877 research outputs found

    Gaussian mixture model-based contrast enhancement

    Get PDF
    In this study, a method for enhancing low-contrast images is proposed. This method, called Gaussian mixture model-based contrast enhancement (GMMCE), brings into play the Gaussian mixture modelling of histograms to model the content of the images. On the basis of the fact that each homogeneous area in natural images has a Gaussian-shaped histogram, it decomposes the narrow histogram of low-contrast images into a set of scaled and shifted Gaussians. The individual histograms are then stretched by increasing their variance parameters, and are diffused on the entire histogram by scattering their mean parameters, to build a broad version of the histogram. The number of Gaussians as well as their parameters are optimised to set up a Gaussian mixture modelling with lowest approximation error and highest similarity to the original histogram. Compared with the existing histogram-based methods, the experimental results show that the quality of GMMCE enhanced pictures are mostly consistent and outperform other benchmark methods. Additionally, the computational complexity analysis shows that GMMCE is a low-complexity method

    Image Contrast Enhancement with Brightness preserving using Curvelet Transform and Multilayer Perceptron

    Get PDF
    Image Improvement Techniques Are Veryuseful In Our Daily Routine. In The Field Ofimage Enhancement Histogram Equalizationis A Very Powerful, Effective And Simplemethod. But In Histogram Equalizationmethod The Brightness Will Disturb Whileprocessing. Original Image Brightnessshould Be Kept In The Processed Image. Soimage Contrast Must Be Enhanced Withoutchanging Brightness Of Input Image. In Ourproposed Method Of Image Contrastenhancement With Brightness Preservingusing Curvelet Transform And Multilayerperceptron We Will Solve This Problem Andget Better Result Than Existing Methods.Results Are Compared On The Basis Of Twoimportant Parameter For Image Quality Suchas Absolute Mean Brightness Error (Ambe)And Peak Signal To Noise Ratio (Psnr)

    Image processing for plastic surgery planning

    Get PDF
    This thesis presents some image processing tools for plastic surgery planning. In particular, it presents a novel method that combines local and global context in a probabilistic relaxation framework to identify cephalometric landmarks used in Maxillofacial plastic surgery. It also uses a method that utilises global and local symmetry to identify abnormalities in CT frontal images of the human body. The proposed methodologies are evaluated with the help of several clinical data supplied by collaborating plastic surgeons

    Fusion based Image Enhancement Approach for Brain Tumor Detection

    Get PDF
    Magnetic Resonance Imaging (MRI), is a crucial technology used in the processing of medical images that provides insights into the anatomy of soft organs in the human body and helps in detecting brain tumors and spinal tumors. Despite advances in technology, most images have intrinsic drawbacks such as reduced contrast and brightness, and noise. Several contrast enhancement techniques are used such as, HE, BBHE, DSIHE, CLAHE, RMSHE, and their fusion, have been deployed on different MRI images to handle these problems. Metrics such as, entropy, PIQE and BRISQUE are used in the assessment of the results. Through the different fusion combinations, most prominent results are obtained from CLAHE-RMSHE fusion with an entropy value of 6.2516 and BRISQUE value of 40.14

    Infrared image enhancement using adaptive histogram partition and brightness correction

    Get PDF
    Infrared image enhancement is a crucial pre-processing technique in intelligent urban surveillance systems for Smart City applications. Existing grayscale mapping-based algorithms always suffer from over-enhancement of the background, noise amplification, and brightness distortion. To cope with these problems, an infrared image enhancement method based on adaptive histogram partition and brightness correction is proposed. First, the grayscale histogram is adaptively segmented into several sub-histograms by a locally weighted scatter plot smoothing algorithm and local minima examination. Then, the fore-and background sub-histograms are distinguished according to a proposed metric called grayscale density. The foreground sub-histograms are equalized using a local contrast weighted distribution for the purpose of enhancing the local details, while the background sub-histograms maintain the corresponding proportions of the whole dynamic range in order to avoid over-enhancement. Meanwhile, a visual correction factor considering the property of human vision is designed to reduce the effect of noise during the procedure of grayscale re-mapping. Lastly, particle swarm optimization is used to correct the mean brightness of the output by virtue of a reference image. Both qualitative and quantitative evaluations implemented on real infrared images demonstrate the superiority of our method when compared with other conventional methods

    Detection of Macula and Recognition of Aged-Related Macular Degeneration in Retinal Fundus Images

    Get PDF
    In aged people, the central vision is affected by Age-Related Macular Degeneration (AMD). From the digital retinal fundus images, AMD can be recognized because of the existence of Drusen, Choroidal Neovascularization (CNV), and Geographic Atrophy (GA). It is time-consuming and costly for the ophthalmologists to monitor fundus images. A monitoring system for automated digital fundus photography can reduce these problems. In this paper, we propose a new macula detection system based on contrast enhancement, top-hat transformation, and the modified Kirsch template method. Firstly, the retinal fundus image is processed through an image enhancement method so that the intensity distribution is improved for finer visualization. The contrast-enhanced image is further improved using the top-hat transformation function to make the intensities level differentiable between the macula and different sections of images. The retinal vessel is enhanced by employing the modified Kirsch's template method. It enhances the vasculature structures and suppresses the blob-like structures. Furthermore, the OTSU thresholding is used to segment out the dark regions and separate the vessel to extract the candidate regions. The dark region and the background estimated image are subtracted from the extracted blood vessels image to obtain the exact location of the macula. The proposed method applied on 1349 images of STARE, DRIVE, MESSIDOR, and DIARETDB1 databases and achieved the average sensitivity, specificity, accuracy, positive predicted value, F1 score, and area under curve of 97.79 %, 97.65 %, 97.60 %, 97.38 %, 97.57 %, and 96.97 %, respectively. Experimental results reveal that the proposed method attains better performance, in terms of visual quality and enriched quantitative analysis, in comparison with eminent state-of-the-art methods

    Prominent region of interest contrast enhancement for knee MR images: data from the OAI

    Get PDF
    Osteoarthritis is the most commonly seen arthritis, where there are 30.8 million adults affected in 2015. Magnetic resonance imaging (MRI) plays a key role to provide direct visualization and quantitative measurement on knee cartilage to monitor the osteoarthritis progression. However, the visual quality of MRI data can be influenced by poor background luminance, complex human knee anatomy, and indistinctive tissue contrast. Typical histogram equalisation methods are proven to be irrelevant in processing the biomedical images due to their steep cumulative density function (CDF) mapping curve which could result in severe washout and distortion on subject details. In this paper, the prominent region of interest contrast enhancement method (PROICE) is proposed to separate the original histogram of a 16-bit biomedical image into two Gaussians that cover dark pixels region and bright pixels region respectively. After obtaining the mean of the brighter region, where our ROI – knee cartilage falls, the mean becomes a break point to process two Bezier transform curves separately. The Bezier curves are then combined to replace the typical CDF curve to equalize the original histogram. The enhanced image preserves knee feature as well as region of interest (ROI) mean brightness. The image enhancement performance tests show that PROICE has achieved the highest peak signal-to-noise ratio (PSNR=24.747±1.315dB), lowest absolute mean brightness error (AMBE=0.020±0.007) and notably structural similarity index (SSIM=0.935±0.019). In other words, PROICE has considerably outperformed the other approaches in terms of its noise reduction, perceived image quality, its precision and has shown great potential to visually assist physicians in their diagnosis and decision-making process

    Noise-Enhanced and Human Visual System-Driven Image Processing: Algorithms and Performance Limits

    Get PDF
    This dissertation investigates the problem of image processing based on stochastic resonance (SR) noise and human visual system (HVS) properties, where several novel frameworks and algorithms for object detection in images, image enhancement and image segmentation as well as the method to estimate the performance limit of image segmentation algorithms are developed. Object detection in images is a fundamental problem whose goal is to make a decision if the object of interest is present or absent in a given image. We develop a framework and algorithm to enhance the detection performance of suboptimal detectors using SR noise, where we add a suitable dose of noise into the original image data and obtain the performance improvement. Micro-calcification detection is employed in this dissertation as an illustrative example. The comparative experiments with a large number of images verify the efficiency of the presented approach. Image enhancement plays an important role and is widely used in various vision tasks. We develop two image enhancement approaches. One is based on SR noise, HVS-driven image quality evaluation metrics and the constrained multi-objective optimization (MOO) technique, which aims at refining the existing suboptimal image enhancement methods. Another is based on the selective enhancement framework, under which we develop several image enhancement algorithms. The two approaches are applied to many low quality images, and they outperform many existing enhancement algorithms. Image segmentation is critical to image analysis. We present two segmentation algorithms driven by HVS properties, where we incorporate the human visual perception factors into the segmentation procedure and encode the prior expectation on the segmentation results into the objective functions through Markov random fields (MRF). Our experimental results show that the presented algorithms achieve higher segmentation accuracy than many representative segmentation and clustering algorithms available in the literature. Performance limit, or performance bound, is very useful to evaluate different image segmentation algorithms and to analyze the segmentability of the given image content. We formulate image segmentation as a parameter estimation problem and derive a lower bound on the segmentation error, i.e., the mean square error (MSE) of the pixel labels considered in our work, using a modified Cramér-Rao bound (CRB). The derivation is based on the biased estimator assumption, whose reasonability is verified in this dissertation. Experimental results demonstrate the validity of the derived bound

    Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets

    Get PDF
    In this paper, we address the hesitant information in enhancement task often caused by differences in image contrast. Enhancement approaches generally use certain filters which generate artifacts or are unable to recover all the objects details in images. Typically, the contrast of an image quantifies a unique ratio between the amounts of black and white through a single pixel. However, contrast is better represented by a group of pix- els. We have proposed a novel image enhancement scheme based on intuitionistic hesi- tant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of target objects. First, a given dronogram is divided into foreground and background areas based on an estimated threshold from which the proposed model measures the amount of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant score indicated by the distance between the two areas for each point in the fuzzy plane. Finally, a hyperbolic operator is adopted for each membership grade to improve the pho- tographic quality leading to enhanced results via defuzzification. The proposed method is tested on a large drone image database. Results demonstrate better contrast enhancement, improved visual quality, and better recognition compared to the state-of-the-art methods.Web of Science500866

    Wavelet-Based Enhancement Technique for Visibility Improvement of Digital Images

    Get PDF
    Image enhancement techniques for visibility improvement of color digital images based on wavelet transform domain are investigated in this dissertation research. In this research, a novel, fast and robust wavelet-based dynamic range compression and local contrast enhancement (WDRC) algorithm to improve the visibility of digital images captured under non-uniform lighting conditions has been developed. A wavelet transform is mainly used for dimensionality reduction such that a dynamic range compression with local contrast enhancement algorithm is applied only to the approximation coefficients which are obtained by low-pass filtering and down-sampling the original intensity image. The normalized approximation coefficients are transformed using a hyperbolic sine curve and the contrast enhancement is realized by tuning the magnitude of the each coefficient with respect to surrounding coefficients. The transformed coefficients are then de-normalized to their original range. The detail coefficients are also modified to prevent edge deformation. The inverse wavelet transform is carried out resulting in a lower dynamic range and contrast enhanced intensity image. A color restoration process based on the relationship between spectral bands and the luminance of the original image is applied to convert the enhanced intensity image back to a color image. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some pathological scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for tackling the color constancy problem. The illuminant is modeled having an effect on the image histogram as a linear shift and adjust the image histogram to discount the illuminant. The WDRC algorithm is then applied with a slight modification, i.e. instead of using a linear color restoration, a non-linear color restoration process employing the spectral context relationships of the original image is applied. The proposed technique solves the color constancy issue and the overall enhancement algorithm provides attractive results improving visibility even for scenes with near-zero visibility conditions. In this research, a new wavelet-based image interpolation technique that can be used for improving the visibility of tiny features in an image is presented. In wavelet domain interpolation techniques, the input image is usually treated as the low-pass filtered subbands of an unknown wavelet-transformed high-resolution (HR) image, and then the unknown high-resolution image is produced by estimating the wavelet coefficients of the high-pass filtered subbands. The same approach is used to obtain an initial estimate of the high-resolution image by zero filling the high-pass filtered subbands. Detail coefficients are estimated via feeding this initial estimate to an undecimated wavelet transform (UWT). Taking an inverse transform after replacing the approximation coefficients of the UWT with initially estimated HR image, results in the final interpolated image. Experimental results of the proposed algorithms proved their superiority over the state-of-the-art enhancement and interpolation techniques
    corecore