2,302 research outputs found

    Forest fire pattern extraction and rule generation using sliding window technique

    Get PDF
    The sliding window technique is being used to extract patterns of forest fire which consists of burnt area size, temperature, relative humidity, wind speed and rainfall.The initial data is being transformed by changing the continuous values of the attributes into categorical value. Extracted patterns are then being grouped based on the size of burnt are.Rules are then generated by transforming the categorical values into intervals and the merging different records into the same rules.The rule generation stage produces eight distinct patterns of meteorological conditions that could predict the size of forest fire

    Thermobaricity in the Transition Zones between Alpha and Beta Oceans

    Get PDF
    The role of the ocean in Earth’s climate is fundamentally influenced by the locally dominant stratifying property (heat or salt), which in turn can be used to categorize the ocean into three classes: alpha, beta, and transition zone oceans. Alpha and beta oceans are regions where the stratification is permanently set by heat and salt, respectively. Transition zone oceans exist between alpha and beta oceans and are regions where the stratification is seasonally or intermittently set by heat or salt. Despite their large ranges of temperature and salinity, transition zone oceans are the most weakly stratified regions of the upper oceans, making them ideal locations for thermobaric effects arising from the nonlinear equation of state of seawater. Here a novel definition and quantification of alpha, beta, and transition zone oceans is presented and used to analyze 4 years (2010–13) of hydrographic data developed from the Argo profiling float array. Two types of thermobaric instabilities are defined and identified in the hydrographic data. The first type arises from the vertical relocation of individual water parcels. The second type is novel and relates to the effect of pressure on the stratification through the pressure dependence of the thermal expansion coefficient; water that is stably stratified for one pressure is not necessarily stable for other pressures. The upper 1500 m of the global ocean is composed of 67% alpha, 15% beta, and 17% transition zone oceans, with 5.7% identified as thermobarically unstable. Over 63% of these thermobarically unstable waters exist in transition zone oceans, suggesting that these are important locations for efficient vertical transport of water-mass properties

    Double diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fine, E., MacKinnon, J., Alford, M., Middleton, L., Taylor, J., Mickett, J., Cole, S., Couto, N., Boyer, A., & Peacock, T. Double diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea. Journal of Physical Oceanography, 52(2), (2022): 189–203, https://doi.org/10.1175/jpo-d-21-0074.1.Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∌20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of O(1) m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (Δ) was elevated along the interleaving surfaces, with values up to 3 × 10−8 W kg−1 compared to background Δ of less than 10−9 W kg−1. Based on the distribution of Δ as a function of density ratio Rρ, we conclude that double-diffusive convection is largely responsible for the elevated Δ observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years.This work was supported by ONR Grant N00014-16-1-2378 and NSF Grants PLR 14-56705 and PLR-1303791, NSF Graduate Research Fellowship Grant DGE-1650112, as well as by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship

    Impacts of stronger winds and less sea ice on Canadian Beaufort Sea shelf ecosystems since the late 1990s

    Get PDF
    Continuous and multi-decadal records of faunal abundance and diversity helping to identify the impacts of ongoing global warming on aquatic ecosystems are rare in the coastal Arctic. Here, we used a 50-year-long microfaunal record from a sediment core collected in the Herschel Basin (YC18-HB-GC01; 18 m water depth) to document some aspects of the environmental responses of the southern Canadian coastal Beaufort Sea to climate change. The microfaunal indicators include benthic foraminiferal assemblages, ostracods and tintinnids. The carbonate shells of two foraminiferal species were also analyzed for their stable isotope signatures (ÎŽ13C and ÎŽ18O). We compiled environmental parameters from 1970 to 2019 for the coastal region, including sea ice data (break-up date, freeze-up date, open season length and mean summer concentration), the wind regime (mean speed, direction of strong winds and the number of storms), hydrological data (freshet date, freshet discharge and mean summer discharge of the Firth and the Mackenzie rivers), and air temperature. Large-scale atmospheric patterns were also taken into consideration. Time-constrained hierarchal clustering analysis of foraminiferal assemblages and environmental parameters revealed a near-synchronous shift around the late 1990s. The microfaunal shift corresponds to an increased abundance of taxa tolerant to variable salinity, turbulent bottom water conditions, and turbid waters towards the present. The same time interval is marked by stronger easterly winds, more frequent storms, reduced sea-ice cover, and a pervasive anticyclonic circulation in the Arctic Ocean (positive Arctic Ocean Oscillation; AOO+). Deeper vertical mixing in the water column in response to intensified winds was fostered by increased open surface waters in summer leading to turbulence, increased particle loading and less saline bottom waters at the study site. Stronger easterly winds probably also resulted in enhanced resuspension events and coastal erosion in addition to a westward spreading of the Mackenzie River plume, altogether contributing to high particulate-matter transport. Increase food availability since ∌2000 was probably linked to enhanced degradation of terrestrial organic carbon, which also implies higher oxygen consumption. The sensitivity of microfaunal communities to environmental variations allowed capturing consequences of climate change on a marine Arctic shelf ecosystem over the last 50 years

    CLIVAR Exchanges No. 54

    No full text

    Synthesizing the Effects of Submarine Groundwater Discharge on Marine Biota

    Get PDF
    Submarine groundwater discharge (SGD) is a global and well-studied geological process by which groundwater of varying salinities enters coastal waters. SGD is known to transport bioactive solutes, including but not limited to nutrients (nitrogen, phosphorous, silica), gases (methane, carbon dioxide), and trace metals (iron, nickel, zinc). In addition, physical changes to the water column, such as changes in temperature and mixing can be caused by SGD. Therefore SGD influences both autotrophic and heterotrophic marine biota across all kingdoms of life. This paper synthesizes the current literature in which the impacts of SGD on marine biota were measured and observed by field, modeling, or laboratory studies. The review is grouped by organismal complexity: bacteria and phytoplankton, macrophytes (macroalgae and marine plants), animals, and ecosystem studies. Directions for future research about the impacts of SGD on marine life, including increasing the number of ecosystem assessment studies and including biological parameters in SGD flux studies, are also discussed

    Observed Changes in the Arctic Freshwater Outflow in Fram Strait

    Get PDF
    We have updated time series of liquid fresh water transport (FWT) in the East Greenland Current (EGC) in the western Fram Strait with mooring observations since 2015. Novel data have been used to correct earlier estimates when instrument coverage was lower. The updated FWT (reference salinity 34.9) shows that the increased export between 2010 and 2015 has not continued, but FWT has decreased to pre-2009 levels. Salt transport independent of a reference salinity is shown not to be sensitive to salinity changes. Between 2015 and 2019, the FWT in the Polar Water (PW) decreased to an average of 59.9 (±4.5) mSV, 15% less than the 2003–2019 long-term mean, however, high FWT events occurred in 2017. The overall decrease is related to a slowdown of the EGC, partly attributed to a decrease of the zonal density gradient, due to stronger salinification of the halocline waters (26.5 < σΞ < 27.7 kg/m3) over the shelf. This salinification counterbalances the freshening of the surface layer (σΞ < 26.5 kg/m3) and the fresh water content decreases. Our results show changes in the PW between 2003 and 2019: Salinity stratification increased as the salinity difference between 155 and 55 m increased by 0.63 psu, the PW layer became thinner by 40–50 m and the Polar-Atlantic front moved ∌10 km west in June 2015. All processes point to an “Atlantification” of the western Fram Strait and a reduced Polar outflow. Including the novel data sets reduced the uncertainty of the FWT to an average of 8% after 2015, as opposed to 17% in earlier estimates.publishedVersio
    • 

    corecore