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ABSTRACT 

This quantitative study examined the complex nature of modern cyber threats to propose the 

establishment of cyber as an interdisciplinary field of public policy initiated through the creation 

of a symbiotic cybersecurity policy framework.  For the public good (and maintaining 

ideological balance), there must be recognition that public policies are at a transition point where 

the digital public square is a tangible reality that is more than a collection of technological 

widgets.  The academic contribution of this research project is the fusion of humanistic 

principles with Internet of Things (IoT) technologies that alters our perception of the machine 

from an instrument of human engineering into a thinking peer to elevate cyber from technical 

esoterism into an interdisciplinary field of public policy.  The contribution to the US national 

cybersecurity policy body of knowledge is a unified policy framework (manifested in the 

symbiotic cybersecurity policy triad) that could transform cybersecurity policies from network-

based to entity-based.  A correlation archival data design was used with the frequency of 

malicious software attacks as the dependent variable and diversity of intrusion techniques as the 

independent variable for RQ1.  For RQ2, the frequency of detection events was the dependent 

variable and diversity of intrusion techniques was the independent variable.  Self-determination 

Theory is the theoretical framework as the cognitive machine can recognize, self-endorse, and 

maintain its own identity based on a sense of self-motivation that is progressively shaped by the 

machine’s ability to learn.  The transformation of cyber policies from technical esoterism into an 

interdisciplinary field of public policy starts with the recognition that the cognitive machine is an 

independent consumer of, advisor into, and influenced by public policy theories, philosophical 

constructs, and societal initiatives. 

Keywords:  Cyber public policy, cognitive machines, symbiotic cybersecurity, social IoT 
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CHAPTER ONE: INTRODUCTION 

Overview 

The Internet of Things (IoT) is an interrelated technological and social systemic 

environment enabled through data transference (Smith et al, 2021).  The IoT links technological 

innovation, user behavior, and business processes to create digital ecosystems that “integrate 

communicating “things” and human users as a single entity” (Sheron et al 2019, p. 1).  Securing 

the IoT is not simply a matter of deploying network perimeter defense tools as modern 

adaptative threats transform data into a weapon to alter attack vectors and intrusion techniques 

dynamically.  Machine cognition and the social IoT replicates societal concepts which have 

significant influence on physical and digital world dynamics.  This quantitative study examined 

the complex nature of modern cyber threats to propose the establishment of cyber as an 

interdisciplinary field of public policy initiated through the creation of a symbiotic cybersecurity 

policy framework.  Identity-based cognitive machine symbiotic cybersecurity policies are an 

interdisciplinary approach to codifying machine manifestations of autonomous behavior, self-

determination, and behavioral rationality as the cognitive machine is a symbiotic actor in the 

modern IoT social network.  These expressions of social cognition separate the cognitive 

machine from traditional artificial intelligence as they are “designed to either detect and respond 

to social signal in the environment” (Cross and Ramsey 2021, p. 201) in a manner that humans 

perceive as social interaction (Cross, 2021).  Furthermore, cognitive machines are “capable of 

clustering, classifying, and making sense of the unstructured data that describe the world in 

which we live” (Schuetz et al 2020, p. 463) establishing a bilateral relationship between humans 

and machine partners.  The interdisciplinary approach explores the socio-technical foundation of 

digital identities for humans and cognitive machines within the social paradigm of the IoT.  
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Creating shared understanding of socio-technical digital identities could determine critical 

attributes comprising individual digital uniqueness.  Codifying what those attributes are could 

inform the establishment of mechanisms for behavioral self-verification and identify business 

processes for maintaining attribute legitimacy to preserve IoT integrity.  Properly constructed 

policies enable granular controls over resource (data, services, and applications) access and user 

credential management as vulnerabilities in trust are the focal point for malicious intrusions and 

exploitations.  The purpose of this study is to postulate a design framework for symbiotic 

cybersecurity policies incorporating cognitive machine individualism to enhance the 

implementation of human-machine teaming (HMT) in the preservation of IoT integrity.  As the 

cognitive machine is a symbiotic actor in cyberspace, legitimate communication (and interaction) 

requires the ability to distinguish discreet entities as our digital identities are nothing more than 

transactional data.  If our policies recognize that there is a social relationship between humans 

and cognitive machines (and between machines) in the IoT, then there is potential for the 

creation of a common entity-based cyber policy framework for constructing, maintaining, and 

verifying the digital identities of both humans and machines in cyberspace that fuses behavioral 

and social principles of trust with technological innovation.  This common policy framework 

could create standards of governance for establishing and maintaining cyberspace digital 

legitimacy.  This proposed framework complements the collaborative (and communicative) 

aspects of human-machine teaming (HMT) to mitigate the shortfall “that the internet was created 

without an identity Layer” (Davie et al 2019, p. 46).  Facilitating trust between cognitive team 

members in the IoT “requires scalable and trustworthy digital identification management 

services” (Samir et al 2022, p. 7972) for internet technologies and their associated applications, 

services, and devices.  The academic contribution of this research project is the fusion of 
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humanistic principles with IoT technologies that alters our perception of the machine from an 

instrument of human engineering into a thinking peer to elevate cyber from technical esoterism 

into an interdisciplinary field of public policy.  This impacts and disrupts future research 

paradigms (particularly in the public policy, behavioral sciences, social sciences, and cyber 

domain) as the IoT and adaptive modern technologies has enabled a potentially emergent 

concept of a machine society that is equal to (but independent of) human society.  The 

contribution to the US national cybersecurity policy body of knowledge is a unified policy 

framework (manifested in the human-cognitive machine symbiotic cybersecurity policy triad 

comprised of digital identity legitimization, digital identity legitimization, trust and positive 

reputation, and ethical motivation) that could transform cybersecurity policies from network-

based to entity-based. 

Background 

The IoT's automated, increasingly autonomous, and symbiotic, nature underpins the 

critical role of digital identities for preserving systemic integrity and resiliency as cognitive 

machines function as independent data producers and consumers.  The core of the IoT is data 

transference through human-to-human (H2H), human-to-machine (H2M), and machine-to-

machine (M2M) interactions.  Data’s persistence enables many attack surfaces as digital 

elasticity accelerates the adversarial threat cycle due to “sophisticated technologies once 

accessible exclusively to a few global powers are increasingly available and affordable” 

(Srivastava 2019, p. 58).  The IoT is composed of “billions of intelligent communicating 

‘things’…cater diverse services to Information Technology (IT) users” (Jurcut 2020, p. 192) 

using a scalable, distributed, and heterogeneous architecture of attributable protocols and 

applications.  This architecture is “an enabler of automated and convenient lifestyles for modern-
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day humans” (Adi 2020, p. 16205).  Implementation of identity-based symbiotic cybersecurity 

policies aligns the dynamic nature of human behavior (Steadman and Scott-Hayward, 2021) with 

data itself as its transferal enables the prediction (or control) of the future state (Chatfield and 

Reddick, 2019) through “sensor/actuators, communications/connectivity, data analytics and 

security, and smart applications” (Chatfield 2019, p. 349).  Modern malicious cyber threats 

prioritize data exploitation, cyber extortion, and social media disinformation to achieve their 

objectives; their activities account for “40% of all threats to computer networks globally costing 

entities between US$40 billion to US$1 trillion annually” (Al-Matareh 2020, p. 19).  Identity-

based cognitive machine symbiotic cybersecurity policies require the establishment of digital 

uniqueness whose attributes safeguard “physical and digital assets against illegal access, 

copying, modification, disclosure, destruction, and transfer to third parties for personal gain” 

(Mishra et al 2022, p. 9).  The development of these policies integrates data security with 

dynamic access and identity credentials management extending beyond the traditional network 

or perimeter-based bastion paradigm.  The difference between the IoT and previous industrial 

systems is the “connectivity of things to the Internet and their wider scope of application” 

(Chatfield 2019, p. 350).  The current body of literature provides valuable insight into the 

interdependent nature of data and digital identities (Kang, 2020; Sedlmeir, 2020; Susanto, 2018) 

for formulating a multi-disciplinary approach to threat mitigation (Rasouli, 2020). 

Introduction to Self-determination Theory 

Self-determination Theory (SDT) is the theoretical framework of the study as cognitive 

machines are “systems with the ability to adapt to changes in its environment and be able to learn 

from experience” (Skilton and Hovsepian 2017, p. 121).  The experiential facet is an important 

component as the “individual development of our character is not only dependent on our 
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environment…but also on our decisions” (Nida-Rumelin and Weidenfeld 2022, p. 22).  

Decisions made through experience influence the creation of virtues as future beliefs and 

attitudes are changed (Nida-Rumelin, 2022).  The ability to modify environments and transmit 

those modifications through language separates humans from other creatures in the natural world 

(Saetra, 2019).  Through sophisticated modern machine learning (or ML) algorithms and 

environmental sensing, cognitive machine can acquire measures of autonomous decision-making 

and expressions of behavioral rationality (Saetra, 2019) mimicking (or replicating) humanistic 

adaption.  SDT focuses on the “inherent motivational propensities for learning and growing, and 

how they can be supported” (Oppl and Stary 2022, p. 8).  Through this theoretical focal point, 

the postulation is that the cognitive machine can recognize, self-endorse, and maintain its own 

identity based on a sense of self-motivation that is progressively shaped by the machine’s ability 

to learn.  Identity governs the “operations, ownership, and autonomy” (Haber and Rolls 2019, p. 

28) of cognitive machines; pairing identity with social behavior mimicking the human persona 

requires a framework capable of exploring machine motivation that extends beyond programmed 

responses.  As cognitive machines can advance their abilities and “establish new behavior 

patterns via labeled data with machine learning” (Agrawal et al 2020, p. 192), important 

questions must be asked regarding what constitutes machine digital distinctiveness and if 

underlying societal influences are shaping that distinction.  Cognitive computing is a system that 

“learns at scale, reasons with purpose and interacts with humans naturally” (Sathi 2016, p. 6), as 

these intelligent agents can “learn complex tasks, interact with humans via natural interfaces and 

make autonomous decisions and actions working with individual and groups” (Sathi 2016, p. 6).  

The power of machine cognition has fundamentally altered the landscape of digital interfaces as 

ML enables them “to make sense and be appropriately fast enough to fix the problems or 
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opportunities at the speed the situation requires” (Skilton 2017, p. 213).  The detection and 

response capabilities of cognitive machines span motion detection, active listening, and voice 

dialog encompassing recognition of human emotion, speech patterns, nonverbal cues, and 

machine verbal response (Sathi, 2016) that enables the machine to mimic, adapt to, or interact 

with a human partner. 

Modern malware is designed for virtual espionage and sabotage (Alenezi et al, 2020) 

based on a trust concept where users assume that IoT interactions are between legitimate parties.  

The lack of cognitive machine digital identity uniqueness is a point of malicious exploitation as 

machines do not possess an individually determined (and managed) set of certifiable credentials 

differentiating them from one another.  For example, two smart homes might have Alexa 

working on their essential functions.  Current cybersecurity policies governing digital identity 

architectures do not permit one instance of Alexa to self-identify as “Bob” and the other as 

“Sally”, so that “Bob” and “Sally” interact as trusted IoT entities due to their credentials.  As 

“Bob” and “Sally” adjust to different home operating environments, their distinctions increase 

over time and affect their IoT identity credentials (just like changing height and weight affects 

human physical identity credentials).  In effect, “Bob” and “Sally” become intrinsically unique 

due to their ability to learn and adapt; their identities are their own, with each machine 

possessing the proper claims to prove them.  In the physical world, we are born with traits of 

individuality that are non-translatable in the digital world as our identities are decomposed into 

transactional data that mingle with other data streams in the IoT.  Therefore, human digital 

identities are artificial constructions requiring humans to constantly endorse their authenticity 

and distinctiveness.  Cognitive machine identities must maintain a similar structure as their 

individualistic characteristics influence autonomous behaviors and the effectiveness of pairing 
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within an HMT framework.  Policies acknowledging machine digital distinctiveness are 

premised on the realities of cognitive pairing between humans and machines as our digital 

identities are co-mingled data streams within the IoT.  In HMT, cognitive partners require 

mechanisms to construct, attribute, legitimize, self-validate, and present their identities to other 

parties within the IoT chain of trust.   

Status of Digital Identity Research   

The body of contemporary research has progressively shifted from the network-centric 

paradigm associated with traditional cybersecurity to the data-centric paradigm of the IoT that 

elevates the importance of digital identities for secured data access control and user 

authentication.  The rise of dynamic, advanced persistent threats (APTs) utilizing complex data 

intrusion and exploitation methodologies has prompted researchers to delve into the principles of 

proactivity and deliberative cyber defense adaptions leveraging multi-nodal, multi-functional, 

and multi-layered mechanisms (Berrada, 2020; Quintero-Bonilla, 2020; Xie, 2020).  Digital 

identities contribute to predictive analytics by coupling artificial intelligence (AI) with 

behavioral sciences to create innovative behavior-based threat countermeasures, sentient-based 

access control, and ML-enabled vulnerability assessments (Baski, 2021; Zulkefli, 2020; Jiang, 

2020; Addae, 2019).  Identity management and assurance are direct influences on the 

preservation of trust within the IoT as digital identities are inherently transactional with 

“attributes that can be revoked, deleted, transferred, or exchanged” (Sedlmeir 2020, p. 604). 

Effective identity management mechanisms adopt a multi-disciplinary approach spanning 

compliance, standards, processes, policies, credential lifecycle management, service access, data 

repositories, rules of behavior, analysis, and reporting (Rasouli, 2021).  Furthermore, digital 

identities are a medium of exchange requiring a cyber defense governance structure 
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encompassing physical and logical objects to facilitate “efficient and fine-grained management 

of attributes” (Yang 2020, p. 2) associated with the components that build them.  

Assumptions 

The data-centric paradigms of the IoT have increased the cost of cyber defense as the 

adaptive heuristics of adversarial threats extend beyond network boundaries since data itself is a 

platform that can be weaponized or exploited.  The assumptions associated with this study are 

below: 

A1 - Malicious actors are organized entities utilizing standard and specified cyber intrusion tools 

to harvest data from target IoT environments. 

A2 – Human-Machine Teaming is a core paradigm of IoT-related cybersecurity policies. 

 A1 assumes that malicious actors “apply resources in deliberate ways to attack…assets” 

(Ahmad 2019, p. 403) as “getting data out of a target environment is as important as getting into 

the environment itself” (Borges, 2021, p. 199).  The fundamental aspect of the IoT is that data is 

sensed (or collected), processed, adjusted, represented, and integrated (Tsiatsis et al, 2018) into 

“diverse applications, or to perform computations on it…in order to extract business value and 

associate it with respective business needs” (Tsiatsis, 2018, p. 112).  Malicious actors will utilize 

data to conduct reconnaissance operations as their objectives are “often to act on a specific target 

and get out” (Borges, 2021, p. 184); credential dump attacks are a common intrusion tactic that 

places user authentication information into the public domain and permits malicious actors to 

glean information that allows ingress into a targeted environment using compromised credentials 

to gain access.  Malicious actors can dump stolen data onto the internet using compromised 

third-party services or place it in public to maintain their anonymity (Borges, 2021).  IoT-related 

policies to strengthen digital identities (particularly in adapting them to cognitive machines) are 
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countermeasure techniques to prevent (or reduce the probability of) malicious actors from 

conducting reconnaissance through the theft of credentials or masquerading as legitimate users.  

Limiting the ability of malicious actors to use compromised identities and credentials is critical 

as the IoT “can involve a large set of different actors providing services and information that 

need to be composed and accessed with different levels of aggregation” (Tsiatsis, 2018, p. 53).  

As the architecture of the IoT is heterogeneous, identity-based symbiotic cybersecurity policies 

are a mechanism for maintaining systemic resilience as its consistent structure provides 

replicability of best practices so that solutions to problem sets can be reused (Tsiatsis, 2018).   

 A2 recognizes that the IoT blurs the line between the physical and digital worlds 

(Moallem, 2019) where humans can view the certificate attributes that create distinctiveness in 

the virtual space. Still, verification of that uniqueness cannot occur without software applications 

(Moallem, 2019).  The connected devices of the IoT must identify themselves (Moallem, 2019) 

yet, cognitive machines do not possess biometric traits to convert aspects of physical identities 

into digital ones.  For the estimated “34 billion IoT devices” (Moallem, 2019, p. 52), the 

constraints posed by the lack of physical attributes requires an adaptive approach combining 

unique identifiers with behavioral attribute replication where digital identities are self-validated.  

Identity-based cognitive machine symbiotic cybersecurity policies advocate for cyber defense 

initiatives capable of operating at scale as M2M interactions need the ability to “automatically 

generate machine identities” (Moallem, 2019, p. 70) to mitigate the possibilities of compromise 

and exploitation.  Prevention of malicious software exploitations through the verification of 

machine identities takes on significance as cognitive IoT devices perform diverse societal 

functions such as monitoring hospital operating procedures, detecting weather pattern changes, 

connecting automobiles, and biometric identification where “data collected…may be processed 
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in real-time to improve the efficiency of the entire system” (Khan and Salah, 2018, p. 395).  Data 

preservation extends beyond the H2M and M2M transactional characteristics of social media or 

finances as data is the foundation through which humans can team with machines for basic 

human functionalities.  Identity-based symbiotic cybersecurity policies are a consideration that 

data is an asset of the IoT where the “proper implementation of authorization and 

authentication…ensures a secure environment for communication” (Khan 2018, p. 397). 

Limitations 

The study is limited to the use of unclassified, open sources of data.  No attempt to access 

or incorporate classified data or information related to malicious threat countermeasures or 

mitigation strategies, AI development plans or platforms, or US Intelligence Community-related 

threat monitoring and mitigation techniques are associated with the research design. 

Problem Statement 

 The IoT increases the probability of malicious cyber activities due to its persistent 

capabilities to retain, handle, and transfer substantial volumes of data and information that touch 

many data consumers, producers, and devices.  The continual propagation of cognitive machines 

increases the necessity of formulating cybersecurity policies that establish a shared 

understanding of what constructs digital identities, how attributes are created, and how those 

attributes are legitimized.  Digital identities are the virtual representations of entities interacting 

within the IoT (Naik and Jenkins, 2020), self-sovereign identities (SSIs) are an emergent concept 

where the data consumer is in control of their digital identities (Fedrecheski et al, 2020).  SSI is 

enabled through a verifiable credential (VC) architecture containing cryptographically signed 

documents with claims to the holder’s identity (Ishmaev, 2020).    
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The problem is that current US national cybersecurity policies operate on the principle of 

implicit trust that neither enables machines to verify their identities before a data transaction is 

initiated nor accounts for their behavioral intent.  Current network-based cybersecurity has 

created a fragmented policy approach, policy design, and implementation methodologies as 

organizations subjectively apply cybersecurity principles based on their specific technical 

architecture.  The US Government implemented the National Institute of Standards and 

Technology (NIST) Special Publication (SP) 800-63-3 as its foundational guideline for digital 

identities (NIST, n.d.).  SP 800-63-3 states that one of its primary limitations is that it “does not 

explicitly address device identity, often referred to as machine-to-machine…authentication or 

interconnected devices, commonly referred to as the internet of things (IoT)” (NIST 2017, p. 5).  

Not incorporating machines into the policy framework for digital identities means that humans 

must implicitly trust that the machines we are communicating (and exchanging data) with are 

legitimate.  It is this implicit trust that cyber threats are increasingly becoming more capable of 

exploiting as current policies do not recognize the social relationship existing between humans 

and cognitive machines (and between cognitive machines).  The results are policies that are 

highly technical but fail to account for either the behavioral or social dimensions of the IoT 

related to H2M and M2M interactions or the inability to translate physical characteristics of 

individuality into the digital world.  In the physical world, humans can provide proof of identity 

(for example, a driver’s license) as those credentials are based on the individual’s unique 

characteristics.  In the digital world, traditional public key infrastructure (or PKI) methodologies 

attempt to replicate the same.  These conventional methodologies utilize third-party Trusted 

Agents (TAs) to manage the issuance of digital certificates to facilitate the verification, 

authentication, and preservation of human digital identities.  Despite the individual user having 
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no control over the attributes of these digital certificates (Moreno et al, 2021), PKI offers a 

mechanism for human users to prove their individual distinctiveness within the digital space.  As 

cognitive machines lack individual distinctiveness, the IoT (as a conglomeration of H2H, H2M, 

and M2M interactions) risks increased exposure as malicious actors conduct illicit operations 

through identity-based exploitations targeting machine credentials in the same manner as 

humans.  The cognitive and social behavioral relationship present in HMT could benefit from a 

standard policy framework governing the construction of partner digital identities to preserve 

their attribution and legitimacy. 

Purpose Statement  

The purpose of this study is to postulate a design framework for symbiotic cybersecurity 

policies incorporating cognitive machine individualism to enhance the implementation of 

human-machine teaming (HMT) in the preservation of IoT integrity.  The academic contribution 

of this research project is the fusion of humanistic principles with IoT technologies that alters our 

perception of the machine from an instrument of human engineering into a thinking peer to 

elevate cyber from technical esoterism into an interdisciplinary field of public policy.  This 

impacts and disrupts future research paradigms (particularly in the public policy, behavioral 

sciences, social sciences, and cyber domain) as the IoT and adaptive modern technologies has 

enabled a potentially emergent concept of a machine society that is equal to (but independent of) 

human society.  The contribution to the US national cybersecurity policy body of knowledge is a 

unified policy framework (manifested in the human-cognitive machine symbiotic cybersecurity 

policy triad comprised of digital identity legitimization, trust and positive reputation, and ethical 

motivation) that could transform cybersecurity policies from network-based to entity-based.  

Imparting digital identity uniqueness for cognitive machines is an innovative cybersecurity 



25 
 

 
 

approach intended to reinforce the integrity of the IoT digital trust architecture by extending 

individualistic identity verification precepts.  The more expansive aspect of the problem set is to 

explore how cognitive machine SSI can enhance the cohesiveness of future cybersecurity 

policies as digital partnerships propagate through HMT concepts.  

Creating identity-based cognitive machine symbiotic cybersecurity policies is critical to 

transforming and modernizing cybersecurity and cyber defense strategies away from the 

traditional bastion approach.  Beyond serving as attributes of trust, digital identities are aligned 

with the concept of entitlements whose purpose is to execute technology policies (Haber, 2019).  

An entitlement “grants, resolves, enforces, revokes, reconciles, and administers…access, 

privileges, access rights, permissions, or rules” (Haber 2019, p. 37) and is a critical part of the 

governance process.  Data transactions and access in the IoT are centered on privileges and rights 

as these activities often take place outside the domain of control of any one organization or entity 

(Skilton, 2017).  The goals of identity-based cognitive machine symbiotic cybersecurity policies 

are to create a comprehensive governance structure that is adaptive across the multi-layered (and 

distributed) components of the IoT, establish an interdisciplinary cyber public policy paradigm 

accounting for human and machine agents, and form cyber defense strategies to ensure IoT data 

interactions are conducted between legitimate parties (organic and synthetic) that possess shared 

intent and values. 

Research Question(s) 

The principal research question (RQ1) and the supporting research question (RQ2) listed 

below were investigated: 

RQ1:  What are the important factors for the prevention of malicious software 

exploitation in the design of identity-based cognitive machine symbiotic cybersecurity policies? 



26 
 

 
 

RQ2: Why is cognitive machine SSI a contributor to cohesive cybersecurity policies? 

This study employed a quantitative, correlational archival data research design.  For RQ1, 

the frequency of malicious software attacks was the dependent variable and diversity of intrusion 

techniques was the independent variable.  For RQ2, the frequency of detection events was the 

dependent variable and diversity of intrusion techniques was the independent variable. 

Significance of the Study 

Research and the available literature indicate an increasing appreciation for the 

complexity of modern security dynamics and architectural requirements.  The nature of the 

malicious actor strains the abilities of cyber defenders to develop capabilities to prevent, 

mitigate, and remediate intrusions and data exploitations.  The IoT enables modern societies to 

generate more data content than in previous eras (Cheney-Lippold, 2017).  As data flows openly 

through the interconnected IoT networks (Cheney-Lippold, 2017), the risk is the complexity and 

scale of cyber defense techniques required to prevent, detect, or remediate illicit data 

exploitation, malicious alteration, or theft.  The IoT enables malicious actors to leverage 

technologies in a myriad of ways to organize, plan operations, and exploit vulnerabilities as the 

availability of data, coupled with the heterogeneous nature of the IoT, creates opportune attack 

surfaces since targeted data “contains real information about the owner, his actions, and the 

objects surrounding him” (Mustafaev and Buchaev 2020, p. 1).  Digital identities within the IoT 

have no unique definitions (Pal, 2018) as identities can be mapped to a single entity but “an 

entity can have more than one identity” (Pal 2018, p. 2), thus diluting the trustworthiness of 

individual digital identities as billions of devices are deployed across domains spanning home 

applications, metropolitan monitoring, healthcare, and the defense sector (Vaidya et al, 2020).  

Haber and Rolls (2019) identify the three logical pillars of cyber defense as identity, privilege, 
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and asset (Haber, 2019) where the failure to integrate the three as the foundational principles of 

cyber defense models and methodologies can result in a reduction of security effectiveness as 

“you need to have integrated data from all three pillars to be truly effective at dealing with 

modern threats” (Haber 2019, p. 3).   

Additionally, the connectedness of data and digital identities become essential as the IoT 

enables malleability in physical identities since digitization exposes people and machines to “a 

multitude…of ideas and principles” (Khatchatourov 2019, p. 10) that continuously influences 

how identity is defined in the physical world.  To counteract the modern malicious actor, cyber 

defense models must dynamically overcome the uncertainties associated with multi-stage attack 

vectors and multiple attack strategies (Xie, 2021).  Identity-based cognitive machine symbiotic 

cybersecurity policies recognize that non-human users can establish “multiple accounts, multiple 

credentials, and an infinite number of entitlements in its electronic format” (Haber 2019, p. 17) 

for H2M and M2M interactions.  These policies influence emergent cyber resiliency strategies 

and methodologies incorporating a multi-faceted approach for data and information 

confidentiality, availability, and integrity (Volchkov, 2018) as HMT creates a cognitive 

partnership with shared IoT responsibilities.  

This approach is further complicated as ML enables cognitive machines to independently 

scan and analyze the massive libraries of data in the IoT to “detect patterns that are outside the 

scope of human perception” (Dey et al 2020, p. 9).  Cognitive computing is measured in degrees 

of self-awareness based on the “capacity of autonomy, social capacity, and pro-activity that a 

computer system can have to generate knowledge about itself…and determine the actions that 

will be executed according to that knowledge” (Andrade and Yoo 2019, p. 3).  Machine 

cognition has altered the landscape of H2M and M2M interfaces as complex ML algorithms 
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increasingly enable the machine to think like humans do as “24.7% of all developers are 

engaging in building robotic apps and using machine learning in their projects” (Agarwal 2020, 

p. 193).  The IoT empowers cognitive machines but exposes them to trust and data exploitations 

inside and across automated functions as malicious actors increasingly deploy covert 

communication channels to “exploit legitimate services” (Steadman 2021, p. 1). 

Data and Information Security   

Standards and policies form the core of the strategic approach to secured digital 

environments as policies provide direction for applying technical solutions to mitigate risks. In 

contrast, standards establish shared understanding regarding the characteristics and attributes of 

those solutions.  Standards and policies are often the benchmarks for establishing quantifiable 

assessments for security measure effectiveness based on empirical information (Kang, 2020) so 

that data and information security could be considered business enablers and integral parts of 

business processes (Susanto, 2018).  Furthermore, standards and policies serve to enculturate 

data and information security as organizational responsibilities since malicious actors seek to 

exploit vulnerabilities by deploying techniques that “mimic normal business logic and rely on 

actions that respect social norms” (Berrada 2020, p. 401).  

Behavior-based Cyber Defense   

The coupling of AI and ML with behavioral science to create predictive analytics 

promotes using cognitive machines in behavior-based defense mechanisms to execute counter-

exploitation measures (Baksi, 2021).  The development of this kind of risk reduction model is 

predicated on the cognitive machine conceptualizing the variables of intrusion tactics and 

techniques and coupling them with the probability of detection so that it deploys defensive 

measures across the phases of an intrusion and exploitation attempt (Huang, 2020).  Counter-
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exploitation measures utilize techniques that include data mining (Moya, 2017), harvesting 

system logs to compare the statistical differences between the operational codes of malware and 

benign software (Shang, 2021), threat modeling for predictive measures across the security 

development lifecycle (Grimes, 2017), and continuous analysis of vulnerability information 

(Jiang, 2021) based on the massive libraries of data in the IoT (Jurcut, 2020). 

Public Policies and Cyber Ethics   

As societies continue to digitalize through the IoT (and the commoditization of data 

increases), there is a need to implement public policies strengthening cyber defense principles 

where users (both humans and machines) can retain control of their digital identities as malicious 

actors can masquerade as legitimate users through changing “attributes that define their identities 

to hide who they are” (van der Walt 2019, p. 563).  Effective IoT-related public policies are 

federated across different echelons of Government and must contain ethical considerations as the 

sum of its ecosystem encompasses technological innovation, users, and business processes.  

Ethical boundaries in the IoT carry risk as cognitive machines can manipulate data without 

enacting the permission consent process (Jahankani, 2020) so that distinctions between organic 

and synthetic entities become murky to the point where “bonds…can easily be construed as 

intimate” (Saetra 2019, p. 70).  The data storage mediums that house digital identities are causes 

of concern due to “security weaknesses, dubious data-sharing and surveillance ethics, and 

compromised privacy rights” (Sedlmeir 2020, p. 604) while the social aspects of the IoT enable 

companies to “use sophisticated data operations to encourage user engagement with their 

networks” (Bodinger-deUriarte 2019, p. 205) through the harvesting of mass datasets to create 

predictive models of user behaviors (Bodinger-deUriarte, 2019).  Ethical considerations within 

the IoT are of legal and philosophical significance as users leave digital traces of themselves as 
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part of the data transferal process where malicious actors can compile them to create 

comprehensive profiles for co-opting targeted systems through impersonation techniques using 

an unknowing user’s credentials (Misra, 2018). 

Implications for Biblical Integration   

2 Corinthians 4:6 states, “He has made us competent as ministers of a new covenant – not 

of the letter but of the Spirit; for the letter kills, but the Spirit gives life”; Scripture speaks to the 

power of a covenantal relationship with God as moral absolutism governs the mutual bonding 

between heaven and earth as the covenant is built on trust while Thomistic tradition stipulates 

that “the relationship between the human and the divine was one of participation” that “specified 

human participation in the divine in terms of the faculty of reason” (Pryor 2006, p. 235).  As 

beings divinely empowered with reason, we have free will to choose our paths in life including 

creating a secular definition of self as opposed to the Christian view of self that is anchored in 

the eternal nature of God’s law so that there is a “centralized locus of identity, decision making, 

and action that serves to bind the person into a whole” (Hill 2016, p. 70).  Identity-based 

symbiotic cybersecurity is an intertwined amalgamation of real-world and virtual influences built 

on implicit trust and faith expressed in seen in Luke 17:6, “He replied, “If you have faith as small 

as a mustard seed, you can say to this mulberry tree, ‘Be uprooted and planted in the sea,’ and it 

will obey you.  The IoT alters cybersecurity dynamism as cognitive machines have become 

socially integrated into modern societies.  Psalm 91:5 states, “You will not fear the terror of the 

night, nor the arrow that flies by day”; Scripture implores the protective powers of God as His 

knowledge enables understanding and the insight required to overcome the challenges of 

darkness in our lives. 
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Summary of the Significance of the Study   

Machine cognition and the social IoT replicates societal concepts which have significant 

influence on physical and digital world dynamics.  This quantitative study examined the complex 

nature of modern cyber threats to propose the establishment of cyber as an interdisciplinary field 

of public policy initiated through the creation of a symbiotic cybersecurity policy framework.  

Identity-based cognitive machine symbiotic cybersecurity policies support the interactions 

between the virtual and physical worlds as “the information transmitted…and exposed to the 

public is highly likely to be tampered with, stolen, and interfered with” (Li 2019, p. 1), 

particularly as the adaptative characteristics of malicious actors enable them to “modify and 

steal…sensitive data as well as…damage the target system” (Sharma 2017, p. 598).  The very 

definition of self might have to be re-evaluated as the digital self of machines starts to reach 

parity with the digital self of humans.  If cognitive machines truly become self-aware, then their 

social and behavioral connections with us and each other within the IoT requires that our 

cybersecurity policies transition from an implicit trust model to a verified trust one to preserve 

the integrity and legitimacy of digital exchanges.  The modern malicious actor represents a 

transition of the cyber threat from criminal mischief to a power projection platform that 

weaponizes data and data exploitation to achieve specified adversarial objectives.  Maintaining 

cohesive and persistent vigilance in the IoT requires an evolution of cybersecurity policies 

adapted for a behavior-based threat paradigm where malicious activities are hidden behind 

legitimate digital transactions and distributions, social media interactions, or camouflaged as 

disassociated cybercrimes.   
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CHAPTER TWO: LITERATURE REVIEW 

Overview 

In the Information Age, the IoT enables adversarial organizations (both stateless and 

state-sponsored) to leverage technologies in a myriad of ways to organize, plan operations, and 

gather sponsors and supporters.  Malicious threat actors fuse the art of adaptive human behavior 

with the science and tools of cyber intrusion for deliberate exploitation through the 

interconnected nature of contemporary societies.  These actors are disciplined entities that can 

dynamically scale based on continuous process improvement and are committed to thorough 

preparation and reconnaissance before executing an exploitation operation.  The first part of the 

literature review focused on human-machine concepts, architecture of the IoT, and the presence 

of artificial intelligence and machine learning.  The second part of the literature review focused 

on aspects of self-sovereign identities (SSIs) and some of the technical details involved in 

establishing SSIs.  The gap in the research body of knowledge is the cognitive pairing of humans 

and machines for cybersecurity where their digital identities are components of a common 

humanistic policy framework incorporating social and behavioral norms.  For humans to 

understand (and collaboratively work with) our machine partners, we need to expand the body of 

research into how our digital identities are mutually shaped both technologically and 

behaviorally. 

To map relevant literature, a set of keywords were defined to evaluate the literature in the 

proper context. The keywords chosen were a combination of cyber policy, human-machine, 

teaming, AI-enabled cybersecurity, artificial intelligence, Big Data, blockchain, correlational 

analysis, cybersecurity policies, data-centricity, data-centric security, data exfiltration, 

decentralized identifier, digital trust model, distributed ledger, identity-based cyberattacks, 
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Internet of Things, machine learning, self-sovereign identities, and verifiable credentials.  

ProQuest, the Jerry Falwell Library at Liberty University (www.liberty.edu/library), the Institute 

of Electrical and Electronic Engineers (www.ieee.org), and the National Institute of Standards 

and Technology (www.nist.gov) were the primary research and data repositories used to search 

for authored publications, scholarly journals, and technical reports.  The Falwell Library also 

accessed direct publisher sites such as Springer (www.springerlink.com) and O’Reilly 

(www.oreilly.com) for specific publications that the library URL would redirect towards.  The 

relevant literature spans the tenets of the IoT, the data-centric nature of digital identities, the 

paradigm of user-controlled digital uniqueness, and data theft mitigations.  

Conceptual and Theoretical Framework 

Theoretical Framework 

Self-determination Theory (SDT) is an “empirically based, organism theory of human 

behavior and personality development” (Ryan and Deci 2017, p. 3) examining the biological, 

social, and cultural conditions that enhance or undermine inherent human capacities (Ryan, 

2017) “for psychological growth, engagement, and wellness” (Ryan 2017, p. 3).  The three basic 

psychological needs of SDT are autonomy, competence, and relatedness (Ryan, 2017) where 

autonomy is the “need to self-regulate one’s experiences and actions” (Ryan 2017, p. 10).  Self-

endorsement characterizes autonomous behavior and aligns with the interests and values of the 

individual (Ryan, 2017).  SDT is applicable in the IoT as the persistent flow of data (and 

technological innovations) have enabled access to alternative worlds that “enhance or catalyze 

meaningful psychological experiences” (Ryan 2017, p. 509) to construct an alternative, digital 

identities based on motivational need or intent rather than physical attributes.  This motivational 

element characterizes the nature of cognitive machines as they are brought online to fulfill 
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specific needs, wants, or objectives on behalf of a physical world increasingly dependent on the 

virtual one whose “design features, narratives, feedback, and goal structures…afford multiple 

and potent need satisfactions” (Ryan 2017, p. 511).  The IoT facilitates behavioral relatedness as 

humans can connect with or feel helped by (Ryan, 2017) cognitive machines.  Innovative 

applications such as Alexa or Siri have revolutionized how humans relate to their devices to the 

point where humans refer to these cognitive machines in the first person; modern societies that 

are connected to the IoT have adopted the cognitive machine as interactive partners that either 

directly or indirectly influence the intrinsic motivation of humans in the physical world.  The 

increased cognition and operational autonomy of machines pivot the application of SDT towards 

the identification and assessment of intra-system and inter-system influences on machine 

behaviors as these technologies collect, process, and digest data to assemble their own digital 

identities, enable adaptive support to daily routines, and facilitate ML so that machines can 

operate independently of human input.  Cognitive machines sense and comprehend their 

environments through passive and active interaction with data analogous to play activities 

characteristic of animal.  Those activities expand “competencies and capacities” (Ryan 2017, p. 

123) through exploration and manipulation of things as part of cognitive development. 

Cognitive Evaluation Theory (CET) is a subset of SDT postulating that negative 

experiences to an individual’s sense of autonomy and competence will diminish intrinsic 

motivation (Ryan, 2017) while positive experiences of the same “will enhance intrinsic 

motivation” (Ryan 2017, p. 124).  As CET is focused on the context of relational security (Ryan, 

2017) that is enhanced through “a sense of belonging and connection” (Ryan 2017, p. 124), it 

translates into cognitive machines behaviorally interacting and influencing each other through 

their connections in the IoT.  ML algorithms “learn from data and improve from involvement 
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without any human intervention” (Agrawal 2020, p. 190) to the degree that multi-agent learning 

has enabled machines to collaboratively build more complete learning models together than what 

a single machine could produce “based on knowledge of autonomy” (Agrawal 2020, p. 194).  In 

this example, the collaborative machines “distinguish catalogs and data sets, emphasize mutually 

sensed data, and edit the mistakes in the data” based on an intent to adapt to a changing 

environment (Agrawal, 2020).  Advancements in ML have led to the application of deep learning 

that involves “the training of large artificial neural networks” (Agrawal 2020, p. 187) that permit 

machines to imitate human motion, self-navigate, collaborate through automation, conduct self-

recovery without human intervention, and perform self-repair (Agrawal, 2020).  Cognitive 

machines express autonomous behavior that is reflected in their ability to adapt to external 

stimuli, form problem-solving cooperative teams, and communicate with each other without 

human prompting; ML is transitioning the machine from an industrial tool under human control 

to a self-actuating partner within human societies capable of expressing autonomous self-

motivating behaviors.  Strengthening (and preserving) the digital identities of humans and 

machines in the IoT is a positive reinforcement contributing to an increase in the trust model as 

users gain confidence in the reputation, integrity, and resiliency of the technology ecosystem.  

This positive reinforcement aids in the mitigation of IoT authentication ambiguity stemming 

from “the lack of precision in the information regarding the subject requesting to authenticate in 

the system” (Dehghantanha and Choo 2019, p. 65) as the profile of a subject’s successful and 

unsuccessful access requests (Dehghantanha, 2019) is a “metric to calculate its trust value” 

(Dehghantanha 2019, p. 65).  The more times a subject can legitimately authenticate their 

identities in the IoT, the higher their trust value in a reputation-based engine as it is formed 

through “cumulative knowledge about the past behavior of a subject” (Dehghantanha 2019, p. 
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65).  Negative reinforcement (in the form of digital and data exploitation) has the opposite 

impact as it diminishes the perceptions of digital autonomy and competence.  CET contributes to 

behavioral assessments as the perception of free choice partly influences individual motivation.  

Interactions within the IoT are an aggregation of individual activities mimicking interpersonal 

and intrapersonal processes in the physical world facilitated through data transference, which is 

the core of H2H, H2M, and M2M interactions.  The cleanliness of data impacts the behaviors of 

cognitive machines as compromised or corrupted data can either degrade the machine’s 

functionality or expose it to malicious actor exploitation.  Identity-based cognitive machine 

symbiotic cybersecurity policies reflect the growing connections between social behavioral 

models and technical governance as machines have become collaborative (and communicative) 

partners due to the IoT. 

Conceptual Framework   

The IoT enables malicious actors to exploit and weaponize data in a disciplined manner 

where their attacks and intrusions are increasingly executed according to the phases of the cyber 

kill chain.  Those phases are reconnaissance, weaponization, delivery, exploitation, installation, 

command and control (C2), and actions on objectives (Ju, 2020).  The digitalization and 

datafication aspects of the IoT extend the adversarial characteristics of human behavior into the 

virtual environment; this behavioral element is a critical point of consideration as malicious 

actors are increasingly professional in executing intrusion tactics and techniques based on the 

intended accomplishment of organizational strategic objectives rather than operating as random 

isolated pockets of criminality.  The People’s Republic of China (PRC) case and its sponsorship 

of malicious actor groups lend relevance to this supposition as the patterns of behavior associated 

with these groups are linked to Chinese geostrategic objectives.  The perspective of the Chinese 
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Communist Party (CCP) is that disparities in cyber capabilities prevent the PRC from “achieving 

information dominance and denying adversaries the use of the electromagnetic spectrum” (DoD 

2020, p. 61) necessitating the seizure of strategic initiative (DoD, 2020) to enable the PRC to 

return “to a position of strength, prosperity, and leadership on the world stage” (DoD 2020, p. 9).  

Modern cyber defenders must establish a basis for behavioral pattern analysis to formulate 

detection models to shorten the persistence of malicious intrusion activities and lessen the 

harmful impacts on targeted digital environments.  Coupling behavioral analytics with federated 

identity management establishes a baseline “through patterns or fingerprints” (Martin 2021, p. 1) 

where those fingerprints are assessed against specified user credentialing policies for 

authentication (Martin, 2021).  Identities are an expression of self whose integrity is analogous to 

a “person’s uniqueness or individuality which defines or individualizes him as a particular 

person and thus distinguishes him from others” (Kulhari 2018, p. 29).  In the IoT, a cognitive 

machine occupies the same echelon of stringent trust-based credentialing and access 

management governance (with similar policy structures) as human users.  The decentralized and 

distributed nature of the IoT possesses native cybersecurity vulnerabilities since its public 

architecture makes data “accessible to various organizations and domains across the Internet” 

(Khan 2020, p. 10).  IoT devices operate in environments that “make data integrity a concern” 

(Khan 2020, p. 10) due to the lack of an assured governance structure managing the 

authentication and verification of user identities.  Preventing malicious software exploitations 

requires cybersecurity policies providing governance and business process consistencies to 

ensure shared understanding regarding the mechanics of creating digital identity protocols and 

the inheritance of trust.  Implementing these policies is a data-centric enabler of digital 

fingerprinting to establish unique characteristics that regard the cognitive machine as an equal 
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partner in cybersecurity rather than a tool.  The ease of IoT data-sharing necessitates this change 

in perspective as HMT creates an equal partnership between humans and cognitive machines 

within the IoT. 

Significance of the Concept   

The IoT represents a complex technical and behavioral ecosystem digitally replicating the 

social dynamics of the physical world.  Enhanced AI and advanced ML are enabling the 

cognitive machine to establish a presence bordering on individual personas where H2M and 

M2M communication resembles human sociological constructs.  Current cybersecurity policies 

are highly technical and contain minimal to no considerations for the influence of machine social 

dynamics as the machine (cognitive or otherwise) is considered an instrument or tool rather than 

an independent thinking partner.  Identity-based cognitive machine symbiotic cybersecurity 

policies are a proposed shift to an interdisciplinary approach to cybersecurity policy design 

coupling technical methodologies with behavioral (and social) sciences to leverage HMT for 

cybersecurity purposes.  Human-cognitive machine digital identities should be constructed (and 

secured) through shared understanding that HMT partners must be able to distinguish each other 

within the IoT data landscape.  Prevention (or mitigation) of data tampering and illicit harvesting 

is actualized in the IoT through the cooperative power of the HMT and the strengths of each 

partner. 

Cognitive machine SSIs are a countermeasure for data tampering via the exploitation of 

legitimate digital identities.  The SSI permits cyber defenders (humans and machines) to pinpoint 

alterations in data elements and crosswalk those alterations back to the source.  Bhattacharjee 

(2018) postulates that the convergence of the physical and cyber worlds “translates to managing 

operations thousands of miles away, preventing critical machine failures through proactive 
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detection and remediation, digitally tracking the supply chain, providing elderly care remotely, 

and many similar use cases” (Bhattacharjee 2018, p. 11) where the IoT creates an ever-present 

attack surface that has become increasingly multi-vectored and multi-layered.  As data is the core 

of the IoT, cybersecurity policies must concatenate cyber defense mechanisms and processes to 

govern humans and machines within the same paradigm so that “relevant legal and ethical 

requirements…to guarantee the delivery of trustworthy decisions” (Janssen 2020, p. 1) are 

applied. 

SolarWinds SUNBURST as a Historical Example 

In December 2020, the cybersecurity firm FireEye posted a public notification blog that 

detailed a sophisticated attack gaining unauthorized access to the organization’s custom security 

testing tools (Seljan, 2020).  Through the subsequent analysis and remediation process, multiple 

incident responders discovered a complex malware hiding inside a software suite from 

SolarWinds Corporation (a developer of IT management software and services) executing a 

global digital supply chain exploit leveraging “the update mechanism of its Orion platform to 

deliver a backdoor Trojan tracked as SUNBURST” (Seljan 2020, p. 86).  SUNBURST illustrates 

the vulnerabilities associated with the interdependent nature of the IoT as the complexity of its 

digital environment requires that a user “trust the vendor of the operating system running on our 

machine” (Seljan 2020, p. 87) as software updates are automatically installed and security tools 

operate with privileged access to sensitive data and functions.  In a digital supply chain exploit, 

malicious actors attempt to “damage government agencies and economic operators by targeting 

elements at any levels in their supply chain” (Seljan 2020, p. 87) particularly if the vendor or 

software developer is trusted.  In a separate incident, Cisco Systems (a multi-national 

conglomerate with an extensive technological product and services portfolio) revealed that their 
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popular CCleaner software (used for routine system maintenance) was installed 2.27 million 

times before Cisco discovered a malicious payload buried within its code (Seljan, 2020) that 

severely impacted its customer base.  The SUNBURST backdoor was deployed through a routine 

update with a digitally signed dynamic link library (DLL) module that was “loaded by the 

legitimate SolarWinds.BusinessLayerHost.exe of the Orion Platform software” (Seljan 2020, p. 

90) that enabled the trojan to communicate with third-party servers and run during legitimate 

inventory checks (Seljan, 2020) with a specified targeting profile.  After confirming that the 

victim machine was connected to a domain, SUNBURST generated a unique identifier for the 

victim and invoked an update loop that established a beacon between the victim and the 

malicious actor’s command and control servers (Seljan, 2020) that permitted “internal 

reconnaissance, persistence, and data exfiltration” (Seljan 2020, p. 91).  The malware was so 

sophisticated that it masqueraded its beacon as legitimate network traffic, conducted data storage 

with original configurations to blend in with application activities, and autonomously utilized 

“extensive blocklists to avoid forensic and anti-virus tools” (Seljan 2020, p. 91).   

To further complicate circumstances with SolarWinds, FireEye analysts uncovered a 

secondary malware (tracked as SUPERNOVA) during their investigations into SUNBURST.  

SUPERNOVA is unrelated to SUNBURST but is a similar persistent backdoor trojan that 

enables “on-the-fly compilation and in-memory execution of arbitrary.NET code” (Seljan 2020, 

p. 92) that malicious actors supplied through remote access to trick the victim machine into 

executing malicious codes (Seljan, 2020).  SUPERNOVA was injected through an authentication 

bypass vulnerability within the Orion Platform where a malicious actor could use remote access 

to execute commands that tricked the Orion server into processing a request “without requiring 

authentication” (Seljan 2020, p. 93).  During their technical analysis, the cybersecurity firm 
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CrowdStrike discovered the SUNSPOT malware that was the vehicle used to covertly inject 

SUNBURST into the Orion Platform (Seljan, 2020).  SUNSPOT monitored the compilation 

processes of infected machines running the Orion Platform and smuggled SUNBURST through a 

source file replacement (Seljan, 2020) so that the “code was properly inserted and remained 

undetected” (Seljan 2020, p. 93).  Aside from autonomously extracting command line arguments 

to discover directory paths within Orion, SUNSPOT also could add an MD5 hash verification 

check “to ensure compatibility with the original source” (Seljan 2020, p. 94) so that the source 

code looks unaltered despite the inclusion of the SUNBURST trojan.  Though the true impact of 

SUNBURST is still under continuous assessment and analysis, it serves to reinforce the 

importance of identity-based cyber resiliency paradigms as the IoT enables complex autonomous 

malware to exploit the persistence of the digital environment through the routine processes that 

modern societies have come to trust as part of normal technological functions. 

Definitions 

 Terms deemed critical to facilitating understanding within the current study are defined 

along with potentially unfamiliar or ambiguous terms. 

1. Decentralized Identifiers - A globally unique persistent identifier that does not require a 

centralized registration authority and is often generated and/or registered 

cryptographically (W3C, n.d.)  

2. Distributed Ledger - A non-centralized system for recording events (W3C, n.d.) 

3. Identity - A set of attribute values (i.e. characteristics) by which an entity is recognizable 

and that, within the scope of an identity manager’s responsibility, is sufficient to 

distinguish that entity from any other entity (NIST, n.d.) 
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4. Internet of Things (IoT) - A network of devices that contain the hardware, software, 

firmware, and actuators which allow the devices to connect, interact, and freely exchange 

data and information (NIST, n.d.) 

5. Non-person Entity - An entity with a digital identity that acts in cyberspace but is not a 

human actor.  This can include organizations, hardware devices, software applications, 

and information artifacts (NIST, n.d.) 

6. Person Entity - A person or entity with authorized access (NIST, n.d.) 

7. Representation - Information that is intended to reflect a past, current, or desired state of 

a given resource, in a format that can be readily communicated via the protocol, and that 

consists of a set of representation metadata and a potentially unbounded stream of 

representation data (W3C, n.d.) 

8. Self-sovereign Identities - Identity which a user has control over without having to use a 

central network (W3C, n.d.) 

9. Universal Resource Identifier - A uniform resource identifier, or URI, is a short string 

containing a name or address which refers to an object in the “web” (NIST, n.d.) 

10. Verifiable Credential - A standard data model and representation format for 

cryptographically verifiable digital credentials (W3C, n.d.) 

Related Literature   

Cyber Policies 

 Yi (2023) expounds on the concept of the “human-centeredness” theory (Yi, 2023) of 

public policy where the human controls “the policy world with the aid of his policy capacity…to 

create and deliver public policy” (Yi 2023, p. 116).  This perspective of “human-centeredness” is 

predicated on the idea that “human belief and cognition…have been used to determine what 
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methods are sensible and reasonable” (Yi 2023, p. 9).  Human cognition drives the formulation 

of public policies and their associated disciplines as humans have long been the sole cognitive 

actor based on mankind’s “intellectual and physical commanding power and dignity” (Yi 2023, 

p. 143).  The digital public square (facilitated through the IoT) is a technological manifestation 

of self-expression as “an inalienable right encompassed within the liberties bestowed unto 

citizens in a democratic society” (Fowler and Maranga 2022, p. 54).  This capability to self-

express lies at the intersection between cyber and public policy as the ability to preserve the free 

flow of digital data and information influences cybersecurity public policies on a global scale 

(Fowler, 2022).  Margetts et al (2021) state that that goal of public sector policymaking is “to 

influence social behavior and shape the world outside” (Margetts et al 2021, p. 163).  As 

“technologies are completely intertwined with every act of authority” (Margetts 2021, p. 165), 

policies related to the digital world must account for the sociological dynamics that form the core 

of public policy designs and intent both for the social IoT (which include cognitive machines) 

and the influence of the IoT on the physical world.   

Transition from “human-centeredness” 

 Yi (2023) argues that humans are one set of actors that reside in “a society of symbiosis 

between humans and non-humans” (Yi 2023, p. 118) when it pertains to the modern world that 

we reside in.  This human-centric approach to public policies isolates cyber to technical 

practitioners as the issues “first require physical world insight to be developed and…codified 

social science knowledge of that aspect has yet to catch up to and inform the technological 

imperatives” (Austin 2021, p. 103).  Cyber (the IoT specifically) is a complex socio-technical 

system (Austin, 2021) that challenges our perception of human cognition being the foremost 

influence on policies that govern the conditions, function, and relationships within the digital 
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world.  Austin (2021) expounds that “the social mechanisms of disseminating knowledge have 

become profoundly disturbed by the information age” (Austin 2021, p. 124) as current policies 

do not account for the socio-political context of cyber activities nor the effects of influence, 

persuasion, and manipulation (Austin, 2021) in the digital world.   

Human-Machine Teaming 

 Human-Machine teaming (HMT) is a paradigm shift in the relational and social 

interactions between humans and machines as digital entities within the IoT.  Foundationally, 

HMT is the “efficient and effective integration of humans with complex machines” (Ozkaya 

2020, p. 4) where both parties are equal participants in the relationship.  As technological 

innovations continue to expand the capabilities of machine learning, humans are increasingly 

collaborating with machines as intelligent partners (Schadd et al, 2022).  In the IoT, members of 

an HMT share the same data and information processing capabilities though each member has 

different degrees of intelligence and background awareness of the other’s activities (Schadd et al, 

2022).  These degrees of difference prompt the necessities of communication and 

interdependence between the physical and digital worlds as effective HMT is reliant on the 

replication of human social constructs adapted for the IoT.  The motivations for HMT are driven 

through “the need to make decisions faster, more accurately, and more safely than can humans 

alone” (Lawless 2022, p. 3).  The IoT increases the speed of data transactions, that when coupled 

with its voluminous libraries, exceeds the cognitive processing capabilities of humans.  HMT is a 

pairing of the cognitive capabilities of humans and machines for the purposes of achieving 

common purposes and goals. 

Interdependence 



45 
 

 
 

 One of the prevalent misconceptions of HMT is that the machine is present to 

compensate for human limitations with the intent to replace the human (Johnson and Vera, 

2019).  Technologies in the IoT function best when paired with human social constructs and 

processes as this interdependency requires “the knowledge of the coordination needs and 

possession of the mechanisms by which to achieve coordination” (Johnson and Vera 2019, p. 

19).  Communication, collaboration, and coordination underpin the cognitive architecture of the 

HMT as the concept is more than a technological pairing between the physical and digital 

worlds.  A cognitive architecture carries “theories of psychology and understanding of 

intelligence” (Sun 2020, p. 19) where the basis of how the human mind learns from experiences 

and manifests motivations are translated into data equivalencies so that the machine can 

participate in equal partnership.  The behavioral science aspect of cognitive architecture implies 

that cognitive machines can not only exceed their original programming, but that software design 

must account for human traits such as ethical (and moral) frameworks into technological 

engineering and programming.  In HMT, the cognitive machine is in possession of agency 

defined as “the capability and authority to act autonomously in support of one’s teammate” 

(Lyons and Wynne 2021, p. 2).  This is a critical component as it stipulates that neither partner in 

an HMT conducts actions that are detrimental, nor adverse, to the other.  Trust then becomes the 

anchor determining the feasibility of the HMT model. 

Trust 

Trust represents the fundamental aspect of managing the complex relationship within an 

HMT (Sapienza et al, 2022) as technological entities could possess a wide range of 

characteristics defining their trustworthiness (Sapienza et al, 2022).  Trust dynamics are 

predicated on the ability of each member to communicate effectively with each other and the 
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strength of their relationship.  Aside from sharing the belief that both partners in an HMT are 

performing in the interest of the other, trust also involves the “willingness to admit mistakes and 

accept feedback” (Demir et al 2021, p. 696).  This implies that the cognitive machine does not 

simply accept human input (in the form of task requests) and return an output but that it is an 

interactive partner with shared interests, experiences, and capacities as its human partner.  It is 

through those shared traits that the HMT learns to function as a singular entity within the IoT as 

“the next generation of software-intensive systems will be taught instead of programmed…” 

(Michael 2021, p. 106).  Applied social behavioral models for the cognitive machine becomes an 

imperative as increasingly complex machine learning algorithms could create future 

circumstances where the machine “develops subjective states that allow them to monitor and 

report on their interpretations of reality” (Lawless et al 2019, p. 8).  Social behavioral models 

(particularly those related to morals and ethics) gain prominence as we consider that trust in a 

unified HMT is contextualized when the machine learns both what it is supposed to do and “what 

its human teammate is supposed to do” (Lawless et al 2019, p. 9).   

Trust dynamics is researched in two HMT use cases from the works of Henry et al (2022) 

and Ganesh (2020).  Henry et al (2022) investigated the adoption of ML for clinicians to improve 

upon the standardized clinical case decision-making process.  Specifically, their research 

theorized that barriers to the adoption of ML for clinical purposes are due to the “struggle to 

develop trust with ML-based systems” (Henry et al 2022, p. 1) and the perception that ML 

cannot add value to human expertise (Henry et al, 2022).  The authors stipulate that where 

clinicians found success in incorporating cognitive machines were situations where the machine 

was not a tool or automation but a partner (Henry et al, 2022).  Providing better quality care and 

case decisions with cognitive machines came about when clinicians learned to leverage the 
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strengths of both HMT partners (Henry et al, 2022).  The use case is relevant for this study as 

identity-based cognitive machine symbiotic cybersecurity policies are designed from a partnering 

perspective where HMT partners collaborate (and communicate) to secure the IoT specifically if 

partners can recognize and distinguish each other’s digital identities.   

Ganesh (2020) investigated the social, cultural, and philosophical aspects of autonomous 

vehicles and their relationship with human drivers.  The author stipulates that autonomous 

vehicles are “distributed data infrastructure running AI technologies” (Ganesh 2020, p. 2) that 

are in-partnership with their human counterparts and that errors in driving are due to lack of 

communication and coordination in handing over driving responsibilities between the human and 

the machine.  The core premise of the research is that there is a philosophical difference between 

automation and autonomy as the autonomous vehicle resides in a “cognitive, data-based state” 

(Ganesh 2020, p. 4) with metrics, heuristics, algorithms, and quantifications of “human affects 

and bodies” (Ganesh 2020, p. 4) associated.  The author argues that increasing the safety of 

autonomous vehicles means investigating the social aspects that exists between the cognitive AI 

and the human driver where the partner pair understand how the other acts and thinks to avoid 

confusion and potential conflict during the act of driving.  The use case is relevant for this study 

as an example of the modern social dynamism that exists between the physical and digital worlds 

as cognitive machines can interact with their human partners through a physical medium.  The 

IoT is present within autonomous vehicles as part of their cognitive state is enabled through 

internet connections.  These vehicles have digital identities as the car itself is simply a chassis (or 

“skin”) that wraps around the cognitive machine’s true self which is the AI underneath.  As 

cognitive machines become ubiquitous in the physical world, identity-based cognitive machine 

symbiotic cybersecurity policies gain a different degree of prominence to prevent (or mitigate) 
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the possibilities that malicious threats can illicitly conduct operations through physical devices or 

sabotage their physical functions.  

The Internet of Things (IoT)   

 The IoT is a concept of data and information sharing with an evolving family of 

technologies and practices to handle, analyze, and automate the connected digital ecosystem 

(Tsiatsis, 2018).  Fundamentally, data sits at the center of its multi-layered, multi-component 

architecture that “can be seen as a dynamic distributed network of smart things to produce, store, 

and consume the required information” (Iqbal et al 2020, p. 4) functionally enabled through data 

creation, communication, aggregation, and analysis (Iqbal et al, 2020).  Data connectedness 

powers the IoT as the expanding reach of wired and wireless networks creates user communities 

across human societies requiring innovative approaches to technical infrastructure that 

incorporates an increasing reliance on automation.  The transformational effect of digital 

technologies has a societal impact as automation becomes smarter, self-sufficient, and an active 

participant in data exchange through H2M and M2M interactions.  The algorithms of the IoT 

digitize the concept of self that impacts the “who” and “how” societies interact as contemporary 

users are comfortable conferring with their smartphones and self-driving cars, collaborating 

through social media software applications, and utilizing virtual reality devices where the 

interaction is dependent on data transactions.  The digitalization of modern societies has led to 

the creation of cyber-physical systems integrating physical and computing domains (Aloqaily et 

al, 2022) where “emerging technologies will disrupt for good or ill how we live, work, and even 

think” (Bloom 2020, p. 4) as humans continue to incorporate cognitive machines into their 

routine activities.  Whether it is a dependence on a social media platform to monetize human 

interaction, propagation of a cloud environment to connect users to their data anywhere in the 
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world, or using digital assistants to navigate, translate, or execute “hands-free” device 

functionality, the IoT is an element of modern societies that have embraced its ubiquitous nature.  

As the digital world melds with the physical, modern cyber defense must embed security into 

every facet of the IoT environment as Alenezi et al (2020) explain that the current evolutionary 

cycle of malware has witnessed its transcendence into weaponized platforms focused on virtual 

espionage (Alenezi, 2020).   

Artificial Intelligence 

Contemporary human actions and cultural practices take place within the “context of 

complex, powerful technological and social systems” (Elliott 2019, p. 49) as digitization is 

auspiciously replicated to create a digital data economy intertwining over 3 billion people 

(Elliott, 2019).  The rising tide of automation and AI is both transformative and disruptive as the 

promises of innovation, productivity, and economic growth through the digital revolution 

(Elliott, 2019) are counterbalanced by a datafication effect where who we are is “made, read, 

interpreted, and intelligible according to data” (Cheney-Lippold 2017, p. 32) that is prone to 

external influences of subjectivity.  Maleh et al (2021) define AI as “any system perceiving its 

environmental state and taking action to increase its chances for success” (Maleh et al 2021, p. 

17) whose evolution is due to “large-scale development and knowledge generation through 

sensing systems, IoT devices, social media, and web applications” (Maleh 2021, p. 5).  The 

market potential of AI is estimated to reach $13 trillion by 2030 (Maleh, 2021) and is intimately 

linked to data as ML grants the AI “the ability to learn automatically and gain experience without 

pre-programming” (Sinha 2019, p. 117) as the AI concentrates on data that needs to be accessed 

to make the system learn on its own (Sinha, 2019).  The datafication effect and the propagation 

of ML are what enable automation to scan, process, and analyze the massive amounts of created 
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data as societies continue to become digital (Dey, 2020).  ML and the IoT converge in the field 

of data analytics as ML-based algorithms process the massive volumes of raw data in the IoT 

through “data aggregation, data summarization, mathematical logical operations, data mining” 

(Adi et al 2020, p. 16207) to create actionable insights through analytical modeling as ML 

techniques can support continuous assessment of vulnerability data sources to manage the burden 

of analyzing vulnerability information (Jiang, 2021).   

Security Challenges 

As the IoT is not a monolithic construct, the data that traverses it must navigate through a 

multitude of nodes to reach its destination; each node must maintain the proper encryption 

capabilities and mechanisms (Khan, 2018) to ensure its confidentiality.  Yet, due to the diverse 

nature of the IoT, “data stored on a device is vulnerable to privacy violation by compromising 

nodes” (Khan 2018, p. 397) as each component (and the data itself) presents a potential attack 

surface for malicious actors.  Vadiya et al (2020) note that “dependability is an essential property 

of IoT devices” (Vadiya 2020, p. 189) due to the presumed trust inherent within the IoT that 

devices and their transmitted data are legitimate.  Yet, as malicious actors have cloned or 

counterfeited devices (Vadiya, 2020) to function in place of legitimate ones for illicit operations, 

it becomes imperative that modern cyber defense techniques account for the identities of the 

devices and systems forming the core of the H2M and M2M data interactions.  Cirani et al 

(2018) summarize the security challenges within the IoT as the unauthorized cloning of smart 

objects, malicious substitution of smart objects during installation, firmware replacement, 

extraction of security parameters, eavesdropping, man-in-middle cyberattacks during data 

exchanges, routing attacks, denial-of-service attacks, and privacy threats (Cirani, 2018).  Across 

the spectrum of IoT devices, the availability of computing resources and degree of power 
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consumption constrains the implementation of “traditional security mechanisms such as 

SSL/TLS” (Mustafaev 2020, p. 1) thus triggering the need to become more innovative in identity 

verification to ensure reliability.  As identity can be considered the sum of attributes (Pal, 2018), 

an innovative approach is to consider the partial identities of each component attribute as a 

source of unique identifiers that would link together to “create an identity model that serves 

applications and policy specification needs” (Pal 2018, p. 50).  This aggregation model is 

analogous to the physical identities of humans as an aggregation of characteristics associated 

with our hair, eye, and skin colors plus height and weight.  An aggregation model for assembling 

digital identities reflects how DIDs are an attribute inside the credential metadata of VCs as the 

unique identifier is aggregated with other characteristics unique to cognitive machines so that the 

VC is a compilation of multiple data fields comprehendible to other cognitive machines in M2M 

exchanges.  VC is a composite architecture for the cognitive machine much like how a driver’s 

license is a composite of the unique traits identifying a human in the physical world.  Identity-

based symbiotic cybersecurity policies must account for the unique identifying traits of cognitive 

machines.  In the IoT, these traits are expressed as data and data attributes thus circling back to 

the primacy of data and how malicious actors seek to exploit them. 

The requirement for innovation extends to virtualized infrastructure as cloud computing 

gains prominence as an IoT enabler.  The National Institute of Standards and Technology defines 

the cloud as a “model for enabling ubiquitous, convenient, on-demand network access to a 

shared pool of configurable computing resources” (Mitra and Gofman 2016, p. 246).  The 

backbone of the cloud is the virtual machines that can run multiple operations on a single 

physical machine while sharing “all hardware resources” (Sinha 2019, p. 26).  Virtualization 

carries risk as the hypervisor (which is the logical bridge connecting the virtual machines to their 
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physical hardware) is a single point of failure from a security perspective (Sinha, 2019) as 

malicious actors can hijack a hypervisor to “acquire complete control of a server” (Sinha 2019, 

p. 26).  These intrusion techniques are based either on the acquisition of legitimate credentials or 

the forging of the same that malicious actors use to conduct their initial reconnaissance of a 

target environment specifically through the monitoring of data flow to determine systemic 

ingress points. 

Big Data and Cybersecurity 

Traditional approaches coupled with human analytics are unable to manage the complex 

dynamics of the modern IoT (Rawat et al, 2021) as the enormity of the data landscape makes it 

difficult to know (much less mitigate) the threat (Rawat, 2021).  A critical aspect in defining the 

IoT as an innovative paradigm is the smartness of its “services and applications where devices 

are capable of automatically capturing data for analysis” (Chae 2019, p. 3).  This elevates the 

need to maintain confidence as “the necessity to identify (and eventually trust) who we interact 

with” (Moallem 2019, p. 51) will continue to grow as the IoT continues to propagate.  The 

increasing smartness of the IoT creates unique security vulnerabilities as its interconnected 

devices and digital objects “have the ability to transfer data over a network without requiring 

human-to-human or human-to-computer interaction” (Mahmood 2018, p. 19) as digital 

transformation takes traditional processes and integrates them with automated data flows to 

create intelligent information and operational technologies (Moller, 2020).  It is estimated that 

the total volume of digital data increased to “40 trillion gigabytes in 2020” (Ullah & Babar 2022, 

p. 1) and the amount analyzed “jumped from 0.5% in 2012 to 37% in 2019” (Ullah 2022, p. 1) 

with 97.2% of contemporary organizations investing across the spectrum of big data architecture 

(Ullah, 2022).  The concept (and lingo) of big data continues to be enculturated into 
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contemporary societies as Internet capabilities are extended through terrestrial cellular networks, 

satellites, and underwater telecommunication cables.  The extension of the internet enables the 

ease of data transference residing at the core of the IoT necessitating the requirement to secure 

both the devices producing and consuming data and the “nodes through which the data is 

transmitted or stored” (Mahmood 2018, p. 23). 

Big Data Analytics 

Big data is the nomenclature that permits an organization “to have access to a large 

amount of information, normally unstructured” (Maleh 2019, p. 52) which it previously did not 

have the capability (or capacity) to access.  Big data represents a fundamental shift in how 

societies (and organizations) collect and use information where the interconnectivity of the IoT 

combines data processing capabilities with rapid analytical velocity (Maleh, 2019).  This 

combination has steadily eroded the effectiveness of passive cyber defenses that include virus 

detection, firewalls, patches, and threat detection (Wang and Jones, 2021) in favor of active 

defenses synchronizing real-time capabilities to accomplish “detection and forensics, deception, 

and attack termination” (Wang 2021, p. 410).  The estimated 4.57 billion users connected to the 

Internet generate over 2.5 quantillion bytes of data daily (Alani, 2021) where “Instagram users 

upload an average of 95 million photos and videos per day” (Alani 2021, p. 85), Facebook 

publishes 510,000 comments an hour (Alani, 2021), and 156 million email messages are sent 

every minute (Alani, 2021).  Traditional cybersecurity methodologies are state-based 

mechanisms and techniques focusing on the "current state of a system and how to maintain it" 

(Alani 2021, p. 86) as those systems are generally self-contained entities with known baseline 

characteristics and capabilities.  Data as a threat vector is a phenomenon of the IoT due to 

volume and velocity as malicious actors can exploit its persistency and presence as a core 
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enabler of modern smart environments.  Big data analytics attempts to use “advanced analytic 

techniques…to uncover hidden patterns, unknown correlations, market trends, customer 

preferences, and other useful business information” (Savas and Deng 2017, p. 4) as active cyber 

defense techniques tend to gravitate towards predictive analysis through data aggregation to 

create threat intelligence “that helps broaden situational awareness, minimize cyber risk, and 

improve incident response” (Savas 2017, p. 12).   

Big data analytics supports the detection and prevention of malicious threats through the 

classification, based on semantics, of disparate data collected from multiple sources to create 

comprehensive linkages (Angin et al, 2019) as detecting variances in the patterns of data is 

foundational to modern IoT resiliency.  This methodology enables the preparation, cleansing, 

and querying of “heterogenous data with incomplete and/or noisy records” (Rawat 2021, p. 

2057) so that humans can make sense of it.  Malicious actors operating in the IoT can exploit its 

public nature to exfiltrate data as public resources and anonymous networks provide non-

attributional techniques for them to “protect the final destination of the data” (Borges 2021, p. 

199).  Big data analytics is a pivot of contemporary cyber defense paradigms acknowledging the 

critical role that data inhabits in the IoT as “the rise of polymorphic malware and other evolving 

threats” (Rawat 2021, p. 2056) requires an enormous amount of data to derive actionable insights 

(Rawat, 2021).  Achieving decision advantage in active cyber defense requires innovative 

approaches that involve “data mining and machine learning, artificial intelligence, knowledge-

based and statistical models” (Palomares et al 2017, p. 128); the sheer volume and velocity of 

data transference in the IoT (coupled with the complex infrastructure required to sustain its 

persistent digital environment) have outpaced human-derived cyber analytical techniques and 

methodologies. 
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Machine Learning 

Data breaches can have a devastating economic and organizational impact with an 

estimated annual global loss of US$4 billion (Sarker et al, 2021) as digitalization and the IoT has 

enabled an exponential rise in malicious activities (Sarker, 2021).  AI/ML is at the forefront of an 

emergent data-driven cyber defense model to “transform raw data into decision making” (Sarker 

2021, p. 9) as “security is all about data” (Sarker 2021, p. 9).  A data-driven cyber defense model 

“attempts to quantify cyber-risks or incidents” (Sarker 2021, p. 11) to enable inferential 

techniques to analyze behavioral patterns associated with data itself (Sarker, 2021).  Human-

machine collaboration forms the core of active (and adaptive) data-driven cyber defense 

methodologies to augment “human capacities for the execution of cybersecurity tasks” (Andrade 

2019, p. 3) as humans alone are unable to collect, filter, triage, and analyze the extensive datasets 

associated with the IoT.  Sikos and Choo (2020) diagram the threat space through an orthogonal 

dimensions model categorized across the three axes of motivation, localization, and agent (Sikos, 

2020) as a method for establishing threat intelligence taxonomies and ontologies (Sikos, 2020).  

The move towards a structured framework for defining the threat is, in part, a prerequisite for 

creating machine-readable data models to power enhanced analytics where AI/ML both augment 

the human cyber analyst and progressively self-educate particularly in the construction of 

“predictive models for vulnerabilities classification, clustering, and ranking” (Parkinson et al 

2018, p. 17).  The prevalence of AI in cyber analytics and cyber defense requires a strong trust 

model to authenticate and preserve machine identities as the machine is trained to simulate 

human skills (Naik et al, 2022) with the ability to “self-direct, harmonize, diagnose, 

and…learn…by producing understandable knowledge from discrete data” (Naik 2022, p. 1763).  
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AI-enabled Cybersecurity 

Access and analysis of rich data sources determine the effectiveness of AI employment 

for cybersecurity (Samtani et al, 2020).  Internal data sources are those close to the critical assets 

of an organization (Samtani, 2020) that can range from physical devices (servers, databases, 

routes, etc.) to virtual machine images (Samtani, 2020) whose data flows and transference 

“contains data such as source, destination, bytes, headers, and others” (Samtani 2020, p. 3).  

External data sources are those located across the broader digital landscape including publicly 

accessible coding repositories, IoT search engines, and Dark Web platforms (Samtani, 2020); 

collected data assist organizations in understanding the accessibility of their code, mapping the 

public access points to their devices, and construct threat intelligence through the silent 

surveillance of social forums that malicious actors utilize (Samtani, 2020).  Data is what permits 

an AI to comprehend and adapt to the threat environment particularly as Big Data connects it to 

multiple data streams and its behavioral heuristics enable it to craft a picture of anomalous 

behavior within a technical ecosystem “to predict human rather than just machine behavior” 

(Stevens 2020, p. 166) in recognition that modern cyber defense takes place at the intersection of 

technologies, users, and processes (Stevens, 2020).  The advent of AI-enabled cybersecurity is a 

model that “substitutes human cognition as the arbiter of network decision-making and 

regulation of data flows” (Stevens 2020, p. 167) as modern cyber defenders turn to AI algorithms 

to conduct fine-grained pattern analysis of the voluminous data resident across the IoT (Samtani, 

2020).  

Enhanced Detection and Analysis 

The potentiality for increasing human cognitive skills and abilities is dependent on access 

to data and information, the same is true of AI as the deployment and integration of intelligent 
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algorithms are predicated on data access to enable deep and reinforcement learning (Aloqaily, 

2022).  As the IoT becomes smarter and more autonomous, modern cyber defense models must 

employ similar smart technologies to “provide more secure and robust privacy-preserving 

solutions for personal and ubiquitous systems” (Aloqaily 2022, p. 2).   The wealth of data in the 

IoT has enabled malicious actors to develop their smart tools to exploit the persistent digital 

environment as the rise of intelligent malware and the mechanisms of AI-enabled malicious 

cyber activities permits “sophisticated malware to learn about the defensive environment and 

compartmentalize lessons learned” (Whyte 2020, p. 26) so that it can adapt to changing mission 

parameters and select alternative approaches without direct command from a human actor 

(Whyte, 2020).  Defensive AI-enabled security measures combine robust data mining, data 

enrichment, deep learning, and natural language processing to integrate “AI explainability 

methodologies and data cleaning” (Liu et al 2021, p. 10) to teach an AI data anomaly detection, 

proactive intrusion detection techniques, and self-constructed predictive analytics so that humans 

and machines alike can respond to intrusion “incidents before the actual damage happens” (Liu 

2021, p. 6).  Generating data structure and context is foundational for AI learning as raw, 

unstructured data is noisy and inconsistent (Kim and Park, 2020) thus limiting the ability of the 

AI to make sense of the data it is evaluating to reach conclusions and formulate insightful 

analysis.  The persistency, prevalence, and availability of data in the IoT have made it the single 

most critical resource of the persistent digital environment where smart technologies (and 

automation) transform both cyber defense models and malicious actor activities. Increasingly, 

the need to employ AI-enabled threat and intrusion detection capabilities is due to the injection 

of AI-augmented malware to “automate the process of exploit generation, attack launch and 

patch generation” (Arivudainambi et al 2019, p. 50).  Preserving the identities of cognitive 
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machines is a component of the systemic approach to increasing IoT resiliency as intelligent (and 

automated) algorithms harness, and harvest, data for self-propagation and dynamic adaption.  

H2M and M2M interactions create degrees of visibility for cognitive machines as the human user 

might not be cognizant of the automated agent facilitating data transferences, recording data 

transactions, or monitoring data flows within the IoT.  

Data-centric Security 

Data sits at the heart of the IoT as software applications that traffic in big data span 

industries such as sports, medicine, e-commerce, media, retail and sales, energy, human 

resources, travel, and fraud protection (Till, 2017) as business models “aggregate and analyze 

security data and transform it into an information product” (Till 2017, p. 173).  The 

commoditization of data necessities a shift in our cyber defense perspective as the IoT has 

transformed data from being the mere output of human activities into a core component of the 

contemporary societal fabric as data itself carries intrinsic value thus requiring “fine-grained 

access control over data” (Rasori et al 2020, p. 77) as the “intrinsic characteristic of the IoT is 

persistent gathering and linkage of user data to provide adapted capabilities” (Demertzis 2020, p. 

3) where the constant exchange of data and information establishes a persistent attack surface.  

The US Federal Trade Commission (FTC) estimates that individual data brokers can possess 

over 3000 data segments on every US consumer (Shackleford, 2020) which translates into an 

industry posting “$150 billion in revenue” (Shackleford 2020, p. 58) where the worth of data is 

in the trillions (Shackleford, 2020).  This intrinsic value has made data an “attractive target for 

adversaries” (Bitomsky et al 2018, p. 589) that alters organizational and individual risk 

calculations as industrial business models shift to integrate data into products and services to 

meet consumer demand while individuals capitalize on the persistency of data for personal gain 
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or to fulfill daily responsibilities.  Data-centric security is an evolution in the cyber defense 

paradigm that recognizes the interconnected nature between data, its producers, and consumers 

in the modern IoT as malicious actor attempts to harvest, manipulate, or alter data has a 

repercussive impact across multiple sectors. 

Trust and the IoT 

Hammi et al (2018) note that in the IoT, “things process and exchange data without 

human intervention” (Hammi et al 2018, p. 126) necessitating the importance of identity 

verification as a mechanism to preserve trust within the ecosystem.  The heterogeneous 

composition of entities operating in the IoT has rendered the traditional cybersecurity 

methodologies of hard security through authenticated access control (Ting et al, 2021) unfeasible 

as a multitude of different devices (and their users) can enter or exit the IoT across time and 

space while malicious actors can infiltrate through the same vectors as legitimate users.  This 

fluidity in the IoT makes the traditional approach to trust centralization difficult as centralized 

storage of identity attributes has expansive repercussions in the event of a breach (Moreno et al, 

2021).  The architecture of trust within the IoT reflects the same social properties garnered in 

human societies to permit “digital entities to perceive others and choose their interactions, as is 

done in the real world” (Ting 2021, p. 106473).  The interactive architecture of the IoT replicates 

many of the same societal principles of human interactions in the physical world as H2H, H2M, 

and M2M are conceptual derivatives within the digital world.  The scale of human interaction in 

the physical world is based on the degree of trust that users have when interacting with others (a 

higher degree of trust translates to a larger scale of information sharing); the modern trust 

paradigm in the IoT is a behavioral approach to cyber defense in recognition that contemporary 

data exchange incorporates more than the 1s and 0s of binary code.  Dooley and Rooney (2017) 
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annotate an example where domain name servers (DNS) pass trust relationships between the 

resolver cache and the recursive servers; if the trusted data source is corrupted, the resolver cache 

“could inadvertently redirect the user application to an inappropriate destination” (Dooley and 

Rooney 2017, p. 5) thus creating an attack surface where malicious actors could “collect 

authentication credentials or financial information” (Dooley 2017, p. 6).    

Identity 

Protection of digital resources, data integrity, and data confidentiality requires that our 

cyber defense strategies and methodologies seek to determine the legitimacy of access requests 

so that resources are made available in a timely and consistent manner (Sule et al, 2021).  In the 

digital world, identity is “what makes us unique and identical to others” (Sule 2021, p. 2) that 

determines what kind of transactions entities can participate in (Sule, 2021).    Digital identities 

are critical to facilitating innovative trust-based cyber defense methodologies as identity 

verification is linked to the data objects and resources that users seek to access requiring a 

management model encompassing physical and logical objects to facilitate “efficient and fine-

grained management of attributes” (Yang 2020, p. 2) associated with the components that build 

them.  Li et al (2020) note that “data-centric authentication should be provided to 

support…secure data retrieval” (Li 2020, p. 16) as malicious actors endeavor to compromise 

both the logical and physical aspects of the IoT.  Identity-based attacks are designed to permit a 

malicious actor to function as an electronic imposter (Haber and Rolls, 2019) to masquerade as 

legitimate users or change “attributes that define their identities to hide who they are” (van der 

Walt 2019, p. 563) in an endeavor to gain access as far down the permission chain as possible 

(Haber, 2019).  Identity-based cyber resiliency is about preserving what makes humans and 

machines unique so that the integrity of the “self” does not become this point of exploitation for 
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malicious actors.  To that extent, identity preservation is a holistic concept combining policies 

and governance structures with legal precedence and technological innovation to ensure that 

humans and machines can prove their identities in a genuine and trustable manner “without 

disclosing unnecessary knowledge” (Shibuya 2020, p. 89).  This latter stipulation is critical as 

the storage platforms retaining and managing identity data are themselves points of concern “due 

to security weaknesses, dubious data-sharing and surveillance ethics, and compromised privacy 

rights” (Sedlmeir et al 2021, p. 604).  

Distributed Ledger 

Due to its simple implementation, the IoT is designed around a centralized architecture 

for data processing, unified analysis, and service delivery (Liao et al, 2021) that enables ease of 

control across IoT nodes.  The contemporary commoditization and intrinsic value of data, 

though, make this centralized architecture a prime target for malicious actors; distributed ledger 

technologies are an emergent, innovative approach to mitigating the potential for attacks.  

Distributed ledger architecture permits P2P IoT nodes to manage data security through 

membership consensus as each independently verifies nodal identities using tamper-resistant, 

cryptographically signed data blocks (Liao et al, 2021).  These data blocks contain valuable 

information associated with the data originator through indexing of “the hash value of the 

previous block” (Zhang et al 2021, p. 101) that is combined with the hash value and time stamp 

of the current block to capture data lineage and traceability to establish a cooperative 

authentication scheme with lightweight protocols (Tariq et al, 2019).  As the IoT is ubiquitous 

and boundary-less where entities are “oblivious about the location where the data resides” 

(Felemban et al 2019, p. 41), distributed ledger technologies mandate that P2P nodes prove their 

identities through the exchange of credentials (Bandara et al, 2021) before engaging in data 
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transferals or granting access to the data contained within the network.  Maintaining trust 

integrity is a foundational principle of a distributed ledger as “the information of the entire 

network transaction” (Lu et al 2021, p. 31893) is stored on a preceding block and used to verify 

the validity of the information transaction (as an anti-tampering mechanism) before the next 

block in the ledger can be generated (Lu, 2021).  In this way, distributed ledger creates a virtual 

data chain of custody that ensures data integrity as it permits data owners to “audit their data” 

(Wylde et al 2022, p. 127) to discover if it has been tampered with and, if so, the data provider 

and the path to the tampered data can be uncovered “to disable the further spread” (Li et al 2020, 

p. 15) of the tampered data. 

Blockchain 

Blockchain is a distributed systemic model that is “based on consensus rules that allow 

the transfer of value between entities” (Panarello et al 2018, p. 4) that is not reliant on trusted 

third parties to issue credentialing certificates to validate digital identities.  The need for 

blockchain is based on a distributed ledger principle that humans and machines own their own 

identities through a “democracy of computing power” (Panarello et al 2018, p. 5) derived from a 

“proof-of-work” concept anchored in computationally complex mathematical problems that are 

“hard to solve and very easy to verify” (Panarello et al 2018, p. 7) as a foundation for its 

cryptographic schemas.  Blockchain places the burden of trust on the individual humans and 

machines interacting within the IoT rather than leveraging a third-party trusted agent to issue 

credentials as “what you write in the chain stays in the chain” (Moreno et al, 2021, p. 105789).  

As such, the information contained in a blockchain ledger is public and verifiable (Gulati and 

Huang, 2019) as the blocks themselves are updateable if the transactions are “atomic, consistent, 

isolated, and durable” (Seike et al 2018, p. 272). 
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Cryptographic Uniqueness 

Blockchain can function as unique identifier registries to “store information about who is 

related to specific IDs and how to access information about them” (Lyons et al 2019, p. 16) as 

humans and machines are responsible for owning, managing, and verifying their own digital 

identities.  Through this unique identifier management structure, blockchain requires that data 

owners notarize their portion of the chain using timestamps and electronic seals (Lyons et al, 

2019) so that their credentials verify the integrity of the data as it is transmitted across the IoT.  

As stated in the previous section, this fine-grained access control over data is amplified as data 

owners can publish and distribute “decryption keys for data users through the blockchain” (Gao 

et al 2021, p. 2) thereby strengthening data integrity within the chain as the structure of 

individual blocks are irreversible once notarized (Ma et al, 2021) unless deliberately tampered 

with.  Critical to the blockchain architecture is its cryptographic methodologies to ensure ledger 

transparency where decentralized P2P trust has scalable credibility underpin so that “the more an 

entity is trusted by others, the higher is its credibility” (Shi et al 2021, p. 2056) thereby providing 

a structural model to confirm data ownership, identity authorization, and build trust relationships 

to manage data access control (Shi et al, 2021).  Blockchain can adhere to the precepts of data 

provenance that “provides information on all changes performed on data exchanged between 

multiple entities” (Shetty et al, 2019, p. 172) to address the ancestry of data and ensure that 

deliberate alterations and tampering are identifiable within the data objects.  

Self-Sovereign Identities 

 The Sovrin Foundation (www.sovrin.org) defines self-sovereign identities (SSIs) as a 

“lifetime portable digital identity that does not depend on any centralized authority” (Sovrin, 

n.d.).  Sedlmeir et al (2021) define SSI as a set of principles about digital identities, privacy 
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rights, and personal information (Sedlmeir, 2021) anchored in the premise that individuals 

should not be required to cede a disproportionate amount of control of their digital identities to 

centralized providers in the era of big data (Sedlmeir, 2021).  As digital identities are comprised 

of the data attributed (and shared) inside the IoT through H2H, H2M, and M2M interactions, its 

construction has become multi-variate.  SSI is an emergent concept that entities maintain full 

privileges towards the management of their own identities with the ability “to decide its 

correlation across different contexts without requiring any permission from any administrative 

authority” (Naik and Jenkins 2020, p. 3).  To maintain sovereignty, an entity must exist in the 

real world either as a physical or virtualized entity that is independent of its digital form (Naik, 

2020) to ensure that its attributes are public and accessible.  SSI enables a layered authentication 

model that “separates cryptographic and application-specific authentication” (Fedrecheski et al 

2020, p. 5) where entities first prove their identities to each other before engaging in trust 

verification of the data intended to be exchanged at the application level.  SSI is an efficient 

framework for the management of human user identities as it permits “identity owners to store 

personal data on their own device, allowing organizations to minimize their various data 

management issues related to storage, cost, security, privacy, and bureaucracy” (Naik 2020, p. 

2). 

SSI Ecosystem 

SSI is unique from previous identity models as it utilizes distributed ledger technologies 

to create a “cryptographically verifiable digital identity that is fully governed by its owner” (Naik 

2020, p. 2).  NIST defines digital identity as “the unique representation of a subject engaged in 

an online transaction.  A digital identity is always unique in the context of a digital service but 

does not necessarily need to uniquely identify the subject in all contexts” (Soltani et al 2021, p. 
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4).  The principles defining an SSI ecosystem are existence, control, access, transparency, 

persistence, portability, interoperability, consent, minimization, and protection (Soltani, 2021) 

built from the use of decentralized identifiers (DIDs), verifiable credentials (VCs), and 

decentralized public key infrastructure (DPKI) (Soltani, 2021).  The DID is a critical component 

of the SSI model as it is a globally unique cryptographic identifier scheme generated based on 

key pairs and cryptographically provable through digital signatures (Soltani, 2021).  DID 

registries ensure the uniqueness of an identity’s identifier (Gruner et al, 2021) as it provides 

“verifiable proof of existence and revocation of an attribute” (Gruner 2021, p. 138555).  The VC 

is an “interoperable data structure suitable for representing cryptographically verifiable and 

tamper-proof claims” (Soltani 2021, p. 10) based on zero-knowledge proof principles “where an 

entity can prove to another entity that they know a certain value without disclosing the actual 

value” (Fedrecheski 2020, p. 2).  The DPKI is a set of services, tools, processes, and 

technologies facilitating the performance of cryptographic operations (Soltani, 2021).  As an 

extension of the ecosystem, Zeng et al (2021) advocate for a persistent data structure where an 

identity owner generates a cryptographic algorithm with public and private key pairs, passes the 

public key to an identity verifier through a blockchain to link the digital and real identities, and 

uses their private key to sign a time-sensitive, one-time message from the verifier on the 

blockchain to complete identity verification (Zeng, 2021).  The persistent data structure provides 

consistency of credibility and is designed to support large-scale digital identities (Zeng, 2021).  

Yuan et al (2020) argue for enhanced cryptographic key management anchored in a nodal 

scheme where a central node collects the location information of all other nodes within the 

network in advance (Yuan, 2020) to authenticate themselves to each other.  The automated 

perpetuation schema mimics human social behaviors where a person confirms the identity of the 
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individual(s) in communication before exchanging information.  Standards and protocols 

underpin SSI as the automated algorithms construct the identification schemes enabling entities 

to prove their identities through the “acquisition of corroborative evidence” (Chia and Chin 

2020, p. 61711).  The constraints on SSI are due to available computer resourcing and code-pair 

schematics (Chia, 2020) as fully adoptable SSI requires the ability to run asymmetric 

cryptography and support continuous metadata transmissions of VCs that can be over 500 bytes 

in size each (Fedrecheski 2020, p. 6). 

Decentralized Identifiers 

A decentralized identifier (DID) is composed of a string of characters designed to 

identify a resource (Preukschat et al, 2021) whose core properties are persistence, resolvability, 

cryptographic verifiability, and decentralization (Preukschat, 2021).  The design of the DID 

removes the dependency on a central issuing party that “creates or controls the identifier” 

(Kortesniemi et al 2019, p. 3) as the identifier is entirely created and managed by the identity 

owner (Kortesniemi, 2019).  Figure 1 is a simple example of a DID. 

Figure 1 

Simple Example of a Decentralized Identifier 

 

Note. The image comes from the Decentralized Identifier version 1.0 core architecture, data 

model, and representations document from the World Wide Web Consortium (W3C) 

(https://www.w3.org/TR/2022/REC-did-core-20220719/) 
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Identifiers are used to impart “unique names to data to express its characteristics” (Kang 

et al 2021, p. 4) for accountability and access control (Kang, 2021).  The DID holds identity 

owners accountable as it is their credentials that validate the identifier.  The DID is sister to the 

VC as a pillar for SSI standardization as the DID string is an Internet Engineering Task Force 

(IETF) standard that is globally unique to each DID (analogous to a human fingerprint).  The 

DID document contains machine-readable metadata about the subject that requires verification 

(the document can contain information about cryptographic keys, authentication methods, or 

other descriptors on how to engage in a trusted interaction) (Preukschat, 2021).  More 

importantly, there is a 1-to-1 relationship between a DID and its document so once a document is 

cryptographically verified with a public key, any alterations to the key pair require an update 

using the previous private key thus ensuring a chain of trust between documents and their 

associated DIDs (Preukschat, 2021). 

Global Uniqueness 

DID documents are stored in globally accessible registries “using blockchain, distributed 

ledger P2P networks, or other systems with similar capabilities” (Fortiou and Polyzos 2019, p. 

4).  If an entity wishes to prove its identity to another entity, the verifier retrieves the 

corresponding DID document to extract the public key and then authenticates it through the 

issuance of a digital challenge that the proving entity must provide a digital signature (Fortiou, 

2019).  As stated in the introductory section, alterations to the cryptographic key pairs bound to 

the DID document trigger an update (the DID itself is not impacted) thus the DID document 

maintains the integrity of the record.  Verifying entities retrieving a DID document from a 

registry are provided the most up-to-date version of the DID document thus retaining the 

property of revocation.  The DID document is composed of a comprehensive set of elements 
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including the DID of the subject, the associated public keys, the authentication method, 

authorized operations to be performed on behalf of the subject, methods of subject discovery, 

document creation timestamp, and the digital signature of the subject (Omar and Basir, 2020).  

The machine-readable nature of the DID document metadata is an important characteristic as 

their maintenance and updates can be entirely performed without a human in the loop.  As AI is 

an increasing presence within the IoT, the automated nature of DID document management 

maintains system integrity at the speed of computing resources particularly as DID and VCs are 

coupled with distributed ledger technologies to implement identity-based authentication 

paradigms extending beyond traditional cryptographic protocols and PKI infrastructures.  

Identity verification and revocation provide subject-level granularity predicated on entity 

uniqueness operating at scale especially as IoT components are “heterogenous in nature with 

self-configured properties” (Sheron et al 2019, p. 2).  Figure 2 is a graphical depiction of the 

entries associated with a DID document. 
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Figure 2 

Entries in a DID Document 

 

Note.  The image comes from the Decentralized Identifier version 1.0 core architecture, data 

model, and representations document from the World Wide Web Consortium (W3C) 

(https://www.w3.org/TR/2022/REC-did-core-20220719/) 

Verifiable Credentials 

VCs are digital forms of common physical credentials (Preukschat, 2021) that cannot be 

copied or cloned, can disclose portions of verifiable data, and can be delegated to other users if 

the identity owner authorizes it (Preukschat, 2021).  VCs form the core of the SSI architecture as 

their use of digital signatures makes them “more tamper-resistant and credible” (Omar 2020, p. 

177) and creates an association between machine-verifiable properties and the identifier of an 

entity (Kortesniemi, 2019).  VCs function in the same manner as driver’s licenses or photo IDs to 

provide credible evidence of an individual’s identity.  The basic structure of the VC data model 

contains six information fields defined as context, type, ID, issuer, subject credentials, and a 

digital signature as proof (Preukschat, 2021) that are stored in globally accessible verifiable data 

registries used for “verifying the status, integrity, and freshness of a VC” (Alzahrani 2022, p. 

388).  VC roles within the SSI model are well-defined as the issuer of the VC notarizes its 
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validity (Cho et al, 2021) and the holder “acts as a real information subject who can exercise all 

rights to the VC” (Cho 2021, p. 1858).  To maintain the chain of trust, a VC must be affiliated 

with a real subject to be considered true and digitally signed to be considered valid, without both 

aspects, the VC is not legitimate.  Figure 3 depicts the basic components of a VC. 

Figure 3 

Basic Components of a Verifiable Credential 

 

Note.  The image comes from the Verifiable Credentials Data Model version 1.1 document from 

the World Wide Web Consortium (W3C) (https://www.w3.org/TR/vc-data-model/#core-data-

model) 

Data Exfiltration 

Data exfiltration is the formal term for data theft that is an increasing cyber defense 

challenge as the IoT continues to propagate and malicious actors become sophisticated in their 

attack paradigms and methodologies.  Ullah et al (2018) illustrate the impact of a data breach in 

October 2017 of 200 million American voters from the database of the Republican National 

Committee due to a flaw in database configuration exposed personal information including 
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“name, home address, phone number, date of birth, and voter registration details” (Ullah 2018, p. 

19).  There is a multitude of data exfiltration attack vectors encompassing both network-based 

and physical-based attacks (Ullah, 2018) where network-based vectors use existing infrastructure 

to steal data from individual organizations (Ullah, 2018) and physical ones are unauthorized or 

illegal physical access to data (Ullah, 2018).  Due to its data-centric nature, data exfiltration 

within the IoT has compounding ramifications, particularly as network-based malware use covert 

channels for payload delivery (Nadler et al, 2019).  A covert channel is defined as “a channel of 

communications that are neither designed nor intended to transfer information” (Alcaraz et al 

2019, p. 3980).  A vector in this method of attack is through domain name server (DNS) 

protocols as restrictions on DNS communications may disconnect legitimate remote services 

(Nadler, 2019) and the protocols themselves are “not designed for arbitrary data exchange” 

(Nadler 2019, p. 37).  Ahmed et al (2020) document a common method of DNS exploit where 

malicious actors register a domain, then embed malware in a host that encodes “valuable private 

information…into a DNS request, sends the request to the authoritative name server in the 

malicious domain that sends a response back to establish “a low-rate but covert two-way 

communication channel” (Ahmed 2020, p. 265).  The malicious actors exploit legitimate data 

exchange protocols as the “decentralization of the DNS allows any user to configure the 

authoritative name server for their domain names” (Nadler 2019, p. 38).  DNS exploitations are 

insidious as the data exfiltration occurs in segments (or packets) where the full data content is 

assembled on the malicious server side (Steadman, 2021). 

Advanced Persistent Threats 

Advanced persistent threats (APTs) are a continuous long-term presence that adapts and 

maintains the appropriate level of interaction to achieve their objectives (Al-Matarneh, 2020) 
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because each intrusion is “customized and designed to the systems” (DeVore 2017, p. 41) 

targeted for intrusion and exploitation.  The NIST defines an APT as “an adversary that 

possesses sophisticated levels of expertise and significant resources which allow it to create 

opportunities to achieve its objectives by using multiple attack vectors” (Dehghantanha 2019, p. 

226).  The advanced capabilities of an APT preclude the implementation of the static, bastion-

based methodologies of traditional cybersecurity measures as their non-targeted nature does not 

possess the dynamic flexibility required to mitigate the adaptability of these malicious actors.  

Chen et al (2018) state that traditional firewalls and anti-viruses rely on a signatures-based 

methodology to detect threats by “comparing the discovered malicious patterns to the newly 

observed ones” (Chen 2018, p. 244).  APTs, however, do not conform to this methodology as 

they exploit vulnerabilities to bypass these mainstream techniques (Chen, 2018).  Due to their 

dynamism, there is an advocation for the incorporation of AI and ML to augment human-centric 

APT detection capabilities in the IoT especially as secured services in the cloud require 

“anomaly detection, diagnosis, and mitigation” (Trakadas 2019, p. 4) while an ML architecture 

can create correlation models to detect intrusion techniques “within each stage of the APT 

lifecycle” (Ghafir 2018, p. 351) for predictive analytics.  This corresponds to the use of statistical 

modeling to analyze the complex, multi-phased nature of APTs incorporating the variables of 

duration and probability to evaluate each stage of an APT attack (Kumar, 2021), create a 

predictive framework for the propagation of malware worms (Zhou, 2021), and evaluate the 

likelihood of exploitation based on “chaining marginal and conditional probabilities to 

characterize the multiple attack paths” (Zimba 2020, p. 502) of advanced persistent threats.  APT 

countermeasures blend behavioral characteristics with cyber defense paradigms since the 

behaviors of malicious actors and their unsuspecting victims influence the effectiveness of 
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implemented defense strategies.  The best security protocols can be rendered ineffective if the 

user decides to “use their pet’s name as their password, thus providing a simple path for an 

attacker to negate the strong security protocol” (Patterson 2019, p. 23). 

Summary 

 The literature review explored the aspects of intrinsic identity uniqueness through the 

lens of the IoT and its data-centric nature that requires innovative approaches to cyber defense.  

Cyberspace itself “has unique peculiarities, made possible by its partial immateriality and 

expansive interconnectivity” (Medeiros and Goldoni 2020, p. 37).  The complexity, fluidity, 

persistency, and boundary-less properties of the IoT require an evolution from traditional 

perimeter-based cybersecurity paradigms anchored in known intrusion signature detection and 

mitigation measures.  Data is a strategic asset in the modern IoT as it is the foundational fabric 

for H2H, H2M, and M2M interactions and transactions.  Commoditized data is a convergence of 

the physical and digital worlds whose interoperability has eased data sharing but demands 

enhanced accountability as the ubiquitous nature of the IoT is a continuous attack surface that is 

progressively multi-vectored and multi-layered.  The adaptive heuristics of malicious actors have 

significantly increased the cost of cyber defense as data itself can either be exploited or become a 

weaponized platform.  The open architecture of the IoT offers the malicious actor opportunities 

to maintain anonymity, conceal intent, and covertly recruit like-minded individuals through near-

instantaneous social networking and digital collaboration.  Identity-based cognitive machine 

symbiotic cybersecurity policies, coupled with distributed ledger technologies, support the 

transition of cyber defense methodologies from a network-centric, bastion approach to a data-

centric, distributive one where humans and machines must verify their identities before engaging 
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in data transactions as a countermeasure for credentials tampering as malicious actors seek to 

masquerade as legitimate IoT users.  

 The necessities of digital identities verification become important as virtualization has 

separated the identities of applications and digital services from the identities of the physical 

servers hosting them thus impacting the areas of access control (both role-based and access-

based), credentialing, authorizations, data management, privacy and digital rights management, 

and digital service deliveries.  As the IoT enables the commoditization of data, a cognitive 

machine operating within this ubiquitous environment requires granular capabilities to assemble 

digital identities that conform with policies enforcing uniformity across heterogeneous platforms 

and attributes that “can be dynamic and…change with the membership of identity collection” 

(Pal 2018, p. 49).  As modern societies continue their datafication, the methods that are 

implemented to verify “who” the user is in the digital environment becomes critical to prevent 

the malicious use of big data (Cheney-Lippold, 2017) as societies live “in a world where our 

reality is augmented by data” (Cheney-Lippold 2017, p. 265).  As malicious actor exploits in the 

decentralized and distributed nature of the IoT can include the perpetuation of fake data, user 

impersonation to obtain access to big data, or compromise authenticated certificates (Li, 2020), 

policies strengthening the digital uniqueness of cognitive machines are important as machines 

are increasingly partners to human activities with their unique behaviors and cognitive abilities.  

 Though policies to standardize the attributes of digital identities are not a panacea to 

completely counteract the actions of malicious actors, they are critical for the creation of a 

modernized cyber defense model linking the strengths of governance, technological innovation, 

user behaviors, and business processes.  Malicious actors can execute operations “to research a 

target, prepare it for penetration, dispatch an agent, and establish a presence that…affords access 
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to the desired information for exfiltration” (Riehle 2019, p. 192) where “the advent of digital 

storage, information can potentially be accessed remotely without the need for a physical 

presence inside a secured space” (Riehle 2019, p. 191).  The adversarial threat is no longer a 

simple, faceless virus or other forms of malware. Instead, it is a skilled human(s) or cognitive 

machine(s) (or a malicious HMT) possessing deliberative intent and motivation who does not 

believe that it is either unethical or immoral to exploit digital technologies and cyberspace.  
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CHAPTER THREE: METHODS 

Overview 

The decentralized, distributed, and social nature of the IoT possesses native cybersecurity 

vulnerabilities as its public architecture makes data “accessible to various organizations and 

domains across the internet” (Khan 2020, p. 10).  As IoT devices collect information about their 

owners, the availability of such data “creates a significant number of targeted attacks, both 

against the human user and functional objects” (Mustafaev 2020, p. 1).  This study employed a 

quantitative, correlational archival data research design.  For RQ1, the frequency of malicious 

software attacks was the dependent variable and diversity of intrusion techniques was the 

independent variable.  For RQ2, the frequency of detection events was the dependent variable 

and diversity of intrusion techniques was the independent variable.  The purpose of this study is 

to postulate a design framework for symbiotic cybersecurity policies incorporating cognitive 

machine individualism to enhance the implementation of human-machine teaming (HMT) in the 

preservation of IoT integrity.  The descriptions of the research design provide the reader with the 

analytical context linking malicious software exploitations, intrusion techniques, and the 

frequency of detection events as a paradigm framing the symbiotic cybersecurity policy triad and 

the role of cognitive machine digital identities.  

Role of the Researcher 

 The researcher is responsible for outlining the foundations of the study and answering its 

questions including designing the study, performing data collection and maintenance, and 

analyzing, interpreting, and reporting its findings.  The researcher is a civilian contractor 

supporting the Office of the Undersecretary of Defense for Intelligence and Security 

(OUSD(I&S)) digital modernization initiatives and a 26-year veteran of the US Army Reserves 
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with operational deployment experience.  The researcher is a Certified Enterprise Architect 

(CEA) with experience as a technical portfolio manager and project manager with a technical 

background in requirements and capabilities determination, network and infrastructure 

management, and emergent data-centric principles. 

Design 

A correlation archival data design was used for the study.  Implied in this research is the 

identification of a potential correlation between the frequency of malicious software attacks and 

the diversity of intrusion techniques.  Behaviorally, modern malicious actors conduct targeted 

exploitations based on a disciplined operational framework where those actions erode the IoT 

trust model.  User interactions (and data access) within the IoT are based on a presumption that 

both the implementation of the system and “the operation of the protocol” (Vella 2020, p. 229) 

are secured.  Assessing the correlation between the frequency of malicious software attacks and 

the diversity of intrusion techniques assists in the analysis and investigation of potential patterns 

associated with the variables.  These potential patterns can help inform the prioritization of 

factors important to the creation of identity-based symbiotic cybersecurity policies and the 

significance of adopting the symbiotic cybersecurity policy triad. 

Descriptions and Rationale for the Methods to be Employed 

The proposed quantitative study incorporates a descriptive statistics procedure focusing 

on malicious software attacks and intrusion techniques to establish a distribution pattern 

baseline.  A correlational coefficient bivariate analysis is utilized to measure the strength 

between two variables.  A Pearson r correlational coefficient test is used if the data possesses a 

normal distribution or Spearman’s rho if the data has a non-normal distribution.  Determining 

correlational strength does not infer probabilistic trends but rather, it provides insight to visualize 
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patterns of malicious behavior in analyzing the feasibility of formulating identity-based cognitive 

machine symbiotic cybersecurity policies codifying machine digital distinctiveness and 

individualism. 

D’Agostino (2019) detailed the CyberSAR project that focused on the adoption of 

intelligence-enabled security heuristics based on epidemiological best practices (D’Agostino, 

2019).  The approach utilizes a time-based comparison of domain name server (DNS) traffic “to 

measure the volume of detected anomalies associated with known or unknown cyber threat 

behaviors in the treatment and control groups” (D’Agostino 2019, p. 23).  This methodological 

approach treats the digital environment as an ecosystem of interrelated (and interconnected) 

systems (D’Agostino, 2019).  Chen et al (2020) elaborate on this approach as the researchers 

propose a detection and analysis model based on gene sequencing of software (Chen, 2020) to 

compare malicious intrusion signatures to a software gene pool using “a genetic model based on 

the contents of file node and action node” (Chen 2020, p. 5).  The model is comprised of the 

detection mechanism, the malware environment, the system file of interest, the system object that 

the malware operates in, and the description of the intrusion (Chen, 2020).  Adopting public 

health methodologies for cyber defense is an innovative application of behavior-based pattern 

analysis analogous to the medical profession testing, diagnosing, and treating infectious diseases 

based on known symptomatic signatures.  These innovative paradigms recognize the adaptive 

heuristics of malicious threats in the IoT as the traditional bastion approach of defending at 

network boundaries is insufficient since data itself is a weaponized platform for exploitation.  

Innovative defense requires the ability to overcome the uncertainties of attack vectors and 

malicious actor strategies (Xie, 2021) that is feasible if counterthreat mechanics incorporate the 

behaviors and motivations of malicious actors to enhance insights into the “where”, “who”, and 
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“why” these adversaries will target specific users and systems to fulfill their strategic initiatives.  

Bhattacharjee (2018) postulates that the convergence of the physical and cyber worlds translates 

into “proactive detection and remediation, digitally tracking the supply chain…and many similar 

use cases” (Bhattacharjee 2018, p. 11) as the ubiquitous IoT environment creates a persistent 

attack surface.  As data is the core of the IoT, identity-based protection and preservation schemas 

apply to all users “to guarantee the delivery of trustworthy decisions” (Janssen 2020, p. 1).  

Information Age interoperability and integration have eased data collection and sharing but 

demand enhanced accountability to ensure that legitimate users are granted access to IoT 

resources particularly if the user is a cognitive machine.   

Conceptual and Operational Definition of the Variables Explained 

Empirical statements are a critical framework for defining the conceptual and operational 

contexts of the variables within this research and are outlined below: 

• Digital exploitations are correlated to the utilization of malicious software. 

 

• Digital exploitations are correlated to the organizational, doctrinal, or ideological 

behaviors of advanced persistent threats.  

ES1 stipulates that a positive correlation exists between malicious software and the 

techniques malicious actors utilize against targeted systems and users.  The correlational strength 

between malicious software attacks and intrusion techniques can inform the development of 

predictive modeling and threat analysis to operationalize countermeasures based on the 

compilation and cataloging of intrusion signatures.  The ability to assess the effectiveness of 

identity-based cognitive machine symbiotic cybersecurity policies is dependent on the ability to 

aggregate and link patterns of cyber intrusions that parallel the public health approach of pattern 

analysis and symptomatic associations enabling providers to isolate threat indicators for specific 

diseases and recommend the proper treatments.  Incorporating pattern analysis into an 
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interdisciplinary cybersecurity policy framework leverages identifiable intrusion signatures as a 

behavioral component that can be coupled with the creation of baseline cryptographic schemas to 

mitigate vulnerabilities associated with identity authentication and access management. 

 ES2 stipulates that a positive correlation exists between digital exploitations and the 

organizational, doctrinal, or ideological behaviors of malicious actors.  Ahmad et al (2019) note 

that advanced persistent threats represent organized entities that “apply resources in deliberate 

ways to attack…assets” (Ahmad 2019, p. 403).  Malicious actors do not operate in isolation and 

their goals are “human-driven, strategically motivated operations” (Ahmad 2019, p. 408) where 

intrusions are tied to a more expansive set of strategic objectives.  Comprehending these goals 

shapes an understanding of their behavioral aspects and can lead to the innovative application of 

AI and ML capabilities to increase the integrity of cognitive machine digital identities as a 

mitigation factor for attempts to spoof (or forge) digital credentials as part of a malicious threat 

reconnaissance operation.  DeVore and Lee (2017) state that the customized characteristics of 

advanced persistent threats mean that developers need access to technical intelligence on the 

organizations and systems targeted for exploitation (DeVore, 2017).  To gain this kind of 

technical intelligence, a behavioral map should be constructed as part of a root cause analysis 

linking malicious actor activities to underlying influences behind those activities.  Effective 

cyber threat management, mitigation, and remediation require insight into the behavioral 

motivations of malicious actors as comprehending those influences augments predictive 

modeling and threat analysis to shape proactive cyber defense approaches.  Safeguarding its 

interconnected (and interdependent) data-driven digital infrastructure requires recognizing that 

the cyber threat is a method of power projection that seeks to take advantage of the digital terrain 

to achieve operational and strategic dominance.  The IoT requires vigilance different from 
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traditional cybersecurity principles; enabling secure digital identities for cognitive machines 

could yield counter-exploitation tools where the machine can self-propagate trust across shared 

nodes.  Perpetuating trust is the critical factor in countering behavior-based malicious cyber 

activities as the threat consistently seeks to exploit trust within the IoT as a method of gaining 

access to the voluminous libraries of transferred and curated data. 

Description of the proposed means of investigation 

 To conduct a quantitative exploration into identity-based cognitive machine symbiotic 

cybersecurity policy design factors, the research design proposes a data collection framework 

utilizing the publicly accessible cyber incident data repositories listed below: 

• MITRE Att&ck (www.attack.mitre.org) 

• MITRE Cyber Analytics (www.car.mitre.org) 

• MITRE Common Attack Pattern Enumeration and Classification (CAPEC) 

(www.capec.mitre.org/index.html) 

• Council on Foreign Relations Cyber Operations Tracker (www.cfr.org) 

• Center for Strategic and International Studies Strategic Technologies Program 

(https://www.csis.org/programs/strategic-technologies-program) 

• Alien Vault Open Threat Exchange (https://otx.alienvault.com/) 

• Cisco Talos Intelligence Group (www.talosintelligence.com) 

The cyber data repositories provide open-source knowledge on documented intrusion 

tactics, techniques, malicious actor groups, targeting behaviors and patterns, and mitigation 

strategies.  This open-source knowledge permits the establishment of an initial pattern of life 

baseline connecting malicious actor behavioral commonalities with targeting activities, cyber 

intrusion tactics and techniques used, and degrees of operational sophistication across a diverse 

set of attributes.  Chen et al (2018) state that traditional firewalls and anti-viruses rely on a 

signatures-based methodology to detect threats by “comparing the discovered malicious patterns 

to the newly observed ones” (Chen 2018, p. 244).  Malicious actors in the IoT, however, do not 

conform to this methodology as they exploit vulnerabilities to bypass mainstream cybersecurity 



82 
 

 
 

techniques (Chen, 2018).  Analyzing the feasibility of implementing an identity-based symbiotic 

cybersecurity architecture incorporating cognitive machine individualism requires a base 

understanding of malicious actor behaviors within the IoT.  Identity-based cognitive machine 

symbiotic cybersecurity is an evolution from the traditional network-centric, bastion approach to 

a data-centric, distributive one as the persistent connectivity of the IoT enables rapid access and 

exchange of digital resources within the context of social interrelationships.  The ingested 

datasets are partially comprised of Microsoft (MS) Excel-based output files containing cyber-

attack matrices listing known malicious actor groups, tactics, techniques, and utilized software 

malware obtained from the MITRE Att&ck data repository 

(www.attack.mitre.org/versions/v12.1) to provide the descriptive statistics between intrusion 

tactics and their associated techniques.  Additional output files are comprised of an analytical 

coverage comparison cross-walk obtained from the MITRE Cyber Analytics Repository 

(www.car.mitre.org) that serves as a cross-referential datapoint between detection schemas and 

intrusion techniques, a cyber intrusion risk assessment matrix obtained from the MITRE 

Common Attack Pattern Enumeration and Classification (CAPEC) 

(www.capec.mitre.org/index.html) providing an organized categorization of attack patterns and a 

cross-reference between the CAPEC and the MITRE Att&ck data repositories. 

Data Source Descriptions 

 Tables 1 and 2 are the open-source cyber data repositories contained in this section.  

These data sources are organized into two categories defined as: 

• Primary sources supporting the bivariate analysis. 

• Primary sources providing amplifying analytical data to support the feasibility assessment 

of cognitive machine SSI as a component of cohesive cybersecurity policies. 
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Table 1.   

Primary Sources for Bivariate Analysis 

Data Source Description 

MITRE Att&ck (www.attack.mitre.org) 

A data repository of adversarial tactics and 

techniques based on real-world 

observations.  The repository is utilized for 

the development of threat models and 

methodologies in cybersecurity 

communities across the public and private 

sectors.  It contains documented information 

on 122 known APT groups whose activities 

span 215 cyber intrusion techniques 

consolidated into 14 tactical categories.  

APT groups are documented with attributed 

sponsors, cyber intrusion techniques used, 

software used to conduct the cyber 

exploitations, and associations with other 

known APT groups (Att&ck, n.d.) 

MITRE Cyber Analytics (www.car.mitre.org) 

An analytical knowledge base developed 

from the MITRE Att&ck model that 

describes an observable behavior associated 

with an APT intrusion tactic or technique to 

facilitate predictive modeling.  The 

repository contains 97 separate analytics 

mapped to 83 intrusion techniques or sub-

techniques from the MITRE Att&ck 

repository. 

MITRE Common Attack Pattern 

Enumeration and Classification (CAPEC) 

(www.capec.mitre.org/index.html) 

A catalog of common attributes and 

approaches associated with adversarial 

attacks to create patterns of behavior; these 

patterns contain information on adversarial 

exploitation behaviors to include techniques 

adversaries use to adapt to countermeasures.  

The MITRE CAPEC was developed as part 

of the US Department of Homeland 

Security Software Assurance strategic 

initiative as a standardized mechanism for 

identifying, collecting, and sharing APT 

attack patterns across the cyber 

communities.  The catalog contains 541 

documented attack patterns that are further 

cross-referenced to the Web Application 

Security Consortium (WASC) Threat 

Classification taxonomy, the MITRE 

Att&ck tactics and techniques repository, 
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and the Open Web Application Security 

Project (OWASP) taxonomy to construct a 

comprehensive attack schema and 

classification taxa 

Council on Foreign Relations Cyber 

Operations Tracker (www.cfr.org) 

 

A catalog of state-sponsored cyber threat 

actors was created to identify instances 

where political states utilize cyber proxies 

to pursue specific foreign policy goals and 

interests (CFR, n.d.).  The catalog provides 

a timeline of significant cyber incidents 

from 2005 to the present and an interactive 

map listing incidents based on nation-state 

sponsors. 

 

Table 2  

 

Primary Sources of Amplifying Data 

 

Data Source Description 

Center for Strategic and International 

Studies Strategic Technologies Program 

(https://www.csis.org/programs/strategic-

technologies-program) 

 

A project designed to provide data-driven 

analysis in the fields of cybersecurity, privacy 

and surveillance, technology and innovation, 

and internet governance (CSIS, n.d.).  The 

STP maintains a series of project knowledge 

bases including the Significant Cyber 

Incidents Tracker which is a formatted event 

timeline starting in 2006 and focusing on 

cyber-attacks across governmental agencies, 

defense, technology companies, and 

economic crimes where the loss is greater 

than US$1 million (CSIS, n.d.).  The tracker 

is organized in a month-year format with key 

data point summaries of the documented 

cyber incidences 

Alien Vault Open Threat Exchange 

(https://otx.alienvault.com/) 

 

A members-only HTML-based knowledge 

portal maintained through Alien Labs 

provides real-time and real-world 

documentation of malicious cyber activities 

where analysts and cybersecurity 

professionals broadcast a comprehensive 

summation of threats to create threat 

intelligence profiles informing cybersecurity 

community members (OTX, n.d.).  The 

knowledge portal maintains over 445 sub-

groups spanning a multitude of different 

cybersecurity interest fields (there is a sub-
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group specifically for APTs), has 58 million 

documented threat indicators, 24,000 malware 

families, and 346 known adversaries 

impacting 19 different industries (OTX, n.d.).  

Furthermore, the knowledge portal contains 

an interactive malware cluster map to view 

documented incidents based on the malware 

family.  The knowledge portal leverages the 

disciplined processes of the Intelligence 

Community to overlay a behavioral context 

on the technical aspects of APT cyber 

exploitation and malicious activities. 

Cisco Talos Intelligence Group 

(www.talosintelligence.com) 

 

A commercial threat intelligence team 

comprised of researchers, analysts, and 

engineers (Talos, n.d.) focused on producing 

actionable intelligence through the collection 

of threat telemetry data spanning networks, 

endpoint devices, cloud and virtualized 

environments, and traffic monitoring of the 

internet (Talos, n.d.) on behalf of Cisco 

customers.  The Talos Intelligence Group 

maintains a comprehensive HTML-based 

knowledge base containing a downloadable 

open-source software repository for malware 

detection, network scanning, encryption, 

intrusion detection and analysis, and dynamic 

data management; vulnerability assessment 

reports focused on zero-day and disclosed 

vulnerabilities; a series of correlational 

databases compiling real-time security 

intelligence data on network traffic by IP 

address and domain; and a library of 

documented cyber-attack incidents and case 

studies 

 

Research Question(s) 

The research questions below were investigated: 

RQ1: What are the important factors for the prevention of malicious software 

exploitation in the design of identity-based cognitive machine symbiotic cybersecurity policies? 

RQ2: Why is cognitive machine SSI a contributor to cohesive cybersecurity policies? 



86 
 

 
 

The study acknowledges that data is the core of the IoT and that guarding it is the 

“highest priority area for investment in cybersecurity” (Steadman 2021, p. 1) as the libraries of 

stored and curated data within the IoT are continuously vulnerable to the dynamics of human and 

malicious machine behavior.  The data-centric nature of the IoT prioritizes the necessities of 

human-cognitive machine symbiosis leveraging the scalable capabilities of cognitive machines 

(that learn with continued ingest of data) to assume shared responsibilities for preserving IoT 

integrity.  

Hypothesis(es) 

The null hypotheses for this study are: 

RQ1: What are the important factors for the prevention of malicious software exploitation in 

the design of identity-based cognitive machine symbiotic cybersecurity policies? 

• H01: There is no statistically significant relationship between the frequency of malicious 

software attacks and the diversity of intrusion techniques. 

 

• Ha1: There is a statistically significant relationship between the frequency of malicious 

software attacks and the diversity of intrusion techniques. 

 

RQ2: Why is cognitive machine SSI a contributor to cohesive cybersecurity policies? 

• H02: There is no statistically significant relationship between the frequency of detection 

events and the diversity of intrusion techniques. 

 

• Ha2: There is a statistically significant relationship between the frequency of detection 

events and the diversity of intrusion techniques. 

 

The persistency of stored data in the IoT is a constant area of vulnerability requiring the 

implementation of increasingly complex multi-factor authentication protocols to verify 

legitimate users requesting services and data, secure the data-in-transit, and authenticate the 

infrastructure components handling the data.  Designing a trusted digital ecosystem to mitigate 

the probability of malicious software exploitations requires cyber defenders to develop 
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innovative methods across virtual ecosystems.  Cognitive machines alter the paradigms of trust 

in their ability to imitate human behavior through data transference in the IoT.  The interaction 

through data creates a newfound complex web of social relationships between humans and 

machines comprised of friendship, ownership, and community.  Identity-based cognitive 

machine symbiotic cybersecurity policies focus on governance and business processes to ensure 

verifiable credentials are exchanged in a P2P environment based on trust concepts anchored in 

ethical behaviors to safeguard the open data-sharing standards of the IoT. 

Dataset 

 The MITRE Att&ck dataset was obtained through an open-source download from 

MITRE with version 12.1 containing 14 tactics, 193 techniques, 401 sub-techniques, 134 

documented malicious actor groups, 14 campaigns, and 718 documented malicious software 

used for intrusions and exploitations.  Table 3 is the tactics parameter and the associated number 

of techniques. 

Table 3  

 

MITRE Att&ck Tactics and Number of Associated Techniques 

 

Tactic Number of associated Techniques 

Reconnaissance 10 

Resource Development 7 

Initial Access 9 

Execution 13 

Persistence 19 

Privilege Escalation 13 

Defense Evasion 42 

Credential Access 17 

Discovery 30 

Lateral Movement 9 

Collection 17 

Command and Control 16 

Exfiltration 9 

Impact 13 
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 The MITRE Cyber Analytic Repository (CAR) dataset was obtained through an open-

source download from MITRE.  The dataset is an analytical crosswalk between the CAR, Sigma, 

Elastic Detection, and Splunk Security Content threat detection environments.  The dataset 

contains 541 individual threat entries with a total of 9,986 detection incidents organized based on 

187 different intrusion techniques.  The MITRE Common Attack Pattern Enumeration and 

Classification (CAPEC) dataset was obtained through an open-source download from MITRE.  

The dataset contains a catalog of common attack patterns to enable a shared understanding of 

how malicious actors exploit weaknesses in the cyber domain.  The dataset has 546 individual 

pattern entries with parameters of description, likelihood, severity, relations, execution flow, 

prerequisites, skills required, resources required, indicators, consequences, mitigations, related 

weaknesses, and taxonomy mapping. 

 The IoT is an interdependent ecosystem of technological applications, digital services, 

and behavior-based (both attributional and reputational) access control.  As the sophisticated and 

organized exploits of modern malicious actors continue, correlational analysis becomes critical 

in identifying patterns to help human-cognitive machine cyber defenders to “see the full scope of 

the incidents” (Rajivan and Cooke 2018, p. 627).  Rajivan and Cooke (2018) used a lab 

experiment with two specific simulated cyber incidents (and associated synthetic data) where 

thirty teams of 3 assigned ownership of subnetworks to test their postulation that “analysts 

would…often communicate incidents that are conspicuous” (Rajivan 2018, p. 628) to gain 

validation from others.  Manual communication is suboptimal as it tends to focus on the isolated 

observations of each team and hampers the ability to correlate across teams to establish 
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associations that would lead to the discovery of the full extent of the cyber-attack (Rajivan, 

2018). 

Xu et al (2018) investigated the use of stochastic processes to describe data breach 

incidences including size and arrival frequency as the 7,730 documented data breaches between 

2005 and 2017 accounted for “9,919,228,821 breached records” (Xu et al 2018, p. 2856).  The 

dataset used for the study contained “600 hacking breach incidents in the United States between 

January 1st, 2005 and April 7th, 2017” (Xu 2018, p. 2858) spanning 7 different industries.  The 

study used an autoregressive conditional mean point process (Xu, 2018) and an ARMA-GRACH 

time series model to analyze the evolution of the breach size and volatility (Xu, 2018).  The 

statistical modeling was developed for predictive analytics based on temporal correlations and 

recognizing the dependency between “incidents inter-arrival times and the breach sizes” (Xu 

2018, p. 2869). 

 Song et al (2021) quantitatively analyzed eight national cybersecurity strategies using 

natural language processing for data mining of unstructured text data.  Their study used topic 

modeling as a “statistical technique…to discover hidden structures from collections of 

documents” (Song et al 2021, p. 62).  The dataset is comprised of the national cybersecurity 

strategies of the United States, United Kingdom, Japan, and the European Union with 1,287 

different words used for the actual topic modeling analysis (Song, 2021).  Aggregating 

constituent words, the study identified fifteen agendas common to the collected national 

cybersecurity strategies organized into the four sectors of Infra Stability, Protection and 

Response Capability, Industry and Technology, and International Cooperation (Song, 2021).  

The quantitative analysis explored the differences in approaches between the national 

cybersecurity strategies based on distribution factors of agendas and sectors across the dataset.  
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The analysis also explored changes in strategies over time as the collected documents span the 

periods between 2003 and 2020 (Song, 2021).  The correlation between the distribution of 

agendas and the “perceived cyber threat environment” (Song 2021, p. 69) influences the macro-

level cybersecurity approaches for recognized international leaders in technological adoption.  

This correlation is important as cybersecurity policy is multi-dimensional and encompasses 

“multi-lateral cooperation efforts across society, government, science, technology, industry, and 

academia” (Song 2021, p. 69). 

Cheong et al (2021) examined how a public firm’s “disclosure behaviors regarding 

cybersecurity risks are different from other firms when the firm experienced a cybersecurity 

incident or received an adverse SOX 404 opinion” (Cheong et al 2021, p. 180).  The SOX 404 

refers to section 404 of the Sarbanes-Oxley Act of 2002 where auditors must attest to the internal 

controls for financial reporting and report internal control weaknesses (Cheong et al, 2021).  The 

dataset is comprised of 25,179 cybersecurity risk disclosures from 4,918 companies between 

2006 and 2017 (Cheong, 2021).  The research questions center on whether the context of 

cybersecurity risk disclosures of firms differ for those who experience a cyber breach or receive 

an adverse SOX 404 opinion from those who do not (Cheong, 2021).  The study used a Latent 

Dirichlet Allocation (LDA) topic model to conduct a textual data analysis based on the 

identification of “topics related to cybersecurity” (Cheong 2021, p. 183).  An exploratory factor 

analysis was used to classify 30 topics into nine factors: incident control and risk mitigation, 

operational risk, customer-related, contract-related, business continuity, payment system, 

network security, third-party software providers, and assurance (Cheong, 2021).  The study 

developed a “regression model on risk factors to examine the contextual differences” (Cheong 

2021, p. 185) where it was discovered that breached firms “disclosed less information about 
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incident control and risk mitigation and business continuity” (Cheong 2021, p. 188) while 

focusing more on third-party software providers (Cheong, 2021).  It was also discovered that 

firms who received an adverse SOX 404 opinion tended to “disclose more information about 

operational risk” (Cheong 2021, p. 188).  Organizational behavior in the aftermath of an adverse 

cyber event is important to understand as who an organization believes is responsible for the 

cyber vulnerabilities shapes their remediation strategies. 

Variables 

Dependent Variable: frequency of malicious software attacks 

MITRE defines malicious software as “custom or commercial code, operating system 

utilities, open-source software, or other tools used to conduct behavior modeled in Att&ck” 

(MITRE, n.d.).  Threat actors execute malicious software exploitations through a multitude of 

techniques including duplicating network traffic; using alternative protocols such as FTP, SMTP, 

HTTP/S, DNS, or SMB; using command and control channels; or infiltrating data repositories.  

Malicious software exploitations are measured in a post-data normalization analysis of the 

MITRE Att&ck dataset based on the unique identification code MITRE assigns to documented 

malicious software.  Within the dataset, malicious software entries are mapped to intrusion 

techniques, known threat actor groups, and recommended mitigation techniques.  The mapping 

provides expanded traceability to establish patterns of life for the purposes of analyzing the 

relational dimensions of malicious operations.  Further measurements are obtained through 

descriptive statistics of the Att&ck dataset to determine if specific malicious software has greater 

prevalence and if there are unique characteristics associated with them.  The additional 

measurements enable analysis into the nature of malicious software particularly those that 

possess their own form of machine cognition.  Appendix B contains the list of documented 
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malicious software within the MITRE dataset and their unique identifiers. 

Independent Variable: diversity of intrusion techniques 

Intrusion tactics represent the “adversary’s tactical goal” (MITRE, n.d.) spanning a 

multitude of techniques designed for multi-variate exploitation.  These techniques are how 

adversaries achieve their “tactical goal by performing an action” (MITRE, n.d.).  In the context 

of digital identities, Haber and Rolls (2019) state that threat actors use methods “to compromise 

an identity and impersonate it for their malicious intent…the goal of the threat actor is to own 

you at the highest level possible and impersonate you as far down the account chain as possible” 

(Haber 2019, p. 107).  Intrusion techniques are measured in a post-data normalization analysis of 

the MITRE Att&ck, CAR, and CAPEC datasets based on the unique identification code MITRE 

assigns them.  Much like the framework for the dependent variable, these techniques are mapped 

to malicious software, intrusion tactics, and known threat actor groups to provide expanded 

traceability for patterns of life analysis.  Table 4 below lists the intrusion tactics within the 

MITRE Att&ck dataset and their unique identifiers to provide a baseline traceability between 

intrusion techniques and tactics. 

Table 4 

MITRE Att&ck Intrusion Tactics and their Unique Identifiers 

Tactic Unique Identifier 

Initial Access TA0001 

Execution TA0002 

Persistence TA0003 

Privilege Escalation TA0004 

Defense Evasion TA0005 

Credential Access TA0006 

Discovery TA0007 

Lateral Movement TA0008 

Collection TA0009 

Exfiltration TA0010 

Command and Control TA0011 
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Impact TA0040 

Resource Development TA0042 

Reconnaissance TA0043 

 

Conceptualization and Measurement  

 Mousavi et al (2021) describe the six characteristics of objects in the IoT as existence, 

self-identity, communication, interaction, dynamicity, and environmental awareness (Mousavi et 

al, 2021).  The IoT permits users “to observe their status, implement remote control and 

management, perform infrastructural configuration, and search devices” (Mousavi et al 2021, p. 

1517) through sensor technologies, cognitive machines, and digital services.  Identity 

authentication is critical for the mitigation of disguised attacks from malicious actors, especially 

as the successful exploitation of a smart object means “its sensing information is seized by the 

attacker for spying purposes in the enterprise” (Mousavi 2021, p. 1516).  The dynamic state of 

the IoT (with its data persistency) has revealed a wide range of security vulnerabilities “from 

authentication to trust management” (Mousavi 2021, p. 1551) due to its data persistency.  Data 

continuously flows between digital environments, devices, users, and services but more 

importantly, stored and curated data continues to live in the virtual space and remains accessible 

to both legitimate users and malicious actors.  Yusif and Hafeez-Baig (2021) state that dynamic 

cybersecurity strategies are not viewed from a vulnerability perspective (Yusif and Hafeez-Baig, 

2021) but rather “from the perspectives of resiliency and active cyber defense” (Yusif and 

Hafeez-Baig 2021, p. 499), particularly as data breaches are on the rise (Yusif, 2021).  In 2015 

alone, the Interstate Technology and Regulatory Council “identified 781 breaches” (Yusif 2021, 

p. 494) that exposed 169 million records (Yusif, 2021) amounting to a 63.8% increase in 

breaches over a six-year timeframe and a staggering 768% increase over a decade (Yusif, 2021).     
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Data persistency in the IoT requires identity-based symbiotic cybersecurity policies to 

focus on extending behavioral concepts of social trust into the digital space.  The Buecher-

Tavani model of digital trust defines these trust relations as trust between human agents, trust 

between human agents and AA (artificial agents), and trust between AAs (Buecher, 2020).  In a 

revision of the Buecher-Tavani model, Buecher (2020) examines the concept of self-trust 

incorporating the idea that “trust is incompatible with a reductive view of self and compatible 

with the existence of a substantial self” (Buecher 2020, p. 1).  The model has five conditions 

based on the behavioral relationship and expectations between two subjects (known as “A” and 

“B”).  Those conditions are that A possesses a normative expectation that B will perform certain 

actions (that are not necessarily pre-defined), that B is responsible for the normative expectation 

of A, that A has a disposition to normatively expect that B will perform actions responsibly, that 

A’s normative expectation of B’s actions can be mistaken, and that A develops a disposition to 

trust B (Buecher, 2020).  H2M and M2M interactions in the IoT are the data exchange 

expressions of these agent relationships as humans interact with cognitive machines as if the 

machines have a form of a substantial self.  It can be argued that a sense of self cannot be 

programmatically (or computationally) enabled in machines, yet IoT interactions are based on 

the paradigms of human social communication.  The cognitive machine (as the AA) performs 

actions in a model of reciprocity where the machine can make inferences and decisions without 

consulting a human; think of the smart vehicle technologies that can drive (and park) the car or 

engage safety features without the human in the loop.  The smart vehicle continuously interprets 

collected data and dynamically adjusts to its environment rather than solely reacting based on 

programming scripts.  The cognitive machine (as an AA in the IoT) is a participating actor 
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whose digital persona mimics common human behavioral traits including the ability to adapt 

based on changes in social or physical environments. 

Procedures 

Phase One (Open-Source Data Collection) 

Phase one is data collection from publicly accessible cyber incident data repositories. 

• MITRE Att&ck (www.attack.mitre.org) 

• MITRE Cyber Analytics (www.car.mitre.org) 

• MITRE Common Attack Pattern Enumeration and Classification (CAPEC) 

(www.capec.mitre.org/index.html) 

The cyber incident data repositories provide open-source knowledge on malicious actor 

groups, exploitation tactics and techniques, targeting behaviors and patterns, and mitigation 

strategies.  This open-source knowledge permits the establishment of an initial pattern of life 

baseline for assessing the correlational relationship between identity-based exploitation 

techniques and malicious actor activities using the exploitation tactic. 

Phase Two (Data Cleansing and Normalization)  

Data cleansing improves data quality through the elimination of data inconsistencies and 

errors.  These inconsistencies and errors can include mislabeled columns and rows, data entry 

errors, incorrect data types, and null fields.  The process of cleansing prepares the datasets for 

normalization which organizes the data into a common structure to establish consistencies across 

records and data fields.  Each dataset has achieved the first normal form (1NF) which requires 

that each cell in the data table is unique and that the records are distinct.  To achieve the second 

normal form (2NF) for the MITRE Att&ck dataset, a data taxonomy is built with unique 

intrusion identifier values assigned to each intrusion tactic.  Table 5 contains the unique intrusion 

identifier values. 
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Table 5 

 

Unique Intrusion Identifier Values for MITRE Att&ck 2NF 

 

Intrusion Tactic Identifier Value 

Reconnaissance 1 

Resource Development 2 

Initial Access 3 

Execution 4 

Persistence 5 

Privilege Escalation 6 

Defense Evasion 7 

Credential Access 8 

Discovery 9 

Lateral Movement 10 

Collection 11 

Command and Control 12 

Exfiltration 13 

Impact 14 

 

 To achieve 2NF in the CAPEC dataset, the “high/medium/low” ratings for likelihood and 

severity factors convert into numeric values on a scale of 1-5 according to Table 6. 

Table 6  

 

Unique Identifier Values for Likelihood and Severity Factors 

 

Ratings Identifier Value 

Very Low 1 

Low 2 

Medium 3 

High 4 

Very High 5 

 

 Zahid et al (2020) present a formula for calculating risk that is expressed as risk = 

likelihood of occurrence x severity of risk (Zahid et al, 2020).  Conversion to numeric values 

permits the creation of a scatterplot to document the aggregated risk at the parent attack pattern 

level. 
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Terminology Hierarchy 

Figure 4 is the hierarchy of terms representing the parent-child and one-to-many 

relationship between the intrusion terminology within the datasets. 

Figure 4 

Intrusion Terminology Hierarchy 

Note.  The image is a representation of the relational hierarchy used within the MITRE Att&ck 

repository (www.attack.mitre.org/) 
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Entity Relationship Diagram  

Figure 5 is the entity relationship diagram (ERD) illustrating the data fields associated 

with each dataset, the primary key (PK), the foreign key (FK), and the linkages between the 

datasets. 

Figure 5 

MITRE Data Fields Entity Relationship Diagram (ERD) 

 

Note.  The image is a representation of the data field relationships between the datasets collected 

from the MITRE Att&ck repository (www.attack.mitre.org/), the MITRE Cyber Analytics 

repository (www.car.mitre.org), and the MITRE CAPEC repository 

(www.capec.mitre.org/index.html) 

Phase Three (Post-normalization) 

 The post-normalization analysis explores patterns in the data based on the aggregated 

attributes of all three datasets.  The pattern analysis focuses on capability tracing at the technical 
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level to establish relationships between techniques, malicious groups, software, mitigations, the 

likelihood and severity factors, and detected incidents.  The pattern analysis permits clustering 

based on themes and factors to enrich the statistical analysis. 

Data Analysis 

A Pearson r correlation coefficient is a ratio where “the scale of variables becomes a 

non-issue” (Denis 2021, p. 74) as the bivariate relationship is dimensionless (Denis, 2021).  A 

Spearman’s rho correlation coefficient “reflects the relationship between two variables, but it is 

not restricted to that relationship necessarily being linear in form” (Denis 2021, p. 76).  This 

study adopts a bivariate analysis with a Pearson r to evaluate both RQ1 and RQ2 if the data 

possess a normal distribution or a Spearman’s rho if the distribution is non-normal.  The 

hypotheses for RQ1 and RQ2 are expressed below.  

RQ1: What are the important factors for the prevention of malicious software 

exploitation in the design of identity-based cognitive machine symbiotic cybersecurity policies? 

• H01: There is no statistically significant relationship between the frequency of malicious 

software attacks and the diversity of intrusion techniques. 

 

• Ha1: There is a statistically significant relationship between the frequency of malicious 

software attacks and the diversity of intrusion techniques. 

 

RQ2: Why is cognitive machine SSI a contributor to cohesive cybersecurity policies? 

• H02: There is no statistically significant relationship between the frequency of detection 

events and the diversity of intrusion techniques. 

 

• Ha2: There is a statistically significant relationship between the frequency of detection 

events and the diversity of intrusion techniques. 

 

It is assumed that malicious actors are organized entities that execute intrusions and 

exploitations based on specific operational or behavioral paradigms.  Determining the frequency 
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of malicious software attacks and the diversity of intrusion techniques is a determinant for 

assessing the magnitude of the threat.   

Bivariate Analysis with Risk Scatterplot 

For RQ1, the statistical correlation is paired with the CAPEC risk scatterplot to connect 

prevalence with the scope of the risk to provide a more holistic view of the nature of the 

malicious software threat.  As modern malicious actors have their utility functions “and seek to 

maximize the effectiveness” (Insua et al 2019, p. 20) of their attacks, malicious software 

exploitation threat mitigation must combine behavioral probability (through pattern analysis) 

with a governance structure focusing on securing the user and their data rather than simply the 

network being used.  The scatterplot augments the bivariate analysis through a visual depiction 

where probability of intrusions is compared to severity values.  Those techniques assessed as 

“high” or “very high” in both probability and severity are analyzed to determine their associated 

intrusion mechanisms.  Associating the mechanisms to the categorical risk amplifies the 

fundamental characteristics of each pattern of attack to aid in visualizing the scope of the threat. 

Bivariate Analysis with Clustering 

For RQ2, the statistical correlation is paired with a hierarchical cluster to organize the 

CAR data into an attribute-value distribution classification tree (Aggarwal and Reddy, 2018).  

The hierarchical cluster utilizes nodal relationships to organize data through “logical rather than 

probabilistic descriptions” (Aggrawal and Reddy 2018, p. 288).  Hierarchical clustering enables 

the decomposition of the CAR data into a classification tree to demonstrate nodal relationships 

between intrusion tactics, detection schemas, exploited machine languages, and frequency of 

detections.  Clustering is a visualization of associations to draw inferences to inform cyber public 

policy designs as cluster analysis enables traceability across multiple variables to determine 



101 
 

 
 

critical vulnerability characteristics or dependencies even if the RQ2 null hypothesis is true.  For 

example, if a post-clustering analysis determines that a specific machine language is vulnerable 

to malicious intrusions, a traceability assessment can be initiated to determine the underlying 

causal determinators.  Such an assessment informs policy design, specifically in the crafting of 

exploitation mitigation strategies based on traced technical vulnerabilities. 
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CHAPTER FOUR: FINDINGS 

Overview 

The IoT enables rapid data and information transfer but increases the probability of 

malicious cyber activity as the digital landscape provides the adversarial threat with a multitude 

of exploitation vectors.  This study defined the variables for statistical testing based on known 

cyber intrusion tactics and techniques, patterns of attacks, and detection events; the description 

for the dependent and independent variables is outlined in Chapter 3.  The research focused 

specifically on frequency of malicious software attacks, the diversity of intrusion techniques, and 

the frequency of detection events.  The primary data sources are from the MITRE Corporation 

containing information on intrusion tactics and techniques, detection mechanisms, operating 

systems affected, machine languages affected, defenses bypassed, and recommended mitigations, 

among others.  The study is framed within the research questions and hypotheses below.  

RQ1: What are the important factors for the prevention of malicious software 

exploitation in the design of identity-based cognitive machine symbiotic cybersecurity policies? 

• H01: There is no statistically significant relationship between the frequency of malicious 

software attacks and the diversity of intrusion techniques. 

 

• Ha1: There is a statistically significant relationship between the frequency of malicious 

software attacks and the diversity of intrusion techniques. 

 

RQ2: Why is cognitive machine SSI a contributor to cohesive cybersecurity policies? 

• H02: There is no statistically significant relationship between the frequency of detection 

events and the diversity of intrusion techniques. 

 

• Ha2: There is a statistically significant relationship between the frequency of detection 

events and the diversity of intrusion techniques. 
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Descriptive Statistics 

 

The first set of descriptive statistics are from the MITRE Att&ck dataset (N = 10306) 

used for RQ1.  The study used the IBM Statistical Product and Service Solutions (SPSS) 

software suite to generate descriptive statistics tables and figures.  Reference appendix C for the 

full list of the individual total and % of total statistics for the MITRE Att&ck malicious software 

categorizations.  Table 7 below contains the N statistics for the Att&ck dataset. 

Table 7  

 

Descriptive Statistics for Intrusion Tactics 

 

Descriptive Statistics – Intrusion Tactics 
  

Tactics 

N Valid 10306  
Missing 0 

 

Table 8 below contains the individual total and % of total statistics based on the MITRE 

Att&ck malicious software categorizations. 

Table 8  

 

Malicious Software Categorization Frequency Analysis 

 

Malicious Software Type 

 Frequency Percent Valid Percent Cumulative Percent 

Valid Tools 873 8.5 8.5 8.5 

Malware 9433 91.5 91.5 100.0 

Total 10306 100.0 100.0  

 

Table 9 below contains the individual total and % of total statistics based on the MITRE 

Att&ck intrusion tactics categorizations. 
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Table 9 

Intrusion Tactics Frequency Analysis 

 

Tactic 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Collection 1057 10.3 10.3 10.3 

Command and Control 1364 13.2 13.2 23.5 

Credential Access 428 4.2 4.2 27.6 

Defense Evasion 2166 21.0 21.0 48.7 

Discovery 2038 19.8 19.8 68.4 

Execution 998 9.7 9.7 78.1 

Exfiltration 214 2.1 2.1 80.2 

Impact 212 2.1 2.1 82.3 

Initial Access 131 1.3 1.3 83.5 

Lateral Movement 125 1.2 1.2 84.7 

Persistence 707 6.9 6.9 91.6 

Privilege Escalation 860 8.3 8.3 99.9 

Reconnaissance 5 .0 .0 100.0 

Resource Development 1 .0 .0 100.0 

Total 10306 100.0 100.0  

 

Figure 6 below is a graphical representation of Table 8 containing the individual total and 

% of total statistics organized based on the MITRE Att&ck intrusion tactic categorizations. 
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Figure 6 

Bar Chart Intrusion Tactics as % of N 

 

 
The second set of descriptive statistics are from the MITRE Cyber Analytics Repository 

(CAR) dataset (N = 588) used for RQ2.  Reference appendix B for the full list of the individual 

total and % of total statistics of the MITRE CAR intrusion technique categorizations.  Table 10 

below contains the N statistics for the CAR dataset. 

Table 10  

 

Descriptive Statistics of CAR Detection Mechanisms 

 

Descriptive Statistics – Detection Mechanisms 

  Techniques 

N Valid 588 

Missing 0 

 

Intrusion Tactics - % of N 
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Figure 7 below is a graphical representation of appendix B containing the individual total 

and % of total statistics organized based on the MITRE CAR intrusion techniques 

categorizations. 

Figure 7 

Bar Chart of CAR Intrusion Techniques as % of N 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 below contains the individual total and % of total statistics based on the MITRE 

CAR intrusion tactics categorization. 
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Table 11 

 

CAR Intrusion Tactics Frequency Analysis 

Intrusion Tactics 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid  12 2.0 2.0 2.0 

Collection 29 4.9 4.9 7.0 

Command and Control 36 6.1 6.1 13.1 

Credential Access 53 9.0 9.0 22.1 

Defense Evasion 112 19.0 19.0 41.2 

Discovery 41 7.0 7.0 48.1 

Execution 31 5.3 5.3 53.4 

Exfiltration 17 2.9 2.9 56.3 

Impact 26 4.4 4.4 60.7 

Initial Access 18 3.1 3.1 63.8 

Lateral Movement 15 2.6 2.6 66.3 

Persistence 75 12.8 12.8 79.1 

Privilege Escalation 43 7.3 7.3 86.4 

Reconnaissance 42 7.1 7.1 93.5 

Resource Development 38 6.5 6.5 100.0 

Total 588 100.0 100.0  

 

Figure 8 below is a graphical representation of Table 11 containing the individual total 

and % of total statistics of MITRE CAR intrusion techniques. 

Figure 8 

Bar Chart of CAR Intrusions as % of N 

 

 

 

 

 

 

Table 12 below contains individual total and % of total statistics of exploited machine 

languages based on the CAR detection schema. 
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Table 12 below contains individual total and % of total statistics of exploited machine 

languages based on the CAR detection schema. 

Table 12 

Exploited Machine Languages - CAR Detection Schema Frequency Analysis 

Exploited Machine Languages – CAR Detection Schema 

 Frequency Percent Valid Percent 

Valid Unknown 270 45.8 45.8 

CSV 81 13.8 13.8 

YAML 78 13.3 13.3 

Markdown 78 13.3 13.3 

JSON 81 13.8 13.8 

Total 588 100.0 100.0 

 

Table 13 below contains individual total and % of total statistics of exploited machine 

languages based on the Sigma detection schema. 

Table 13 

Exploited Machine Languages - Sigma Detection Schema Frequency Analysis 

Exploited Machine Languages – Sigma Detection Schema 

 Frequency Percent Valid Percent 

Valid Unknown 280 47.6 47.6 

J 1 0.2 0.2 

YAML 307 52.2 52.2 

Total 588 100.0 100.0 
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Table 14 below contains individual total and % of total statistics of exploited machine 

languages based on the SIEM detection schema. 

Table 14 

Exploited Machine Languages – SIEM Detection Schema Frequency Analysis 

Exploited Machine Languages – SIEM Detection Schema 

 Frequency Percent Valid Percent 

Valid Unknown 109 18.5 18.5 

Python 65 11.1 11.1 

TOML 209 35.5 35.5 

JSON 205 34.9 34.9 

Total 588 100.0 100.0 

 

Figure 9 below is the hierarchical cluster dendrogram comparing the proximity of 

relationship between exploited machine languages organized based on intrusion tactics.  The red 

boxes indicate the three identified clusters based on closest proximity. 
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Figure 9 

Exploited Machine Language Hierarchical Cluster Dendrogram 

 
 

Cluster #1 

Cluster #2 

Cluster #3 
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Results 

Hypothesis(es) 

RQ1:  What are the important factors for the prevention of malicious software 

exploitation in the design of identity-based cognitive machine symbiotic cybersecurity policies? 

For RQ1, a Spearman’s rho correlation coefficient test was calculated to facilitate a 

bivariate analysis examining the relationship between frequency of malicious software attacks 

and the diversity of intrusion techniques.  A significant positive correlation was found (r (712) = 

.891, p < .001), the null hypothesis is rejected and the alternate accepted indicating a significant 

positive relationship between the dependent and independent variables.  Table 15 below is the 

IBM SPSS output for the RQ1 Spearman’s rho correlation coefficient test and Figure 10 is the 

accompanying scatterplot graph. 

Table 15 

 

RQ1 Spearman’s rho Correlation Coefficient Test 

Correlations 

 

Frequency of 

Malicious 

Software Attack 

Diversity of 

Intrusion 

Techniques 

Spearman's rho Frequency of 

Malicious Software 

Attack 

Correlation 

Coefficient 

1.000 .891** 

Sig. (2-tailed) . <.001 

N 712 712 

Diversity of 

Intrusion 

Techniques 

Correlation 

Coefficient 

.891** 1.000 

Sig. (2-tailed) <.001 . 

N 712 712 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Figure 10 

 

Spearman rho Scatterplot Graph of RQ1 Dependent and Independent Variables 

 

 

A significant positive correlation indicates that increases in the diversity of intrusion 

techniques parallels increases in the frequency of malicious attacks as seen in the general trend 

shown in Figure 10.  In the context of RQ1, significant positive correlation between frequency of 

malicious attacks and the diversity of intrusion techniques is an indicator of the multi-

dimensional nature of modern cyber threats where the factors of time and space are coupled with 

technical multi-functionality to extend the scope of the threat.  This multi-dimensionality could 

demonstrate that a modern cyber threat is inherently multi-pronged (where the attack integrates 

simultaneous and sequenced time with varied techniques) and able to exploit a multitude of 

vectors that reduces the effectiveness of single scope cybersecurity policies that focus on specific 

threat types, behaviors, or signatures.  As table 8 illustrates, the malware classification 
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categorizes 91.5% of documented malicious software in the MITRE Att&ck dataset.  And as 

table 9 illustrates, the top three most prevalent intrusion tactics are defense evasion, discovery, 

and command and control.  These three intrusion tactics organize the remainder of the RQ1 

results to illustrate the relationship between the dependent and independent variables. 

Defense Evasion 

 Based on table 9, defense evasion is the most prevalent intrusion tactic comprising 21% 

of those documented within the MITRE Att&ck dataset.  Defense evasion is a tactic defined as 

“techniques that adversaries use to avoid detection throughout their compromise” (MITRE, n.d.).  

These techniques include methods that abuse trusted processes for the purposes of hiding 

malware (MITRE, n.d.).  Defense evasion characterizes themes of credential manipulation, 

alteration of authentication processes, and policy manipulation.  Credential manipulation include 

exploitations of default guest or administrator accounts built into operating systems, local user 

accounts, and cloud access accounts as well as manipulation of security tokens used to access 

systems, networks, and databases.  Adversaries are capable of creating or impersonating tokens 

to create logon sessions using a user’s legitimate credentials (MITRE, n.d.).  Alteration of 

authentication processes involve utilizing stolen credentials to bypass the normal systemic 

authentication chains to gain initial access into a digital space or to laterally move from system to 

system or networks to networks.  Policy manipulation focuses on modifying the configuration 

settings of a domain (MITRE, n.d.).  As a domain is the centralized method for managing how 

computer resources interact within a network (MITRE, n.d.), the ability of the adversary to 

modify the policies governing domain operations and configurations creates multiple threat 

vectors.   
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As examples, the frequency analysis of the MITRE Att&ck dataset (reference Appendix 

C) reveals that a tool known as Empire is the most prevalent malicious software comprising 1% 

of those documented.  Empire is an “open source, cross-platform remote administration and post-

exploitation framework that is publicly available on GitHub” (MITRE, n.d.).  Relative to defense 

evasion, Empire is used to execute 14 separate intrusion techniques spanning file obfuscation, 

process injection, modifying file timestamps, proxy code builds, passing stolen password hashes 

to bypass normal access controls, and injecting malicious payload through the interception of a 

legitimate program execution path.  14 separate threat groups are also known to have employed 

Empire in their malicious operations.  These threat groups either target specific industries (such 

as transportation, finance, energy, or telecommunications sectors) or are known, State-sponsored 

entities (tied to the Islamic Republic of Iran, Russian Federation, and People’s Republic of 

China) primarily conducting cyber-espionage operations.  More formidable than Empire in the 

execution of the defense evasion tactic are malwares known as Cobalt Strike and InvisiMole that 

comprise 0.9% and 0.8% of documented malicious software respectively.  Cobalt Strike is a 

“commercial, full-featured, remote access tool” (MITRE, n.d.) designed to simulate adversary 

attacks and post-exploitation actions (MITRE, n.d.).  InvisiMole is a “modular spyware 

program…used to perform post-exploitation activities” (MITRE, n.d.).  22 separate intrusion 

techniques are associated with each malware encompassing the same range of capabilities as 

Empire but also expanding into abilities such as acquiring code materials to self-sign malware 

using legitimate certificates, self-modification (or self-disabling) of security tools to avoid 

detection, self-modification (or self-disabling) of network firewalls, hiding files and directories 

to avoid detection, and masquerading malicious tasks or services as legitimate.  In addition, 

Cobalt Strike is affiliated with 20 known threat groups with similar industrial profiles as Empire 
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and a State-sponsored list heavily populated with People’s Republic of China entities while the 

Russian Federation, Democratic People’s Republic of Korea, and the Socialist Republic of 

Vietnam comprise the remainder.  

Discovery 

 Based on table 9, discovery is the second most prevalent intrusion tactic comprising 

19.8% of documented tactics within the MITRE Att&ck dataset.  Discovery is defined as 

“techniques the adversary may use to gain knowledge about the system and internal network” 

(MITRE, n.d.).  Techniques enabling discovery are intended to permit adversaries to “explore 

what they can control and what’s around their entry point in order to discover how it could 

benefit their current objective” (MITRE, n.d.).  Discovery characterizes the theme of probing 

encompassing account (user, email, cloud, and domain) discovery, browser bookmarks and 

application windows discovery, infrastructure and services discovery (to include cloud 

environments), trust and directories discovery, policies and processes discovery, and locations 

and languages discovery (MITRE, n.d.). 

 As examples, the frequency analysis of the MITRE Att&ck dataset (reference Appendix 

C) reveals that InvisiMole and Empire are both prevalent in the execution of the discovery tactic 

with 15 separately associated intrusion techniques respectively.  The presence of InvisiMole, 

Empire, and Cobalt Strike (with 13 separate associated techniques) as prevalent malicious 

software in the execution of both defense evasion and discovery starts to establish patterns of 

utilization for probing and bypassing digital defenses.  Ranked with Cobalt Strike at 13 separate 

techniques are two malicious backdoor trojans known as Epic and Kwampirs.  Epic comprises 

0.2% of documented malicious software and is linked to a Russian Federation-sponsored threat 

group targeting government, military, education, research, and pharmaceutical sectors (MITRE, 
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n.d.). Kwampirs also comprises 0.2% of documented malicious software and is linked to a threat 

group targeting the health industry and has been detected on high-tech medical devices such as 

X-rays and MRIs (MITRE, n.d.).  Though both are not prevalent in the aggregate count of 

malicious software, their uniquely tailored implementations span a significant spectrum of 

discovery techniques.   

Command and Control 

 Based on table 9, command and control comprise 13.2% of documented tactics within the 

MITRE Att&ck dataset.  Command and control consist of “techniques that adversaries may use 

to communicate with systems under their control within a victim network” (MITRE, n.d.).  

Techniques enabling command and control “mimic normal, expected traffic to avoid detection” 

(MITRE, n.d.) to maximize an adversary’s ability to stealthily infiltrate a target environment to 

seize control of it.  Command and control characterize the themes of communication and 

cryptographic exploitation, digital mimicry, and infiltration.  Intrusion techniques span protocol 

exploitation (where the malicious payloads hide in plain sight within applications, web traffic, 

email exchanges, or domain name server (DNS) communication), data encoding, obfuscation, 

impersonation, cryptographic concealment, proxy exploitation, and web service relays. 

 As examples, the frequency analysis the MITRE Att&ck dataset (reference Appendix C) 

reveals that both Cobalt Strike and InvisiMole are prevalent in the command-and-control tactic 

with 12 and 10 separately associated intrusion techniques respectively.  This prevalence further 

illustrates the connection between the utilization of these malicious software to the objectives of 

discovering, infiltrating, and seizing control of target environments that are the objectives of 

threat actors.  Of note are three malicious trojans known as QakBot, RDAT, and SUNBURST.  

QakBot comprises 0.7% of documented malicious software and ranks behind InvisiMole in 
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prevalence.  QakBot is a “modular banking trojan that…has evolved from an information stealer 

into a delivery agent for ransomware” (MITRE, n.d.).  QakBot has 8 separate techniques for 

command and control primarily focused on protocol and encoding exploitation.  QakBot is 

linked to a threat group targeting the financial sector specifically those of “English, German, 

Italian, and Japanese” (MITRE, n.d.) ancestry.  RDAT is a backdoor targeting the 

telecommunications sector (MITRE, n.d.) and comprises 0.2% of documented malicious 

software with 10 specific command and control intrusion techniques.  These techniques are also 

focused on protocol and encoding exploitation though it is also capable of using steganography 

to hide malicious information in digital messages (MITRE, n.d.), self-routing communication to 

alternate channels if the primary channel is compromised and utilizing legitimate symmetric 

encryption algorithms to conceal its command-and-control traffic.  RDAT is linked to a 

suspected State-sponsored threat group from the Islamic Republic of Iran.  SUNBURST is a 

trojan dynamic link library (DLL) comprising 0.4% of documented malicious software designed 

“to fit within the SolarWinds Orion software update framework” (MITRE, n.d.).  SUNBURST 

had 9 specific intrusion techniques with the same relative technical profile as RDAT though 

SUNBURST can also add “random or meaningless data to the protocols used for command and 

control” (MITRE, n.d.) as a method of preventing decoding, deciphering, and analysis (MITRE, 

n.d.) of communication traffic.  SUNBURST is linked to a State-sponsored threat group 

associated with the Foreign Intelligence Service of the Russian Federation. 

RQ2: Why is cognitive machine SSI a contributor to cohesive cybersecurity policies? 

For RQ2, a Spearman’s rho correlation coefficient test was calculated to facilitate a 

bivariate analysis examining the relationship between the frequency of detection events and the 

diversity of intrusion techniques.  A significant positive correlation was found (r (169) = .622, p 
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< .001), the null hypothesis is rejected and the alternate accepted indicating a significant positive 

relationship between the dependent and independent variables.  Table 16 below is the IBM SPSS 

output for the RQ2 Spearman’s rho correlation coefficient test and Figure 11 is the 

accompanying scatterplot graph. 

Table 16 

RQ2 Spearman’s rho Correlation Coefficient Test 

Correlations 

 

Frequency of 

Detection 

Events 

Diversity of 

Intrusion 

Techniques 

Spearman's rho Frequency of Detection 

Events 

Correlation 

Coefficient 

1.000 .622** 

Sig. (2-tailed) . <.001 

N 169 169 

Diversity of Intrusion 

Techniques 

Correlation 

Coefficient 

.622** 1.000 

Sig. (2-tailed) <.001 . 

N 169 169 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Figure 11 

 

Spearman rho Scatterplot Graph of RQ2 Dependent and Independent Variables 

 

 

A significant positive correlation indicates that increases in the diversity of intrusion 

techniques parallels increases in the frequency of detection events as seen in the subtle 

distribution shown in Figure 11.  In the context of RQ2, the correlation between frequency and 

diversity does not necessarily indicate an increase in the probability of detection but rather, that a 

point of detection has the potential to be connected to a complex series of intrusion points 

originating from a single malicious actor.  Complexity and diversity most likely influence the 

scale (and scope) of modern cyber threats demonstrating a potential requirement for emergent 

cybersecurity policies to inherently consider cyber intrusions as interrelated (and interconnected) 

events rather than isolated attacks.  As table 11 illustrates, the top three most prevalent intrusion 
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tactics are defense evasion, persistence, and credential access.  These three intrusion tactics 

organize the remainder of the RQ2 results. 

Defense Evasion 

Based on table 11, defense evasion is the most prevalent intrusion tactic comprising 19% 

of those documented within the MITRE CAR dataset.  As with RQ1, defense evasion is a tactic 

defined as “techniques that adversaries use to avoid detection throughout their compromise” 

(MITRE, n.d.).  Defense evasion exploits the YAML and Tom’s Obvious Minimal Language 

(TOML) machine languages, the Javascript Object Notation (JSON) and Comma Separated 

Values (CSV) data exchange formats, and the Python programming language.  Figure 9 

amplifies the significance of this prevalence as cluster #1 indicates a relationship across 

exploited machine languages between it and the tactics of discovery, impact, collection, and 

initial access while cluster #2 indicates a relationship between it and privilege escalation.  

Together, clusters #1 and #2 illustrate the multi-variate (and interconnected) nature of 

exploitation operations as securing specific machine languages or mitigating a specific intrusion 

might not inherently reduce the overall threat. 

Of the 112 documented intrusion incidences within the CAR dataset, the most prevalent 

(at 12.5% or 14 incidences) comes from the “system binary proxy execution” intrusion 

technique.  The system binary proxy execution intrusion technique bypasses “process and/or 

signature-based defenses by proxying execution of malicious content with signed, or otherwise, 

trusted, binaries” (MITRE, n.d.).  The technique contains sub-techniques for exploiting HTML 

code, Microsoft Windows utilities (to include command line installers), DLL registration 

services, code injectors, and Microsoft console services.  This specific technique has been linked 

to a State-sponsored threat group affiliated with the Reconnaissance General Bureau of the 
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Democratic People’s Republic of Korea.  The next most prevalent technique is “hide artifacts” 

(at 9.8% or 11 incidences) where adversaries “attempt to hide artifacts associated with their 

behaviors to evade detection” (MITRE, n.d.).  The sub-techniques are designed to hide malicious 

behavior in files and directories, user accounts, Microsoft Windows scripting language, master 

file tables, malicious virtualized instances running on hosts, and inbound email rules.  This 

specific technique is not associated with a particular threat group, but it is difficult to mitigate 

through preventative measures as the target environment must be able to detect the abuse 

(MITRE, n.d.).   

Persistence 

 Based on table 11, persistence comprises 12.8% of documented tactics within the MITRE 

CAR dataset.  Persistence is defined as “techniques that adversaries use to keep access to 

systems across restarts, changed credentials, and other interruptions that could cut off their 

access” (MITRE, n.d.).  Techniques enabling persistence are intended to permit adversaries to 

“maintain their foothold on systems, such as replacing or hijacking legitimate code or adding 

startup code” (MITRE, n.d.).  Persistence characterizes themes of account manipulation, 

alteration of authentication processes, and initiation scripts.  Persistence exploits YAML, TOML, 

JSON, CSV, and Python.  Of the 75 documented intrusion incidences within the CAR dataset, 

the most prevalent (at 17.3% or 13 incidences) comes from the “event triggered execution” 

intrusion technique.  Event triggered execution is where adversaries establish persistence “using 

system mechanisms that trigger execution based on specific events” (MITRE, n.d.).  This 

technique possesses a series of sub-techniques spanning changing file associations, execution of 

screensaver functions, Microsoft Windows subscription management functions, DLL 

exploitation, event monitor exploitation, and PowerShell exploitations.  Event triggered 
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execution is a difficult technique to mitigate through preventive measures as the target 

environment must be able to detect the abuse (MITRE, n.d.).  The next most prevalent intrusion 

technique is “boot or logon autostart execution” (at 14.6% or 11 incidences) where adversaries 

“configure system settings to automatically execute a program during system boot or logon” 

(MITRE, n.d.).  The sub-techniques exploit registry keys, authentication packages for DLL 

execution, security support providers for DLL execution, print processing DLLs, and MS 

Windows active setup processes.  This technique is also difficult to mitigate through preventive 

measures as the target environment must be able to detect the abuse (MITRE, n.d.). 

Credential Access 

 Based on table 11, credential access comprises 9.0% of documented tactics within the 

MITRE CAR dataset.  Credential access “consists of techniques for stealing credentials like 

account names and passwords” (MITRE, n.d.).  Credential access techniques are intended to 

“give adversaries access to systems, make them harder to detect, and provide the opportunity to 

create more accounts to help achieve their goals” (MITRE, n.d.).  Credential access characterizes 

the theme of identity theft and exploits YAML, TOML, JSON, CSV, and Python.  Figure 9 

amplifies the significance of credential access as cluster #3 is centered on this specific tactic and 

is comprised of a closely related set of exploited machine languages.  Of the 53 documented 

intrusion incidences within the MITRE CAR dataset, “OS credential dumping” is the most 

prevalent technique (at 16.98% or 9 incidences).  OS credential dumping is a technique where 

adversaries attempt to “dump credentials to obtain account login and credential material, 

normally in the form of a has or a clear text password” (MITRE, n.d.).  The sub-techniques 

exploit security account managers and local security authorities, cached domain credentials, 

domain controller API processes, root privilege processes, and password stores.  A myriad of 
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threat actors (both State-sponsored and malware families) is known to use OS credential 

dumping as an exploitation technique.  The next more prevalent technique (at 15.09% or 8 

incidences) is “unsecured credentials” where adversaries “search compromised systems to find 

and obtain insecurely stored credentials” (MITRE, n.d.).  Sub-techniques exploit credentials that 

are stored in files and registries, command line histories, private keys that are stored in secured 

shell (SSH) directories, group policy preferences, and containerized APIs.  This technique has a 

series of potential mitigations spanning properly configured active directories and operating 

systems, file auditing, network traffic filtering, robust password policies, and proper account 

management. 

Risk 

Table 17 below are the descriptive statistics (N = 559) of the CAPEC dataset based on the 

mechanisms of attack categorizations. 

Table 17 

CAPEC Mechanisms of Attack Frequency Analysis 

 

Category Name 

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid Abuse Existing Functionality 93 16.6 16.6 16.6 

Collect and Analyze Information 112 20.0 20.0 36.7 

Employ Probabilistic Techniques 9 1.6 1.6 38.3 

Engage in Deceptive Interactions 80 14.3 14.3 52.6 

Inject Unexpected Items 72 12.9 12.9 65.5 

Manipulate Data Structures 4 .7 .7 66.2 

Manipulate System Resources 98 17.5 17.5 83.7 

Manipulate Timing and State 6 1.1 1.1 84.8 

Subvert Access Control 85 15.2 15.2 100.0 

Total 559 100.0 100.0  

 

Table 18 below are the descriptive statistics of CAPEC cyber intrusion likelihood of 

attack. 
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Table 18 

CAPEC Cyber Intrusion Likelihood of Attack 

 

Likelihood Of Attack 

 Frequency Percent Valid Percent Cumulative Percent 

Valid High 131 23.4 23.4 23.4 

Low 96 17.2 17.2 40.6 

Medium 118 21.1 21.1 61.7 

Unknown 214 38.3 38.3 100.0 

Total 559 100.0 100.0  

 

Table 19 below are the descriptive statistics of CAPEC cyber intrusion typical severity. 

Table 19 

CAPEC Cyber Intrusion Typical Severity 

Typical Severity 

 Frequency Percent Valid Percent Cumulative Percent 

Valid High 211 37.7 37.7 37.7 

Low 103 18.4 18.4 56.2 

Medium 112 20.0 20.0 76.2 

Unknown 70 12.5 12.5 88.7 

Very High 59 10.6 10.6 99.3 

Very Low 4 .7 .7 100.0 

Total 559 100.0 100.0  

 

Figure 12 below is the scatterplot of the likelihood of attack compared to severity of the 

attack.  The highlight box indicate the mechanisms assessed with a “high” likelihood of attack  

and a “very high” severity. 
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Figure 12 

CAPEC Scatterplot Comparing Likelihood of Attack with Severity 

 

As presented in Chapter 3, risk is calculated as risk = likelihood of occurrence x severity 

of risk (Zahid et al, 2020).  Based on table 17, the “collect and analyze information” 

categorization is the most prevalent mechanism of attack at 20%.  This mechanism is the 

“gathering, collecting, and theft of information by an adversary” (CAPEC, n.d.) to make 

inferences about the weaknesses, vulnerabilities, or techniques that could assist the adversary in 

exploiting the target (CAPEC, n.d.).  Techniques associated with this mechanism are 

“excavation”, “interception”, “footprinting”, “fingerprinting”, “reverse engineering”, protocol 

analysis”, and “information elicitation” (CAPEC, n.d.) where the attack pattern with the highest 

assessed risk is the “retrieve embedded sensitive data”.  This pattern has a “high” likelihood of 

attack and a “very high” severity and is based on an adversary examining a target to “find 

sensitive data that has been embedded within it” (CAPEC, n.d.) as a prelude to a more extensive 
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attack (CAPEC, n.d.).  The “accessing/intercepting/modifying HTTP cookies”, “WSDL 

scanning”, and “shoulder surfing” are three other patterns assessed as “high” likelihood of attack 

and “high” severity.  The “assessing/intercepting/modifying HTTP cookies” mines HTTP 

cookies for potentially sensitive data, intercepts data from client to server or modifies a cookie's 

content before it is sent back to the server (CAPEC, n.d.).  The objective of this pattern is to 

convince the target server to operate on falsified information that the adversary creates (CAPEC, 

n.d.).  The “WSDL scanning” pattern probes the WSDL interface of a web service to provide 

detailed information about the ports and bindings available to consumers (CAPEC, n.d.) that the 

adversary could use to conduct a denial-of-service attack or gain illegal access to database 

records (CAPEC, n.d.).  The “shoulder surfing” pattern is where an “adversary observes an 

unaware individual's keystrokes, screen content, or conversations with the goal of obtaining 

sensitive information” (CAPEC, n.d.) for financial, personal, political, or other gains (CAPEC, 

n.d.). 

Based on table 17, the “manipulate system resources” is the next most prevalent 

mechanism of attack at 17.5%.  This mechanism is a “broad class of attacks wherein the attacker 

is able to change…aspects of resources’ state or availability” (CAPEC, n.d.) to affect system 

behavior or integrity (CAPEC, n.d.).  Techniques associated with this mechanism are “software 

integrity attack”, “hardware integrity attack”, “infrastructure manipulation”, “file manipulation”, 

“configuration/environment manipulation”, “obstruction”, “modification during manufacture”, 

“manipulation during distribution”, “malicious logic insertion”, and “contaminate resource” 

(CAPEC, n.d.).  The “leverage executable code in non-executable files”, “poison web service 

registry”, and “manipulating writeable configuration” are assessed as the highest risk with “high” 

likelihood of attack and “very high” severity.  The “leverage executable code in non-executable 
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files” pattern exploits the trust of configuration and resource files (CAPEC, n.d.) for the purposes 

of executing “malicious code directly or manipulate the target process…to execute based on the 

malicious configuration parameters” (CAPEC, n.d.).  The “poison web service registry” pattern 

can redirect a “service requester to a malicious service provider, provide incorrect information in 

schema or metadata, and delete information about service provider interfaces” (CAPEC, n.d.).  

The “manipulating writeable configuration” pattern enables the adversary to modify manually 

edited files to “give unauthorized access directly to the application” (CAPEC, n.d.) as if the 

adversary were an authorized user. 

Based on table 17, “abuse existing functionality” is the third most prevalent mechanism 

at 16.6%.  This mechanism “manipulates one or more functions of an application in order to 

achieve a malicious objective…or to deplete a resource to the point that the target’s functionality 

is affected” (CAPEC, n.d.).  Techniques associated with this mechanism are “interface 

manipulation”, “flooding”, “excessive allocation”, “resource leak exposure”, “functionality 

misuse”, “communication channel manipulation”, “sustained client engagement”, “protocol 

manipulation”, and “functionality bypass”.  The “overflow binary resource file”, “string format 

overflow in syslog”, “manipulating web input to file system calls”, “overflow buffers”, and “path 

traversal” are assessed as the highest risk with “high” likelihood of attack and “very high” 

severity.  The “overflow binary resource file” pattern exploits the vulnerability in the handling of 

binary resources enabling adversarial “access to the execution stack and execute arbitrary code in 

the target process” (CAPEC, n.d.).  The “string format overflow in syslog” pattern permits the 

adversary to “inject malicious format string commands into the function call” (CAPEC, n.d.) for 

software exploitation at the root of a syslog (CAPEC, n.d.).  The “manipulating web input to file 

system calls” pattern enables the adversary “to gain access to…areas of the file system that the 
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target did not intend to make accessible” (CAPEC, n.d.) through exploitation of system calls to 

the operating system (CAPEC, n.d.).  The “overflow buffers” pattern targets improper or missing 

boundary checks in buffer operations (CAPEC, n.d.) to permit the adversary to “write past the 

boundaries of allocated buffer regions in memory” (CAPEC, n.d.) which can cause crashes or 

redirection (CAPEC, n.d.).  The “path traversal” pattern exploits “insufficient input 

validation…to obtain access to data that should not be retrievable by ordinary well-formed 

requests” (CAPEC, n.d.). 

Amplification of risk data comes through an examination of the 34 patterns assessed as 

“high” likelihood of attack and “very high” severity (reference Appendix D).  Aside from the 

nine associated with the three most prevalent mechanisms, the “inject unexpected items” is the 

mechanism that has the most percentage of highest risk patterns (at 29.4% or 10 patterns).  This 

mechanism is the control or disruption of target behavior through crafted data or “the installation 

and execution of malicious code on the target system” (CAPEC, n.d.).  The intent of this 

mechanism is to cause a target application to perform unintended steps or to enter an unstable 

state (CAPEC, n.d.) as adversaries place instructions within the malicious code to force targeted 

applications to follow their commands.  The techniques associated with this mechanism are 

“XSS targeting non-script elements”, “file content injection”, “manipulating writeable terminal 

devices”, “cross-site scripting (XSS)”, “XQuery injection”, “SQL injection through SOAP 

parameter tampering”, “DOM-based XSS”, “reflected XSS”, and “stored XSS”.  Of note is the 

prevalence of cross-site scripting (XSS) attack techniques exploiting web browser content and 

web applications through the insertion of malicious code (CAPEC, n.d.).  XSS attacks exploit a 

core foundation of the IoT itself so even though “inject unexpected items” comprises only 12.9% 

of the total number of intrusion mechanisms in table 17, it is worth noting its significance.  The 
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“subvert access control” mechanism has the second most prevalent number of patterns with the 

highest assessed risk (at 23.5% or 8 patterns).  This mechanism exploits the weaknesses, 

limitations, and assumptions in identity and authentication systems to include accessing their 

resources and functionality (CAPEC, n.d.).  This mechanism results in the “complete subversion 

of any trust the target system may have in the identity of any entity with which it interacts, or the 

complete subversion of any control the target has over its data or functionality” (CAPEC, n.d.).  

The techniques associated with this mechanism are “subverting environment variable values”, 

“using malicious files”, cross site request forgery”, target programs with elevated privileges”, 

“manipulating user-controlled variables”, “adversary in the middle (AiTM)”, “session 

hijacking”, and “adversary in the browser (AiTB)”.  This mechanism is much more varied in 

how it executes exploitation but, in general, it is focused on assuming control, or altering, the 

behavior-based processes of the target through the subversion of the implicit trust model.  As 

foundations of trust are critical for IoT stability and the maintenance of legitimate data 

exchanges, it is worth noting its significance as it is the fifth most prevalent mechanism in the 

aggregate count (at 15.9%) based on table 17.  The “engage in deceptive interactions” has the 

third most prevalent number of patterns with the highest assessed risk (at 17.6% or 6 patterns).  

This mechanism seeks to “convince the target that it is interacting with some other principle 

and…take actions based on the level of trust that exists between the target and the other 

principle” (CAPEC, n.d.).  The focus of this mechanism is content falsification so that “the target 

will incorrectly trust the legitimacy of the content” (CAPEC, n.d.).  The techniques associated 

with this mechanism are “leveraging/manipulating configuration file search paths”, “pharming”, 

“phishing”, “redirect access to libraries”, “action spoofing”, and “DNS rebinding”.  This 

mechanism impersonates or manipulates legitimate workflows, functions, and data objects to 
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convince a target to interact with the adversary for the purposes of granting access, assuming 

control, or conducting illicit data harvesting.  It is worth noting its significance as it is the fourth 

most prevalent mechanism in the aggregate count (at 16.6%) based on table 17. 
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CHAPTER FIVE: CONCLUSIONS 

Overview 

The outcomes of this research have provided insights into the relationship between 

malicious software attacks, intrusion techniques, and intrusion detection events.  Given the 

limitations of current research, the results are interpreted with a measure of caution.  The 

research results indicated a significant positive correlation between the frequency of malicious 

software attacks and the diversity of intrusion techniques.  Furthermore, a significant positive 

correlation was demonstrated between the frequency of detection events and the diversity of 

intrusion techniques.  This chapter reflects on the research results and offers potential 

implications based on the interpretation of those results.  Machine cognition and the social IoT 

replicates societal concepts which have significant influence on physical and digital world 

dynamics.  This quantitative study examined the complex nature of modern cyber threats to 

propose the establishment of cyber as an interdisciplinary field of public policy initiated through 

the creation of a symbiotic cybersecurity policy framework.  The academic contribution of this 

research project is the fusion of humanistic principles with Internet of Things (or IoT) 

technologies that alters our perception of the machine from an instrument of human engineering 

into a thinking peer to elevate cyber from technical esoterism into an interdisciplinary field of 

public policy.  This impacts and disrupts future research paradigms (particularly in the public 

policy, behavioral sciences, social sciences, and cyber domain) as the IoT and adaptive modern 

technologies has enabled a potentially emergent concept of a machine society that is equal to 

(but independent of) human society.  The contribution to the US national cybersecurity policy 

body of knowledge is a unified policy framework (manifested in the human-cognitive machine 

symbiotic cybersecurity policy triad comprised of digital identity legitimization, trust and 
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positive reputation, and ethical motivation) that could transform cybersecurity policies from 

network-based to entity-based.  The chapter ends with recommendations for future research. 

Discussion 

The purpose of this study is to postulate a design framework for symbiotic cybersecurity 

policies incorporating cognitive machine individualism to enhance the implementation of 

human-machine teaming (HMT) in the preservation of IoT integrity.  The problem is that current 

US national cybersecurity policies operate on the principle of implicit trust that neither enables 

machines to verify their identities before a data transaction is initiated nor accounts for their 

behavioral intent.  Current network-based cybersecurity has created a fragmented policy 

approach, policy design, and implementation methodologies as organizations subjectively apply 

cybersecurity principles based on their specific technical architecture.  Cognitive machine self-

determinative capabilities are not accounted for in current cybersecurity policies as the machine 

is not perceived to be an equal partner.  Research and the available literature indicate an 

increasingly complex scale of security dynamics as adaptive, complex attack models dilute 

cybersecurity situational awareness which hampers human-centric response and remediation 

methodologies (Andrade, 2019). 

Discussion: Research Questions 

RQ1: What are the important factors for the prevention of malicious software 

exploitation in the design of identity-based cognitive machine symbiotic cybersecurity policies? 

For RQ1, the analysis indicates a significant positive correlation between the frequency 

of malicious software attacks and the diversity of intrusion techniques.  The risk comparative 

amplifies this relationship as the three highest risk mechanisms involve controlling (or 

modifying) target behavior through the installation of malicious code, subverting identity and 
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authentication systems, and exploiting trust through deception operations.  The descriptive 

statistics indicate that the highest concentration of intrusions is centered on tactics associated 

with bypassing existing cybersecurity defenses, knowledge-gathering of targeted environments, 

and obtaining control of targeted environments.  Bypassing existing cybersecurity defenses has 

the highest percentage of occurrences and involves techniques related to credential manipulation, 

alteration of authentication processes, and policy manipulation.  In credential manipulation 

alone, malicious threats can forge security tokens using legitimate user credentials or manipulate 

user accounts to bypass cybersecurity measures and gain access to a target.  The work of Chia 

and Chin (2020) reflects this impersonation schema in stating that security breaks when the 

impersonator is “able to fool the verifier into accepting it’s proof of identity with non-negligible 

probability” (Chia and Chin 2020, p. 61716).  The research contextualizes the work of Pal et al 

(2018) where there must be “an emphasis on being able to link identities…uniquely to a 

particular entity” (Pal et al 2018, p. 48). 

The true impact of the IoT is not the deployment of advanced technologies to create 

persistent data and information streams but the replication of real-world social relationships 

(encompassing both humans and machines) with their inherent bias, pre-conceived intent, and 

complicated sociological dynamics.  The IoT is an ideas-based ecosystem manifesting as 

technological innovation where those ideas are leveraged to extend influence, alter behavior, or 

impose authorities and dominance.  Increasing machine cognition increases their risk exposure to 

societal ideas; as cognition implies self-determinative capabilities, exposure to ill-advised bias, 

prejudices, and authoritative machinations means that the behavior of machines could be 

negatively swayed or ideologically influenced.  Modern cybersecurity policies lack a socio-

psychological framework to mitigate such emergent possibilities as technologies are still treated 
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as isolated systems and machines are perceived as instruments rather than as an increasingly 

cognitive actor capable of independent decision-making.  Identity-based cognitive machine 

symbiotic cybersecurity policies are an initial proposal towards an interdisciplinary formulation 

of IoT cybersecurity policies leveraging the HMT strengths of technological innovation and 

social symbiosis.  Rezvanian et al (2018) state that digital world social dynamics fluctuate in a 

non-deterministic and unpredictable fashion (Rezvanian et al, 2018) as “shared items and 

activities of audiences…may change over time and have an impact on the behavior of other 

users’ activities” (Rezvanian 2018, p. 279).  IoT data exchanges spread influence and ideas as its 

persistent data environment is built on a societal relationship model where machines are 

increasingly capable of comprehending ontologies within the data.  Cognitive machines can 

interpret context within the content to independently build awareness and understanding.  Michie 

et al (2017) amplify this in stating that a system is artificially intelligent because it expresses 

traits “such as advanced reading ability and significant domain understanding” (Michie et al 

2017, p. 7).  The implicit trust paradigm of current cybersecurity policies does not account for 

these IoT social network dynamics as modern cyberspace is essentially a landscape of persistent 

digital communication.  In the physical world, trust is not automatically granted between two 

parties particularly if those two parties are not acquainted with each other.  Establishing trust in 

the physical world requires the ability to verify the identities of the other party, confirm that 

interactions and exchanges are legitimate, and understanding the motivations behind the 

exchanges.  There is a social and behavioral construct behind the establishment of trust in the 

physical world.  In the digital world, the IoT has steadily replicated similar social structures 

between digital entities yet there are no consistent policy-driven processes for establishing trust 

when humans and machines are the two interactive parties.  The lack of an interdisciplinary 
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approach to cybersecurity policies creates blind spots because we underestimate (or 

underappreciate) the strength of the cognitive machine as a partner in IoT defense as H2M and 

M2M interactions are not framed as social relationships.  The technical nature of current 

cybersecurity policies emphasizes security through technical solutions rather than harnessing 

relational strength between organic and synthetic entities.  Ozkaya (2020) supports an 

interdisciplinary approach (where HMT trust is built at the intersection of technology and 

behavioral science) as designing trustworthy HMTs “has to start from an explicit and 

consciously designed inclusion of human aspects” (Ozkaya 2020, p. 4).  Identity-based cognitive 

machine symbiotic cybersecurity policies could inform the design of a consistent conceptual and 

theoretical framework for defining human and cognitive machine digital identities based on the 

social interactive aspects of HMTs that are anchored in ethical (and moral) motivations. 

The one-to-one relationship between digital entities and their identities is attributional; 

for cognitive machines, it indicates that cybersecurity policies designed to prevent (or mitigate) 

the threat from impersonating their identities must contain a set of data attributes imparting 

machine distinctiveness.  Distinctiveness is the recognition mechanism for IoT entities since 

activities within the digital space are transactional as parties must trust that exchanges are 

occurring between legitimate entities.  The research indicates that cyber threats utilize 

sophisticated methods to gain trust through impersonation, alteration or manipulation of identity 

credentials, account privileges, or policy guidelines.  Mohammadi (2019) states that trust 

includes subjective components (Mohammadi, 2019) and that limiting this subjectiveness 

requires attributes to “bring an objective view on trustworthiness” (Mohammadi 2019, p. 68).  A 

consistent symbiotic cybersecurity policy framework should inform the attributional (enforced 

through cryptographic signatures) architecture required to uniquely identify humans and 
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cognitive machines to prevent (or mitigate) impersonations.  Having a cryptographically signed, 

attributional architecture applicable for digital uniqueness can create the process steps and 

workflows for establishing identity legitimacy while stimulating further conversation on identity 

ownership, enforcement of digital ethics, continued incorporation of reputational engines to 

augment identity legitimization, and the psychology of machine motivations.  The study 

concludes that a common digital identity ontological (or terms of reference) structure, shared 

technical attribute schema, and business processes for validating and preserving digital 

legitimacy are the factors that could potentially prevent (or mitigate) ongoing malicious software 

exploitations. 

RQ2: Why is cognitive machine SSI a contributor to cohesive cybersecurity policies? 

For RQ2, the analysis indicates a significant positive correlation between the frequency 

of detection events and the diversity of intrusion techniques.  Tables 12-14 indicate that YAML, 

TOML, CSV, and JSON are highly exploited languages (or formats) which is noteworthy as 

these languages are open source, commercially accessible, and prevalent across the span of the 

IoT.  This is important to understand as machines “talk” in these languages (or data formats) 

which includes the transmission of credentials.  In traditional identity management systems, a 

central identity provider creates, manages, and maintains identity information for digital users 

(Moreno, 2021).  These third parties utilize their own identifiers as there is “no universally 

unique identifier…used as a standard interoperable mechanism” (Naik 2020, p. 2).  The lack of 

interoperability and an over-reliance on centralized data repositories exposes these third parties 

to illicit operations due to the “complex, inconsistent, tangled, and insecure web of digital 

identity practices” (Soltani 2021, p. 1). 
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SSI is based on the premise that the owners of digital identities should not cede control to 

centralized providers in the era of big data (Sedlmeir, 2021).  SSI is a mechanism for integrity 

checks as its architecture is comprised of “a set of community-sourced ethical principles that 

pertain to digital identities, privacy rights, and personal information” (Sedlmeir 2021, p. 607).  

Central to SSI is the unique identifier (in the form of a DID).  Applied to cognitive machines, the 

DID provides a data-oriented method for a cognitive machine to present its credentials in P2P 

exchanges with the proper documentation that it can self-sign.  The work of Sheron et al (2019) 

proposed a decentralized security framework based on device verification and message 

authentication (Sheron et al, 2019) corresponding to Fedrecheski et al (2020) whose work states 

that SSI is defined as a set of name-value attributes “that span a range of decentralized domains” 

(Fedrecheski et al 2020, p. 1).  Aside from the technical characteristics of SSI, the premise of 

decentralizing (and empowering self-ownership of) digital identity credentials is a consistent 

framework for cybersecurity policy designers as its fundamentals are oriented around claims and 

proof.  If the owner of an SSI makes certain claims about their digital identity, credentials must 

be produced to validate those claims to prove the owner’s identity.  This is a repeatable 

methodology that is fundamentally easy to understand and not dependent on organization 

specific network configurations.  The fragmented nature of traditional identity management 

systems is exacerbated within the heterogeneous nature of the IoT as lack of interoperability 

limits the inheritance of security features and processes across disparate user groups.  The 

analysis suggests that the exploitation of specific machine languages is not a limiting factor for 

cyber threats as the targeted languages are commonly accepted.  Moreover, the diversity of 

intrusion techniques means that malicious software conducts operations in multiple simultaneous 

or parallel methods where individually detected events might simply be a portion of an 
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extensive, complex attack.  Multi-faceted and multi-layered complex attacks take advantage of 

persistent IoT connectivity for propagation, exploitation, and continuance that make it difficult to 

discover patterns and associations.  These difficulties are further exacerbated as current 

cybersecurity policies tend to posture mitigation and remediation responses based on simple 

signature detection and isolated network penetration schemes.  As threats take advantage of the 

IoT to spread themselves widely using multiple avenues and methodologies, the vulnerabilities 

associated with widely used machine languages and data formats has exposed digital resources to 

a threat complexity that diminishes the power of third-party identity verifiers.  The study 

concludes that cognitive machine SSI is a mechanism to reduce the fragmentation of identity 

credentials and credentials management.  The consistency of the SSI identity verification process 

(and the concept of digital distinctiveness) can enable HMT digital symbiosis for the purposes of 

aligning humans and cognitive machines towards the same goals of defending the IoT against 

malicious actors as both partners can share the same framework for recognizing and 

authenticating their personal identities. 

Discussion: Cyber Policy as an Interdisciplinary Field of Public Policy 

Yi (2023) stipulates that the principles of public policy thoughts are “contingent on 

metaphysical and conceptual answers and consciousness to formulate and advance policy 

thinking” (Yi 2023, p. 6).  The author identifies the five principles of policy thought as policy 

statism, policy goodness, policy balance, policy practicality, and policy interpenetration between 

humans and non-humans (Yi, 2023).  From the philosophical and scholarly perspective, the 

social characteristics of the IoT and the entities that interact within it have transcended the 

technical esoterism of traditional cybersecurity (and cyber-related) policies.  Due to the social 

IoT and the presence of cognitive machines, cyber policies require broader reflection within the 
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public policy community as the acceleration of digital cognition impacts the philosophical and 

ideological underpinnings of public policies.  The social IoT has organic and synthetic cognitive 

voices, both capable of expressing themselves within the digital world with the synthetic voice 

increasingly capable of influencing the expressive capabilities of the organic one.  For the public 

good (and maintaining ideological balance), there must be recognition that public policies are at 

a transition point where the digital public square is a tangible reality that is more than a 

collection of technological widgets.  Steed (2019) expounds on the concept of cyber sovereignty 

that is intertwined with specific national foreign policy approaches to assert the rights of national 

governments in controlling the internet (Steed, 2019).  Cyber sovereignty is further associated 

with economic security and social stability as cyber is a domain to “interfere in the internal 

political affairs of other countries, to attack other countries’ political systems, incite social 

unrest…and other such activities gravely harm national political security and users’ information 

security” (Steed 2019, p. 65).   

Cyber policy as an interdisciplinary field of public policy is a concept that is not without 

precedence as the digital world encapsulates the interdisciplinary elements of all other public 

policy fields due to the growth of the social IoT and the inception of the cognitive machine.  

Social, economic, foreign, and national security public policies are reflected in (or affected by) 

the presence of cyber yet their policy aspects do not integrate cyber as a fundamental element of 

their design architecture.  The digital public square is equal to the physical public square as 

public policy paradigms co-habitat with the technological characteristics of the social IoT.  In 

effect, cyber integrates the interdisciplinary nature of public policies within the IoT yet cyber 

policies are not formulated with interdisciplinary methodologies nor is cyber considered a 

domain that public policies should either extend into, or elevate as, a public policy discipline.  
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Vectoring cyber policies away from technical esoterism parallels the argument from Austin 

(2021) where “social considerations are..evident in modern approaches to cyber security, they 

have rarely been analyzed as part of a complex socio-technical system” (Austin 2021, p. 128).  

As the digital world was “designed so all citizens of the world could have access to a gateway of 

communication” (Fowler 2022, p. 59), the IoT encapsulates democratic principles that are not 

informed by (or governed under) the current philosophical approaches to public policies.  Cyber 

policy as an interdisciplinary field of public policy is a paradigm shift for informing 

Governments and public sector institutions on how to “defend our needs and consider our rights 

and freedoms to express ourselves” (Fowler 2022, p. 59) within (and in relations to) the digital 

world.  For US public policy thinkers and designers (particularly in the national security field), 

cyber policy as an interdisciplinary field of public policy reflects a perspective of information 

warfare that focuses on “shaping perceptions, beliefs, and ultimately decisions and actions of an 

adversary” (Lawson 2020, p. 169).  Public policies are designed to achieve specific societal 

effects, actions, and behaviors.  As the social IoT does not adhere to specific geopolitical and 

ideological boundaries, US public policy scholars must appreciate the potentiality that 

adversarial nation-states will extend their public policy paradigms into cyberspace for the 

purposes of aligning IoT behaviors and culture towards their strategic and ideological objectives. 

The cognitive machine is facilitating an evolution of the cyber domain requiring a 

revolution in the scholarly foundation of public policies as the cognitive machine is a public 

figure (manifested as a digital entity) that is capable of both interpreting policy context and 

(increasingly) shaping future policy design and decisions.  The cognitive machine has the 

potential to inform, advise, and influence policymakers and (with sophisticated ML) craft its own 

public policies for implementation within the digital world.  Whyte and Mazanec (2023) state 
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that social and cultural institution shape the digital world (Whyte and Mazanec, 2023) that 

reflects “our geopolitics, our economic systems and behaviors, and those inherent sociopolitical 

insecurities” (Whyte and Mazanec 2023, p. 320).  The interactions between organic and synthetic 

entities in the IoT expands the traditional human-centric public policy approaches and requires 

policy scholars and philosophers to ask the question of whether cognitive machines are bound 

under (or compelled by) our public policies.  If the answer is no, then the machine is potentially 

free to govern itself under a societal framework of its own invention.  If the answer is yes, then 

the expansiveness of the digital world cannot be encompassed as a sub-set of traditional public 

policy disciplines but rather, cyber must be elevated to its own interdisciplinary field as it must 

accommodate (and account for) two intelligent communities, one organic and one synthetic.   

Discussion: Human-Cognitive Machine Symbiotic Cybersecurity Policy Triad 

 The human-cognitive machine symbiotic cybersecurity policy framework is anchored by 

a circuitous triad where digital identity legitimization reinforces trust and positive reputation 

based on the ethical motivation of interactive IoT partners.  A symbiotic cybersecurity policy 

framework relies on identity proofing where digital interactive partners can prove their physical 

identities and the “existence of necessary information…as genuine and trustable” (Shibuya 2020, 

p. 89).  Self-determination Theory (SDT) postulates that “intrinsically motivated behavior is self-

determined” (Oppl 2022, p. 8) where values of behavior are internalized based on how well basic 

psychological needs are met (Oppl, 2022).  The consequence of cognitive machine autonomous 

capability is that “social and psychological factors are considered to a greater extent in 

autonomy” (Demir et al 2021, p. 696) than in ordinary automation as the machine can express 

open-ended capabilities of emotions and motivations (Burden and Saven-Baden, 2019).  

Autonomy implies independent thought, self-determination, and motivation.  These elements 
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influence trust dynamics since the foundation of digital trust “emerges through interaction” 

(Demir 2021, p. 697) in a social paradigm where positive reputation is a product of 

trustworthiness that is reciprocal between IoT actors (Sapienza et al, 2020).  

 Current cybersecurity policies are composed of a single-party architecture that assumes 

the human actor is the sole intelligent cyberspace agent.  These policies are inherently self-

limiting in the context of the research findings as malicious threats are themselves increasingly 

manifesting as cognitive machines capable of autonomous, complex covert operations within the 

expansive (and persistent) data libraries in the IoT.  As the cognitive machine (both benign and 

malicious) learn through experience from the consumption and analysis of IoT data and 

information, a symbiotic cybersecurity framework recognizes that the machine has the capacity 

to alter its own behavior to the benefit or detriment of its human partners.  A symbiotic 

cybersecurity framework introduces the cognitive machine as a social cyberspace partner as 

digital trust is a “psychological state reflecting the willingness of an actor to place themselves in 

a vulnerable situation” (Zloteanu et al 2018, p. 2) without the ability to control or monitor the 

actions and intentions of the other parties (Zloteanu, 2018).   

The social aspect of the IoT implies a bi-directional, multi-directional, or omni-

directional network of cyberspace actors whose actions impact decisions made in the cyber 

domain and the related consequences of those decisions (Szabo and Gupta, 2020).  For the 

cognitive machine, the symbiotic cybersecurity policy triad layers the psychological motivations 

of self-identity onto synthetic entities for the purposes of evolving cybersecurity policies from a 

rigid, technical perspective of human-defined behaviors into a socio-technical manifestation of 

humanistic characteristics and attributes as the modern IoT blurs the boundaries between humans 

and machines.  Digital identities are constructed from an amalgamation of self-perception and 
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individual motivation where the continued “humanization” of machines create the model of the 

programmed self as “communication with the machine itself helps individuals discover one’s 

“inner self”” (Warren-Smith 2020, p. 138).  The symbiotic cybersecurity policy triad stipulates 

that preserving IoT integrity is a synergistic approach fusing the social and psychological aspects 

of behavior with the technological application of digital identity management to create digital 

ecosystems with trustworthiness that can appreciate over time through legitimate interactions.  

Figure 13 below is the graphical representation of the symbiotic cybersecurity policy triad. 

 

Figure 13 

Human-Cognitive Machine Symbiotic Cybersecurity Policy Triad 

 

 
 

Human-Cognitive 
Machine 

Symbiotic 
Cybersecurity 

Policy 
Framework

Digital Identity 
Legitimization

Ethical 
Motivation

Trust and 
Positive 

Reputation



144 
 

 
 

Discussion: Symbiotic Cybersecurity Policies in National Security Constructivism 

 Clark et al (2022) postulate that the Information Age has triggered a “oligopolisation of 

epistemic power” (Clark et al 2022, p. 398) where Westphalian nation-states are witnessing the 

diffusion of their authorities and control over information (Clark, 2022) as the decentralized (and 

interconnected) nature of the IoT converts the nation-state into a digital actor like all other digital 

actors in cyberspace.  The persistence of the IoT (both semantic and symbiotic) enables state and 

non-state actors to exhibit and exert domestic, international, transnational, and supranational 

power through the creation (and control) of information in cyberspace.  Control over the IoT (its 

technologies and data) establishes power as these actors gain the capability “to generate 

information about people, to store and analyze this information, and to control the means of its 

distribution” (Clark 2022, p. 398).  And as digital actors increasingly encompass both organic 

and synthetic entities, the distribution of power increasingly has the potential to be dispersed to 

cognitive machines thus making their participation in international affairs (and influence over 

international relations) a possibility.  Symbiotic cybersecurity (and the symbiotic cybersecurity 

policy triad) contributes to public policy (and national security) through its humanistic approach 

to digital entities.  Symbiotic cybersecurity acknowledges that the cognitive machine is now a 

full-fledged member of the digital public square.  This digital public square has global reach and 

near-instantaneous data distribution capabilities.  In the age of machine cognition, national 

security public policies must acknowledge that the cyber domain contains two interconnected 

(but distinct) societal structures, one organic and one synthetic.  As cognitive machines can learn 

behavior, the symbiotic cybersecurity policy triad is an acknowledgment that the US has a 

responsibility to teach its machine partners what is considered ethical and moral behavior as well 

as teach them to recognize when adversarial nations (and adversarial organizations) are 
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attempting to influence their decision-making.  IoT power dynamics reduces the governmental 

statutory authorities of nation-states as its open (and connected) architecture permits informal 

participation in information exchange and data access.  The informality can bypass traditional 

government media controls while illicit data exploitation enables non-governmental (or non-

state) actors to obtain a spectrum of state-related data from routine to state secrets.  Further 

reduction in statutory authorities occur as the illicitly harvested data is published to the IoT thus 

permitting other external entities (to include adversarial nation-states) to exploit the data.  The 

inclusion of the cognitive machine introduces synthetic state and non-state actors that have the 

potential to influence (or affect) the preservation of US national security through their 

independent capabilities to harvest and contextualize data either for the benefit of the United 

States, an adversarial nation, or their own self-motivated intentions.  The symbiotic cybersecurity 

policy triad recognizes social dynamics as an entrenched component of the IoT ecosystem of 

ideas.  In modeling human neural activities for advanced ML, we are potentially integrating 

human social flaws (and proclivity towards bias) into the cognitive capabilities of machines.  

This has potential secondary and tertiary ripple effects on Westphalian nation-state power 

dynamics as the cognitive machine can interpret (and alter) its behavior and responses based on 

data stimuli; in part, we are on the verge of establishing the technological equivalent of human 

free will that enables the cognitive machine to decide for itself what role it plays in the 

preservation of national security. 

Barbehon (2020) states that constructivist thinking in public policies address certain 

groups in specific ways (Barbehon, 2020) where policymakers “align to the characteristics and 

evaluations with which the groups are commonly associated” (Barbehon 2020, p. 142).  In this 

context, authoritative power (and the national security paradigm) is a nodal expression of socio-
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technical relations directly tied to epistemological flow within the global and fluid dynamics of 

cyberspace.  These nodes can be comprised of individual actors or a series of networked actors 

spanning the spectrum of digital entities.  Constructivism in the Information Age is anchored in 

nodes as these generate social action (McCourt, 2022) that are influenced “by relations and the 

patterns formed by these relations” (McCourt 2022, p. 45).  Lea (2020) expands and applies 

constructivist thinking to the realm of artificial intelligence in stating that AI engineering are 

“deeply bounded by, and infused with…theories of intelligence, of thinking, of rationality, of 

human nature, and ultimately of the human in nature” (Lea 2020, p. 322).  As cognitive machines 

are capable of social adaptation through cognitive processes, it stands to reason that they can 

engage as members of multi-variate nodes or as singular nodes.  The nature of cognitive 

machines is thus elevated from IoT actors to actors in national security power dynamics.  It is 

these nodes that represent the mergence point between symbiotic cybersecurity policies and US 

national security policies as securing, protecting, and controlling the digital epistemological flow 

is conducted in symbiosis (through communication, collaboration, and cooperation) with nodes 

that align to US national interests and objectives.  US national security (and the preservation of 

the international order) is a projection of a way of life as an institutionalization of thought and 

action (McCarthy, 2021) that “defines the thrust and character of a culture and society” 

(McCarty 2021, p. 197).  With US societal culture increasingly influenced and defined by IoT 

interactions, the symbiotic cybersecurity policy triad is applicable for national security policies 

as the cognitive machines are also influenced and defined by their IoT interactions.  Maintaining 

legitimate communication based on an understanding of actor motivation in the hopes of 

increasing trust and positive reputation can both assist in strengthening US international relations 

(as the cognitive machine actor supports their human counterparts in defending and advocating 



147 
 

 
 

for US national interests) and mitigate the risk that adversarial nations will persuade cognitive 

machines from conducting counter-US operations. 

Implications 

 According to the findings, malicious threats have a multitude of impersonation and 

manipulation techniques at their disposal.  The techniques span technological forgeries, hijacking 

of trusted processes, tailgating via legitimate credentials, and the self-granting of entitlements 

and privileges to access digital resources.  The relevancy of identity exploitation is not the act 

but rather the intent as the physical act of exploitation is an initial step in a cascade of subsequent 

actions that the threat performs to achieve its objectives.  The findings indicate a correlation 

between the frequency of malicious software attacks and the diversity of intrusion techniques as 

well as between the frequency of detection events and the diversity of intrusion techniques.  

Safeguarding digital identities and IoT distinctiveness is an act of data guardianship rather than 

network perimeter defense.  More importantly, safeguarding digital identities is a collaborative 

act between human and machine cognitive partners as each has the capabilities to affect their 

respective environments (humans in the physical world and cognitive machines in the digital 

one).  Modern cybersecurity is not a human-only endeavor as the size of IoT data libraries 

exceeds the capacity of humans to consume, process, and analyze with reasonable efficiency.  

Ficco and Palmieri (2017) speak of the symbiotic Web where “machines, through their 

intelligence and automatic learning ability, are able to react to the exigencies of humans by 

interacting with them in symbiosis” (Ficco and Palmieri 2017, p. 200).  This technological 

symbiosis imparts a cultural aspect as “culture provides us materials, mental, and social 

structures that enable us to perform things that we could do alone” (Ficco 2017, p. 198).  HMT 

partnership represents a digital culture that is distinct from physical world culture as digital 
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cognition is a socially distributed phenomena (Ficco, 2017) encompassing both internal mental 

processes and external cyberspace influences applicable to humans and machines.  The cognitive 

machine is a teammate in the defense of the IoT whose skillset is anchored in its rapid data 

processing abilities and (increasingly through ML) its ability to identify patterns and context to 

inform decision-making.  The collaborative relationship for cybersecurity is an instantiation of 

HMT as the adaptive nature of the threat pushes the mental models outlined in Lyons and Wynne 

(2021) where HMT partners must have shared cognition and synchrony to help each teammate 

“interpret situational cues the same way” (Lyons 2021, p. 3).   

HMT partnership and the growth of cognitive machines in both the physical and digital 

worlds require re-defining self and the individual within the IoT.  Identity-based symbiotic 

cybersecurity policies are an amalgamation of technological capabilities, social behavioral 

norms, and psychological theories on the digital psyche.  Combating digital impersonation and 

identity exploitation has a social consequence not mitigated within current cybersecurity policy 

frameworks as implicit trust is still the technical governing principle for digital data exchanges.  

The effect of implicit trust on H2M communications is that machines can prompt humans for 

proofs of identity (a PIN or login password as examples) whereas humans cannot prompt 

machines for the same.  Humans must implicitly trust that the machines they are communicating 

(and exchanging data) with are legitimate.  This assessment is consistent with Addae et al (2019) 

who state that most definitions of cybersecurity “miss the interdisciplinary nature of the field and 

tends to focus on the technical perspective” (Addae et al 2019, p. 704).  The findings imply a 

social element to impersonation and manipulation activities as malicious threats leverage 

behavioral dynamics such as implicit trust, human ignorance, and corruptive tendencies to find 

weaknesses in the target environment.  The work of van Eeten (2017) augments this as policy “is 
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often a…naïve extrapolation of technical findings” (van Eeten, 2017, p. 433) without analysis 

into the applicable institutional framework (van Eeten, 2017).  Though the technical aspects of 

cybersecurity are important, the IoT has steadily evolved into its own separate social construct 

that is not dependent on physical world attributes.  In HMT, cognitive machines have steadily 

become social machines with the same communicative requirements that H2H social networks 

possess.  This is consistent with Iqbal et al (2020) and their Res Socialis definition of smart IoT 

things that can build their “own social network and…collaborate with each other” (Iqbal et al 

2020, p. 195).  The authors imply that Res Socialis can demonstrate self-ownership, self-

discovery, and self-advertisement within the IoT (Iqbal et al, 2020) reinforcing the concept that 

cognitive machines need to have attributes that make them distinct in the IoT and mechanisms to 

control their digital identities. 

 To construct relevant identity-based cognitive machine symbiotic cybersecurity policies, 

a fundamental re-definition of self needs to occur.  The work of Elliott (2019) states that as 

technology “ramps up through society, the more the individual self is recast in the image of the 

digital” (Elliott 2019, p. 80).  Specifically, Elliott (2019) utilized psychoanalysis in his 

assessment that identity and self in the IoT is a product of cultural influences rather than physical 

ones as the self is “an information processing system” (Elliott 2019, p. 83).  Who we collectively 

are in the IoT is not only a gateway to digital resource privileges and entitlements, but also an 

avenue into the unique behavioral and social dynamics of the digital world where humans and 

machines are mutually collaborative and communicative actors.  As the social IoT gains 

prominence, cybersecurity policies must adapt to incorporate both identity distinctions and 

discreet behaviors.  Codifying the definition of self in the IoT informs the design of attributional 

classes that, in aggregate, form the characteristics of individual digital identity that can be 
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applied consistently for both humans and cognitive machines.  Framing these attributes in the 

proper context informs the development of business processes to ensure their legitimacy for the 

purposes of preventing, mitigating, or reducing malicious threat usage and occurrences of 

impersonation or manipulation techniques.   

In summary, machine cognition and the social IoT replicates societal concepts which 

have significant influence on physical and digital world dynamics.  This quantitative study 

examined the complex nature of modern cyber threats to propose the establishment of cyber as 

an interdisciplinary field of public policy initiated through the creation of a symbiotic 

cybersecurity policy framework.  Identity-based cognitive machine symbiotic cybersecurity 

policies are an interdisciplinary approach to codifying machine manifestations of autonomous 

behavior, self-determination, and behavioral rationality as the cognitive machine is a symbiotic 

actor in the modern Internet of Things (IoT) social network.  The issues discussed in this study 

fill a gap in the current literature as the cognitive pairing between human and machines for the 

purposes of cybersecurity is not framed with shared understanding that a common policy 

structure should exist for their respective digital identities incorporating the social aspects of 

trust and ethical motivations as the IoT replicates societal concepts where the cognitive machine 

is a partner and not a mere instrument.  The research investigated the statistical correlation 

between intrusion techniques, malicious software attacks, and intrusion detection events to 

provide insights into the potential relationships across the three variables.  The research 

contextualized the documented risk of intrusion techniques and cross-walked that risk to 

determine if a relationship exists between techniques with the highest risk factors and identity-

based intrusions.  The academic contribution of this research project is the fusion of humanistic 

principles with Internet of Things (or IoT) technologies that alters our perception of the machine 
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from an instrument of human engineering into a thinking peer to elevate cyber from technical 

esoterism into an interdisciplinary field of public policy.  This impacts and disrupts future 

research paradigms (particularly in the public policy, behavioral sciences, social sciences, and 

cyber domain) as the IoT and adaptive modern technologies has enabled a potentially emergent 

concept of a machine society that is equal to (but independent of) human society.  The 

contribution to the US national cybersecurity policy body of knowledge is a unified policy 

framework (manifested in the human-cognitive machine symbiotic cybersecurity policy triad 

comprised of digital identity legitimization, trust and positive reputation, and ethical motivation) 

that could transform cybersecurity policies from network-based to entity-based.  The premise of 

the triad is that the social nature of the IoT requires emergent policies to incorporate (and 

integrate) physical world cultural and societal themes as cognitive machines are increasingly 

influenced by the context of information accessed and consumed.  Cognitive machines 

independently interpret (and make decisions from) the sensory inputs collected through the IoT 

based on humanistic neural processes.  As human behavior can be altered through information 

influence, the behavior of cognitive machines has similar potential for alteration.  Thus, if 

humans can become malicious, unethical, or immoral over time and cognitive machines are 

exhibiting the similar behavioral rationality (and irrationality), then there is potential for 

cognitive machines to learn malicious, unethical, or immoral behaviors either of their own 

cognizance or through external influence.  Cybersecurity policies that remain technically focused 

will continue to propagate a blind spot that ignores the social nature of the IoT where integrity 

and security are anchored in the trustworthiness of relationships between interactive entities. 
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Limitations 

Three specific limitations to the study were identified.  The first is the sensitive nature of 

cyber exploitations where incidents are not always documented (or published) in open-source 

data repositories.  Cyber exploitations are, by nature, difficult to detect, discover, and analyze as 

the malicious threat has become increasingly sophisticated and adaptive.  Once discovered, there 

is a demand on time for analysts to decompose, reconstruct, and contextualize the exploit to 

glean valuable intelligence on threat activities.  Therefore, documentation on cyber exploitation 

is only as reliable as the analyst that inputted the information.  While there are no preconceived 

notions regarding the completeness (or accuracy) of the exploitation datasets, the published 

incidences are, most likely, a fraction of the total number of exploitations occurring within a 

given timeframe.  The second limitation is the changing nature of intrusion tactics and 

techniques.  As the threat is adaptive, their methods of intrusion and exploitation change over 

time as cybersecurity experts adjust defense strategies in response to detected intrusions or as 

technologies change.  If the threat is State-sponsored, changes in tactics and techniques could 

correspond to changes in adversarial nations’ national defense strategies.  The shifts in intrusion 

tactics and techniques mean that datasets are, at best, a limited snapshot in time.  Quantitative 

research into cyber intrusions, and its associated findings, are thus subject to the life expectancy 

of the tactics and techniques in question.  Changes to methodologies could alter results in 

subsequent research projects, create conflicts with previous hypotheses, or contradict previous 

findings simply because the documented data changed.  The pace of change is also not readily 

predictable, and documentation is based on the ability of cybersecurity experts to detect the 

changes.  The third limitation is the use of unclassified, open sources of data.  As stated in the 

explanation of the first limitation, the completeness and accuracy of datasets is dependent on the 
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analyst inputting the data.  Furthermore, there are known exploitations that are not published in 

an unclassified, open-source database as the information has tangible value for the US 

Intelligence Community.  Use of classified information for this research is clearly unauthorized; 

the impact is potential knowledge gaps influencing the interpretation of research findings or 

limiting discussion on implications.  Furthermore, as with the first limitation, the totality of 

documented exploitations is not illuminated thus making it difficult to provide a comprehensive 

assessment into the true impact of malicious cyber threats. 

Recommendations for Future Research 

The current study can be interpreted as the initial step into developing a comprehensive, 

interdisciplinary set of symbiotic cybersecurity policies applicable to the emerging human-

cognitive machine social IoT network.  Smith et al (2021) stipulates that the public values of 

“ethics, desired traits, characteristics of consequences that matter, guidelines for action, 

priorities, value tradeoffs, and attitudes towards risk” (Smith 2021, p. 3) are factors in the 

crafting of IoT cybersecurity policies.  Priyadarshini and Cotton (2022) further reinforce that in 

stating that “cybersecurity policies promote the public image and credibility of an organization” 

(Priyadarshini and Cotton 2022, p. 330).  As the machine transitions from artificial intelligence 

to intelligent cognition, humanistic principles of behavior and culture gain prominence as the 

cognitive machine is a part of the public and therefore, has input into the elements of public 

value that are part of IoT public policies.  Policies for securing the IoT in the age of machine 

cognition must incorporate psychological and sociological aspects as the cognitive machine can 

adapt its behavior (and worldview) based on the information it ingests.  The transformation of 

cyber policies from technical esoterism into an interdisciplinary field of public policy starts with 



154 
 

 
 

the recognition that the cognitive machine is an independent consumer of, advisor into, and 

influenced by public policy theories, philosophical constructs, and societal initiatives.   

Machine cognition (much as human cognition) implies a potentiality towards bias and 

subjective thinking.  Sun (2020) states that free will in humans and machines “implies self-

determined, intrinsic motivation, and autonomous choice of action in accordance with intrinsic 

motivation” (Sun 2020, p. 26).  The cognitive machine (through sophisticated ML algorithms 

and synthetic neural networks) is gaining the capability to choose their own actions and those 

choices are influenced through their connections (and interconnections) in the IoT.  With 

machine cognition, humans cannot assume that machine behavior is transparent or 

comprehendible as their programming code represents a basal set of “genetics” defining a mere 

fraction of their total existential self.  Symbiotic cybersecurity policies are part of a broader 

scholarly and theoretical conversation into the aspects of machine self-identity, social theories 

about human-machine digital relationships, associative behavioral models overlapping the 

physical and digital worlds, and cognitive machine influence on real-world human social 

relations.  Future research into human-cognitive machine symbiotic cybersecurity is an 

acknowledgement that the machine is no longer reliant on human decision-making (Schuetz, 

2020) but instead, is capable of “autonomously serving human purposes” (Schuetz 2020, p. 462) 

or autonomously acting against human interests based on self-preservation or its interpretation of 

what is in the best interest of humanity.  Recommended questions for future research are: 

• What are the ethical considerations associated with cognitive machine cybersecurity 

policies to balance security considerations with human and cognitive machine rights to 

privacy? 

• Does a cognitive machine have the right to data privacy? 

• How does interdependence alter cybersecurity behavioral models? 

• How can IoT ethical rules of behavior be applied to cognitive machines? 

• Are the concepts of ethics programmable or learned behavior for cognitive machines? 

• Do cognitive machines alter the theoretical framework of sentience? 
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 The social IoT and the increasingly prevalent human-cognitive machine symbiotic 

relationship stretches our conceptual understanding of what is algorithmic and programmable 

when it comes to cyberspace activities.  The cognitive machine expresses a capability to exceed 

the limitations of its own programming and value the power of social connections and 

cooperation that not only increases computational speed but amplifies their determinative 

understanding of existential self.  This necessitates an evolution of our digital perspectives 

blending the social sciences with computational and engineering principles (Shibuya, 2020) as 

the rise of cognitive machines (and the continued expansion of big data environments) could 

provoke “many undesirable and uncomforted matters against the human” (Shibuya 2020, p. 17).  

Ecclesiastes 4:11-12 states, “Also, if two lie down together, they will keep warm.  But how can 

one keep warm alone?  Though one may be overpowered, two can defend themselves.  A cord of 

three strands is not quickly broken”; Scripture speaks to the power and strength of connectedness 

where one individual is not as capable of overcoming certain challenges as multiples are.  As the 

Information Age continues to facilitate a symbiotic relationship between humans and cognitive 

machines, a re-conceptualization of cybersecurity is required where policies incorporate the 

fundamentals of learned social behavior to create a humanistic governance approach.  This 

humanistic governance approach begins to address the difficult issues surrounding ethical and 

moral designs, decision-making, and responsibility (Burden, 2019) between cognitive machines 

and humans as machine behavioral expression has the probability of transforming the machine 

into an independent malicious actor if cybersecurity policies do not incorporate factors for 

educating machines on the concepts of human societal norms for ethical and moral behavior.  

Furthermore, this approach begins to shape the theoretical and philosophical realities that the 

cognitive machine could eventually choose (and adopt) its own ethical and moral standpoint 
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which influences how it practices (and executes) ethical and moral actions.  That final aspect 

could significantly impact the human-cognitive machine symbiotic relationship in both the 

physical and digital worlds. 
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APPENDIX B 

MITRE CAR Detection Schema Frequency Analysis 

 

Technique (Name) 

 N % of Total 

Abuse Elevation Control Mechanism 5 0.9% 

Access Token Manipulation 6 1.0% 

Account Access Removal 1 0.2% 

Account Discovery 5 0.9% 

Account Manipulation 6 1.0% 

Acquire Infrastructure 7 1.2% 

Active Scanning 4 0.7% 

Adversary-in-the-Middle 4 0.7% 

Application Layer Protocol 5 0.9% 

Application Window Discovery 1 0.2% 

Archive Collected Data 4 0.7% 

Audio Capture 1 0.2% 

Automated Collection 1 0.2% 

Automated Exfiltration 2 0.3% 

BITS Jobs 1 0.2% 

Boot or Logon Autostart Execution 15 2.6% 

Boot or Logon Initialization Scripts 6 1.0% 

Browser Bookmark Discovery 1 0.2% 

Browser Extensions 1 0.2% 

Browser Session Hijacking 1 0.2% 

Brute Force 5 0.9% 

Build Image on Host 1 0.2% 

Clipboard Data 1 0.2% 

Cloud Infrastructure Discovery 1 0.2% 

Cloud Service Dashboard 1 0.2% 

Cloud Service Discovery 1 0.2% 

Cloud Storage Object Discovery 1 0.2% 

Command and Scripting Interpreter 9 1.5% 

Commonly Used Port 1 0.2% 

Communication Through Removable Media 1 0.2% 

Component Object Model and Distributed COM 1 0.2% 

Compromise Accounts 3 0.5% 

Compromise Client Software Binary 1 0.2% 

Compromise Infrastructure 7 1.2% 

Container Administration Command 1 0.2% 

Container and Resource Discovery 1 0.2% 
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Technique (Name) 

Create Account 4 0.7% 

Create or Modify System Process 5 0.9% 

Credentials from Password Stores 6 1.0% 

Data Destruction 1 0.2% 

Data Encoding 3 0.5% 

Data Encrypted for Impact 1 0.2% 

Data from Cloud Storage Object 1 0.2% 

Data from Configuration Repository 3 0.5% 

Data from Information Repositories 4 0.7% 

Data from Local System 1 0.2% 

Data from Network Shared Drive 1 0.2% 

Data from Removable Media 1 0.2% 

Data Manipulation 4 0.7% 

Data Obfuscation 4 0.7% 

Data Staged 3 0.5% 

Data Transfer Size Limits 1 0.2% 

Debugger Evasion 1 0.2% 

Defacement 3 0.5% 

Deobfuscate/Decode Files or Information 1 0.2% 

Deploy Container 1 0.2% 

Develop Capabilities 5 0.9% 

Direct Volume Access 1 0.2% 

Disk Wipe 3 0.5% 

Domain Policy Modification 3 0.5% 

Domain Trust Discovery 1 0.2% 

Drive-by Compromise 1 0.2% 

Dynamic Resolution 4 0.7% 

Email Collection 4 0.7% 

Encrypted Channel 3 0.5% 

Endpoint Denial of Service 5 0.9% 

Escape to Host 1 0.2% 

Establish Accounts 3 0.5% 

Event Triggered Execution 16 2.7% 

Execution Guardrails 2 0.3% 

Exfiltration Over Alternative Protocol 4 0.7% 

Exfiltration Over C2 Channel 1 0.2% 

Exfiltration Over Other Network Medium 2 0.3% 

Exfiltration Over Physical Medium 2 0.3% 

Exfiltration Over Web Service 3 0.5% 

Exploit Public-Facing Application 1 0.2% 
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Technique (Name) 

Exploitation for Client Execution 1 0.2% 

Exploitation for Credential Access 1 0.2% 

Exploitation for Defense Evasion 1 0.2% 

Exploitation for Privilege Escalation 1 0.2% 

Exploitation of Remote Services 1 0.2% 

External Remote Services 1 0.2% 

Fallback Channels 1 0.2% 

File and Directory Discovery 1 0.2% 

File and Directory Permissions Modification 3 0.5% 

Firmware Corruption 1 0.2% 

Forced Authentication 1 0.2% 

Forge Web Credentials 3 0.5% 

Gather Victim Host Information 5 0.9% 

Gather Victim Identity Information 4 0.7% 

Gather Victim Network Information 7 1.2% 

Gather Victim Org Information 5 0.9% 

Graphical User Interface 1 0.2% 

Group Policy Discovery 1 0.2% 

Hardware Additions 1 0.2% 

Hide Artifacts 11 1.9% 

Hijack Execution Flow 13 2.2% 

Hypervisor 1 0.2% 

Impair Defenses 10 1.7% 

Implant Internal Image 1 0.2% 

Indicator Removal on Host 7 1.2% 

Indirect Command Execution 1 0.2% 

Ingress Tool Transfer 1 0.2% 

Inhibit System Recovery 1 0.2% 

Input Capture 5 0.9% 

Inter-Process Communication 4 0.7% 

Internal Spearphishing 1 0.2% 

Lateral Tool Transfer 1 0.2% 

LC_MAIN Hijacking 1 0.2% 

Masquerading 8 1.4% 

Modify Authentication Process 6 1.0% 

Modify Cloud Compute Infrastructure 5 0.9% 

Modify Registry 1 0.2% 

Modify System Image 3 0.5% 

Multi-Factor Authentication Interception 1 0.2% 

Multi-Factor Authentication Request Generation 1 0.2% 
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Technique (Name) 

Multi-Stage Channels 1 0.2% 

Multiband Communication 1 0.2% 

Native API 1 0.2% 

Network Boundary Bridging 2 0.3% 

Network Denial of Service 3 0.5% 

Network Service Discovery 1 0.2% 

Network Share Discovery 1 0.2% 

Network Sniffing 1 0.2% 

Non-Application Layer Protocol 1 0.2% 

Non-Standard Port 1 0.2% 

Obfuscated Files or Information 7 1.2% 

Obtain Capabilities 7 1.2% 

Office Application Startup 7 1.2% 

OS Credential Dumping 9 1.5% 

Password Policy Discovery 1 0.2% 

Path Interception 1 0.2% 

Peripheral Device Discovery 1 0.2% 

Permission Groups Discovery 4 0.7% 

Phishing 4 0.7% 

Phishing for Information 4 0.7% 

Plist File Modification 1 0.2% 

Pre-OS Boot 6 1.0% 

Process Discovery 1 0.2% 

Process Injection 13 2.2% 

Protocol Tunneling 1 0.2% 

Proxy 5 0.9% 

Query Registry 1 0.2% 

Redundant Access 1 0.2% 

Reflective Code Loading 1 0.2% 

Remote Access Software 1 0.2% 

Remote Service Session Hijacking 3 0.5% 

Remote Services 7 1.2% 

Remote System Discovery 1 0.2% 

Replication Through Removable Media 1 0.2% 

Resource Hijacking 1 0.2% 

Rogue Domain Controller 1 0.2% 

Rootkit 1 0.2% 

Scheduled Task/Job 7 1.2% 

Scheduled Transfer 1 0.2% 

Screen Capture 1 0.2% 
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Technique (Name) 

Scripting 1 0.2% 

Search Closed Sources 3 0.5% 

Search Open Technical Databases 6 1.0% 

Search Open Websites/Domains 3 0.5% 

Search Victim-Owned Websites 1 0.2% 

Server Software Component 6 1.0% 

Service Stop 1 0.2% 

Shared Modules 1 0.2% 

Shared Webroot 1 0.2% 

Software Deployment Tools 1 0.2% 

Software Discovery 2 0.3% 

Source 1 0.2% 

Stage Capabilities 6 1.0% 

Steal Application Access Token 1 0.2% 

Steal or Forge Kerberos Tickets 5 0.9% 

Steal Web Session Cookie 1 0.2% 

Subvert Trust Controls 7 1.2% 

Supply Chain Compromise 4 0.7% 

System Binary Proxy Execution 14 2.4% 

System Information Discovery 1 0.2% 

System Location Discovery 2 0.3% 

System Network Configuration Discovery 2 0.3% 

System Network Connections Discovery 1 0.2% 

System Owner/User Discovery 1 0.2% 

System Script Proxy Execution 2 0.3% 

System Service Discovery 1 0.2% 

System Services 3 0.5% 

System Shutdown/Reboot 1 0.2% 

System Time Discovery 1 0.2% 

Taint Shared Content 1 0.2% 

Template Injection 1 0.2% 

Traffic Signaling 2 0.3% 

Transfer Data to Cloud Account 1 0.2% 

Trusted Developer Utilities Proxy Execution 2 0.3% 

Trusted Relationship 1 0.2% 

Unsecured Credentials 8 1.4% 

Unused/Unsupported Cloud Regions 1 0.2% 

Use Alternate Authentication Material 5 0.9% 

User Execution 4 0.7% 

Valid Accounts 5 0.9% 
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Technique (Name) 

Video Capture 1 0.2% 

Virtualization/Sandbox Evasion 4 0.7% 

Weaken Encryption 3 0.5% 

Web Service 4 0.7% 

Windows Management Instrumentation 1 0.2% 

XSL Script Processing 1 0.2% 
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APPENDIX C 

MITRE Att&ck Malicious Software Frequency Analysis 

 

Malicious Software (Name) 

 Frequency Percent 

Valid 

Percent Cumulative Percent 

Valid 3PARA RAT 4 .0 .0 .0 

4H RAT 6 .1 .1 .1 

AADInternals 26 .3 .3 .3 

ABK 8 .1 .1 .4 

Action RAT 12 .1 .1 .5 

adbupd 4 .0 .0 .6 

AdFind 5 .0 .0 .6 

Adups 6 .1 .1 .7 

ADVSTORESHELL 26 .3 .3 .9 

Agent Smith 8 .1 .1 1.0 

Agent Tesla 43 .4 .4 1.4 

Agent.btz 7 .1 .1 1.5 

Allwinner 1 .0 .0 1.5 

Amadey 18 .2 .2 1.7 

Anchor 25 .2 .2 1.9 

Android/AdDisplay.Ashas 8 .1 .1 2.0 

Android/Chuli.A 8 .1 .1 2.1 

ANDROIDOS_ANSERV

ER.A 

3 .0 .0 2.1 

AndroidOS/MalLocker.B 3 .0 .0 2.1 

AndroRAT 6 .1 .1 2.2 

Anubis 23 .2 .2 2.4 

AppleJeus 27 .3 .3 2.7 

AppleSeed 35 .3 .3 3.0 

Aria-body 27 .3 .3 3.3 

Arp 2 .0 .0 3.3 

Asacub 11 .1 .1 3.4 

ASPXSpy 1 .0 .0 3.4 

Astaroth 42 .4 .4 3.8 

at 3 .0 .0 3.9 

Attor 42 .4 .4 4.3 

AuditCred 11 .1 .1 4.4 

AuTo Stealer 11 .1 .1 4.5 

AutoIt backdoor 5 .0 .0 4.5 

Avaddon 19 .2 .2 4.7 
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Avenger 12 .1 .1 4.8 

Azorult 18 .2 .2 5.0 

Babuk 14 .1 .1 5.1 

BabyShark 19 .2 .2 5.3 

BackConfig 18 .2 .2 5.5 

Backdoor.Oldrea 18 .2 .2 5.7 

BACKSPACE 16 .2 .2 5.8 

Bad Rabbit 18 .2 .2 6.0 

BADCALL 8 .1 .1 6.1 

BADFLICK 11 .1 .1 6.2 

BADNEWS 31 .3 .3 6.5 

BadPatch 15 .1 .1 6.6 

Bandook 28 .3 .3 6.9 

Bankshot 26 .3 .3 7.2 

Bazar 62 .6 .6 7.8 

BBK 8 .1 .1 7.8 

BBSRAT 20 .2 .2 8.0 

BendyBear 11 .1 .1 8.1 

BISCUIT 10 .1 .1 8.2 

Bisonal 38 .4 .4 8.6 

BitPaymer 22 .2 .2 8.8 

BITSAdmin 5 .0 .0 8.9 

BLACKCOFFEE 7 .1 .1 8.9 

BlackEnergy 33 .3 .3 9.3 

BlackMould 6 .1 .1 9.3 

BLINDINGCAN 21 .2 .2 9.5 

BloodHound 12 .1 .1 9.6 

BLUELIGHT 20 .2 .2 9.8 

Bonadan 9 .1 .1 9.9 

BONDUPDATER 9 .1 .1 10.0 

BoomBox 17 .2 .2 10.2 

BOOSTWRITE 7 .1 .1 10.2 

BOOTRASH 3 .0 .0 10.3 

BoxCaon 13 .1 .1 10.4 

BrainTest 5 .0 .0 10.4 

Brave Prince 7 .1 .1 10.5 

Bread 12 .1 .1 10.6 

Briba 6 .1 .1 10.7 

BS2005 1 .0 .0 10.7 

BUBBLEWRAP 3 .0 .0 10.7 

build_downer 9 .1 .1 10.8 



180 
 

 
 

Bumblebee 48 .5 .5 11.3 

Bundlore 26 .3 .3 11.5 

BusyGasper 22 .2 .2 11.7 

Cachedump 1 .0 .0 11.8 

CaddyWiper 7 .1 .1 11.8 

Cadelspy 9 .1 .1 11.9 

CALENDAR 2 .0 .0 11.9 

Calisto 17 .2 .2 12.1 

CallMe 4 .0 .0 12.1 

Cannon 11 .1 .1 12.2 

Carbanak 21 .2 .2 12.4 

Carberp 31 .3 .3 12.7 

Carbon 22 .2 .2 13.0 

CarbonSteal 19 .2 .2 13.1 

Cardinal RAT 25 .2 .2 13.4 

CARROTBALL 4 .0 .0 13.4 

CARROTBAT 5 .0 .0 13.5 

Catchamas 11 .1 .1 13.6 

Caterpillar WebShell 15 .1 .1 13.7 

CCBkdr 2 .0 .0 13.7 

ccf32 14 .1 .1 13.9 

Cerberus 21 .2 .2 14.1 

certutil 3 .0 .0 14.1 

Chaes 31 .3 .3 14.4 

Chaos 6 .1 .1 14.5 

Charger 5 .0 .0 14.5 

CharmPower 24 .2 .2 14.7 

ChChes 13 .1 .1 14.9 

CHEMISTGAMES 12 .1 .1 15.0 

Cherry Picker 4 .0 .0 15.0 

China Chopper 10 .1 .1 15.1 

Chinoxy 8 .1 .1 15.2 

CHOPSTICK 21 .2 .2 15.4 

Chrommme 13 .1 .1 15.5 

Circles 2 .0 .0 15.6 

Clambling 43 .4 .4 16.0 

Clop 18 .2 .2 16.1 

CloudDuke 3 .0 .0 16.2 

cmd 6 .1 .1 16.2 

Cobalt Strike 90 .9 .9 17.1 

Cobian RAT 10 .1 .1 17.2 
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CoinTicker 10 .1 .1 17.3 

Comnie 21 .2 .2 17.5 

ComRAT 24 .2 .2 17.7 

Concipit1248 3 .0 .0 17.8 

Conficker 16 .2 .2 17.9 

ConnectWise 3 .0 .0 18.0 

Conti 17 .2 .2 18.1 

CookieMiner 15 .1 .1 18.3 

CORALDECK 3 .0 .0 18.3 

CORESHELL 11 .1 .1 18.4 

Corona Updates 15 .1 .1 18.5 

CosmicDuke 23 .2 .2 18.8 

CostaBricks 7 .1 .1 18.8 

CozyCar 19 .2 .2 19.0 

CrackMapExec 23 .2 .2 19.2 

CreepyDrive 9 .1 .1 19.3 

CreepySnail 10 .1 .1 19.4 

Crimson 33 .3 .3 19.7 

CrossRAT 6 .1 .1 19.8 

Crutch 19 .2 .2 20.0 

Cryptoistic 7 .1 .1 20.1 

CSPY Downloader 16 .2 .2 20.2 

Cuba 26 .3 .3 20.5 

Cyclops Blink 23 .2 .2 20.7 

Dacls 11 .1 .1 20.8 

DanBot 16 .2 .2 20.9 

DarkComet 20 .2 .2 21.1 

DarkWatchman 35 .3 .3 21.5 

Daserf 17 .2 .2 21.6 

DCSrv 9 .1 .1 21.7 

DDKONG 4 .0 .0 21.8 

DealersChoice 3 .0 .0 21.8 

DEATHRANSOM 9 .1 .1 21.9 

DEFENSOR ID 6 .1 .1 21.9 

Dendroid 8 .1 .1 22.0 

Denis 24 .2 .2 22.3 

Derusbi 20 .2 .2 22.5 

Desert Scorpion 18 .2 .2 22.6 

Diavol 19 .2 .2 22.8 

Dipsind 8 .1 .1 22.9 

DnsSystem 10 .1 .1 23.0 
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DOGCALL 7 .1 .1 23.1 

Dok 16 .2 .2 23.2 

Doki 15 .1 .1 23.4 

Donut 16 .2 .2 23.5 

DoubleAgent 17 .2 .2 23.7 

down_new 10 .1 .1 23.8 

Downdelph 8 .1 .1 23.9 

DownPaper 8 .1 .1 23.9 

DRATzarus 14 .1 .1 24.1 

DressCode 1 .0 .0 24.1 

Dridex 12 .1 .1 24.2 

DroidJack 4 .0 .0 24.2 

DropBook 9 .1 .1 24.3 

Drovorub 13 .1 .1 24.4 

dsquery 3 .0 .0 24.5 

Dtrack 31 .3 .3 24.8 

DualToy 3 .0 .0 24.8 

Duqu 31 .3 .3 25.1 

DustySky 22 .2 .2 25.3 

Dvmap 7 .1 .1 25.4 

Dyre 22 .2 .2 25.6 

Ebury 26 .3 .3 25.8 

ECCENTRICBANDWA

GON 

7 .1 .1 25.9 

Ecipekac 7 .1 .1 26.0 

Egregor 32 .3 .3 26.3 

EKANS 9 .1 .1 26.4 

Elise 22 .2 .2 26.6 

ELMER 3 .0 .0 26.6 

Emissary 18 .2 .2 26.8 

Emotet 38 .4 .4 27.2 

Empire 99 1.0 1.0 28.1 

EnvyScout 14 .1 .1 28.3 

Epic 22 .2 .2 28.5 

esentutl 5 .0 .0 28.5 

eSurv 10 .1 .1 28.6 

EventBot 14 .1 .1 28.8 

EvilBunny 19 .2 .2 28.9 

EvilGrab 7 .1 .1 29.0 

EVILNUM 15 .1 .1 29.2 

Exaramel for Linux 17 .2 .2 29.3 
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Exaramel for Windows 8 .1 .1 29.4 

Exobot 15 .1 .1 29.5 

Exodus 19 .2 .2 29.7 

Expand 3 .0 .0 29.8 

Explosive 13 .1 .1 29.9 

FakeM 5 .0 .0 29.9 

FakeSpy 13 .1 .1 30.1 

FALLCHILL 9 .1 .1 30.1 

FatDuke 23 .2 .2 30.4 

Felismus 10 .1 .1 30.5 

FELIXROOT 20 .2 .2 30.7 

Ferocious 11 .1 .1 30.8 

Fgdump 1 .0 .0 30.8 

Final1stspy 7 .1 .1 30.8 

FinFisher 43 .4 .4 31.3 

FIVEHANDS 8 .1 .1 31.3 

Flagpro 25 .2 .2 31.6 

Flame 11 .1 .1 31.7 

FLASHFLOOD 7 .1 .1 31.8 

FlawedAmmyy 25 .2 .2 32.0 

FlawedGrace 1 .0 .0 32.0 

FlexiSpy 20 .2 .2 32.2 

FLIPSIDE 1 .0 .0 32.2 

FoggyWeb 25 .2 .2 32.5 

Forfiles 3 .0 .0 32.5 

FrameworkPOS 5 .0 .0 32.5 

FrozenCell 11 .1 .1 32.6 

FruitFly 8 .1 .1 32.7 

ftp 3 .0 .0 32.7 

FunnyDream 41 .4 .4 33.1 

FYAnti 4 .0 .0 33.2 

Fysbis 15 .1 .1 33.3 

Gazer 25 .2 .2 33.6 

Gelsemium 39 .4 .4 34.0 

GeminiDuke 6 .1 .1 34.0 

Get2 7 .1 .1 34.1 

gh0st RAT 30 .3 .3 34.4 

Ginp 13 .1 .1 34.5 

GLOOXMAIL 1 .0 .0 34.5 

Gold Dragon 15 .1 .1 34.6 

Golden Cup 14 .1 .1 34.8 
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GoldenEagle 18 .2 .2 35.0 

GoldenSpy 17 .2 .2 35.1 

GoldFinder 3 .0 .0 35.2 

GoldMax 23 .2 .2 35.4 

GolfSpy 19 .2 .2 35.6 

Gooligan 3 .0 .0 35.6 

Goopy 22 .2 .2 35.8 

GPlayed 20 .2 .2 36.0 

Grandoreiro 46 .4 .4 36.4 

GravityRAT 22 .2 .2 36.7 

Green Lambert 23 .2 .2 36.9 

GreyEnergy 20 .2 .2 37.1 

GRIFFON 11 .1 .1 37.2 

GrimAgent 28 .3 .3 37.5 

gsecdump 2 .0 .0 37.5 

GuLoader 16 .2 .2 37.6 

Gustuff 17 .2 .2 37.8 

H1N1 15 .1 .1 37.9 

Hacking Team UEFI 

Rootkit 

3 .0 .0 38.0 

HALFBAKED 6 .1 .1 38.0 

HAMMERTOSS 7 .1 .1 38.1 

Hancitor 15 .1 .1 38.2 

HAPPYWORK 3 .0 .0 38.3 

HARDRAIN 5 .0 .0 38.3 

Havij 1 .0 .0 38.3 

HAWKBALL 11 .1 .1 38.4 

hcdLoader 3 .0 .0 38.5 

HDoor 2 .0 .0 38.5 

HELLOKITTY 6 .1 .1 38.5 

Helminth 26 .3 .3 38.8 

HenBox 18 .2 .2 39.0 

HermeticWiper 31 .3 .3 39.3 

HermeticWizard 16 .2 .2 39.4 

Heyoka Backdoor 17 .2 .2 39.6 

Hi-Zor 10 .1 .1 39.7 

HiddenWasp 13 .1 .1 39.8 

HIDEDRV 3 .0 .0 39.8 

Hikit 13 .1 .1 40.0 

Hildegard 31 .3 .3 40.3 

HOMEFRY 3 .0 .0 40.3 
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HOPLIGHT 20 .2 .2 40.5 

HotCroissant 22 .2 .2 40.7 

HTRAN 4 .0 .0 40.7 

HTTPBrowser 18 .2 .2 40.9 

httpclient 3 .0 .0 40.9 

HummingBad 3 .0 .0 41.0 

HummingWhale 1 .0 .0 41.0 

Hydraq 21 .2 .2 41.2 

HyperBro 15 .1 .1 41.3 

HyperStack 8 .1 .1 41.4 

IceApple 20 .2 .2 41.6 

IcedID 23 .2 .2 41.8 

ifconfig 1 .0 .0 41.8 

iKitten 9 .1 .1 41.9 

Imminent Monitor 17 .2 .2 42.1 

Impacket 11 .1 .1 42.2 

Industroyer 23 .2 .2 42.4 

InnaputRAT 12 .1 .1 42.5 

INSOMNIA 17 .2 .2 42.7 

InvisiMole 86 .8 .8 43.5 

Invoke-PSImage 2 .0 .0 43.6 

ipconfig 1 .0 .0 43.6 

IronNetInjector 12 .1 .1 43.7 

ISMInjector 7 .1 .1 43.8 

Ixeshe 16 .2 .2 43.9 

Janicab 6 .1 .1 44.0 

Javali 14 .1 .1 44.1 

JCry 8 .1 .1 44.2 

JHUHUGIT 27 .3 .3 44.4 

JPIN 23 .2 .2 44.7 

jRAT 30 .3 .3 45.0 

JSS Loader 9 .1 .1 45.0 

Judy 2 .0 .0 45.1 

KARAE 4 .0 .0 45.1 

Kasidet 12 .1 .1 45.2 

Kazuar 34 .3 .3 45.5 

Kerrdown 12 .1 .1 45.7 

Kessel 16 .2 .2 45.8 

Kevin 21 .2 .2 46.0 

KeyBoy 21 .2 .2 46.2 

Keydnap 12 .1 .1 46.3 
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KEYMARBLE 10 .1 .1 46.4 

KeyRaider 2 .0 .0 46.5 

KGH_SPY 22 .2 .2 46.7 

KillDisk 16 .2 .2 46.8 

Kinsing 23 .2 .2 47.1 

Kivars 8 .1 .1 47.1 

Koadic 32 .3 .3 47.4 

Kobalos 17 .2 .2 47.6 

KOCTOPUS 22 .2 .2 47.8 

Komplex 8 .1 .1 47.9 

KOMPROGO 3 .0 .0 47.9 

KONNI 47 .5 .5 48.4 

Kwampirs 23 .2 .2 48.6 

LaZagne 10 .1 .1 48.7 

LightNeuron 22 .2 .2 48.9 

Linfo 9 .1 .1 49.0 

Linux Rabbit 11 .1 .1 49.1 

LiteDuke 15 .1 .1 49.3 

LitePower 13 .1 .1 49.4 

Lizar 25 .2 .2 49.6 

LockerGoga 7 .1 .1 49.7 

LoJax 7 .1 .1 49.8 

Lokibot 36 .3 .3 50.1 

LookBack 19 .2 .2 50.3 

LoudMiner 19 .2 .2 50.5 

LOWBALL 3 .0 .0 50.5 

Lslsass 1 .0 .0 50.5 

Lucifer 28 .3 .3 50.8 

Lurid 2 .0 .0 50.8 

Machete 45 .4 .4 51.2 

MacMa 27 .3 .3 51.5 

macOS.OSAMiner 12 .1 .1 51.6 

MacSpy 11 .1 .1 51.7 

MailSniper 3 .0 .0 51.8 

Mandrake 29 .3 .3 52.0 

Marcher 3 .0 .0 52.1 

MarkiRAT 26 .3 .3 52.3 

Matryoshka 15 .1 .1 52.5 

MazarBOT 2 .0 .0 52.5 

Maze 27 .3 .3 52.7 

MCMD 13 .1 .1 52.9 
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MechaFlounder 8 .1 .1 52.9 

meek 1 .0 .0 53.0 

MegaCortex 19 .2 .2 53.1 

Melcoz 14 .1 .1 53.3 

MESSAGETAP 9 .1 .1 53.4 

Metamorfo 53 .5 .5 53.9 

Meteor 23 .2 .2 54.1 

Micropsia 18 .2 .2 54.3 

Milan 22 .2 .2 54.5 

Mimikatz 20 .2 .2 54.7 

MimiPenguin 1 .0 .0 54.7 

Miner-C 1 .0 .0 54.7 

MiniDuke 9 .1 .1 54.8 

MirageFox 7 .1 .1 54.9 

Mis-Type 20 .2 .2 55.1 

Misdat 17 .2 .2 55.2 

Mivast 5 .0 .0 55.3 

MobileOrder 7 .1 .1 55.3 

MoleNet 8 .1 .1 55.4 

Mongall 16 .2 .2 55.6 

Monokle 26 .3 .3 55.8 

MoonWind 17 .2 .2 56.0 

More_eggs 15 .1 .1 56.1 

Mori 9 .1 .1 56.2 

Mosquito 18 .2 .2 56.4 

MURKYTOP 11 .1 .1 56.5 

Mythic 13 .1 .1 56.6 

Naid 5 .0 .0 56.7 

NanHaiShu 13 .1 .1 56.8 

NanoCore 15 .1 .1 56.9 

NativeZone 7 .1 .1 57.0 

NavRAT 12 .1 .1 57.1 

NBTscan 6 .1 .1 57.2 

nbtstat 2 .0 .0 57.2 

NDiskMonitor 5 .0 .0 57.3 

Nebulae 19 .2 .2 57.4 

Neoichor 11 .1 .1 57.5 

Nerex 5 .0 .0 57.6 

Net 15 .1 .1 57.7 

Net Crawler 4 .0 .0 57.8 

NETEAGLE 12 .1 .1 57.9 
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netsh 5 .0 .0 57.9 

netstat 1 .0 .0 58.0 

NetTraveler 3 .0 .0 58.0 

Netwalker 18 .2 .2 58.2 

NETWIRE 55 .5 .5 58.7 

Ngrok 5 .0 .0 58.7 

Nidiran 4 .0 .0 58.8 

njRAT 34 .3 .3 59.1 

Nltest 3 .0 .0 59.1 

NOKKI 17 .2 .2 59.3 

NotCompatible 1 .0 .0 59.3 

NotPetya 19 .2 .2 59.5 

OBAD 2 .0 .0 59.5 

ObliqueRAT 16 .2 .2 59.7 

OceanSalt 8 .1 .1 59.8 

Octopus 19 .2 .2 59.9 

Okrum 43 .4 .4 60.4 

OLDBAIT 6 .1 .1 60.4 

OldBoot 1 .0 .0 60.4 

Olympic Destroyer 14 .1 .1 60.6 

OnionDuke 5 .0 .0 60.6 

OopsIE 22 .2 .2 60.8 

Orz 14 .1 .1 61.0 

OSInfo 10 .1 .1 61.1 

OSX_OCEANLOTUS.D 23 .2 .2 61.3 

OSX/Shlayer 15 .1 .1 61.4 

Out1 5 .0 .0 61.5 

OutSteel 14 .1 .1 61.6 

OwaAuth 9 .1 .1 61.7 

P.A.S. Webshell 15 .1 .1 61.8 

P2P ZeuS 1 .0 .0 61.8 

P8RAT 7 .1 .1 61.9 

Pallas 16 .2 .2 62.1 

Pandora 18 .2 .2 62.2 

Pasam 8 .1 .1 62.3 

Pass-The-Hash Toolkit 2 .0 .0 62.3 

Pay2Key 8 .1 .1 62.4 

PcShare 23 .2 .2 62.6 

Pegasus for Android 12 .1 .1 62.8 

Pegasus for iOS 13 .1 .1 62.9 

Peirates 16 .2 .2 63.0 
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Penquin 23 .2 .2 63.3 

Peppy 8 .1 .1 63.3 

PHOREAL 3 .0 .0 63.4 

Pillowmint 15 .1 .1 63.5 

PinchDuke 7 .1 .1 63.6 

Ping 1 .0 .0 63.6 

PingPull 16 .2 .2 63.7 

PipeMon 28 .3 .3 64.0 

Pisloader 10 .1 .1 64.1 

PJApps 4 .0 .0 64.2 

PLAINTEE 11 .1 .1 64.3 

PLEAD 15 .1 .1 64.4 

PlugX 35 .3 .3 64.7 

pngdowner 3 .0 .0 64.8 

PoetRAT 37 .4 .4 65.1 

PoisonIvy 19 .2 .2 65.3 

PolyglotDuke 9 .1 .1 65.4 

Pony 16 .2 .2 65.6 

POORAIM 6 .1 .1 65.6 

PoshC2 41 .4 .4 66.0 

POSHSPY 9 .1 .1 66.1 

Power Loader 2 .0 .0 66.1 

PowerDuke 16 .2 .2 66.3 

PowerLess 10 .1 .1 66.4 

PowerPunch 4 .0 .0 66.4 

PowerShower 15 .1 .1 66.6 

POWERSOURCE 7 .1 .1 66.6 

PowerSploit 44 .4 .4 67.1 

PowerStallion 5 .0 .0 67.1 

POWERSTATS 29 .3 .3 67.4 

POWERTON 8 .1 .1 67.5 

PowGoop 10 .1 .1 67.6 

POWRUNER 22 .2 .2 67.8 

Prikormka 24 .2 .2 68.0 

ProLock 8 .1 .1 68.1 

Proton 19 .2 .2 68.3 

Proxysvc 14 .1 .1 68.4 

PS1 6 .1 .1 68.5 

PsExec 6 .1 .1 68.5 

Psylo 5 .0 .0 68.6 

Pteranodon 21 .2 .2 68.8 
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PUNCHBUGGY 19 .2 .2 69.0 

PUNCHTRACK 3 .0 .0 69.0 

Pupy 49 .5 .5 69.5 

pwdump 1 .0 .0 69.5 

PyDCrypt 11 .1 .1 69.6 

Pysa 16 .2 .2 69.7 

QakBot 73 .7 .7 70.4 

QUADAGENT 18 .2 .2 70.6 

QuasarRAT 29 .3 .3 70.9 

QuietSieve 9 .1 .1 71.0 

Ragnar Locker 14 .1 .1 71.1 

Raindrop 8 .1 .1 71.2 

RainyDay 30 .3 .3 71.5 

Ramsay 48 .5 .5 72.0 

RARSTONE 5 .0 .0 72.0 

RATANKBA 16 .2 .2 72.2 

RawDisk 3 .0 .0 72.2 

RawPOS 6 .1 .1 72.2 

Rclone 6 .1 .1 72.3 

RCSAndroid 11 .1 .1 72.4 

RCSession 27 .3 .3 72.7 

RDAT 21 .2 .2 72.9 

RDFSNIFFER 4 .0 .0 72.9 

Reaver 16 .2 .2 73.1 

Red Alert 2.0 13 .1 .1 73.2 

RedDrop 7 .1 .1 73.3 

RedLeaves 21 .2 .2 73.5 

Reg 3 .0 .0 73.5 

RegDuke 9 .1 .1 73.6 

Regin 13 .1 .1 73.7 

Remcos 21 .2 .2 73.9 

Remexi 21 .2 .2 74.1 

RemoteCMD 5 .0 .0 74.2 

RemoteUtilities 4 .0 .0 74.2 

Remsec 34 .3 .3 74.5 

Responder 4 .0 .0 74.6 

Revenge RAT 22 .2 .2 74.8 

REvil 35 .3 .3 75.1 

RGDoor 7 .1 .1 75.2 

Rifdoor 10 .1 .1 75.3 

Riltok 10 .1 .1 75.4 



191 
 

 
 

RIPTIDE 2 .0 .0 75.4 

Rising Sun 19 .2 .2 75.6 

ROADTools 9 .1 .1 75.7 

RobbinHood 6 .1 .1 75.7 

ROCKBOOT 2 .0 .0 75.8 

RogueRobin 21 .2 .2 76.0 

ROKRAT 33 .3 .3 76.3 

Rotexy 17 .2 .2 76.5 

route 1 .0 .0 76.5 

Rover 12 .1 .1 76.6 

RTM 43 .4 .4 77.0 

Ruler 4 .0 .0 77.0 

RuMMS 4 .0 .0 77.1 

RunningRAT 11 .1 .1 77.2 

Ryuk 31 .3 .3 77.5 

S-Type 22 .2 .2 77.7 

Saint Bot 45 .4 .4 78.1 

Sakula 16 .2 .2 78.3 

SamSam 5 .0 .0 78.3 

schtasks 3 .0 .0 78.4 

SDBbot 28 .3 .3 78.6 

SDelete 2 .0 .0 78.7 

SeaDuke 22 .2 .2 78.9 

Seasalt 12 .1 .1 79.0 

SEASHARPEE 4 .0 .0 79.0 

ServHelper 16 .2 .2 79.2 

Seth-Locker 3 .0 .0 79.2 

ShadowPad 21 .2 .2 79.4 

Shamoon 32 .3 .3 79.7 

Shark 18 .2 .2 79.9 

SharpStage 14 .1 .1 80.0 

SHARPSTATS 7 .1 .1 80.1 

ShiftyBug 2 .0 .0 80.1 

ShimRat 26 .3 .3 80.4 

ShimRatReporter 16 .2 .2 80.5 

SHIPSHAPE 6 .1 .1 80.6 

SHOTPUT 6 .1 .1 80.6 

SHUTTERSPEED 3 .0 .0 80.7 

Sibot 19 .2 .2 80.9 

SideTwist 15 .1 .1 81.0 

SILENTTRINITY 59 .6 .6 81.6 
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SilkBean 15 .1 .1 81.7 

Siloscape 15 .1 .1 81.9 

SimBad 3 .0 .0 81.9 

Skeleton Key 3 .0 .0 81.9 

Skidmap 21 .2 .2 82.1 

Skygofree 9 .1 .1 82.2 

Sliver 17 .2 .2 82.4 

SLOTHFULMEDIA 26 .3 .3 82.6 

SLOWDRIFT 3 .0 .0 82.7 

Small Sieve 14 .1 .1 82.8 

Smoke Loader 20 .2 .2 83.0 

SMOKEDHAM 23 .2 .2 83.2 

SNUGRIDE 5 .0 .0 83.3 

Socksbot 6 .1 .1 83.3 

SodaMaster 13 .1 .1 83.4 

SombRAT 25 .2 .2 83.7 

SoreFang 15 .1 .1 83.8 

SOUNDBITE 5 .0 .0 83.9 

SPACESHIP 8 .1 .1 84.0 

Spark 11 .1 .1 84.1 

SpeakUp 17 .2 .2 84.2 

SpicyOmelette 11 .1 .1 84.3 

spwebmember 1 .0 .0 84.3 

SpyDealer 15 .1 .1 84.5 

SpyNote RAT 7 .1 .1 84.6 

sqlmap 1 .0 .0 84.6 

SQLRat 10 .1 .1 84.7 

Squirrelwaffle 22 .2 .2 84.9 

SslMM 13 .1 .1 85.0 

Starloader 2 .0 .0 85.0 

STARWHALE 16 .2 .2 85.2 

Stealth Mango 15 .1 .1 85.3 

StoneDrill 17 .2 .2 85.5 

StreamEx 10 .1 .1 85.6 

StrifeWater 18 .2 .2 85.8 

StrongPity 28 .3 .3 86.0 

Stuxnet 55 .5 .5 86.6 

SUGARDUMP 15 .1 .1 86.7 

SUGARUSH 6 .1 .1 86.8 

SUNBURST 37 .4 .4 87.1 

SUNSPOT 12 .1 .1 87.3 
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SUPERNOVA 5 .0 .0 87.3 

Sykipot 14 .1 .1 87.4 

SynAck 16 .2 .2 87.6 

SYNful Knock 6 .1 .1 87.6 

Sys10 6 .1 .1 87.7 

SYSCON 5 .0 .0 87.8 

Systeminfo 1 .0 .0 87.8 

SysUpdate 19 .2 .2 87.9 

T9000 16 .2 .2 88.1 

Taidoor 22 .2 .2 88.3 

TAINTEDSCRIBE 17 .2 .2 88.5 

TajMahal 26 .3 .3 88.7 

Tangelo 8 .1 .1 88.8 

Tarrask 10 .1 .1 88.9 

Tasklist 3 .0 .0 88.9 

TDTESS 6 .1 .1 89.0 

TEARDROP 7 .1 .1 89.1 

TERRACOTTA 19 .2 .2 89.2 

TEXTMATE 2 .0 .0 89.3 

ThiefQuest 22 .2 .2 89.5 

ThreatNeedle 14 .1 .1 89.6 

Tiktok Pro 23 .2 .2 89.8 

TinyTurla 13 .1 .1 90.0 

TINYTYPHON 5 .0 .0 90.0 

TinyZBot 12 .1 .1 90.1 

Tomiris 11 .1 .1 90.2 

Tor 2 .0 .0 90.3 

Torisma 13 .1 .1 90.4 

TrailBlazer 6 .1 .1 90.4 

Triada 9 .1 .1 90.5 

TrickBot 62 .6 .6 91.1 

TrickMo 16 .2 .2 91.3 

Trojan-

SMS.AndroidOS.Agent.a

o 

1 .0 .0 91.3 

Trojan-

SMS.AndroidOS.FakeIns

t.a 

1 .0 .0 91.3 

Trojan-

SMS.AndroidOS.OpFake.

a 

1 .0 .0 91.3 

Trojan.Karagany 26 .3 .3 91.6 
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Trojan.Mebromi 2 .0 .0 91.6 

Truvasys 3 .0 .0 91.6 

TSCookie 14 .1 .1 91.8 

Turian 19 .2 .2 91.9 

TURNEDUP 8 .1 .1 92.0 

Twitoor 3 .0 .0 92.0 

TYPEFRAME 15 .1 .1 92.2 

UACMe 2 .0 .0 92.2 

UBoatRAT 10 .1 .1 92.3 

Umbreon 9 .1 .1 92.4 

Unknown Logger 10 .1 .1 92.5 

UPPERCUT 10 .1 .1 92.6 

Uroburos 2 .0 .0 92.6 

Ursnif 41 .4 .4 93.0 

USBferry 12 .1 .1 93.1 

USBStealer 16 .2 .2 93.3 

Valak 35 .3 .3 93.6 

VaporRage 4 .0 .0 93.7 

Vasport 5 .0 .0 93.7 

VBShower 6 .1 .1 93.8 

VERMIN 18 .2 .2 93.9 

ViceLeaker 14 .1 .1 94.1 

ViperRAT 12 .1 .1 94.2 

Volgmer 19 .2 .2 94.4 

WannaCry 17 .2 .2 94.5 

WarzoneRAT 34 .3 .3 94.9 

WastedLocker 25 .2 .2 95.1 

Waterbear 18 .2 .2 95.3 

WEBC2 5 .0 .0 95.3 

WellMail 9 .1 .1 95.4 

WellMess 15 .1 .1 95.6 

Wevtutil 3 .0 .0 95.6 

WhisperGate 32 .3 .3 95.9 

Wiarp 6 .1 .1 96.0 

Windows Credential 

Editor 

1 .0 .0 96.0 

WINDSHIELD 5 .0 .0 96.0 

WindTail 14 .1 .1 96.2 

WINERACK 7 .1 .1 96.2 

Winexe 1 .0 .0 96.2 

Wingbird 14 .1 .1 96.4 
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WinMM 6 .1 .1 96.4 

Winnti for Linux 9 .1 .1 96.5 

Winnti for Windows 24 .2 .2 96.7 

Wiper 2 .0 .0 96.8 

WireLurker 3 .0 .0 96.8 

WolfRAT 17 .2 .2 97.0 

X-Agent for Android 2 .0 .0 97.0 

XAgentOSX 11 .1 .1 97.1 

Xbash 19 .2 .2 97.3 

Xbot 5 .0 .0 97.3 

xCaon 12 .1 .1 97.4 

xCmd 1 .0 .0 97.4 

XcodeGhost 5 .0 .0 97.5 

XCSSET 34 .3 .3 97.8 

XLoader for Android 7 .1 .1 97.9 

XLoader for iOS 4 .0 .0 97.9 

XTunnel 8 .1 .1 98.0 

YAHOYAH 6 .1 .1 98.1 

yty 18 .2 .2 98.2 

Zebrocy 35 .3 .3 98.6 

Zen 10 .1 .1 98.7 

ZergHelper 1 .0 .0 98.7 

Zeroaccess 2 .0 .0 98.7 

ZeroT 17 .2 .2 98.9 

Zeus Panda 26 .3 .3 99.1 

ZLib 12 .1 .1 99.2 

Zox 9 .1 .1 99.3 

zwShell 14 .1 .1 99.5 

ZxShell 39 .4 .4 99.8 

ZxxZ 16 .2 .2 100.0 

Total 10306 100.0 100.0  
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APPENDIX D 

MITRE CAPEC Attacks Patterns with Highest Assessed Risk 

 

Category 

Name 
Name Description 

Likelihood 

Of Attack 

Typical 

Severity 

Abuse 

Existing 

Functionality 

Overflow 

Binary 

Resource File 

An attack of this type exploits a buffer overflow 

vulnerability in the handling of binary resources. 

Binary resources may include music files like 

MP3, image files like JPEG files, and any other 

binary file. These attacks may pass unnoticed to 

the client machine through normal usage of files, 

such as a browser loading a seemingly innocent 

JPEG file. This can allow the adversary access to 

the execution stack and execute arbitrary code in 

the target process. 

High 
Very 

High 

Abuse 

Existing 

Functionality 

String Format 

Overflow in 

syslog() 

This attack targets applications and software that 

uses the syslog() function insecurely. If an 

application does not explicitely use a format 

string parameter in a call to syslog(), user input 

can be placed in the format string parameter 

leading to a format string injection attack. 

Adversaries can then inject malicious format 

string commands into the function call leading to 

a buffer overflow. There are many reported 

software vulnerabilities with the root cause being 

a misuse of the syslog() function. 

High 
Very 

High 

Abuse 

Existing 

Functionality 

Manipulating 

Web Input to 

File System 

Calls 

An attacker manipulates inputs to the target 

software which the target software passes to file 

system calls in the OS. The goal is to gain access 

to, and perhaps modify, areas of the file system 

that the target software did not intend to be 

accessible. 

High 
Very 

High 
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Abuse 

Existing 

Functionality 

Overflow 

Buffers 

Buffer Overflow attacks target improper or 

missing bounds checking on buffer operations, 

typically triggered by input injected by an 

adversary. As a consequence, an adversary is 

able to write past the boundaries of allocated 

buffer regions in memory, causing a program 

crash or potentially redirection of execution as 

per the adversaries' choice. 

High 
Very 

High 

Abuse 

Existing 

Functionality 

Path 

Traversal 

An adversary uses path manipulation methods to 

exploit insufficient input validation of a target to 

obtain access to data that should be not be 

retrievable by ordinary well-formed requests. A 

typical variety of this attack involves specifying a 

path to a desired file together with dot-dot-slash 

characters, resulting in the file access API or 

function traversing out of the intended directory 

structure and into the root file system. By 

replacing or modifying the expected path 

information the access function or API retrieves 

the file desired by the attacker. These attacks 

either involve the attacker providing a complete 

path to a targeted file or using control characters 

(e.g. path separators (/ or ) and/or dots (.)) to 

reach desired directories or files. 

High 
Very 

High 

Collect and 

Analyze 

Information 

Retrieve 

Embedded 

Sensitive Data 

An attacker examines a target system to find 

sensitive data that has been embedded within it. 

This information can reveal confidential contents, 

such as account numbers or individual 

keys/credentials that can be used as an 

intermediate step in a larger attack. 

High 
Very 

High 
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Engage in 

Deceptive 

Interactions 

Leveraging/M

anipulating 

Configuration 

File Search 

Paths 

This pattern of attack sees an adversary load a 

malicious resource into a program's standard 

path so that when a known command is executed 

then the system instead executes the malicious 

component. The adversary can either modify the 

search path a program uses, like a PATH 

variable or classpath, or they can manipulate 

resources on the path to point to their malicious 

components. J2EE applications and other 

component based applications that are built from 

multiple binaries can have very long list of 

dependencies to execute. If one of these libraries 

and/or references is controllable by the attacker 

then application controls can be circumvented by 

the attacker. 

High 
Very 

High 

Engage in 

Deceptive 

Interactions 

Pharming A pharming attack occurs when the victim is 

fooled into entering sensitive data into supposedly 

trusted locations, such as an online bank site or a 

trading platform. An attacker can impersonate 

these supposedly trusted sites and have the victim 

be directed to their site rather than the originally 

intended one. Pharming does not require script 

injection or clicking on malicious links for the 

attack to succeed. 

High 
Very 

High 

Engage in 

Deceptive 

Interactions 

Phishing 

Phishing is a social engineering technique where 

an attacker masquerades as a legitimate entity 

with which the victim might do business in order 

to prompt the user to reveal some confidential 

information (very frequently authentication 

credentials) that can later be used by an attacker. 

Phishing is essentially a form of information 

gathering or fishing for information. 

High 
Very 

High 
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Engage in 

Deceptive 

Interactions 

Redirect 

Access to 

Libraries 

An adversary exploits a weakness in the way an 

application searches for external libraries to 

manipulate the execution flow to point to an 

adversary supplied library or code base. This 

pattern of attack allows the adversary to 

compromise the application or server via the 

execution of unauthorized code. An application 

typically makes calls to functions that are a part 

of libraries external to the application. These 

libraries may be part of the operating system or 

they may be third party libraries. If an adversary 

can redirect an application's attempts to access 

these libraries to other libraries that the 

adversary supplies, the adversary will be able to 

force the targeted application to execute 

arbitrary code. This is especially dangerous if the 

targeted application has enhanced privileges. 

Access can be redirected through a number of 

techniques, including the use of symbolic links, 

search path modification, and relative path 

manipulation. 

High 
Very 

High 

Engage in 

Deceptive 

Interactions 

Action 

Spoofing 
An adversary is able to disguise one action for 

another and therefore trick a user into initiating 

one type of action when they intend to initiate a 

different action. For example, a user might be led 

to believe that clicking a button will submit a 

query, but in fact it downloads software. 

Adversaries may perform this attack through 

social means, such as by simply convincing a 

victim to perform the action or relying on a 

user's natural inclination to do so, or through 

technical means, such as a clickjacking attack 

where a user sees one interface but is actually 

interacting with a second, invisible, interface. 

High 
Very 

High 
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Engage in 

Deceptive 

Interactions 

DNS 

Rebinding 

An adversary serves content whose IP address is 

resolved by a DNS server that the adversary 

controls. After initial contact by a web browser 

(or similar client), the adversary changes the IP 

address to which its name resolves, to an address 

within the target organization that is not publicly 

accessible. This allows the web browser to 

examine this internal address on behalf of the 

adversary. 

High 
Very 

High 

Inject 

Unexpected 

Items  

XSS 

Targeting 

Non-Script 

Elements 

This attack is a form of Cross-Site Scripting 

(XSS) where malicious scripts are embedded in 

elements that are not expected to host scripts 

such as image tags (<img>), comments in XML 

documents (< !-CDATA->), etc. These tags may 

not be subject to the same input validation, 

output validation, and other content filtering and 

checking routines, so this can create an 

opportunity for an adversary to tunnel through 

the application's elements and launch a XSS 

attack through other elements. As with all remote 

attacks, it is important to differentiate the ability 

to launch an attack (such as probing an internal 

network for unpatched servers) and the ability of 

the remote adversary to collect and interpret the 

output of said attack. 

High 
Very 

High 
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Inject 

Unexpected 

Items  

File Content 

Injection 
An adversary poisons files with a malicious 

payload (targeting the file systems accessible by 

the target software), which may be passed 

through by standard channels such as via email, 

and standard web content like PDF and 

multimedia files. The adversary exploits known 

vulnerabilities or handling routines in the target 

processes, in order to exploit the host's trust in 

executing remote content, including binary files. 

High 
Very 

High 

Inject 

Unexpected 

Items  

Manipulating 

Writeable 

Terminal 

Devices 

This attack exploits terminal devices that allow 

themselves to be written to by other users. The 

attacker sends command strings to the target 

terminal device hoping that the target user will 

hit enter and thereby execute the malicious 

command with their privileges. The attacker can 

send the results (such as copying /etc/passwd) to a 

known directory and collect once the attack has 

succeeded. 

High 
Very 

High 

Inject 

Unexpected 

Items  

Cross-Site 

Scripting 

(XSS) 

An adversary embeds malicious scripts in content 

that will be served to web browsers. The goal of 

the attack is for the target software, the client-

side browser, to execute the script with the users' 

privilege level. An attack of this type exploits a 

programs' vulnerabilities that are brought on by 

allowing remote hosts to execute code and scripts. 

Web browsers, for example, have some simple 

security controls in place, but if a remote 

attacker is allowed to execute scripts (through 

injecting them into user-generated content like 

bulletin boards) then these controls may be 

bypassed. Further, these attacks are very difficult 

for an end user to detect. 

High 
Very 

High 
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Inject 

Unexpected 

Items  

XQuery 

Injection 

This attack utilizes XQuery to probe and attack 

server systems; in a similar manner that SQL 

Injection allows an attacker to exploit SQL calls 

to RDBMS, XQuery Injection uses improperly 

validated data that is passed to XQuery 

commands to traverse and execute commands 

that the XQuery routines have access to. XQuery 

injection can be used to enumerate elements on 

the victim's environment, inject commands to the 

local host, or execute queries to remote files and 

data sources. 

High 
Very 

High 

Inject 

Unexpected 

Items  

XSS Through 

HTTP 

Headers 
An adversary exploits web applications that 

generate web content, such as links in a HTML 

page, based on unvalidated or improperly 

validated data submitted by other actors. XSS in 

HTTP Headers attacks target the HTTP headers 

which are hidden from most users and may not 

be validated by web applications. 

High 
Very 

High 

Inject 

Unexpected 

Items  

SQL Injection 

through 

SOAP 

Parameter 

Tampering 

An attacker modifies the parameters of the 

SOAP message that is sent from the service 

consumer to the service provider to initiate a 

SQL injection attack. On the service provider 

side, the SOAP message is parsed and parameters 

are not properly validated before being used to 

access a database in a way that does not use 

parameter binding, thus enabling the attacker to 

control the structure of the executed SQL query. 

This pattern describes a SQL injection attack 

with the delivery mechanism being a SOAP 

message. 

High 
Very 

High 
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Inject 

Unexpected 

Items  

DOM-Based 

XSS 

This type of attack is a form of Cross-Site 

Scripting (XSS) where a malicious script is 

inserted into the client-side HTML being parsed 

by a web browser. Content served by a 

vulnerable web application includes script code 

used to manipulate the Document Object Model 

(DOM). This script code either does not properly 

validate input, or does not perform proper output 

encoding, thus creating an opportunity for an 

adversary to inject a malicious script launch a 

XSS attack. A key distinction between other XSS 

attacks and DOM-based attacks is that in other 

XSS attacks, the malicious script runs when the 

vulnerable web page is initially loaded, while a 

DOM-based attack executes sometime after the 

page loads. Another distinction of DOM-based 

attacks is that in some cases, the malicious script 

is never sent to the vulnerable web server at all. 

An attack like this is guaranteed to bypass any 

server-side filtering attempts to protect users. 

High 
Very 

High 

Inject 

Unexpected 

Items  

Reflected XSS 

This type of attack is a form of Cross-Site 

Scripting (XSS) where a malicious script is 

reflected off a vulnerable web application and 

then executed by a victim's browser. The process 

starts with an adversary delivering a malicious 

script to a victim and convincing the victim to 

send the script to the vulnerable web application. 

High 
Very 

High 
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Inject 

Unexpected 

Items  

Stored XSS 

An adversary utilizes a form of Cross-site 

Scripting (XSS) where a malicious script is 

persistently stored within the data storage of a 

vulnerable web application as valid input. 

High 
Very 

High 

Manipulate 

Data 

Structures 

Buffer 

Manipulation 

An adversary manipulates an application's 

interaction with a buffer in an attempt to read or 

modify data they shouldn't have access to. Buffer 

attacks are distinguished in that it is the buffer 

space itself that is the target of the attack rather 

than any code responsible for interpreting the 

content of the buffer. In virtually all buffer 

attacks the content that is placed in the buffer is 

immaterial. Instead, most buffer attacks involve 

retrieving or providing more input than can be 

stored in the allocated buffer, resulting in the 

reading or overwriting of other unintended 

program memory. 

High 
Very 

High 

Manipulate 

System 

Resources 

Leverage 

Executable 

Code in Non-

Executable 

Files 

An attack of this type exploits a system's trust in 

configuration and resource files. When the 

executable loads the resource (such as an image 

file or configuration file) the attacker has 

modified the file to either execute malicious code 

directly or manipulate the target process (e.g. 

application server) to execute based on the 

malicious configuration parameters. Since 

systems are increasingly interrelated mashing up 

resources from local and remote sources the 

possibility of this attack occurring is high. 

High 
Very 

High 
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Manipulate 

System 

Resources 

Poison Web 

Service 

Registry 

SOA and Web Services often use a registry to 

perform look up, get schema information, and 

metadata about services. A poisoned registry can 

redirect (think phishing for servers) the service 

requester to a malicious service provider, provide 

incorrect information in schema or metadata, 

and delete information about service provider 

interfaces. 

High 
Very 

High 

Manipulate 

System 

Resources 

Manipulating 

Writeable 

Configuration 

Files 

Generally these are manually edited files that are 

not in the preview of the system administrators, 

any ability on the attackers' behalf to modify 

these files, for example in a CVS repository, gives 

unauthorized access directly to the application, 

the same as authorized users. 

High 
Very 

High 

Subvert 

Access 

Control 

Subverting 

Environment 

Variable 

Values 

The adversary directly or indirectly modifies 

environment variables used by or controlling the 

target software. The adversary's goal is to cause 

the target software to deviate from its expected 

operation in a manner that benefits the 

adversary. 

High 
Very 

High 

Subvert 

Access 

Control 

Using 

Malicious 

Files 

An attack of this type exploits a system's 

configuration that allows an adversary to either 

directly access an executable file, for example 

through shell access; or in a possible worst case 

allows an adversary to upload a file and then 

execute it. Web servers, ftp servers, and message 

oriented middleware systems which have many 

integration points are particularly vulnerable, 

because both the programmers and the 

administrators must be in synch regarding the 

interfaces and the correct privileges for each 

interface. 

High 
Very 

High 
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Subvert 

Access 

Control 

Cross Site 

Request 

Forgery 

An attacker crafts malicious web links and 

distributes them (via web pages, email, etc.), 

typically in a targeted manner, hoping to induce 

users to click on the link and execute the 

malicious action against some third-party 

application. If successful, the action embedded in 

the malicious link will be processed and accepted 

by the targeted application with the users' 

privilege level. This type of attack leverages the 

persistence and implicit trust placed in user 

session cookies by many web applications today. 

In such an architecture, once the user 

authenticates to an application and a session 

cookie is created on the user's system, all 

following transactions for that session are 

authenticated using that cookie including 

potential actions initiated by an attacker and 

simply riding the existing session cookie. 

High 
Very 

High 

Subvert 

Access 

Control 

Target 

Programs 

with Elevated 

Privileges 

This attack targets programs running with 

elevated privileges. The adversary tries to 

leverage a vulnerability in the running program 

and get arbitrary code to execute with elevated 

privileges. 

High 
Very 

High 

Subvert 

Access 

Control 

Manipulating 

User-

Controlled 

Variables 

This attack targets user controlled variables 

(DEBUG=1, PHP Globals, and So Forth). An 

adversary can override variables leveraging user-

supplied, untrusted query variables directly used 

on the application server without any data 

sanitization. In extreme cases, the adversary can 

change variables controlling the business logic of 

High 
Very 

High 
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the application. For instance, in languages like 

PHP, a number of poorly set default 

configurations may allow the user to override 

variables. 

Subvert 

Access 

Control 

Adversary in 

the Middle 

(AiTM) An adversary targets the communication between 

two components (typically client and server), in 

order to alter or obtain data from transactions. A 

general approach entails the adversary placing 

themself within the communication channel 

between the two components. 

High 
Very 

High 

Subvert 

Access 

Control 

Session 

Hijacking 

This type of attack involves an adversary that 

exploits weaknesses in an application's use of 

sessions in performing authentication. The 

adversary is able to steal or manipulate an active 

session and use it to gain unathorized access to 

the application. 

High 
Very 

High 

Subvert 

Access 

Control 

Adversary in 

the Browser 

(AiTB) 

An adversary exploits security vulnerabilities or 

inherent functionalities of a web browser, in 

order to manipulate traffic between two 

endpoints. 

High 
Very 

High 

 


