333 research outputs found

    A temporal precedence based clustering method for gene expression microarray data

    Get PDF
    Background: Time-course microarray experiments can produce useful data which can help in understanding the underlying dynamics of the system. Clustering is an important stage in microarray data analysis where the data is grouped together according to certain characteristics. The majority of clustering techniques are based on distance or visual similarity measures which may not be suitable for clustering of temporal microarray data where the sequential nature of time is important. We present a Granger causality based technique to cluster temporal microarray gene expression data, which measures the interdependence between two time-series by statistically testing if one time-series can be used for forecasting the other time-series or not. Results: A gene-association matrix is constructed by testing temporal relationships between pairs of genes using the Granger causality test. The association matrix is further analyzed using a graph-theoretic technique to detect highly connected components representing interesting biological modules. We test our approach on synthesized datasets and real biological datasets obtained for Arabidopsis thaliana. We show the effectiveness of our approach by analyzing the results using the existing biological literature. We also report interesting structural properties of the association network commonly desired in any biological system. Conclusions: Our experiments on synthesized and real microarray datasets show that our approach produces encouraging results. The method is simple in implementation and is statistically traceable at each step. The method can produce sets of functionally related genes which can be further used for reverse-engineering of gene circuits

    PREDICTING COMPLEX PHENOTYPE-GENOTYPE RELATIONSHIPS IN GRASSES: A SYSTEMS GENETICS APPROACH

    Get PDF
    It is becoming increasingly urgent to identify and understand the mechanisms underlying complex traits. Expected increases in the human population coupled with climate change make this especially urgent for grasses in the Poaceae family because these serve as major staples of the human and livestock diets worldwide. In particular, Oryza sativa (rice), Triticum spp. (wheat), Zea mays (maize), and Saccharum spp. (sugarcane) are among the top agricultural commodities. Molecular marker tools such as linkage-based Quantitative Trait Loci (QTL) mapping, Genome-Wide Association Studies (GWAS), Multiple Marker Assisted Selection (MMAS), and Genome Selection (GS) techniques offer promise for understanding the mechanisms behind complex traits and to improve breeding programs. These methods have shown some success. Often, however, they cannot identify the causal genes underlying traits nor the biological context in which those genes function. To improve our understanding of complex traits as well improve breeding techniques, additional tools are needed to augment existing methods. This work proposes a knowledge-independent systems-genetic paradigm that integrates results from genetic studies such as QTL mapping, GWAS and mutational insertion lines such as Tos17 with gene co-expression networks for grasses--in particular for rice. The techniques described herein attempt to overcome the bias of limited human knowledge by relying solely on the underlying signals within the data to capture a holistic representation of gene interactions for a species. Through integration of gene co-expression networks with genetic signal, modules of genes can be identified with potential effect for a given trait, and the biological function of those interacting genes can be determined

    Recent advances in clustering methods for protein interaction networks

    Get PDF
    The increasing availability of large-scale protein-protein interaction data has made it possible to understand the basic components and organization of cell machinery from the network level. The arising challenge is how to analyze such complex interacting data to reveal the principles of cellular organization, processes and functions. Many studies have shown that clustering protein interaction network is an effective approach for identifying protein complexes or functional modules, which has become a major research topic in systems biology. In this review, recent advances in clustering methods for protein interaction networks will be presented in detail. The predictions of protein functions and interactions based on modules will be covered. Finally, the performance of different clustering methods will be compared and the directions for future research will be discussed

    The Development of Parallel Adaptive Sampling Algorithms for Analyzing Biological Networks

    Get PDF
    The availability of biological data in massive scales continues to represent unlimited opportunities as well as great challenges in bioinformatics research. Developing innovative data mining techniques and efficient parallel computational methods to implement them will be crucial in extracting useful knowledge from this raw unprocessed data, such as in discovering significant cellular subsystems from gene correlation networks. In this paper, we present a scalable combinatorial sampling technique, based on identifying maximum chordal subgraphs, that reduces noise from biological correlation networks, thereby making it possible to find biologically relevant clusters from the filtered network. We show how selecting the appropriate filter is crucial in maintaining the key structures from the original networks and uncovering new ones after removing noisy relationships. We also conduct one of the first comparisons in two important sensitivity criteria— the perturbation due to the vertex numbers of the network and perturbations due to data distribution. We demonstrate that our chordal-graph based filter is effective across many different vertex permutations, as is our parallel implementation of the sampling algorithm

    Multipartite Graph Algorithms for the Analysis of Heterogeneous Data

    Get PDF
    The explosive growth in the rate of data generation in recent years threatens to outpace the growth in computer power, motivating the need for new, scalable algorithms and big data analytic techniques. No field may be more emblematic of this data deluge than the life sciences, where technologies such as high-throughput mRNA arrays and next generation genome sequencing are routinely used to generate datasets of extreme scale. Data from experiments in genomics, transcriptomics, metabolomics and proteomics are continuously being added to existing repositories. A goal of exploratory analysis of such omics data is to illuminate the functions and relationships of biomolecules within an organism. This dissertation describes the design, implementation and application of graph algorithms, with the goal of seeking dense structure in data derived from omics experiments in order to detect latent associations between often heterogeneous entities, such as genes, diseases and phenotypes. Exact combinatorial solutions are developed and implemented, rather than relying on approximations or heuristics, even when problems are exceedingly large and/or difficult. Datasets on which the algorithms are applied include time series transcriptomic data from an experiment on the developing mouse cerebellum, gene expression data measuring acute ethanol response in the prefrontal cortex, and the analysis of a predicted protein-protein interaction network. A bipartite graph model is used to integrate heterogeneous data types, such as genes with phenotypes and microbes with mouse strains. The techniques are then extended to a multipartite algorithm to enumerate dense substructure in multipartite graphs, constructed using data from three or more heterogeneous sources, with applications to functional genomics. Several new theoretical results are given regarding multipartite graphs and the multipartite enumeration algorithm. In all cases, practical implementations are demonstrated to expand the frontier of computational feasibility

    Assessing the functional structure of genomic data

    Get PDF
    Motivation: The availability of genome-scale data has enabled an abundance of novel analysis techniques for investigating a variety of systems-level biological relationships. As thousands of such datasets become available, they provide an opportunity to study high-level associations between cellular pathways and processes. This also allows the exploration of shared functional enrichments between diverse biological datasets, and it serves to direct experimenters to areas of low data coverage or with high probability of new discoveries

    Using graph theory to analyze biological networks

    Get PDF
    Understanding complex systems often requires a bottom-up analysis towards a systems biology approach. The need to investigate a system, not only as individual components but as a whole, emerges. This can be done by examining the elementary constituents individually and then how these are connected. The myriad components of a system and their interactions are best characterized as networks and they are mainly represented as graphs where thousands of nodes are connected with thousands of vertices. In this article we demonstrate approaches, models and methods from the graph theory universe and we discuss ways in which they can be used to reveal hidden properties and features of a network. This network profiling combined with knowledge extraction will help us to better understand the biological significance of the system
    corecore