2,369 research outputs found

    In Things We Trust? Towards trustability in the Internet of Things

    Full text link
    This essay discusses the main privacy, security and trustability issues with the Internet of Things

    Cognitive Machine Individualism in a Symbiotic Cybersecurity Policy Framework for the Preservation of Internet of Things Integrity: A Quantitative Study

    Get PDF
    This quantitative study examined the complex nature of modern cyber threats to propose the establishment of cyber as an interdisciplinary field of public policy initiated through the creation of a symbiotic cybersecurity policy framework. For the public good (and maintaining ideological balance), there must be recognition that public policies are at a transition point where the digital public square is a tangible reality that is more than a collection of technological widgets. The academic contribution of this research project is the fusion of humanistic principles with Internet of Things (IoT) technologies that alters our perception of the machine from an instrument of human engineering into a thinking peer to elevate cyber from technical esoterism into an interdisciplinary field of public policy. The contribution to the US national cybersecurity policy body of knowledge is a unified policy framework (manifested in the symbiotic cybersecurity policy triad) that could transform cybersecurity policies from network-based to entity-based. A correlation archival data design was used with the frequency of malicious software attacks as the dependent variable and diversity of intrusion techniques as the independent variable for RQ1. For RQ2, the frequency of detection events was the dependent variable and diversity of intrusion techniques was the independent variable. Self-determination Theory is the theoretical framework as the cognitive machine can recognize, self-endorse, and maintain its own identity based on a sense of self-motivation that is progressively shaped by the machine’s ability to learn. The transformation of cyber policies from technical esoterism into an interdisciplinary field of public policy starts with the recognition that the cognitive machine is an independent consumer of, advisor into, and influenced by public policy theories, philosophical constructs, and societal initiatives

    Design and analysis of adaptive hierarchical low-power long-range networks

    Get PDF
    A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Blockchain and self sovereign identity to support quality in the food supply chain

    Get PDF
    This work presents how a digital identity management system can support food supply chains in guaranteeing the quality of the products marketed and the compliance of the several supplychain’s nodes to standards and technical regulations. Specific goal of this work is to present a system that provides full visibility of process/food certifications, which nowadays are issued by accredited and approved certification bodies (issuers) and delivered and stored in paper version by the several participants (holders) of the supply chain. The system is designed and implemented by combining the latest most innovative and disruptive technologies in the market—Self Sovereign Identity system, Blockchain, and Inter Planetary File System. The crucial aspects that it aims to hit are the storage and access of food/process certifications, and the proper eligibility verification of these certifications exploiting the concepts of the Self Sovereign Identity-based models. The proposed system, realized by using standards that are WWW Consortium-compatible and the Ethereum Blockchain, ensures eligibility, transparency, and traceability of the certifications along a food supply chain, and could be an innovation model/idea that the companies that adopt the Open Innovation paradigm might want to pursue

    Blockchain Securities Issues: Decentralized Identity System With Key Management Perspective

    Get PDF
    Blockchain was created many years ago to solve the problems of data transfer Integrity, several years later the issues persist. Blockchain securities are one of the most important considerations to be investigated, and data integrity is about ensuring the accuracy and validity of messages such that when they are read, they are the same as when they were first written. It is of the opinion that passing information across from one person to another cannot be the same as it was first said at the onset. Our work investigated Blockchain security issues, studying Integrity emanating from transactions across the blocks and how to deal with the securities issues. It also investigated decentralization and issues in blockchain to investigate how to mitigate the security issues associated with blockchain. It further discusses the use of key management in solving security issues in blockchain, viewing different key management systems of private and public keys, and solutions in addressing the blockchain problems. Lastly, we contributed the use of Decentralized Identity systems (DIDs) into the blockchain where we use a unique identifier, “ID.me” to verifier the individual credentials before any transaction, this was done by sending a digital ID through the issuer to the verifier to authenticate the integrity and identity of the holder and this proof worthy of protecting the information and maintaining the privacy of the user of the blockchain technology
    corecore