∈ N (xi), Cj = p

}
denote the set of unit directions given by the nearest neighbors
of xi within class p. We can then define the empirical
embedding error Ê(f) as

Ê(f) =
∑
m

∑
i:Ci=m

‖f(xi)− E (PMm
(xi)) ‖2

and the empirical counterpart R̂(f) of the regularization term
R(f) as

R̂(f) =
d∑
k=1

(
Ĝ(fk)− λD̂(fk)

)
(8)

where

Ĝ(fk) :=
∑
i

‖∇fk(xi)‖
|n(xi)|−1

∑
v∈n(xi)

‖∇v fk(xi)‖
(9)

D̂(fk) :=
∑

(m,p)∈Ik

∑
i:Ci=m

1
|np(xi)|∑

u∈np(xi)

∥∥∇u fk(xi)
∥∥

|n(xi)|−1
∑
v∈n(xi)

‖∇v fk(xi)‖
.

(10)

In the above expressions, | · | denotes the cardinality of a
set, and the mean directional derivative Ev‖∇v fk(xi)‖ is
approximated by the average derivative of fk(xi) along the
directions of the neighbors n(xi) of xi. In the definition of
D̂(fk), we approximate the derivative ∇up(xi) f

k(xi) along
the direction of the projection of xi ontoMp with the average
derivative along the directions of the nearest neighbors of xi
within class p, where np(xi) is assumed to be non-empty for
all xi and p.

Now, having defined the objective function in the empirical
setting, we come back to the actual manifold learning problem.
In practice, the manifolds Mm are usually not explicitly
known, and manifold learning methods compute an embedding

for only the initially available training samples. Let us denote
by XT = {xi}Ni=1 ⊂ X the set of training samples with
known class labels (where N ≤ Q), for which an embedding
YT = {yi}Ni=1 is priorly computed with a supervised manifold
learning algorithm. We assume that there exist embeddings
E(Mm) of the manifolds Mm such that the embeddings
{yi} of the samples of each class m are concentrated around
E(Mm). Although the training samples available in practice
are not guaranteed to lie exactly on a manifold in general
(due to noise, imprecise measurements, or several sources of
deviation from the assumed model), we make the following
approximations for a sample xi ∈ XT of class m for the
simplicity of computations:

PMm
(xi) ≈ xi, E(PMm

(xi)) ≈ yi.

The embedding error Ê(f) can then be decomposed as

Ê(f) = ÊT (f) + ÊO(f)

where

ÊT (f) =
N∑
i=1

‖f(xi)− yi‖2

is the embedding error of the training samples XT and

ÊO(f) =
Q∑

i=N+1

‖f(xi)− E (PMm(xi)) ‖2

=
∑
m

Q∑
i=N+1
Ci=m

‖f(xi)− E (PMm
(xi)) ‖2

is the embedding error of the other samples than the training
samples (test samples in X \ XT ).

In the generalization of an embedding, one may wish to
strictly preserve the learned coordinates of the training data
f(xi) = yi. We can thus formulate the out-of-sample extension
problem for supervised manifold learning as follows:

f = arg min
h∈Hk

ÊO(h) + αR̂(h) s.t. ÊT (h) = 0. (11)

In the above problem, if there are observations in X with
unknown class labels, one needs to estimate the class labels
Ci for N < i ≤ Q. In the rest the paper, we focus on this
general case. In Section III-B, we describe an algorithm that
computes an interpolation function with a joint and progressive
estimation of the function parameters and the class labels of
data.

B. Construction of the interpolation function

In this study, we select the set H of interpolation functions
for the out-of-sample extension problem as the radial basis
functions (RBFs)

H =

{
g : g(x) =

L∑
l=1

cl φ

(
‖x− al‖

σl

)}
where φ : R→ R+ is a differentiable kernel. The coefficients
cl, the kernel centers al, and the scale parameters σl are
assumed to lie in some compact domains in R, Rn and R+,
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respectively. The Gaussian function φ(t) = e−t
2

is a common
choice for the RBF kernel due to its desirable properties such
as its smoothness and rapid decay, which we also adopt in this
work.

In our problem, we look for a function f =
[f1(x) . . . fd(x)] : Rn → Rd such that each dimension fk

of f is given by

fk(x) =
L∑
l=1

ckl φ

(
‖x− akl ‖

σkl

)
. (12)

The construction of the interpolation function f is thus equiv-
alent to the determination of the parameters ckl , akl , σkl , and
the number of terms L.

In the optimization problem in (11), the evaluation of
ÊO(h) requires the knowledge of the class labels Ci of xi
for i = N + 1, . . . , Q, which are unavailable in the beginning.
We propose to solve this problem with an iterative algorithm
that progressively estimates the class labels and constructs
a sequence of interpolation functions f1, . . . , fr, . . . fR in an
alternating scheme as described below.

In iteration r of the algorithm, we construct a function fr
with Lr terms. When fitting an RBF interpolation function to
data, it is common practice to assign kernel centers as data
points. In iteration r, we select the kernel centers akl = xrl

as a subset of data samples {xrl
}Lr

l=1 ⊂ X , where the index
sequence {rl}Lr

l=1 depends on the iteration r and denotes the
indices of the data samples {xi} chosen as kernel centers.
Throughout the iterations, the number of terms Lr is increased
gradually such that N = L1 < L2 < ... < LR = Q. Once
the kernel centers akl are fixed, the interpolation function fr in
iteration r, characterized by the coefficients {ckl } and the scale
parameters {σkl }, l = 1, . . . , Lr, k = 1, . . . , d, is obtained by
solving the problem

min
{ck

l }⊂B, {σ
k
l }⊂Λ

ÊrO(f) + αR̂(f) s.t. ÊT (f) = 0 (13)

where B ⊂ R and Λ ⊂ R+ are compact parameter domains
(sufficiently large so that the constraint ÊT (f) = 0 can be
satisfied) and

ÊrO(f) =
∑
m

Lr∑
l=N+1
Crl

=m

‖f(xrl
)− E (PMm

(xrl
)) ‖2. (14)

The problem (13) has a solution as a continuous function over
a compact domain attains its minimum.

Before discussing the solution of (13), we first give an
overview of the method. In iteration r, once the interpolation
function fr is computed by solving (13), we estimate the class
label of each point xi for N + 1 ≤ i ≤ Q by assigning it the
class label of the training point xj such that fr(xj) is the
closest to fr(xi) in the low-dimensional domain Rd:

Ci = Cj : j = arg min
q
‖fr(xq)− fr(xi)‖, 1 ≤ q ≤ N.

(15)
At the same time, a confidence score µi is assigned to each
estimate Ci by comparing the distance of xi to its nearest

neighbor xj within all classes and to its nearest neighbor xj′
among the classes other than Cj :

µi =
‖f(xj′)− f(xi)‖
‖f(xj)− f(xi)‖

:

j′ = arg min
q
‖fr(xq)− fr(xi)‖, 1 ≤ q ≤ N,Cn 6= Cj .

(16)

The confidence score µi thus decreases with the “ambiguity”
in assigning xi the class label Ci with respect to the nearest-
neighbor decision rule in Rd via fr.

The confidence scores µi obtained in an iteration are then
used in the next iteration for the selection of the kernel centers.
In iteration r, the kernel centers are determined based on the
confidence scores computed in the previous iteration r − 1
as follows. The first N kernel centers {akl }Nl=1 = {xrl

}Nl=1

consist of the training set XT , i.e., rl = l for l = 1, . . . , N .
The remaining kernel centers {akl }

Lr

l=N+1 are then set as the
first Lr − N points in X \ XT of highest confidence scores.
The alternating stages of computing fr and estimating the class
labels Ci and obtaining the confidence scores µi are repeated
until the last iteration R, where all data samples are included
in the set of kernel centers {akl }

Q
l=1 = X . The interpolation

function f is then given by fR, and the class labels of the
points in X are obtained by estimating them with the final
interpolation function with respect to (15).

We now discuss the solution of the problem (13). First,
observe that for any Lr input data pairs (xi, yi) ∈ Rn × Rd
and any choice of the scale parameters σkl , one can find
interpolation functions fk of L = Lr terms that satisfy
f(xi) = yi as follows. Setting akl = xl for l = 1, . . . , Lr,
the constraints fk(xi) = yki yield the linear system

Φkck = yk (17)

where ck = [ck1 . . . c
k
Lr

]T is the coefficient vector, yk =
[yk1 . . . y

k
Lr

]T consists of the kth dimensions of {yi}, and

Φkil = φ

(
‖xi − xl‖

σkl

)
(18)

is the matrix of RBFs evaluated at data points xi. The square
matrix Φk is invertible if the points xi are distinct and φ is
chosen as the Gaussian kernel [23]. The system (17) then has a
unique solution ck = (Φk)−1yk, which satisfies fk(xi) = yki .

In iteration r = 1, we have L1 = N and all kernel centers
are training points. In this case the embedding error in (14) is
Ê1
O(f) = 0, and the optimization problem is reduced to

min
{ck

l }⊂B, {σ
k
l }⊂Λ

R̂(f) s.t. ÊT (f) = 0.

Due to the above discussion, the constraint ÊT (f) = 0
can be satisfied for any choice of scale parameters σkl by
setting the coefficients as ck = (Φk)−1yk. This reduces the
problem to the minimization of the regularization term R̂(f)
by optimizing the scale parameters {σkl } under the constraint
ck = (Φk)−1yk

min
{σk

l }⊂Λ

ck=(Φk)−1yk

R̂(f) (19)
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where the summations in the terms (9) and (10) of R̂(f) run
over the set of training samples XT . The regularization term is
a non-convex function of the scale parameters {σkl } with nu-
merous extrema. Meanwhile, we have experimentally observed
that the variation of R̂(f) with σk is quite regular when all
scale parameters σkl , l = 1, . . . , L1, in each dimension k are
set to a common value σk. Moreover, setting all scale parame-
ters to the same value across each dimension also simplifies the
optimization problem, as it reduces the number of optimization
variables from L1k to k. We thus propose to solve the problem
(19) under the constraint σkl = σk for l = 1, . . . , L1. Since
the form of R̂(f) in (8) is decomposable into its components
in different dimensions, the scale parameter of dimension k is
given by

min
σk∈Λ

ck=(Φk)−1yk

(
Ĝ(fk)− λD̂(fk)

)
.

It is difficult to analyze the above function theoretically.
Meanwhile, in practice we have observed that Ĝ(fk) increases
with σk monotonically. Moreover, if the underlying embedding
obtained with supervised manifold learning provides a “bal-
anced” distribution of the classes across different dimensions
while ensuring a sufficient separation, the total directional
derivative along class separation boundaries D̂(fk) first in-
creases at a fast rate with σk at small scale values, and then it
stagnates or the rate of increase is highly reduced. This is due
to the fact that, when the scale parameters are too small, the
interpolation function is too localized around kernel centers
and its support does not cover well the whole space. Then,
it does not have sufficiently strong derivatives along class
separation boundaries. As σk increases, there typically exists
a range for σk where the directional derivatives along class
separation boundaries are relatively stronger than those along
other directions, thanks to the underlying learned embedding
that separates different classes and guides the interpolation
function via the condition fk(xi) = yki imposed on training
samples. This range for the scale parameters coincides in
general with the interval of scale parameters where a good
classification performance is attained. If the scale parameters
are increased beyond this range, the gradient of the function
fk increases too much, resulting in an overfitting of the inter-
polation function, where the advantage of having sufficiently
strong directional derivatives along class separation boundaries
is lost as strong derivatives appear in other directions as well
due to overfitting. This is illustrated with a simple example
in Figure 2. Figure 2(a) shows two manifolds M1,M2 ⊂ R2

representing two different classes, and four training samples
selected from the distribution concentrated around each man-
ifold. Let us consider a one-dimensional embedding of the
manifold samples in R such that samples from M1 and M2

are mapped respectively to 1 and −1. An ideal interpolation
function f(x) : R2 → R separating the two classes well
in R should have gradients in the directions shown in red
in Figure 2(a), which are orthogonal to the class separation
boundary. In Figures 2(b)-2(d), an RBF interpolation function
f with Gaussian kernel is fitted to the training data, and f(x)
is plotted over the displayed region of R2, where white and
black colors correspond respectively to 1 and −1. The scale

!=0.01

M1

M2

(a)

σ=0.5 σ=2 σ=6

(b)

σ=0.5 σ=2 σ=6

(c)

σ=0.5 σ=2 σ=6

(d)

Fig. 2. Illustration of the effect of the scale parameter on the accuracy of
the interpolation function. (a) Manifolds M1,M2 ⊂ R2 representing two
different classes and samples chosen from each class. An ideal interpolation
function f separating the two classes well in R should have gradients in the
directions shown in red. (b) Function f constructed with σ = 0.5. The scale
parameter is observed to be too small as the support of the function does not
cover the manifolds well. (c) Choosing the scale as σ = 2 yields a good
interpolation function. (d) Choosing a too large scale parameter σ = 6 results
in an overfitting of the interpolation function, with large derivatives in the
indicated directions.

parameter is chosen as σ = 0.5, σ = 2, and σ = 6 respectively
in Figures 2(b)- 2(d). The scale parameter is observed to
be too small in Figure 2(b) as the support of f does not
cover the manifolds sufficiently. The scale parameter in Figure
2(c) yields an accurate interpolation function that separates
the two classes well, where the directions along which f
has strong derivatives are close to the directions shown in
Figure 2(a). Meanwhile, the selection of a too large value for
the scale parameter in Figure 2(d) results in an overfitting
of the interpolation function. In particular, strong directional
derivatives are observable in directions other than the class
separation boundary directions as well due to overfitting, e.g.,
the directions shown in red in Figure 2(d).

In optimizing σk, we look for an interval where D̂(fk)
is large enough while Ĝ(fk) is not too high. We set the
weight parameter λ to a value where the effects of both
of these terms are visible, often yielding a nonmonotonic
variation of the overall regularization term Ĝ(fk)− λD̂(fk),
which first decreases with σk due to the sharp increase in
D̂(fk) and then increases with σk due to the stagnation of
D(fk) and the continuing increase in the first term Ĝ(fk).
The optimal value of σk can then be found easily with a
simple descent or line search algorithm by minimizing the
one-dimensional regularization term Ĝ(fk) − λD̂(fk). We
finally note that other configurations of these two terms D̂(fk)
and Ĝ(fk) in a regularization objective R̂(f) (rather than a
linear combination) may also be possible, depending on the
underlying embedding. This will be discussed in more detail
in Section V, as well as the links between the regularization
objective R̂(f) and the classification performance.

Having examined the computation of the scale parameters
and the coefficients of f1 in iteration 1, we now discuss the
solution of the problem (13) in a general iteration r. Due to the
iterative estimation of the class labels and the calculation of
the function parameters, the class labels Crl

of the points xrl

contributing to the embedding error (14) are already estimated
in the previous iteration. The manifolds Mm and the embed-
ding E are not explicitly known in the term E (PMm(xrl

)).
However, relying on a locally linear approximation of the
manifolds, one can estimate the projection of a point x onto
Mm as a convex combination of its nearest neighbors, which
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can then be used to compute E (PMm
(xrl

)).2 Denoting the
indices of the K nearest neighbors of x within the training
samples of class m as {ai}Ki=1, and the set of nearest neighbors
as Nm(x) = {xai

}Ki=1, the projection is approximated as

PMm
(x) ≈

K∑
i=1

wi xai

where w = [w1 . . . wK ]T is the vector of weights given by

w = arg min
v
‖x−

K∑
i=1

vi xai
‖2 s.t. vi ≥ 0,

∑
i=1

vi = 1

(20)
which can be solved with quadratic programming. From the
continuity assumption of the embeddings, the embedding
E (PMm

(x)) of PMm
(x) is then estimated as

E (PMm(x)) ≈
K∑
i=1

wi yai (21)

where yai are the coordinates of xai in the learned embedding
in Rd.

Letting yrl
= E

(
PMCrl

(xrl
)
)

, the total embedding error
is given by

Êr(f) = ÊrO(f) + ÊT (f) =
∑
m

Lr∑
l=1

Crl
=m

‖f(xrl
)− yrl

‖2.

Since in iteration r an interpolation function of Lr terms
is constructed, for any choice of the scale parameters {σkl },
fitting the coefficients to the observations as ck = (Φk)−1yk

yields Êr(f) = 0, which immediately satisfies the constraint
ÊT (f) = 0 on training samples. It then remains to minimize
the regularization term by optimizing the scale parameters
as in (19).3 This concludes the description of the proposed
method. As the proposed algorithm employs unlabeled test
samples in learning an out-of-sample extension, we call
it Semi-supervised Out-of-Sample Interpolation (SOSI). The
method is summarized in Algorithm 1.

IV. DISCUSSION

A. Complexity analysis

We now derive the complexity of the proposed method,
which is essentially determined by the complexity of steps 11-
13 in the main loop of the algorithm. In step 11, the determi-
nation of the nearest neighbors in XT for each test image is of
complexity O(nN), and the solution of the quadratic program

2Note that, although the interpolation function of the previous iteration gives
an estimate of the embedding of a point x as fr−1(x), it is more reliable
to update the embedding by projecting x onto the manifold Mm. This is
because the embedding fr−1(x) employs no priors on the class label of x
and is indeed used to estimate the class label of x, while the recomputation of
the embedding as E (PMm (x)) uses the estimated class label of x. In fact,
E (PMm (x)) coincides with the value of the updated interpolation function
fr(x) of iteration r for x = xrl as discussed below.

3In practice the optimization of scale parameters can be omitted for r > 1
and the scale parameters can be set to the σk values obtained in iteration r = 1
in order to speed up the algorithm without much change in the performance, as
the reoptimization of the scale parameters results in σk values in the vicinity
of those obtained at iteration r = 1 in general.

Algorithm 1 Semi-supervised Out-of-Sample Interpolation
(SOSI)

1: Input:
X = {xi}Qi=1 ⊂ Rn: Set of labeled and unlabeled data samples
{Ci}Ni=1: Class labels of training data XT = {xi}Ni=1 ⊂ X , where
N < Q.

2: Initialization: Assign number of iterations R and number of RBF terms
{Lr}Rr=1 in each iteration such that L1 = N , LR = Q (possibly with
equispaced intervals between N and Q)

3: for r = 1 do
4: Set kernel centers akl = xl for l = 1, . . . , N , k = 1, . . . , d

5: Optimize scale parameters σkl of f1 by minimizing R̂(f) subject to
the constraints σkl = σk , ck = (Φk)−1yk

6: Estimate class labels Ci and compute confidence scores µi for i =
1, . . . , Q by NN classification with f1 in Rd

7: end for
8: for r = 2, . . . , R do
9: Determine {xrl}

Lr
l=1 such that {xrl}Nl=1 = XT and {xrl}

Lr
l=N+1

are the points in X \ XT with highest confidence scores
10: Set kernel centers as akl = xrl for l = 1, . . . , Lr , k = 1, . . . , d
11: Compute the embeddings of the projections of xrl on the manifolds

as in (21) and set yrl = E
“
PMCrl

(xrl )
”

12: Optimize scale parameters σkl of fr by minimizing R̂(f) subject to
the constraints σkl = σk , ck = (Φk)−1yk

13: Update class labels Ci and confidence scores µi for i = 1, . . . , Q
with NN classification with fr in Rd

14: end for
15: Output:

Out-of-sample interpolation function f = fR : Rn → Rd given by

fk(x) =
PQ
l=1 c

k
l φ

„
‖x−ak

l ‖
σk

l

«
{Ci}Qi=N+1: Class labels of initially unlabeled data samples

in (20) has a polynomial-time complexity O(poly(K)) in the
number of neighbors K [24]. The complexity dK of (21)
can be neglected as d is small. Since the embedding of the
projection of each point in X \ XT is computed only once
throughout the algorithm, we get the overall complexity of
step 11 as O(Q (poly(K) + nN)) ≈ O(nQN).

Next, step 12 requires the evaluation of the regularization
term R̂(f) at several σk values and the corresponding coef-
ficients ck = (Φk)−1yk. The computation of the coefficients
ck requires the solution of an Lr × Lr linear system, whose
complexity is between O(Lr2) and O(Lr3). Then, for a
given σk and the corresponding ck, we analyze the evaluation
of D̂(fk). The computation of the gradient ∇fk(xi) is of
complexity O(nLr). Assuming that each training point xi has
around K nearest neighbors in each one of the M classes,
the computation of the directional derivative ∇ufk(xi) for all
neighbors of a point xi is of complexity O(n(Lr + KM)).
Since this is repeated for all N training points xi, the com-
plexity of computing D̂(fk) is of O(nN(Lr +KM)). Since
the complexity of Ĝ(fk) is dominated by that of D̂(fk),
the optimization of σk is of O(Lr2 + nN(Lr + KM)).
Performing this optimization for all d dimensions, upper
bounding Lr by Q, and repeating this for all R iterations
gives the complexity of step 12 throughout the algorithm as
O(dR(Q2 +nN(Q+KM))) ≈ O(dnRN(Q+KM)). If one
omits the reoptimization of σk for r > 1, the complexity of
step 12 is reduced to the optimization of scale parameters at
the first iteration r = 1 and the update of the coefficients ck

at every iteration, which is of O(dnN(N +KM) + dRQ2).
Step 13 requires the evaluation of f(xi) for all xi ∈ X \XT ,
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which is of O(dnQLr), and the comparison of the function
values to those of the training points, which is of O(dQN).
The complexity of repeating step 13 throughout R iterations
is then of O(R(dnQ2 + dQN)) = O(dnRQ2). Finally, com-
bining the complexities of steps 11-13, we get the complexity
of the overall algorithm as O(dnRQ2).

B. Relation to kernel ridge regression

In this section, we discuss how out-of-sample extensions of
supervised manifold learning methods with RBF interpolation
can be interpreted within the context of kernel ridge regression.
Ridge regression is a well-known statistical method that learns
a linear function to model the dependency between a set of
input training points {xi}Ni=1 ⊂ Rn and the associated outputs
{yi}Ni=1 ⊂ Rd. For each dimension yki of the outputs yi =
[y1
i . . . y

d
i ], the algorithm looks for a linear model fk(x) =

wTx that minimizes

G(w) = a‖w‖2 +
N∑
i=1

(yki − wTxi)2

which is a slightly modified version of the least squares
method by adding a regularization term representing the
squared norm of the fitted linear model. Here a > 0 is a
parameter adjusting the weight of the regularization term. An
alternative formulation of ridge regression is proposed in [25]
that is based on a dual version of the above problem. The
solution of the dual problem yields the following prediction
fk(x) of the output value for a new input sample x:

fk(x) = (yk)T (K + aI)−1v. (22)

Here, yk = [yk1 . . . y
k
N ]T is the vector of output values for

training samples, K ∈ RN×N is the matrix of inner products
of input samples whose entries are given by Kij = 〈xi, xj〉,
I is the identity matrix, and v ∈ RN×1 is the vector of inner
products of x with xi, whose ith entry is given by vi = 〈x, xi〉.

Since this formulation only involves the inner products
between the samples x and {xi} rather than the samples
themselves as vectors, it permits a kernel extension of the
regression problem, where the samples are mapped to a high-
dimensional feature space F via a kernel ψ : Rn → F . The in-
ner products in K and v are then evaluated in the feature space
as Kij = 〈ψ(xi), ψ(xj)〉 and vi = 〈ψ(x), ψ(xi)〉. Translation-
invariant kernels are a widely-used family of kernel functions,
where the inner product 〈ψ(xi), ψ(xj)〉 in the feature space
depends only on the difference ‖xi−xj‖ between the samples
in the original space.

Out-of-sample extensions with RBF kernels as in the pro-
posed method are linked to kernel ridge regression in the
following way. If the regularization term (a = 0) is omitted
in (22), the kth dimension of the output vector for the input
sample x is given by

fk(x) = (yk)TK−1v. (23)

If the kernel Kij is set as

〈ψ(xi), ψ(xj)〉 = φ

(
‖xi − xj‖

σ

)

with the RBF kernel used in interpolation, one can observe
from (18) that the kernel matrix K coincides with the matrix
Φk when a constant scale parameter σ is chosen for dimension
k of the interpolation function. Defining v similarly with the
RBF kernel φ, the interpolation function in (12) can be written
as fk(x) = (ck)T v. The coefficients ck of the interpolation
function being given by ck = (Φk)−1yk, we obtain

fk(x) = (ck)T v = (yk)T (Φk)−1v

which is the same as the result obtained with kernel ridge
regression in (23).

We thus observe that fitting an RBF interpolation function
for manifold embeddings is the equivalent of learning a kernel
ridge regression model (with no regularization) such that the
output values yki are the coordinates of data samples in the
computed embedding. Therefore, the studied out-of-sample
extension setting can be regarded as a kernel ridge regression
adapted particularly to manifold-structured data. Indeed, in the
general and traditional regression setting for classification, no
assumption is made about the structure of data, and the output
vectors yi are taken as the class labels. Taking yi’s simply as
the class labels of data transmits only the class information
to the regression algorithm and conveys no information about
the geometric properties of data. Meanwhile, first computing
an embedding with a supervised manifold learning algorithm
and then learning the regression model on the coordinates
yki of data in Rd (instead of taking yi’s directly as class
labels) allows the classifier to be guided by the special
geometric structure of data samples concentrated around class-
representative manifolds. Coordinates learned with supervised
manifold learning algorithms reinforce the class information of
data by enhancing the separability between the classes, while
the manifold structure of data is also preserved in each class.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method in classification experiments. We apply the presented
out-of-sample extension algorithm on two different supervised
manifold learning methods. First, we consider the supervised
Laplacian eigenmaps algorithm presented in [9], which com-
putes an embedding by solving (1). Next, we evaluate our
algorithm on embeddings obtained with the Fisher-like objec-
tive function in (2), which is used by methods such as [5], [6],
[7], and [21]. However, we compute a nonlinear embedding
by removing the linear projection constraint zT = vTX , so
that the out-of-sample extension problem is of interest.

We compare the following methods in the experiments, the
first four of which provide out-of-sample extension solutions
for manifold embeddings. When testing the out-of-sample
extension methods, class labels of test images are assigned
with nearest-neighbor classification in the low-dimensional
domain of embedding.
• Proposed semi-supervised out-of-sample interpolation

method (SOSI)
• RBF fitting: An RBF interpolation function is fitted only

to the training samples, which is the equivalent of the
interpolation function f1 computed at the end of iteration
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(b) Fisher-based embedding

Fig. 3. Three-dimensional embeddings of the Yale face data set obtained
with the two manifold learning methods used in the experiments

r = 1 in Algorithm 1. Test images x are then mapped to
Rd via the function f1(x).

• Locally linear embedding (LLE): Test points in Rn are
mapped to Rd with an adaptation of the LLE algorithm
[2] to the out-of-sample problem. Given a test point
x ∈ Rn, first its approximation is computed as a linear
combination of its nearest neighbors in XT with weights
adding up to 1 as in LLE. The point x is then mapped
to y ∈ Rd as the linear combination of the embeddings
of the same neighbors with the same weights.

• Nyström: The original Nyström formula is not applicable
since the data-dependent kernel depends on the class la-
bels as discussed in Section II-B. We thus use a modified
version of the Nyström method, where fk(x) is taken
as a linear combination of the embedding coordinates yki
weighted by the kernel as in (3). The kernel M̃ in the
formula is taken as the same type of kernel (Gaussian
kernel) used in the construction of the within-class and
between-class weight matrices Ww and Wb, and it is
normalized for each test sample so that the kernel values
M̃(x, xi) sum up to 1.

• Nearest neighbor classification in the original data space
Rn

• SVM in the original data space Rn
• Semi-supervised learning (SSL) using Gaussian fields:

Since the proposed out-of-sample extension method can
be regarded as a building block of a semi-supervised clas-
sifier, we also compare our results with those of a semi-
supervised classification method. We test the performance
of SSL with the algorithm proposed in [26], which is
a state-of-the-art semi-supervised classifier based on the
computation of a smooth function on the data graph that
coincides with the class labels when evaluated at data
samples of known class labels.

We first evaluate the proposed method on a data set
consisting of the face images of 12 individuals from the
extended Yale face database [27], which includes 58 images
of each individual taken under different poses and illumination
conditions. The images are normalized, converted to grayscale
and downsampled to a resolution of 17× 20 pixels. A sample
image of each subject in the data set is shown in Figure 4(a).
The supervised Laplacian eigenmaps and the Fisher-based

(a) Yale face database

(b) ETH-80 object database

(c) COIL-20 object database

Fig. 4. Sample images from data sets used in the experiments

embedding algorithms are used to map the data (17×20-pixel
images) to R20. The weight parameter is set as µ = 0.01 in the
supervised Laplacian eigenmaps method. Figure 3 shows the
embeddings of a subset of the data set containing 10 labeled
images of each individual, computed with the supervised
Laplacian and the Fisher-based embedding algorithms. Only
the first three dimensions of the coordinates are plotted for
illustration. It can be observed that both methods compute
representations with an enhanced separation between different
classes. The supervised Laplacian eigenmaps method yields
an even distribution of different classes across different di-
mensions. Since each dimension of the embedding renders
several pairs of classes separable, sufficiently many class pairs
contribute to the total directional derivative D̂(fk) in (10) for
each dimension k. This causes the variations of D̂(fk) and
Ĝ(fk) with the scale parameter to be as discussed in Section
III-B, such that Ĝ(fk) increases at a faster rate than D̂(fk)
at large scales due to overfitting. Thus, for the embeddings
obtained with supervised Laplacian eigenmaps, we optimize
the scale parameters by minimizing the regularization term
R̂(f) as in (8).4 Meanwhile, the embedding computed with
the Fisher-based objective yields a more “polarized” represen-
tation, where each dimension of the embedding is observed
to separate out only one class from the others. When there
are not sufficiently many separable class pairs in D̂(fk),
the estimation of the variation of this term with the scale
parameter may become unreliable or biased by a particular
class in each dimension. We have observed that, when the
embedding is computed with the Fisher-based objective, the
variation of D̂(fk) with the scale parameter is closer to that of
Ĝ(fk) (in comparison with supervised Laplacian eigenmaps).

The choice of the regularization term R̂(f) as a linear

4Occasionally, the scale parameter σk of one dimension or a few dimen-
sions k may diverge from the scale parameters of the rest of the dimensions,
which may cause instabilities. In order to avoid this, we bound the final values
of the scale parameters to an interval of two standard deviations around their
mean value averaged over all dimensions.
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(a) Supervised Laplacian eigenmaps
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(b) Fisher-based embedding

Fig. 5. Misclassification rates of face images from Yale database
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Fig. 6. Misclassification rates of object images from ETH-80 database
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Fig. 7. Misclassification rates of object images from COIL-20 database

combination of these two terms may then lose its reliability, as
it may become a monotonic function of the scale parameter,
for instance. Therefore, for the Fisher-based embedding, we
apply a slightly modified procedure for optimizing the scale
parameters, where we choose a sufficiently large value for the
scale parameter in each dimension, which ensures, however,
that the D̂(fk)/Ĝ(fk) ratio stays above a certain threshold
value. The scale parameters of the RBF fitting method are set
as equal to those of the proposed SOSI algorithm. Figure 5
shows the classification errors obtained with all methods for
the supervised Laplacian and the Fisher-based embeddings.
Each curve displays the misclassification rate (in percentage)
of unlabeled images, obtained by varying the ratio between the
number of labeled and unlabeled images in the data set. The
results are the average of 5 repetitions of the experiment by
randomly choosing the labeled samples. An early stopping rule
is applied in the SOSI algorithm for the leftmost point of the
curve (the labeled/unlabeled ratio of 0.11) due to the relatively
high error, where the interpolation function construction is
terminated when around 80% of the unlabeled points are added

as RBF kernel centers. It is observed that the proposed method
outperforms the other out-of-sample extension methods in
comparison, as well as the SVM classifier and the semi-
supervised graph-based classifier.

We then repeat the same experiment on two different
databases of object images captured under varying viewpoints.
The first experiment is conducted on the images of 8 objects
from the ETH-80 database [28], where 41 images are available
for each object (in particular, the images of the first object in
each object category are used so that the images in each class
belong to the same manifold). A sample image of each object
is shown in Figure 4(b). The images are normalized, converted
to grayscale, and downsampled to a resolution of 20 × 20
pixels. An embedding of dimension d = 15 is computed
with the supervised Laplacian eigenmaps and the Fisher-based
manifold learning algorithms. The second experiment is done
on the images of 20 objects from the COIL-20 database
[29] with 71 images for each object, which are normalized,
converted to grayscale, and downsampled to a resolution of
32 × 32 pixels. Figure 4(c) shows a sample image for each
object. The images are embedded in a space of dimension
d = 25. In both experiments, the optimization of the scale
parameters is done as in the previous experiment. The results
obtained with the two object data sets are presented in Figures
6 and 7. The misclassification rates of unlabeled samples are
plotted with respect to the ratio between the number of labeled
and unlabeled samples. The results are the average of 5 random
partitionings of the data set. As the classification error of the
ETH-80 database is relatively high, an early stopping rule
is applied for this data set by terminating the interpolation
function construction when around 70% of the unlabeled
samples with the highest confidence scores are added as RBF
kernel centers. The results show that the proposed method
often yields the smallest classification error in the experiment
of Figure 6, while it is outperformed only by the semi-
supervised learning method in Figure 7. This graph-based
semi-supervised learning algorithm performs particularly well
on the COIL-20 data set, due to the dense sampling and the
regular structure of the object image manifolds.

The overall consideration of these experiments shows that
the proposed out-of-sample extension method for supervised
manifold learning provides a better performance than the
reference out-of-sample extension strategies in comparison,
while it can provide an alternative solution for semi-supervised
learning when coupled with a supervised dimensionality re-
duction method and thus regarded as one building block of
a semi-supervised classifier. In particular, one can observe
in Figures 5-7 that SVM and graph-based SSL may perform
very differently in different settings. SVM is based purely on
the representation of the data samples in the original ambient
space Rn, while graph-based SSL only uses the information of
the similarities between neighboring data samples instead of
interpreting them as vectors in the high-dimensional space Rn.
Meanwhile, the proposed method is expected to find a com-
promise between these two approaches, as the interpolation
function depends both on the coordinates of the data samples
in Rn and the coordinates of the embedding in Rd learned with
a supervised manifold learning algorithm that relies on the
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Fig. 8. Misclassification rates obtained with progressive integration of the test
images in the extended training set. Out-of-sample extensions are computed,
class labels are assigned, and embeddings are updated with the extended
training set in each iteration.

graph representation of data. The experimental results seem to
confirm this expectation, as the proposed classification solution
attains a reasonably good performance in situations where
SVM or graph-based SSL may fail (as in Figures 6 and 5
respectively).

In the experiments of Figures 5-7, the interpolation func-
tions of the out-of-sample methods other than SOSI are
constructed using only the training data. The information
present in the unlabeled data samples is not exploited in the
construction of these interpolation functions, whereas SOSI
uses these points to gradually add them as kernel centers of
the learned interpolation function. In order to assess the perfor-
mance of the proposed method in the progressive integration
of the unlabeled data samples in the learning process, we
do an additional experiment. The proposed SOSI algorithm
is used to classify unlabeled test images in an iterative way as
described in Algorithm 1. Then, in order to compare SOSI
with the other out-of-sample extension methods, for each
one of these methods, we carry out an iterative classification
procedure as follows. In each iteration, all test images are
assigned class labels with nearest-neighbor classification in the
low-dimensional domain via the out-of-sample generalization
strategies in comparison, and a confidence score is obtained
for each test image as in (16). Then in the next iteration,
the test images with the highest confidence scores are added
to the training set with their estimated class labels and a
completely new embedding of this extended training set is
computed with the supervised Laplacian eigenmaps and the
Fisher-based embedding algorithms (thus new coordinates are
assigned to the original training images as well). The out-of-
sample extension of this new embedding is then recomputed
with the tested strategies in comparison, which are used to
reclassify the test images. In each iteration r, the compared
methods use the same number Lr of extended training images
in X (same as the number of terms in the interpolation function
of SOSI), while the choice of the extended training set varies
between the compared methods as a result of the different con-
fidence scores they assign to the test images. This progressive
procedure is continued until all test images are included in the
extended training set. The results obtained on the face images
from the Yale database are presented in Figures 8(a) and 8(b),
respectively for the supervised Laplacian eigenmaps and the

Fisher-based embedding algorithms. The image set of each
subject contains 10 labeled and 48 unlabeled samples in this
experiment. The misclassification rates obtained throughout
the iterations are plotted with respect to the ratio Lr/N
between the size of the extended training set (number of RBF
terms for SOSI) and the size of the original training set. The
results indicate that the best classification accuracy is achieved
by the proposed algorithm most of the time. The misclassi-
fication error obtained with the proposed method decreases
regularly throughout the iterations as the number of terms in
the interpolation function increases, while the evolution of the
misclassification error with the other strategies is less regular
and the error may even increase throughout the iterations. This
is due to the fact that the strategies other than SOSI compute
a new embedding of the extended training set from scratch in
each iteration. The mislabeled data samples in the extended
training set may then significantly influence the computed
embedding and consequently the class label assignments of the
next iteration, since the embedding given by the eigenvectors
of a class-dependent kernel matrix may change dramatically
even with small errors in the kernel matrix. The proposed
method does not suffer from this problem, since it preserves
the original embedding and refines only the interpolation
function throughout the iterations, which has a regularizing
effect that better tolerates inaccurate assignments of the class
labels of test images. We finally note that, among the strategies
compared in this experiment, the proposed SOSI algorithm
is the only one that provides an out-of-sample solution for
manifold learning when Lr > N .

Finally, we study the influence of the scale parameters of
the interpolation function on the classification performance.
As discussed in Section III-B, the proposed method selects the
scale parameters by optimizing the regularization term R̂(f).
In order to evaluate the effect of this regularization approach
on the classification accuracy, we compare the variations of the
regularization term R̂(f) and the classification error with the
scale parameter. We compute an embedding of the training
images with the supervised Laplacian eigenmaps algorithm
and then construct an RBF interpolation function, where all
scale parameters σkl are set to a common σ value and the
coefficients ckl are computed to fit the training images and the
learned embedding for this choice of the scale parameter (as
in the RBF fitting method or the first iteration of SOSI). A
sequence of interpolation functions are computed by varying
the scale parameter σ, and for each interpolation function,
the regularization objective R̂(f) is computed as well as the
misclassification rate of the test images. The variations of the
regularization cost and the misclassification rate with the scale
parameter σ are presented in Figure 9 for all three data sets
used in the experiments. The results suggest that the regular-
ization objective R̂(f) has a rather smooth and nonmonotonic
variation with the scale parameter, which resembles that of the
classification error. Moreover, the interval of scale parameters
σ minimizing the regularization objective R̂(f) coincides with
the range of σ values where the misclassification rate takes
small values. This shows that the proposed regularization
objective permits the algorithm to capture the influence of the
scale parameters on the performance of learning and can be
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Fig. 9. Variations of the misclassification error and the regularization term R̂(f) with the scale parameter of the RBF kernels

used for optimizing the scale parameters.

VI. CONCLUSIONS

We have proposed a method for the out-of-sample exten-
sions of supervised manifold learning algorithms that embed
a set of class-representative manifolds residing in a high-
dimensional ambient space to a set of manifolds in a lower-
dimensional domain. The proposed out-of-sample generaliza-
tion method is based on the construction of an RBF inter-
polation function, where the parameters of the interpolation
function are optimized to minimize the embedding error over
a set of initially unlabeled data samples, whose class labels
are estimated progressively along with the parameters of the
interpolation function. We have shown that the regularity of the
interpolation function can be controlled by optimizing the RBF
scale parameters to minimize a regularization objective that
controls the total gradient of the interpolation function while
encouraging sufficiently strong derivatives along the directions
of class separation boundaries in order to ensure an effective
separation between different classes. The proposed out-of-
sample generalization method outperforms baseline interpo-
lation solutions in classification applications. Experimental
results suggest that the proposed algorithm achieves state-
of-the-art performance in semi-supervised learning and can
be effectively used along with supervised manifold learning
methods in the classification of low-dimensional data sets
consisting of labeled and unlabelled data samples.
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