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ABSTRACT

Osteoarthritis is the most commonly seen arthritis, where there are 30.8 million adults affected in 2015. Magnetic resonance 
imaging (MRI) plays a key role to provide direct visualization and quantitative measurement on knee cartilage to monitor 
the osteoarthritis progression. However, the visual quality of MRI data can be influenced by poor background luminance, 
complex human knee anatomy, and indistinctive tissue contrast. Typical histogram equalisation methods are proven to be 
irrelevant in processing the biomedical images due to their steep cumulative density function (CDF) mapping curve which 
could result in severe washout and distortion on subject details. In this paper, the prominent region of interest contrast 
enhancement method (PROICE) is proposed to separate the original histogram of a 16-bit biomedical image into two 
Gaussians that cover dark pixels region and bright pixels region respectively. After obtaining the mean of the brighter 
region, where our ROI – knee cartilage falls, the mean becomes a break point to process two Bezier transform curves 
separately. The Bezier curves are then combined to replace the typical CDF curve to equalize the original histogram. 
The enhanced image preserves knee feature as well as region of interest (ROI) mean brightness.  The image enhancement 
performance tests show that PROICE has achieved the highest peak signal-to-noise ratio (PSNR=24.747±1.315dB), lowest 
absolute mean brightness error (AMBE=0.020±0.007) and notably structural similarity index (SSIM=0.935±0.019). In 
other words, PROICE has considerably outperformed the other approaches in terms of its noise reduction, perceived image 
quality, its precision and has shown great potential to visually assist physicians in their diagnosis and decision-making 
process.
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INTRODUCTION

From the data analysis of year 2013 to 2015 from National 
Health Interview Survey, 54.4 million (one in five adults) 
adults in the United States are having doctor-diagnosed 
arthritis (Barbour et al. 2017). However, osteoarthritis (OA) 
is the most common seen arthritis where 30.8 million adults 
are affected in 2015 (Cisternas et al. 2016). To monitor the 
OA progression, magnetic resonance (MR) imaging play 
a key role to give direct visualization and quantitative 
measurement on knee cartilage. However, MRI data are 
prone to imaging artifacts and easily affected by acquisition 
noise (Styner et al. 2000). 

Visual quality of human knee MR images can be 
influenced by poor background luminance, complex human 
knee structure and indistinctive tissue contrast.  In clinical 
routine, excellent MRI soft-tissue contrast could facilitate 
the image interpretation process. Unfortunately, mediocre 
knee images with poor low contrast were obtained in 
normal circumstances. For instances, the contrast of fat, 
surrounding cartilage tissue, cartilage and fluid are not 
distinctive which might lead to ambiguity of both inter- and 
intra-observer during delineation process. Human knee has 
complex anatomical structure which cause the delineation 
on poor-contrast knee MR images to be laborious and time 
consuming (Gan, Swee, et al. 2014; Dougherty 2009).  
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Besides, MR images may be corrupted by unwanted artifacts 
and noise (Dar et al. 2019). Therefore, pre-processing step 
comes into the first place to remove noise, to sharpen 
details or edges and also to enhance the image contrast. 
Knee MR images consists big portions of low intensity 
pixels which represent the backgrounds, tibial and femoral 
bones. Hence, conventional contrast enhancement with 
histogram equalization (HE) is unsuitable for medical image 
processing. Conventional HE naively diverges the dynamic 
range coverage of the object image which results distortion 
of image brightness. The resultant image might lose any 
brightness sensitive image feature. Moreover, traditional 
HE tends to combine the light probability density gray level 
with higher probability density gray level to widen the gap 
in between. This results a sudden jump while calculating 
its cumulative density function that could over-enhance the 
image (Gan, Swee, et al. 2014). 

In this paper, a new contrast enhancement framework 
known as prominent region of interest contrast enhancement 
(PROICE), which extended from BBCCE (Gan, Swee, et 
al. 2014), is proposed. From the input histogram, the 16-
bit DICOM image will be characterized into two intensity 
groups, one group of low intensity pixels and another 
group of high intensity pixels. The mean of the higher 
intensity pixels is obtained to preserve the mean brightness 
of the region of interest (ROI), human knee cartilage. The 
histogram equalization remapping process is performed 
based on Bezier curve transformation, replacing the 
conventional cumulative density function to improve the 
visual perception of ROI and conserve the knee features 
for further image processing stages. Single right knee MR 
scan is selected from 100 different subjects to ensure wide 
variability of knee structure and image contrast to be studied. 
We examine PROICE with several performance metrics in 
terms of peak signal -to-noise ratio (PSNR), absolute mean 
brightness error (AMBE), structural similarity index (SSIM), 
number of detected edges (#DE) and computation time. 

RELATED WORKS

BACKGROUND OF HISTOGRAM EQUALIZATION

HE is a popular method for image contrast enhancement. From 
a normalized histogram, every occurrence probability of a 
pixel of certain intensity is calculated known as probability 
density function (PDF), p(x). Later, all the probabilities are 
summed up to obtain cumulative distribution function (CDF) 
which becomes the transform function to map the original 
input histogram for a better appearance. However, the global 
transform which prone to merge lower possibilities gray 
levels with other higher possibilities gray levels occurrence 
could deteriorate the resultant image quality (Dougherty 
2009).

Over the past twenty years, researchers have been 
actively finding better contrast enhancement frameworks, 
for instances high frequency gray level removal, histogram 
separation, other advanced method and some with the 

involvement of artificial intelligence. These will be 
discussed further in the rest of this section.

CLIPPING AND ELIMINATION OF CERTAIN HIGH FREQUENCY 
INTENSITY LEVELS

In 1990, Stephen proposed a local contrast enhancement 
method, named contrast-limited adaptive HE (CLAHE) 
which modified the ordinary HE by capping the maximum 
intensity level. CLAHE implemented interactive intensity 
windowing which allows detection of small intensity 
changes referring to neighbouring pixels, thus able to 
reduce the noise in relatively homogeneous areas (Pizer et 
al. 1990). On the other hand, multipeak HE was introduced 
by Wongsritong to equalize every detected peak in the input 
histogram (Wongsritong et al. 1998).  Instead of processing 
two sub-histograms, Majid Zarie introduced triple dynamic 
HE (TDCHE) which partitioned the histogram into three sub-
histograms. Clipping process was performed in each sub-
histogram based on their respective mean or median then the 
partitions were remapped into a new dynamic range before 
equalization process was performed (Zarie, Hajghassem, and 
Majd 2018). With the capping and redistributing intensity 
features, methods aforementioned manage to improve the 
image local contrast and boundary features. Furthermore, 
gamma correction adaptive extreme-level eliminating 
with weighting distribution (GCAELEWD) to eliminate the 
PDF of two extreme levels on each divided sub-block and 
reconstruct the image using bilinear interpolation technique 
was reported. The author claimed that the removal of 
extremes could increase the difference of intensities on 
medical images (Teh, Sim, and Wong 2018). 

HISTOGRAM SEPARATION

In 1997, Kim made a major breakthrough claiming that 
preserving the mean brightness of the image is necessary 
for natural enhancement. He then introduced mean-
preserving bi-histogram equalization (BBHE) that divides 
input image into two sub-images based on its mean and 
equalizes them respectively (Kim 1997). Inspired by 
BBHE, Yu Wang et al. proposed equal area dualistic sub-
image HE (DSIHE) which decomposes the input histogram 
into two equal-size histograms based on its median. The 
author claimed that DSIHE can prevent the original image 
average brightness from huge deviation (Wang, Chen, and 
Zhang 1999). Later, researchers started to hypothesize that a 
better contrast enhancement could be expected if histogram 
could be separated numerously. Soon, Soong-Der Chen et 
al. convinced that recursive mean-separate HE (RMSHE) 
could result in better enhancement results than BBHE by 
separating the decomposed histograms recursively with 
their new means (Chen and Ramli 2003a). However, RMSHE 
is computation heavy and time-consuming at that point. 
In the same year, the author introduced minimum mean 
brightness bi-HE (MMBEBHE) which separated histogram 
pre-determined threshold level that results from the lowest 
absolute mean brightness error (AMBE) (Chen and Ramli 
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2003b). In conventional HE, gray levels with higher 
frequencies tend to dominate other gray levels of lower 
frequencies. To overcome the problem, M. Abdullah et al. 
and Wan Zakiah Wan Ismail proposed dynamic HE (DHE) to 
partition the histograms into several sub-histograms and each 
only allowed to occupy certain gray level so as to preserve 
the appearance of lower frequencies pixels (Abdullah-Al-
Wadud et al. 2007; Ismail and Sim 2011). Shih-Chia Huang 
et al. suggested a new histogram separation framework based 
on multiple thresholding procedures and the most favourable 
peak signal-to-noise ratio (PSNR) (Huang and Yeh 2013). 
Meanwhile, Sabyasachi et al. revealed hyper kurtosis based 
modified duo-histogram equalization (HKMDE) and tested 
on human brain CT scan images. It separates histogram into 
two based on the modified mean (MM) (Mukhopadhyay et 
al. 2015). 

For years, researchers have been lingering in histogram 
separation to improve the enhancement effect but there is 
no significant changes being observed until today. In 2013, 
Fan-Chieh Cheng et al. pointed out that Bezier curve could 
be an ideal alternative to replace the typical CDF curve for 
mapping process. All the control points and mapping curves 
are done through automatic calculation (Cheng and Huang 
2013). The author claimed that Bezier curve could overcome 
the washed-out effect due to its gentle curve which diverges 
intensity distribution gradually. Gan et al. was then inspired 
to implement spline curve in enhancing knee MR images 
partitioned based on its median (Gan, Tan, et al. 2014). Later, 
Gan et al. highlighted bi-histogram Bezier curve contrast 
enhancement (BBCCE) in processing the medical images 
that have indistinctive tissue contrasts and poor background 
luminance. BBCCE replaces the conventional cumulative 
density function with its own generated Bezier transform 
curve (Gan, Swee, et al. 2014). Meanwhile, Asghar et al. 
also introduced the separation of high frequency gray levels 
with high pass filter while low frequency gray levels with 
low pass filter, and equalize them respectively with Bezier 
curve in order to preserve the small details (Asghar et al. 
2017).  

OTHER ADVANCED FRAMEWORK

Sampada et al. suggested to combine both local and global 
method which preserved the details and overall brightness 
of the image (Pathak, Dahiwale, and Padole 2015). On the 
other hand, the variational-based model uncovered by Tian 
et al. resulted an enhanced image that shows the trade-off 
between global and local contrast enhancement (Tian and 
Cohen 2018).  Most HE might cause the disappearance 
of small size objects. Therefore, Elena et al. proposed to 
have parameters estimation of the details which focused 
on object boundaries to generate several contrast kernels 
defined with weighted contrast and relative contrast 
(Yelmanova and Romanyshyn 2017b, 2017a, 2017c), 
herewith, another approach that referred the relative 
strength between targeted pixels with adjacent pixels 
(Wang, Huang, and Hu 2018). 

There is a finding that high quality images can be 
produced by fusing pseudo multi-exposure images which 
could be generated from the original image (Kinoshita and 
Kiya 2018). For hazy image processing, partial differential 
equation-based contrast enhancement locally and globally is 
reported. Optimization of gradient based metrics are referred 
as stopping criteria (Nnolim 2018). According to Yang et 
al., choosing two suitable Gamma curves to deal with both 
dark and bright regions of the image is beneficial for both 
high dynamic range (HDR) and low dynamic range (LDR) 
compression (Yang et al. 2018). Another work from Singh 
et al. on swarm intelligence optimized piecewise gamma 
corrected HE to solve over-saturation and unnatural artifacts 
that could normally be occur on dark satellite images and 
biomedical images (Singh et al. 2018).

In recent years, as AI starts booming in all fields of 
industries, and likewise, the researchers working with 
image processing started to find its potential in contributing 
better algorithms. Anita et al. introduced fuzzy contrast 
mapping to map the gray level to suitable membership 
function (Thakur and Mishra 2015). The method enhances 
gray levels which are closer to mean gray level and produce  
result image with a more decent contrast than its original 
image (Mamoria and Raj 2016). Meanwhile, Shweta et al. 
proposed artificial neural network (ANN) and fuzzy logic 
in image enhancement. ANN is used to identify the type of 
noises while fuzzy logic is used for denoising and contrast 
enhancement (Narnaware and Khedgaonkar 2015). Arushi 
et al. and Leonardo et al. suggested to combine the Gaussian 
mixture model and genetic algorithm for input histogram 
partition and contrast enhancement (Mahajan and Gupta 
2017; Rundo et al. 2019). 

METHODOLOGY

MR IMAGE ACQUISITION

One hundred dual-echo steady-state (DESS) knee MR images 
with water excitation (we) were obtained from the 18-month 
visit package provided by Osteoarthritis Initiative (OAI). 
MR machine that used to acquire these images is Siemens 
Magnetom Trio from Germany. The acquired MR images 
have section thickness of 0.7mm and in-plane resolution 
of 0.365 x 0.456mm. Other technical parameters upon 
acquisition are stated as: field of view = 140 x 140 mm, flip 
angle of 25°, TR/TE = 16.3/4.7m sec, bandwidth = 185Hz/
pixel and matrix size of 384 x 384 mm. Further information 
can be obtained from the following website: https://nda.nih.
gov/oai

SOFTWARE AND COMPUTER SPECIFICATIONS

All the algorithms and performance tests mentioned are run 
through MATLAB 2019a on a laptop hosting Intel Core i7-
6700HQ quad core with hyper-threading clocked at 2.6 – 
3.5GHz, 8GB DDR4 RAM and NVIDIA GTX960M (4GB 
GDDR5 RAM).
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GAUSSIAN MIXTURE MODEL

A Gaussian mixture is a function which comprises of several 
Gaussians. The observations x, from mixture model with K 
mixture components, the marginal probability distribution 
of x is written in the Equation (1): 
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where jϵ{1,2,…,K} is the latent variable representing the 
mixtures component for Xi. Meanwhile, N(x|μi, ∑j) represents 
the Gaussian mixtures and wj is the mixture proportion to 
identify which -th cluster does the Xi belong to. 

Given a set of data X={x1,x2,…,xN }, the parameter θ of 
the GMM model can be estimated to fit the data as follows 
in Equation (2): 
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The most widely used approach to maximize the 
likelihood p(xi|θ) of the data based on the model parameters 
is Expectation-Maximization (EM) algorithm. E-step 
is to estimate the probability of the points generated by 
each Gaussian. Meanwhile, M-step is a maximization to 
improve the likelihood of the data according to a hidden 
variable, Z.  Likelihood, L can be written as follows in 
Equation (3):
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= p(X, Z | θ)
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The equation (3) can be further expressed in logarithm form 
as shown in Equation (4).

( ) ( )
N K

ij i ij
i 1 j 1

log p X, Z z log p x |j, z log p( j | )]
= =

   = θ + θ   ∑∑ (4)

Referring Figure 1 (a) and (b), the knee MR image has 
poor background luminance, indistinctive tissue contrast, 
and most of the pixels fall onto gray levels that skewed to 
the left. However, our interest is the human knee cartilage 
which falls onto the higher gray levels and it occupies the 
minority of the pixels. To avoid the wash out effect on our 

ROI, the mean brightness of cartilage must be conserved. 
Therefore, GMM comes in place to cluster the original 
histogram into two Gaussians, first Gaussian on darker 
region while second Gaussian on brighter region. Later, 
mean brightness of the second Gaussian is obtained to 
decompose the original histogram into two sub-histograms 
for further pre-processing stage. 

OBTAINING INTENSITY DISCREPANCY VALUE

In Figure 1(e), a sudden leap in CDF curve could result 
severe intensity distortion. However, the curve can be 
further smoothened by lowering down the absolute intensity 
difference (AID), which can be illustrated as follows in 
Equation (5):

= ′ −AID x x (5)

where x represents original intensity distribution while x' 
represents the transformed intensity distribution. The higher 
the AID, the higher the degree of enhancement and prone 
to wash out the details of the cartilage. Deduction between 
CDF curve and linear curve results an intensity discrepancy 
to identify the critical points that later would be the vital 
components to generate Bezier transform curve.

Given that intensity discrepancy value, IDV ϵ R, assist 
to determine the points with its gradient, 0=

dy
dx

. Local 
minimum and local maximum points can be determined
with 

2
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d y
dx

 and 
2

2 0<
d y
dx

 respectively. Boundary condition 
of y = 0 is subjected to all the critical points and therefore 
minimum point will fall in region y < 0 while maximum 
point will lie in region y > 0. Meanwhile, global maximum 
and global minimum can be obtained by taking the extrema 
value in each region as shown in Equation (6) and Equation 
(7) respectively.
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As the histogram is decomposed into two sub-
histograms by GMM, the IDVs are calculated respectively 
which results a total of two pairs of critical points. 

BEZIER CURVE TRANSFORMATION

Bezier curve is a parametric convex curve, delineates its 
shape by the end points and the control points given. The 
curve is formed within a control polygon which avoid itself 
from derailing off the polygon. Bezier curve has a smoother 
shape compared to typical CDF curve, thus smaller AID can 
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be expected. Let the control points denoted as C0, C1, C2, … 
Cn, bounded within the domain t ϵ [0,1] where the control 
points are the critical points, P obtained in the previous 
stage. Bezier curve is defined as follows in Equation (8):
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i
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Bezier curve utilizes Bernstein polynomials as a basis 
and can be illustrated as shown in Equation (9).
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The  binomial coefficient is shown in Equation (10).
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In this paper, the Bezier curve of second or third degree 
is more likely to be formed based on the number of global 
extrema detected. There are four control points if a pair 
of global extrema is detected and therefore, a third degree  
Bezier curve will be formed. Meanwhile, if there are only 
(n = 3) three control points, a second degree (n = 2) Bezier 
curve will be generated.

ASSESSMENT METHODOLOGY

Notably, the image processed is 16-bit, compared to 8-bit 
gray image test on other previous work. The details of the 
image are conserved to its optimum with its full dynamic 
range. For a fair test, all the other methods (HE, BBHE, 
DSIHE and BBCCE) are tested with the same group of 16-bit 
images. Then, the performance of each resultant images is 
evaluated from several statistical analysis in terms of peak 
signal-to-noise ratio (PSNR), absolute mean brightness error 
(AMBE), structural similarity (SSIM), number of detected 
edges (#DE) and computation time. 

Let Iori and Ien be the original input image and the 
enhanced image respectively. The gray levels of input  
image, Lin = l in

min , …, l in
max  and Lout = l out

min , …, l out
max  for the 

output image. The PSNR indicates the ratio between the 
maximum possible intensity value of the input image and 
the average squares of the errors between the input and 
output images as shown in Equation (11): 
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Considering the image consists of M rows and N 
columns. Mean squared error, MSE can determine the 
deviation of output image from its original input image 
which can be denoted as shown in Equation (12):

MSE
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MSE is always positive and denotes a better result when 
its value is closer to zero. AMBE can measure the overall 
brightness preservation of the resultant image:

−
= ori enI IMean Mean

AMBE
L

(13)

where L is the dynamic range of the input image as shown 
in Equation (14); 

 = −max min
in inL l l (14)

SSIM index is a predictive method to measure the 
similarity between enhanced image and original image. 
Structural information is the strong dependencies of the 
pixels that represent the structure of objects in an image. 
SSIM is measuring the degradation of structural information 
of the structures in the image. SSIM formula consists of three 
comparison measurements which are luminance (l), contrast 
(c) and structure (s), let Iori = x, Ien = y are shown in Equation
(15), Equation (16) and Equation (17) respectively.
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Structural comparison, s(x,y) = 3
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+
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σ
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where μx, μy, σx, σy and σxy are the local means, standard 
deviations and the cross-variance for the original image 
and enhanced image respectively. Meanwhile, k1, k2, k3 ϵℝ+ 
are regularization constants for the three comparisons. The 
three comparisons are combined as shown in Equation (18):

( ) ( ) ( ), , ,⋅= ⋅SSIM l x y c x y s x yα β γ (18)

where α, β and γ are the weighting components and equal to 
one. Then, SSIM can be written as shown in Equation (19):

out
min
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High SSIM value indicates that the enhanced image and 
the original image are quantitatively similar. 

Number of edges detected could determine the 
effectiveness of the contrast enhancement method. More 
edges shall be observed in enhanced images, compared to 
its original image. Canny, is a highly reliable edge detector. 
By applying double thresholding and hysteresis-based edge 
tracking, it can identify the less-visible edges. 

Let Mcanny be the edge map, number of edges detected is 
as shown in Equation (20):

( )
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# ,
= =
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M N

canny
a b

DE M a b (20)

Figure 1 shows the PROICE framework in enhancing 
knee MR images.

RESULTS AND DISCUSSION

STATISTICAL ANALYSIS
Figure 2 shows the Boxplots of the image enhancement 
performance evaluation metrics obtained from 16-bit 100 
MR knee images enhanced with HE, BBHE, DSIHE, BBCCE 
and proposed method. The lower and upper boundary of 
each boxplot indicates the first (25th percentile) and third 
quartiles (75th percentile) of the distribution, interquartile 
range can be identified by obtaining differences in these 
quartiles. 

Mean and median are represented by a black cross and 
a black line respectively. Outliers are displayed as coloured 
small dots. 

Table 1 shows median, mean and standard deviation of 
image enhancement performance evaluation metrics (PSNR, 
AMBE and SSIM) tested with HE, BBHE, DSIHE, BBCCE 
and PROICE on a total of 100 knee MR images. Table 2 
shows median, mean and standard deviation of image 
enhancement performance evaluation metrics (#DE and 
Time Consumption) tested with HE, BBHE, DSIHE, BBCCE 
and PROICE on a total of 100 knee MR images.

FIGURE 1. PROICE framework in enhancing knee MR images. (a) Original sagittal knee MR image. (b) Original histogram. (c) 
Clustered Gaussians with GMM. (d) Clustered Gaussian curves for high gray level group and low gray level group. (e) Blue line 

indicated typical CDF curve. (f) Intensity discrepancy curve generated from CDF curve. (g) Bezier transform curve as replacement of 
CDF curve. (f) Enhanced image with proposed method
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Most of the state-of-art enhancement methods aim to 
enhance the contrast of whole image. However, human knee 
has the most complex bone anatomy hence the cartilage 
segmentation can be very time consuming due to poor 
luminance and contrast differences between the hyaline 
cartilage with neighbouring tissues. Therefore, PROICE is 
proposed focusing on only our ROI, which falls on higher 
gray levels. From Figure 3 And Table 1, PROICE achieves 
the highest PSNR value (24.747±1.315 dB) and followed by 

BBCCE method (20.041±0.755 dB). The standard deviation 
resulted by PROICE is slightly higher that generates more 
variability of enhancement performance compared to 
other methods. The proposed method tends to enhance the 
brighter regions in the MR image,  which cover our ROI. 
Therefore, PROICE spreads the bright intensity pixels 
referring to their original distribution. It tends to stretch the 
bright pixels to cover wider dynamic range which results in 
a more distinctive contrast difference between fat, cartilages, 

FIGURE 2. Boxplots of the image enhancement performance evaluation metrics obtained from 16-bit 100 MR knee images        
enhanced with HE, BBHE, DSIHE, BBCCE and proposed method

TABLE 1. Median, mean and standard deviation of image enhancement performance evaluation metrics (PSNR, AMBE and SSIM) tested 
with HE, BBHE, DSIHE, BBCCE and PROICE on a total of 100 knee MR images

PSNR AMBE SSIM

Median Mean Std. Dev. Median Mean Std. Dev. Median Mean Std. Dev.
HE 9.471 9.471 0.386 0.273 0.277 0.016 0.436 0.430 0.037
BBHE 14.536 14.588 0.709 0.077 0.077 0.013 0.686 0.685 0.031
DSIHE 13.584 14.010 1.252 0.122 0.117 0.015 0.711 0.710 0.048
BBCCE 20.067 20.041 0.755 0.041 0.041 0.010 0.873 0.873 0.020
PROICE 24.607 24.747 1.315 0.021 0.020 0.007 0.936 0.935 0.019
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TABLE 2. Median, mean and standard deviation of image enhancement performance evaluation metrics (#DE and Time Consumption) 
tested with HE, BBHE, DSIHE, BBCCE and PROICE on a total of 100 knee MR images

#DE Time
Median Mean Std. Dev. Median Mean Std. Dev.

HE 4990.500 5063.160 459.762 0.013 0.014 0.010
BBHE 6398.000 6373.040 456.118 0.020 0.021 0.005
DSIHE 6552.000 6557.090 422.112 0.019 0.020 0.011
BBCCE 6264.500 6293.510 338.673 0.748 0.758 0.187
PROICE 5585.500 5600.600 367.724 0.399 0.425 0.215

FIGURE 3. Visual result evaluation and methods comparisons. (1a-5a) Five original knee MR images are selected and enhanced with 
(1b-5b) HE method, (1c-5c) BBHE method, (1d-5d) DSIHE method, (1e-5e) BBCCE method and (1f-5f) PROICE method
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synovial fluid and other neighbouring tissues. Thus, the 
designed framework could cause larger deviation from the 
enhancement result that it used to be. However, we claim 
that the value of standard deviation is acceptable from its 
coefficient of variation (cv = 0.053,  , 

, 
=v

std devc
mean

σ
µ

) , which is 
relatively small. 

Besides, AMBE assesses the performance evaluation in 
terms of brightness preservation. Smaller AMBE indicates 
better brightness preservation and PROICE (0.020±0.007) 
ranks the first and followed by BBCCE (0.041±0.010) and 
BBHE (0.077±0.013). On the other hand, PROICE scores 
the highest SSIM value (0.935) among the methods which 
indicates that the structural similarity between original MR 
image and enhanced image is high and satisfying.  Along 
three evaluation assessments, HE (SNR=9.471±0.386, 
AMBE=0.277±0.016, SSIM=0.430±0.037) is proven to be 
an unsuitable enhancement method for biomedical image as 
the dark gray levels occupy the majority gray levels of the 
MR image which could bring a sudden leap in CDF mapping 
curve.

However, there is trade-off between enhancement 
quality and time consumption for processing. PROICE 
spends longer time (0.425±0.215s) for a MR image compared 
to HE, BBHE, DSIHE and BBCCE (0.014±0.010s,0.021±0.
005s,0.020±0.011s and 0.758±0.187s). Number of edges 
detected could determine the performance of enhancement 
methods, where the higher intensity of edges detected, the 
image is said to be well enhanced. However, ROI is the main 
enhancement priority and therefore the dark regions which 
consist of tibial and femoral bones will be washed out. The 
number of edges detection in PROICE (5600.600±367.724) 
is much lower than BBHE (6373.040±456.118), DSIHE 
(6557.090±422.112) and BBCCE (6293.510±338.673). With 
promising quality of image enhanced by proposed method, 
lower DE is still acceptable. 

QUALITATIVE RESULTS

We take several criteria into consideration when evaluating 
PROICE enhanced image, which are tissue contrast 
enhancement, natural looking, brightness preservation 
and minimum image artifacts provocation. In Figure 3(1b 
– 5b), serious noise amplification can be observed in HE
enhanced images as its mean brightness is not preserved
in the algorithm. Annoying artifacts degrade the overall
image’s visual quality, and it causes difficulty in cartilage
delineation. On the other hand, BBHE and DSIHE result better 
enhanced images than conventional HE method. However, it
is challenging to distinguish the hyaline cartilage from its
surrounding tissues and ligaments. Hence, BBHE and DSIHE
are not suggested in enhancing biomedical images.

Thereafter, BBCCE was proposed to preserve the mean 
brightness while retaining the knee features. Typically, 
aforementioned contrast enhancement methods could lift 
the background luminance to a higher level due to steep 
CDF curve. BBCCE improves the overall brightness and 
the contrast of knee while avoiding background noise 

amplification. Compared to BBCCE, PROICE is designed to 
improve the contrast difference between the knee cartilage 
and the surrounding tissues which makes the delineation 
process to be easier. The obvious gaps between articular 
cartilages and nearby cartilages or tissues are pointed with 
small red arrows which is as shown in Figure 3 (1f - 5f) 
the contrast of surrounding tissues is stretched to make the 
articular cartilages to be more visible and distinguishable. 
Notably, Marcelo claimed that intensity difference between 
degenerated region and normal healthy hyaline cartilage 
could be a way to detect chondral lesions (Rodrigues and 
Camanho 2010). Articular cartilage contains majority water, 
type II collagen and proteoglycans, hence it is brighter than 
other tissues in MR image. As cartilage surface starts to break 
down and degenerate, the intensity observed on MR image 
might be darker than its baseline image. Figure 3 (5f) shows 
that PROICE is highly sensitive to small intensity changes, 
thus it has great potential to detect cartilage thinning in the 
early progress.

CONCLUSION

Most contrast enhancement methods which use typical CDF 
curve are not suitable to be implemented into biomedical 
image processing. Traditional HE does not preserve its 
mean brightness and yet invariably shift the output mean 
brightness to its middle gray level. The resultant images 
are over-enhanced and some details of small regions will 
be washed out. PROICE is proposed to separate the input 
histogram into two sub-histograms while the breaking 
point is determined through GMM. On the other hand, 
Bezier transform curves are formed according to the sub-
histograms. They are combined later, as a replacement 
of CDF curve, to equalize the original histogram. From 
the qualitative and statistical assessments, the proposed 
method is beneficial in terms of perceived visual quality, 
noise reduction and small error but it has trade-off of longer 
time in processing the image compared to other methods. 
To achieve a better enhancement result, denoise process is 
encouraged to be done prior to further contrast enhancement 
method. In a nutshell, PROICE is recommended to be carried 
out prior to knee cartilage segmentation stage for OA disease 
progression diagnosis as it offers great preservation of both 
ROI brightness and details.  

DECLARATION OF COMPETING INTEREST

None.

ACKNOWLEDGEMENT

The authors would like to express their gratitude to 
Universiti Teknologi Malaysia and the Ministry of 
Higher Education (MOHE) Malaysia for supporting this 
research under Research University Grant (RUG), number 
R.J130000.7651.4C238. In addition, the authors would also



510

like to thank the Research Management Center (RMC) – 
UTM for supporting this research project.

 REFERENCES

Abdullah, W., Mohammad,  Hasanul, K., Ali, A. D. & Oksam Chae. 
2007. A dynamic histogram equalization for image contrast 
enhancement. IEEE Transactions on Consumer Electronics 
53: 593-600.

Asghar, Khurshid, Ghulam, G., Mubbashar, S. & Zulfiqar, H. 
2017. Automatic enhancement of digital images using cubic 
Bézier curve and Fourier transformation. Malaysian Journal of 
Computer Science 30: 300-10.

Barbour, Kamil, E., Charles, G. H., Michael B. & Teresa, J. B. 
2017. Vital signs: prevalence of doctor-diagnosed arthritis 
and arthritis-attributable activity limitation—United States, 
MMWR. Morbidity and mortality weekly report 66: 246.

Chen, Soong, D. & Abd, R. R. 2003a. Contrast enhancement using 
recursive mean-separate histogram equalization for scalable 
brightness preservation. IEEE transactions on Consumer 
Electronics 49: 1301-09.

Chen, S.D. and Ramli, A.R. 2003b. Minimum mean brightness 
error bi-histogram equalization in contrast enhancement. IEEE 
transactions on Consumer Electronics 49(4): 1310-1319.

Cheng, Fan, C. & Shih, C. H. 2013. Efficient histogram modification 
using bilateral Bezier curve for the contrast enhancement. 
Journal of Display Technology 9: 44-50.

Cisternas, Miriam, G., Louise, M., Jeffrey, J. S., Daniel, H. S., 
David, J. P. & Charles, G. H. 2016. Alternative methods for 
defining osteoarthritis and the impact on estimating prevalence 
in a US population‐based survey. Arthritis Care & Research 
68: 574-80.

Dar, S. U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., & Çukur, T. 
2019. Image synthesis in multi-contrast MRI with conditional 
generative adversarial networks.  IEEE Transactions on 
Medical Imaging 38(10): 2375-2388. 

Dougherty, Geoff. 2009. Digital Image Processing for Medical 
Applications. Cambridge University Press.

Gan, H. S., Tan, T. S., Abdul, K., Ahmad, H., Khairil, A. S., Abdul, 
K. R., Weng, K. T., Liang, X. W. & Kashif, T. C. 2014. Medical 
image visual appearance improvement using bihistogram
bezier curve contrast enhancement: data from the osteoarthritis 
initiative. The Scientific World Journal.

Gan, H. S., Tan, T. S, Abdul, K. R., Abdul, K., Ahmad, H., Khairil, 
A. S., Liang, X. W. & Weng, K. T. 2014. Medical image contrast 
enhancement using spline concept: data from the osteoarthritis
initiative. Journal of Medical Imaging and Health Informatics
4: 511-20.

Huang, Shih, C. & Yeh, C. H. 2013. Image contrast enhancement 
for preserving mean brightness without losing image features. 
Eng. Appl. Artif. Intell. 26: 1487-92.

Ismail, Wan, Z. W. & Kok, S. S. 2011. Contrast enhancement 
dynamic histogram equalization for medical image processing 
application, International Journal of Imaging Systems and 
Technology 21: 280-89.

Kim, Y. T. 1997. Contrast enhancement using brightness preserving 
bi-histogram equalization. IEEE transactions on Consumer 
Electronics 43: 1-8.

Kinoshita, Y. & Hitoshi, K. 2018. Automatic exposure 
compensation using an image segmentation method for single-
image-based multi-exposure fusion. APSIPA Transactions on 
Signal and Information Processing 7.

Mahajan, A. & Divya, G. 2017. Image contrast enhancement using 
Gaussian Mixture model and genetic algorithm. International 
Conference On Smart Technologies For Smart Nation 
(SmartTechCon) 979-83. IEEE.

Mamoria, P. & Deepa, R. 2016. An analysis of images using 
fuzzy contrast enhancement techniques. 3rd International 
Conference on Computing for Sustainable Global Development 
(INDIACom) 288-91. IEEE.

Mukhopadhyay, S., Nirmalya, G., Ritwik, B., Prasanta, K. P., Sawon, 
P., Venkatesh, S. M. & Satyasaran, C. 2015. An optimized 
hyper kurtosis based modified duo-histogram equalization 
(HKMDHE) method for contrast enhancement purpose of 
low contrast human brain CT scan images. International 
Conference on Advances in Computing, Communications and 
Informatics (ICACCI) 1819-21. IEEE.

Narnaware, S. & Roshni, K. 2015. Image enhancement using 
artificial neural network and fuzzy logic.” International 
Conference on Innovations in Information, Embedded and 
Communication Systems (ICIIECS) 1-5. IEEE.

Nnolim, U. A. 2018. Partial differential equation-based hazy 
image contrast enhancement.  Computers & Electrical 
Engineering 72: 670-681.

Pathak, Sampada, S., Prashant, D. & Ganesh, P. 2015. A 
combined effect of local and global method for contrast image 
enhancement. IEEE International Conference on Engineering 
and Technology (ICETECH) 1-5. IEEE.

Pizer, Stephen, M., Eugene, J. R., James, P. E., Bonnie, C. Y. 
& Keith, E. M. 1990. Contrast-limited adaptive histogram 
equalization: speed and effectiveness. Proceedings of the First 
Conference on Visualization in Biomedical Computing 337-45. 
IEEE.

Rodrigues, Marcelo, B. & Gilberto, L. C. 2010. Mri evaluation 
of knee cartilage, Revista Brasileira de Ortopedia (English 
Edition) 45: 340-46.

Rundo, L., Andrea, T., Marco, S. N., Carmelo, M., Daniela, 
B., Giancarlo, M. & Paolo, C. 2019. MedGA: A novel 
evolutionary method for image enhancement in medical 
imaging systems. Expert Systems with Applications 119: 387-
99.

Singh, H., Kumar, A., Balyan, L. K. & Singh, G. K. 2018. Swarm 
intelligence optimized piecewise gamma corrected histogram 
equalization for dark image enhancement.  Computers & 
Electrical Engineering 70: 462-475.

Styner, M., Christian, B.,  Szckely, G. & Guido, G. 2000. Parametric 
estimate of intensity inhomogeneities applied to MRI. IEEE 
Trans. Med. Imaging 19: 153-65.

Teh, V., Kok, S. S. & Eng, K. W. 2018. Contrast enhancement of 
CT brain images using gamma correction adaptive extreme-
level eliminating with weighting distribution. International 
Journal of Innovative Computing, Information and Control 14: 
1029-41.

Thakur, A. & Deepak, M. 2015. Fuzzy contrast mapping for 
image enhancement. 2nd International Conference on Signal 
Processing and Integrated Networks (SPIN) 549-52. IEEE.



511

Tian, Q. C. & Laurent, D. C. 2018. A variational-based fusion 
model for non-uniform illumination image enhancement via 
contrast optimization and color correction. Signal Processing 
153: 210-20.

Wang, Y. F., Qian, H. & Jing, H. 2018. Adaptive Enhancement for 
Low-Contrast Color Images via Histogram Modification and 
Saturation Adjustment. IEEE 3rd International Conference on 
Image, Vision and Computing (ICIVC) 405-09. IEEE.

Wang, Y., Qian, C. & Baeomin, Z. 1999. Image enhancement 
based on equal area dualistic sub-image histogram equalization 
method. IEEE transactions on Consumer Electronics 45: 68-
75.

Wongsritong, K., Kittayaruasiriwat, K.,  Cheevasuvit, F., Dejhan, 
K. &  Somboonkaew, A. 1998. Contrast enhancement using
multipeak histogram equalization with brightness preserving.
IEEE Asia-Pacific Conference on Circuits and Systems.
Microelectronics and Integrating Systems. Proceedings (Cat.
No. 98EX242) 455-58. IEEE.

Yang, K. F., Hui, L., Kuang, H. L., Chao, Y. L. & Li, Y. J. 2018. An 
Adaptive Method for Image Dynamic Range Adjustment. IEEE 
Transactions on Circuits and systems for video technology 29: 
640-52.

Yelmanova, E. S. & Yuriy, M. R. 2017. Adaptive enhancement 
of monochrome images with low-contrast objects. 12th 
International Scientific and Technical Conference on 
Computer Sciences and Information Technologies (CSIT) 
421-24. IEEE.

Zarie, M., Hassan, H. & Abdollah, E. M. 2018. Contrast 
enhancement using triple dynamic clipped histogram 
equalization based on mean or median. Optik 175: 126-37.




