
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

12-2015

Multipartite Graph Algorithms for the Analysis of
Heterogeneous Data
Charles Alexander Phillips
University of Tennessee - Knoxville, cphill25@vols.utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Phillips, Charles Alexander, "Multipartite Graph Algorithms for the Analysis of Heterogeneous Data. " PhD diss., University of
Tennessee, 2015.
https://trace.tennessee.edu/utk_graddiss/3600

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Charles Alexander Phillips entitled "Multipartite
Graph Algorithms for the Analysis of Heterogeneous Data." I have examined the final electronic copy of
this dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Computer Science.

Michael A. Langston, Major Professor

We have read this dissertation and recommend its acceptance:

Bruce J. MacLennon, Brynn H. Voy, David J. Icove

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Multipartite Graph Algorithms

for the Analysis of

Heterogeneous Data

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Charles Alexander Phillips

December 2015

 ii

Copyright © 2015 by Charles A. Phillips

All rights reserved.

 iii

Acknowledgements

In the course of my education and research I have had the good fortune to cross

paths with many bright and dedicated people. I extend my gratitude to many of

them here, although I am certain the list is not complete. First I would like to thank

my advisor, Dr. Michael A. Langston, for his guidance, patience and above all the

example he sets for high standards in scientific research and work ethics. My special

thanks go out to those who served on my dissertation committee: Drs. David Icove,

Bruce MacLennan, Lynne Parker and Brynn Voy. Former and present students I

have worked with as part of Dr. Langston’s research team here at the University of

Tennessee include John Eblen, Ron Hagan, Jeremy Jay, Jordan Lefebvre, Allan Lu,

Sudhir Naswa, Clinton Nolan, Andy Perkins, Gary Rogers, Kai Wang, Dinesh

Weerapurage and Yun Zhang. Research Collaborators include Erich Baker, Jason

Bubier, Elissa Chesler, Frank Dehne, Dan Goldowitz, Mike Miles and Aaron Wolen.

My thanks go to Suzanne Baktash for her encouragement, helpfulness and support.

Other professors at UT who I have been fortunate to collaborate with include Drs.

Arnold Saxton and Meg Staton. My appreciation goes to instructors at Moberly Area

Community College, where I completed my associate degree, and Columbia

College, where I did my bachelor’s degree, for helping to fan the spark of my

interest in computer science and encouraging me to pursue a graduate degree. These

instructors include David Heise, Yihsiang Liow, David Pence and Lawrence West.

And last but not least, my gratitude and appreciation goes to my family: my sister

Lisa, brothers Chris and Mike, stepmother Sylvia, and especially my father, Alex,

whose support and encouragement through the years have been beyond price.

 iv

Abstract

The explosive growth in the rate of data generation in recent years threatens to

outpace the growth in computer power, motivating the need for new, scalable

algorithms and big data analytic techniques. No field may be more emblematic of

this data deluge than the life sciences, where technologies such as high-throughput

mRNA arrays and next generation genome sequencing are routinely used to

generate datasets of extreme scale. Data from experiments in genomics,

transcriptomics, metabolomics and proteomics are continuously being added to

existing repositories. A goal of exploratory analysis of such omics data is to

illuminate the functions and relationships of biomolecules within an organism. This

dissertation describes the design, implementation and application of graph

algorithms, with the goal of seeking dense structure in data derived from omics

experiments in order to detect latent associations between often heterogeneous

entities, such as genes, diseases and phenotypes. Exact combinatorial solutions are

developed and implemented, rather than relying on approximations or heuristics,

even when problems are exceedingly large and/or difficult. Datasets on which the

algorithms are applied include time series transcriptomic data from an experiment

on the developing mouse cerebellum, gene expression data measuring acute ethanol

response in the prefrontal cortex, and the analysis of a predicted protein-protein

interaction network. A bipartite graph model is used to integrate heterogeneous

data types, such as genes with phenotypes and microbes with mouse strains. The

techniques are then extended to a multipartite algorithm to enumerate dense

substructure in multipartite graphs, constructed using data from three or more

heterogeneous sources, with applications to functional genomics. Several new

theoretical results are given regarding multipartite graphs and the multipartite

enumeration algorithm. In all cases, practical implementations are demonstrated to

expand the frontier of computational feasibility.

 v

Table of Contents

Chapter 1 Introduction and Background .. 1

1.1 Definitions, Notation and Preliminaries ... 2

1.2 Omics Data .. 4

1.3 Constructing Graphs from High-Throughput Data .. 4

1.3.1 Similarity Metrics .. 5

1.3.2 Thresholding ... 5

1.4 The Quest for Dense Subgraphs ... 6

1.4.1 Maximum Clique ... 7

1.4.2 Maximal Clique Enumeration ... 7

1.4.3 The Paraclique Algorithm .. 9

Chapter 2 Algorithms for General Graphs .. 11

2.1 Ethanol Responsive Gene Networks in the Prefrontal Cortex 11

2.1.1 Paraclique and Network Analysis .. 13

2.1.2 Functional Analysis ... 15

2.1.3 Combining Transcriptomic and Phenotype Data .. 15

2.1.4 QTL Analysis ... 17

2.1.5 Maximal Clique Enumeration ... 17

2.2 Time Series Analysis of the Developing Mouse Cerebellum 19

2.2.1 Data Description .. 19

2.2.2 Paraclique Method.. 20

2.2.3 Paraclique Results .. 21

2.3 A Custom Algorithm for Protein-Protein Interaction Prediction 23

2.3.1 Motivation .. 24

2.3.2 Algorithm ... 25

2.3.3 Results .. 26

2.4 Maximum Clique Enumeration ... 28

2.4.1 Background ... 29

2.4.2 Results and Discussion .. 30

2.4.2.1 Algorithms ... 30

2.4.2.2 Basic Backtracking ... 31

2.4.2.3 Finding a Single Maximum Clique ... 32

2.4.2.4 Intelligent Backtracking .. 32

2.4.2.5 Parameterized Enumeration .. 33

2.4.2.6 Maximum Clique Covers ... 34

2.4.2.7 Essential Vertex Sets ... 34

2.4.2.8 Implementation .. 35

 vi

2.4.2.9 Testing ... 36

2.4.2.10 Observations .. 39

Chapter 3 Algorithms for Bipartite Graphs ... 42

3.1 Maximal Biclique Enumeration .. 42

3.1.1 Background ... 43

3.1.1.1 The Maximal Biclique Enumeration Problem ... 44

3.1.1.2 Related Work ... 46

3.1.1.3 Algorithms for Bipartite Graphs ... 46

3.1.1.4 Algorithms for General Graphs ... 48

3.1.2 Implementation and Testing .. 49

3.1.2.1 Biological Graphs ... 50

3.1.2.2 Random Graphs ... 51

3.1.3 Results and Discussion .. 51

3.1.3.1 Comparison of MBEA and iMBEA ... 52

3.1.3.2 Comparison of iMBEA and LCM-MBC ... 54

3.2 The Parabiclique Algorithm .. 55

3.2.1 Overview .. 55

3.2.2 Background ... 56

3.2.3 Edge Maximum and Vertex Maximum Bicliques.. 57

3.2.4 Parabiclique Algorithm .. 58

Chapter 4 Algorithms for Multipartite Graphs ... 60

4.1 Background.. 61

4.2 Vertex and Edge Maximum .. 64

4.3 Exploratory Data Integration Using Multipartite Graphs 68

4.4 Multipartite Data Integration Example ... 70

4.5 An Upper Bound on the Number of Maximal k-partite Cliques 71

4.6 A k-partite Clique Enumeration Algorithm .. 75

4.7 Multipartite Set Intersection Graphs ... 77

4.8 Alternate Problem Formulations ... 79

4.9 Empirical Scaling Tests ... 81

4.10 Preprocessing Heuristics... 83

4.11 Multipartite Summary... 84

Chapter 5 Recap and Concluding Remarks ... 86

5.1 Summary of Contributions .. 86

5.2 Future Work .. 87

 vii

References ... 90

Vita ... 102

 viii

List of Tables

Table 1. Common similarity metrics. .. 6

Table 2. The eQTL's appearing in at least 10 paracliques. ... 18

Table 3. The top ten LXS S-score genes by maximal clique count. 18

Table 4. The ten most enriched GO categories for B6 paraclique 3. 24

Table 5. GEO datasets used for testing MCE. .. 37

 ix

List of Figures

Figure 1. The maximal clique profile of a transcriptomic graph. 8

Figure 2. The effect of threshold and proportional glom factor on paracliques. 10

Figure 3. The distribution of Pearson correlations in the BXD S-score dataset. 13

Figure 4. Comparison of edge densities between probes and phenotypes. 16

Figure 5. The distribution of Pearson correlations in the B6 strain. 21

Figure 6. The distribution of the number of genes in paracliques. 22

Figure 7. The signature expression pattern of paraclique 3 in the B6 strain. 23

Figure 8. The algorithm to find overlapping protein complexes. 26

Figure 9. Three protein complexes chosen for further, in-depth analysis. 27

Figure 10. Maximum clique sensitivity. .. 38

Figure 11. Timings on various approaches to MCE on 100 biological graphs. 39

Figure 12. Reduction in graph size for four preprocessing methods. 40

Figure 13. Zoomed view of reduction in graph size from preprocessing. 40

Figure 14. Maximum and maximal bicliques. .. 45

Figure 15. Equivalence between closed itemsets and maximal bicliques. 48

Figure 16. Performance comparison of MBEA and iMBEA on 20 cerebellum graphs

from GeneWeaver. ... 53

Figure 17. Performance of MBEA versus iMBEA on random graphs. 53

Figure 18. Effect of graph degree structure on MBEA and iMBEA. 54

Figure 19. Performance of iMBEA and LCM-MBC on GeneWeaver graphs. 55

Figure 20. Performance of iMBEA and LCM-MBC on random bipartite graphs. 56

Figure 21. The difference between vertex maximum and edge maximum. 57

Figure 22. A parabiclique. ... 59

Figure 23. Different results from different measures of k-partite clique size. 64

Figure 24. A subgraph representing one clause of a 1-in-3 SAT instance. 66

Figure 25. Edges added between two subgraphs, each representing a clause. 66

Figure 26. Construction of a k-partite graph by partitioning one partite set of a

bipartite graph (k=3). ... 69

Figure 27. A tripartite graph constructed from GeneWeaver data. 71

Figure 28. A 3-partite set intersection graph. ... 78

Figure 29. The bipartite graph corresponding to the 3-partite set intersection graph

of Figure 28. .. 80

Figure 30. A comparison of MBEA and BK-K on random bipartite graphs with four

different partite set size ratios at varying density. .. 82

Figure 31. The density above which BK-K outperforms MBEA on random bipartite

graphs. ... 82

 x

Figure 32. A comparison of MBEA and BK-K on real-world bipartite graphs. 83

Figure 33. Runtime of BK-K on random balanced 3-partite and 4-partite graphs. 84

Figure 34. The speedup achieved by interpartite and intrapartite preprocessing. 85

Figure 35. The subset cover problem. ... 88

 xi

List of Abbreviations

BL6 Black 6 inbred mouse strain, aka C57BL/6J

BK Bron-Kerbosch

BK-K Bron-Kerbosch k-partite

CbGRiTS Cerebellar Gene Regulation in Time and Space

DBA DBA/2J inbred mouse strain, aka D2

EMR Electronic Medical Records

ES Essential Set

eQTL Expression Quantitative Trait Locus

FDR False Discovery Rate

FPT Fixed-Parameter Tractable/Tractability

GEO Gene Expression Omnibus

GO Gene Ontology

iMBEA Improved Maximal Biclique Enumeration Algorithm

ISH In-Situ Hybridization

KO Knockout (Gene Knockout)

LRS Likelihood Ratio Statistic

MBEA Maximal Biclique Enumeration Algorithm

MC Maximum Clique

MCC Maximum Clique Cover

MCE Maximum Clique Enumeration

MCF Maximum Clique Finder

MICA Modular Input Consensus Algorithm

mRNA Messenger RNA

PPI Protein-Protein Interaction

QTL Quantitative Trait Locus

 1

Chapter 1 Introduction and Background

Moore’s law observes that the processing power of computers has roughly doubled

every two years since the 1970’s. But in recent years the rate has begun to slow, and

the slowing is expected to continue as microchip technology approaches

fundamental physical limits. At the same time, growth in the amount of data

generated in recent years has outpaced the increase in computational power. This

trend also is expected to continue. In order to keep pace with the gap between

computational power and data growth, there is a need for the continual

development of new algorithms and analytic methods.

 Nowhere is the growth of data more apparent than in the biological sciences,

especially in genetics and genomics. Technologies that led to the sequencing of the

human genome, among other breakthroughs, have continued to advance.

Technologies such as microarrays, RNA-seq and mass spectrometry produce ever-

increasing amount of data. A wealth of experimental data now resides in publicly

available repositories, the experiments’ authors applying only a comparatively small

number of analytic techniques focused on but a few hypotheses. Such data almost

certainly contains undiscovered knowledge, only awaiting the application of the

right algorithms and techniques.

 This dissertation focuses on the development and application of graph-

theoretical algorithms to large-scale data, such as data generated by current genetics

and genomics technologies. The algorithms have the common theme of seeking

dense structure in graphs, dense structure being loosely defined as highly

interconnected sets of nodes. Density-related problems arise in a host of research

fields, as diverse as computational molecular biology [1], telecommunications [2],

natural language processing [3], social network analysis [4], transportation [5, 6],

operations research [7], chemistry [8], drug discovery [9], phylogeny [10] and ad hoc

networking [11]. Such dense structure can be used to infer co-associated sets of

entities. The algorithms have all been implemented, tested, and applied to

experimental data. Emphasis has been placed on practical implementations, since

the algorithms must scale to the growing size of biological datasets. The algorithms

described and developed here are targeted to biological problems, but since they are

designed using an abstract graph model, they should have applications well beyond

the specific problem by which they were inspired.

 Another theme running through this thesis is the use of exact algorithms,

even for combinatorial problems generally considered intractable. A problem’s NP-

completeness is often stated as a reason why approximate or probabilistic

algorithms or heuristic solutions are needed. The usual philosophy at the Langston

 2

Lab, however, is to eschew such thinking. Our general view is that, given the time

and expense of data collection, one should not cut corners on data analysis methods

without first attempting to find exact optimal solutions to the problem at hand.

 Most of the major pieces of this dissertation consist of previously published

papers that I co-authored as part of the Langston Lab and to which I contributed

original work. The different publications are brought together and organized here

into three broad categories: algorithms for general graphs, algorithms for bipartite

graphs and algorithms for multipartite graphs. Each of the major sections of

chapters 2 and 3 (sections 2.1, 2.2, 2.3, 2.4, 3.1 and 3.2) represent one distinct

publication. A preliminary version of chapter 4 has been published as well. Often,

our lab’s contribution to a publication focused on some biological problem has been

to provide novel data analytics. As such, I have reproduced here only those parts of

these publications that describe our contributions or that are necessary to provide

context. To avoid redundancy, much of the background and introduction from the

publications has been combined and placed in this introductory chapter.

1.1 Definitions, Notation and Preliminaries
A graph is an abstract representation consisting of a set of vertices, which represent

objects, and a set of edges, which represent association between pairs of objects. A

graph is also called a network; vertices are also called nodes; and edges are also

called arcs, links or connections. In this work we consider only simple, unweighted,

undirected graphs. Weighted graphs are only discussed in the context of converting

them to unweighted graphs via a thresholding procedure on the edge weights.

 We use the following definitions and notation. The number of vertices in a

graph is the order of the graph, sometimes referred to as the graph’s size. For a graph

G, V(G) denotes the set of vertices and E(G) denotes the set of edges. Often just V and

E are used when no ambiguity results. The cardinality of V (number of vertices in

the graph) is denoted by |V| or, when no ambiguity results, by n. The cardinality of

E (number of edges in the graph) is denoted by |E|. Edges are denoted by their

endpoints; for example uv and (u, v) both denote an edge between vertices u and v.

The neighborhood of a vertex v ∈ V(G) is defined by NG(v) = { u ∈ V(G) : uv ∈ E }, and

is also written as N(v) when no ambiguity results. Note that the cardinality of N(v) is

the degree of v.

 A clique, or complete graph, is a graph with all possible edges. An independent

set is a graph with no edges. A vertex cover is a set of vertices in a graph such that

edge in the graph has at least one endpoint in the set. A maximum clique is a clique

of largest size in a graph. Similarly, a maximum independent set is an independent

set of largest size and a minimum vertex cover is a vertex cover of smallest size. A

 3

maximal clique is a clique that is not properly contained in another clique; e.g. no

vertex can be added to form a larger clique. A graph is k-partite if it can be

partitioned into k disjoint independent sets, called partite sets. A k-partite graph is

also called multipartite, typically only when k ≥ 3. Edges in a k-partite graph are

interpartite, having endpoints in different partite sets. By definition, a k-partite graph

has no intrapartite edges, edges between vertices in the same partite set.

(Nevertheless we will discuss intrapartite edges in the context of our algorithm in

chapter 4.) A k-partite clique, or complete k-partite graph, is a k-partite graph with all

possible interpartite edges. A maximal k-partite clique is a k-partite clique to which

no vertex can be added to form a larger k-partite clique. A 2-partite graph is bipartite,

and a 2-partite clique is a biclique. Similarly, a 3-partite graph is tripartite, and a 3-

partite clique is a triclique. Rather than extend the Latin nomenclature to

quadricliques, quinquecliques, and so forth, for readability we use numerals for any

k > 3, i.e. 4-partite clique, 5-partite clique, etc. We will assume that by definition a k-

partite clique must include at least one vertex from each partite set. The density of a

graph is the ratio of the number of edges to the number of possible edges; in k-

partite graphs, intrapartite edges are not considered possible edges. Sometimes

density is reported as a percentage rather than a proportion.

 When considering maximum k-partite cliques, we must distinguish between

vertex-maximum and edge-maximum. The distinction is only relevant for

maximum, not maximal k-partite cliques. Whether a k-partite clique is maximal

depends only on whether or not it can be extended by inclusion of another vertex.

Just as there can be more than one maximum clique in a graph, there can be more

than one maximum k-partite clique in a k-partite graph, both for the edge maximum

and vertex maximum varieties.

 A complete graph on n vertices is denoted by Kn. A complete bipartite graph

is denoted by Km,n = (U,V) where U and V are the two partite sets of G. A complete k-

partite graph is denoted by
 , where are partite sets

with respective cardinalities .

 A k-partite graph is balanced if the partite sets differ in number of vertices by

at most one. Balanced k-partite graphs are also called Turán graphs. Turán studied

such graphs in the context of extremal graph theory, since they have the maximum

number of edges possible for a graph that does not contain a (k-1)-clique, as stated

by Tur{n’s theorem [12, 13]. As we shall show, balanced k-partite graphs are also

useful for proving bounds we describe here.

 A more comprehensive source of graph theory terminology and notation can

be found in [14].

 4

1.2 Omics Data
The word omics refers to several research areas in biology ending with the same

suffix. Some of the best known examples include genomics, transcriptomics,

proteomics and metabolomics. These areas are characterized by an abundance of

large-scale experimental data measuring particular aspects of biomolecular

pathways.

 Transcriptomic data measure the abundance and types of RNA molecules.

Until recently the most often used transcriptomic technology was the messenger

RNA (mRNA) microarray, which measures the relative abundance of tens of

thousands of different mRNA sequences simultaneously in a tissue sample. Each

sequence is mapped to the particular gene that coded it, and for this reason mRNA

microarray data is referred to as gene expression data. Since the advent of

expression microarrays roughly two decades ago, a plethora of such data has

become available. RNA microarrays are gradually being supplanted by “next-

generation sequencing,” or RNA-seq, which measures actual counts of RNA

sequences in a sample. When discussing mRNA data, we often use probesets, probes

and genes synonymously, though they are not technically the same.

 Proteomics studies the structure, behavior and interaction of proteins at a

large scale. The two most common technologies for detecting proteins are mass

spectrometry and immunoassays. There are several publicly available databases

containing protein information, including known interactions between proteins.

These interactions can be modeled as protein-protein interaction (PPI) networks,

which are well-suited for analysis using graph algorithms.

 Metabolomics studies metabolites, or small molecules involved in

biomolecular pathways. Like proteomics, it uses mass spectrometry to measure the

presence and abundance of molecules and molecular fragments.

 The methods presented in this work are typically motivated by specific

problems arising in the context of the particular set of data to which they are

applied. But the algorithms can apply to other types of data in a variety of domains,

as long as the data can be modeled as the appropriate type of graph.

1.3 Constructing Graphs from High-Throughput Data
Since the algorithms described in this work are restricted to simple, unweighted,

undirected graphs, the first goal when presented with data is to create such a graph.

To use a graph model, we need the concept of vertices (nodes) and edges

(connections). The entities represented by vertices depend on the data, but are

usually straightforward to interpret. In gene expression data, for instance, the

vertices are genes. In proteomics data, the vertices are proteins. In functional

 5

genomics, the vertices may represent samples, diseases, metabolites, phenotypes

and a host of other entities. To place edges between vertices, we need some meaning

for the edge, some way in which entities that the two vertices represent are

associated. In graphs with proteins as vertices, for instance, edges may be placed

between every pair of proteins that are known to interact. If genes are the vertices,

then the edges may connect pairs of genes that have functional similarity or have

highly correlated expression across samples. If there is a similarity metric from

which one can compute a similarity score, then that score can be interpreted as an

edge weight. A thresholding procedure can then select only those edges above (or

below) a given threshold to create an unweighted graph.

1.3.1 Similarity Metrics

There are many different metrics for computing similarity. The choice of metric

depends on the entities being modeled, the nature of the data and the goal of the

analysis. Pearson correlation, for example, can be used to find linear dependence

between two entities with quantitative measurements across common conditions

such as samples, time points or dosages. Mutual information can be used on data

with categorical measurements or when non-linear relationships are sought. Jaccard

similarity is used to measure similarity between two sets. Any quantitative measure

of difference or distance can of course be converted into a similarity measure simply

by taking the inverse, and vice versa. A Euclidean distance d, for example, can be

converted into a proximity score of 1/d. Table 1 lists some common similarity metrics

and their uses.

1.3.2 Thresholding

Once we have a similarity score between each pair of vertices, we can create an

unweighted graph by selecting a threshold, some value of the similarity score. When

a pair of vertices has similarity at or above the threshold, an edge is placed between

the two vertices. Otherwise, no edge is placed.

 The selection of an appropriate threshold is an ongoing research area. The

selection is somewhat analogous to the selection of p-value at which to call a result

statistically significant, in that the goal is to strike a reasonable balance between false

positives and false negatives. One technique for selecting a threshold is to choose the

highest threshold that places an edge between all pairs of vertices with known or

expected interactions. Similarly, one can select a threshold so that one or more pairs

of vertices with known interactions appear in the same paraclique. Both methods are

fraught with potential problems, however, in part because of the reliance on a few

 6

Table 1. Common similarity metrics.

Metric Measures Notes/Uses

Pearson Correlation Linear dependence Many

Spearman Correlation Linear dependence of ranks Resistant to outliers

Mutual Information Non-linear dependence Categorical data

Cosine Similarity Similarity in vector space Document comparison

Euclidean Distance Distance in Cartesian space Straight line distance

Orthodromic Distance Distance on a sphere Geocoding

Jaccard Similarity Similarity between sets Set-set comparison

Hamming Distance Difference between equal length strings Error correction

Levenshtein Distance Difference between strings, where insertions

and deletions are expected

Sequence comparison

Known Association Molecular interactions, known pathways Protein-protein

interactions, etc.

interactions being accurately reflected in the data. Misconceptions about which

interactions ought to be found, experimental confounds and noise from a variety of

sources can all render such methods unreliable. Data-driven methods are thus

usually preferred. Such methods include spectral graph clustering [15] and fitting to

a scale-free topology [16]. For a comparison of six threshold selection methods for

gene expression data, see [17].

1.4 The Quest for Dense Subgraphs
Algorithms for finding dense subgraphs are a subclass of clustering algorithms. As

such, they can have a variety of characteristics. Some produce disjoint subgraphs,

where others produce overlapping subgraphs. Some assign all vertices in a graph to

some cluster; others can leave some vertices unassigned.

 A clique is the densest possible subgraph, since it contains all edges.

Therefore cliques are natural structures to seek when searching for dense subgraphs.

Clustering techniques based on graph-theoretical algorithms have numerous

advantages over traditional methods. Clique-centric strategies tend to be especially

effective. They are resistant to false positives, and naturally accommodate

pleiotropism through overlap. Algorithms presented in this work to seek dense

subgraphs are ultimately clique-based. In computational biology, one needs to look

no farther than PubMed to gauge clique's utility in a variety of applications. A

 7

notable example is the search for putative molecular response networks in high-

throughput biological data. Popular clique-centric tools include clique community

algorithms for clustering [18] and paraclique-based methods for QTL analysis and

noise abatement [19, 20]. Clique-based clustering algorithms have been shown to be

superior to other clustering methods [21]. Besides cliques, other types of dense

subgraphs that may be sought include k-clique communities [18] and k-plex’s [22].

 Problems related to clique elucidation are among the most widely-studied

issues in graph theory. They are also among the hardest. Simply determining

whether a graph has a clique of a given size was one of Karp’s original 21 NP-

complete problems [23] and is known to be difficult even among NP-complete

problems, being W[1]-complete [24]. Even approximating the maximum clique size

is problematic; the maximum clique size is not polynomial time approximable to

within a factor of for any unless coNP = NP [25].

1.4.1 Maximum Clique

Finding a maximum clique is a notoriously difficult combinatorial problem.

Although classically formulated as an NP-complete decision problem [26], where

one is merely asked to determine the existence of a certain size clique, the search and

optimization formulations are probably most often encountered in practice, where

one is asked to find a clique of given size and largest size respectively.

 Fortunately, real-world graphs tend to be sparse and have inherent

topological structure that makes their solution feasible with state-of-the-art

algorithmic implementations [27, 28]. The algorithms can be sped up with

techniques inspired by fixed-parameter tractability (FPT) [24, 29] such as common

neighbor preprocessing and color preprocessing [30].

 A maximum clique is particularly useful in our work on graphs derived from

biological datasets. It provides a dense core that can be extended to produce

plausible biological networks [31]. Other biological applications include the

thresholding of normalized microarray data [15, 17], searching for common cis-

regulatory elements [32], and solving the compatibility problem in phylogeny [33].

See [34] for a survey of additional applications of maximum clique.

1.4.2 Maximal Clique Enumeration

The set of maximal cliques forms a natural overlapping clustering of a graph with

the most rigid requirements, namely that all edges be present within each cluster.

Current maximal clique enumeration algorithms can be classified into two general

types: iterative enumeration (breadth-first traversal of a search tree) and

backtracking (depth-first traversal of a search tree). Iterative enumeration

 8

algorithms, such as the method suggested by Kose et al [35], enumerate all cliques of

size k at each stage, test each one for maximality, then use the remaining cliques of

size k to build cliques of size k + 1. The process is typically initialized for k = 3 by

enumerating all vertex subsets of size 3 and testing for connectivity. In practice, such

an approach can have staggering memory requirements, because all cliques of a

given size must be retained at each step. In [36], this approach is improved by using

efficient bitwise operations to prune the number of cliques that must be saved.

Nevertheless, storage needs can be excessive, since all maximal cliques of one size

must still be made available before moving on to the next larger size. Figure 1 shows

the number of maximal cliques of each size in a fairly typical graph constructed

from gene expression data. This graphic illustrates the enormous lower bounds on

memory that can be encountered with iterative enumeration algorithms.

Figure 1. The maximal clique profile of a transcriptomic graph. The graph was constructed from

dataset GDS3672 from the Gene Expression Omnibus (GEO) using a correlation threshold of 0.81.

Maximal clique enumeration algorithms that are based on a breadth-first traversal of the search

tree retain at each step all maximal cliques of a given size. This can lead to titanic memory

requirements. This graph, for example, contains more than 110 million maximal cliques of size 70.

These sorts of memory demands tend to render non-backtracking methods impractical.

 Many variations of backtracking algorithms for maximal clique enumeration

have been published in the literature. To the best of our knowledge, all can be traced

back to the algorithms of Bron and Kerbosch first presented in [37]. Some

subsequent modifications tweak the data structures used. Others change the order in

which vertices are traversed. See [38] for a performance comparison between several

variations of backtracking algorithms.

 But a graph can theoretically contain as many as 3n/3 maximal cliques [39]. It

was shown in [40] that the Bron-Kerbosch algorithm achieves this bound in the

 9

worst case. No algorithm with a theoretically lower asymptotic runtime can thus

exist. For a much more complete history and survey of algorithms to find maximum

cliques and enumerate maximal cliques, see [34].

1.4.3 The Paraclique Algorithm

Cliques are the most restrictive graph-based cluster, since they require that all

possible edges be present. The effects of noise, which is almost inevitably present in

experimental data, can generally be overcome by slightly relaxing the extreme

stringency of cliques. The paraclique algorithm [19] relaxes the restrictiveness of

cliques. The algorithm finds a maximum clique and uses it as a core to build a

paraclique. A paraclique consists of the maximum clique and all vertices that are

missing no more than g edges to vertices in the maximum clique, where g is called

the glom term. The paraclique is removed from the graph and saved, and a maximum

clique is found in the remaining graph to form the core of the next paraclique. The

process continues until a stop condition is reached, typically when the remaining

graph contains no clique larger than a user-supplied parameter.

 There are several varieties of the paraclique algorithm. One version considers

connectivity only to the maximum clique when deciding whether to glom a vertex.

Another version considers connectivity to both the maximum clique and to already

glommed vertices. Either of these versions can obtain overlap by removing just the

maximum clique from the graph with each paraclique found, leaving behind any

glommed vertices to potentially be glommed onto later paracliques. In this work, we

use only the non-overlapping version that considers connectivity to the maximum

clique.

 I contributed to the paraclique algorithm by extending the notion of the glom

term. Often our analysis produces maximum cliques with several hundred vertices.

A small glom term of three or less, as is typically used, may still be too restrictive on

very large maximum cliques. Consider, for example, the difference between a clique

X of size 5 and another clique Y of size 100. Using a glom term of 3, a vertex

connected to 2 vertices of X would be included in a paraclique with X, while a vertex

connected to 96 vertices of Y would not be included in a paraclique with Y. But

intuitively, in the latter case the vertex seems more significantly associated with

vertices in the maximum clique. Therefore I introduced a parameter that scales with

clique size, called the proportional glom factor, and modified the algorithm

accordingly. The proportional glom factor is the minimum proportion of edges that

must be present between a vertex v and vertices in the maximum clique in order for

v to be included in a paraclique. Research that uses the paraclique algorithm in this

dissertation uses a proportional glom factor.

 10

 Just as choosing an appropriate threshold to create an unweighted graph is a

matter of ongoing research, so too is the selection of an appropriate glom term or

proportional glom factor. Figure 2 shows the effect of threshold and proportional

glom factor choice on the results of the paraclique algorithm on an mRNA

expression dataset. Higher thresholds produce smaller, denser, and fewer

paracliques. Furthermore, the higher the proportional glom factor, the smaller,

denser, and more numerous the paracliques.

Figure 2. The effect of threshold and proportional glom factor on paracliques. As threshold and

proportional glom factor decrease, the average density of paracliques and size of the largest

paraclique decreases.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
.
7
0

0
.
7
5

0
.
8
0

0
.
8
5

0
.
9
0

0
.
7
0

0
.
7
5

0
.
8
0

0
.
8
5

0
.
9
0

0
.
7
0

0
.
7
5

0
.
8
0

0
.
8
5

0
.
9
0

0.70 0.75 0.80

Threshold and Proportional Glom Factor

Average

Paraclique

Density

Lowest

Paraclique

Density

Size of Largest

Paraclique

(thousands)

Number of

Paracliques

(tens)

 11

Chapter 2 Algorithms for General Graphs

In this chapter we describe four research topics, related by the common thread of

using algorithms for either maximum or maximal cliques in general graphs. The first

topic is the search for ethanol responsive gene networks in the prefrontal cortex of

mice by analyzing a gene expression dataset. The second uses time series data in the

developing mouse cerebellum. The third describes the development and application

of a custom clustering algorithm for the prediction of protein-protein interactions.

And the fourth is the development, implementation and testing of an algorithm that

enumerates all maximum cliques in a graph. Each of the four sections in this chapter

consists of previously published material from four publications, edited for this

dissertation. The appropriate publication is cited at the beginning of each section,

along with a description of my contributions to the work. Wherever possible, I

attempt to limit the background to that required to give my contribution context. In

the case of the first three sections, 2.1, 2.2 and 2.3, my contribution was as part of the

methods section, tailoring our graph-theoretical tools to the analysis of the particular

data.

2.1 Ethanol Responsive Gene Networks in the Prefrontal Cortex
Most of this section was published as part of [41] or was presented in preliminary

form in the following three posters:

 "Graph Theoretic Analysis of BXD Mouse MRNA Expression Ethanol and

Phenotype Data," 33rd Annual Conference of the Research Society on Alcoholism,

San Antonio, TX, June, 2010, C. A. Phillips, A. R. Wolen, M. F. Miles and M.

A. Langston.

 "Identifying Ethanol-Regulated Gene Networks in the Mouse Brain using

Graph Algorithms," 8th Annual UT-KBRIN Bioinformatics Summit, Pikeville,

TN, March, 2009, C. A. Phillips, A. D. Perkins, A. R. Wolen, E. J. Chesler, M. F.

Miles and M. A. Langston.

 "Graph-theoretical Algorithmic Analysis of Microarray Data for Identification

of Murine Brain Ethanol-Regulated Gene Networks," 38th Annual Conference of

the Society for Neuroscience, Washington, DC, November, 2008, C. A. Phillips,

A. D. Perkins, A. R. Wolen, E. J. Chesler, M. F. Miles and M. A. Langston.

 12

My co-authors designed a microarray experiment on acute ethanol response in the

prefrontal cortex of mice. They collected and normalized the microarray data. My

contribution included performing eQTL and graph-based analysis on the

normalized data and helping to write the paper. The three posters were primarily

about my contribution to the research. Only those portions of the paper necessary to

provide context for my contributions are included here. I have performed numerous

minor edits, both for clarity and to make the style and terminology consistent with

the rest of this dissertation, and have reorganized where necessary to integrate

sections of the paper and posters into a coherent section.

 Individual differences in initial sensitivity to ethanol are strongly related to

the heritable risk of alcoholism in humans. To elucidate key molecular networks that

modulate ethanol sensitivity, we performed the first systems genetics analysis of

ethanol-responsive gene expression in brain regions of the mesocorticolimbic

reward circuit (prefrontal cortex, nucleus accumbens and ventral midbrain) across a

highly diverse family of 27 isogenic mouse strains (BXD panel) before and after

treatment with ethanol.

 The impact of acute ethanol on transcript abundance was measured using the

Significance-score (S-score) algorithm [42], which utilizes individual probe-level

data to determine the statistical significance of transcript level differences between a

pair of Affymetrix microarrays. We utilized the R implementation of the S-score

algorithm [43] to compare microarray expression levels within BXD strains across

treatment groups to generate a saline vs. ethanol S-score for each probeset, where a

positive S-score indicates up-regulation with ethanol and vice versa.

 S-scores are normally distributed with a mean of 0 and a standard deviation

of 1 [42]. For two-tailed tests, p-values for each probeset were calculated as twice the

probability of obtaining an S-score at least as large as the absolute value of the

observed S-score. Statistical significance of a given probeset’s ethanol response

across BXD strains was assessed using Fisher’s combined probability test [44]. An R

implementation of Fisher’s method, available as part of the MADAM package [45],

was used to combine the S-score transformed p-values. This process was then

repeated for 1,000 random permutations of the observed S-score expression matrix,

so that empirical p-values could be obtained by comparing observed results to the

permutation distribution. Finally, to correct for multiple testing, q-values were

generated from the empirical p-values [46]. Probesets with q-values at or below 0.05

were considered to be significantly ethanol-responsive.

 13

2.1.1 Paraclique and Network Analysis

We applied algorithms for both clique-centric clustering and topological analysis to

the two murine datasets: one with 43 LXS RI lines and one with 27 BXD RI lines. As

described above, each dataset contained a control group, which was administered

saline, and a test group, which was given ethanol (1.8 g/kg). For both datasets,

Affymetrix M430A 2.0 microarrays were used to measure mRNA expression in the

prefrontal cortex (PFC) at four hours post-treatment. Each dataset was normalized

using both RMA and S-scores. Shown here are results from the S-score LXS dataset.

 Steady-state RMA and saline vs. ethanol S-score expression datasets were

analyzed using the paraclique algorithm [19] to identify gene co-expression

networks. We first calculated all pairwise Pearson correlations across probesets,

where each probeset is represented as a vector of BXD expression values, and used

this data to construct an unweighted graph in which vertices represent probesets

and edges were present whenever the absolute value of the correlation between two

probesets was at least 0.7. The choice of threshold when converting a weighted

graph to an unweighted graph is analogous to the choice of p-value when

determining significance; it is chosen to produce a reasonable tradeoff between false

positives and false negatives. A correlation threshold of |0.7| across 27 strains yields

a correlation p-value of 4.8e-05 (calculated using Student’s t-distribution). Such low

p-values are indicative of the rigor of graph-theoretical techniques. Figure 3 depicts

the distribution of correlations and the selected threshold.

Figure 3. The distribution of Pearson correlations in the BXD S-score dataset. Red lines indicate

the threshold of 0.7 chosen to construct the unweighted graph.

 14

 Because S-scores are a measure of significance of change in expression of a

gene, tightly interconnected groups of vertices in the unweighted graph correspond

to groups of genes that have similar differential expression between ethanol and

saline across strains. Since genes in such a group all appear to have the same

response pattern to ethanol, they form a putative biological network.

 Since the inevitable noise in large microarray datasets can render clique too

restrictive, we used a relaxed version, the paraclique algorithm. We selected a

proportional glom factor of 0.7 for the analyses presented here, which maintains an

edge density above 0.9 in nearly all the resulting paracliques. For such defined

paracliques, probesets had expression responses to ethanol correlated with at least

70% of the other paraclique members at a threshold at or above |0.7|. Lowering the

proportional glom factor below 0.7 resulted in a sharp drop-off in edge density.

Furthermore, empirical testing showed that more stringent proportional glom

factors produced similar overall functional results but tended to fragment known

correlated gene groups (e.g. dopamine signaling genes) into multiple paracliques

(data not shown).

 The relative importance of each node within a paraclique was assessed using

network topological measures of connectivity and centrality. Degree of connectivity

was equal to number of edges linking a probeset to other paraclique members, based

on the |0.7| edge correlation threshold used to construct the unweighted graphs.

Betweenness centrality measures how frequently a node is included in the shortest

paths between all pair-wise members of a network. With the edge threshold at |0.7|,

Spearman’s rank correlations were typically above 0.9 between centrality and

connectivity. Increasing the edge correlational threshold to |0.9| reduced the

connectivity/centrality correspondence to ~0.6 and greatly increased the centrality

for a subset of nodes situated between densely inter-connected subnetworks. We

therefore used betweenness centrality scores within unweighted graphs constructed

using the more stringent |0.9| edge threshold as a supplemental measure of node

importance. Both measures were calculated using the igraph package for R [47].

Fisher’s exact test was used to identify paracliques that harbored a greater number

of significantly ethanol-responsive probesets than what would be expected by

chance. The 30,941 probesets that passed the present-call filter served as the

background for this analysis. Paracliques with a Bonferroni adjusted p-value at or

below 0.05 were judged to be significantly enriched for ethanol-responsive

probesets.

 15

2.1.2 Functional Analysis

Functional enrichment analyses were performed using ToppFun, a functional

enrichment application available at toppgene.cchmc.org as part of the ToppGene

suite of web applications [48]. Each paraclique was considered on an individual

basis. Entrez ID’s for all members of a paraclique were submitted and analyzed for

over-representation of genes that belong to a Gene Ontology (GO) category (cellular

component, molecular function and biological process), biological pathway, gene

family or, similarly, encode a particular protein domain. In order to enhance the

specificity and informativeness of these results, we considered only those categories

that comprise greater than 3 and fewer than 300 genes, inclusive. Multiple testing

was accounted for using a 1% FDR threshold. Results were curated by excluding

categories with gene lists more than 80% redundant with other, less enriched,

categories.

2.1.3 Combining Transcriptomic and Phenotype Data

We used graph-theoretic algorithms in a combined analysis of the BXD S-score data

and BXD phenotype data from GeneNetwork’s (http://www.genenetwork.org)

database of phenotypes. The data consisted of 2137 phenotypes, each with

quantitative measurements on up to 92 BXD strains, the BL6 and D2 parental strains,

and the two F1 strains.

 Combining the 22626 probesets in the Affymetrix microarray with the 2137

phenotypes, we calculated all pairwise Pearson correlations. Since the phenotypes

typically did not have measurements for all strains, we translated the Pearson

correlation into correlation p-values. We expect the correlations to follow a normal

distribution, and indeed that is the case in both the microarray and the phenotype

datasets.

 Once we calculate all pairwise Pearson correlations, the result is represented

by a weighted graph in which each vertex is either a probe or a phenotype and the

weight of each edge is the correlation, or in our case the correlation p-value. From

the weighted graph we construct an unweighted graph by retaining only those

edges with correlation above some threshold t. To maintain similar edge density

between probes and phenotypes, we used contrasting values of t for phenotype-

phenotype, probeset-phenotype, and probeset-probeset thresholds. See Figure 4. We

used a correlation p-value threshold of 0.001 for both probe-probe and phenotype-

phenotype edges, and a correlation p-value threshold of 0.01 for probe-phenotype

edges since it results in a probe-phenotype edge density between the two intra-type

densities.

http://www.genenetwork.org/

 16

Figure 4. Comparison of edge densities between probes and phenotypes. At the same correlation

p-value threshold, the two different data types had different intra-type edge densities. The inter-

type density was markedly lower than either inter-type density. At a given threshold for each data

type, the inter-type correlation is chosen so that the edge density falls between the intra-type

densities.

 The analysis resulted in 63 paracliques, from size 293 down to size 12. Many

of the paracliques contained only probes or only phenotypes. Four paracliques are of

particular interest.

• Paraclique 5 consists of 9 genes and 68 phenotypes. All but 4 of the

phenotypes are cocaine response.

• Paraclique 6 consists of 26 genes and 55 phenotypes. All the phenotypes are

morphine response.

• Paraclique 26 consists of 5 genes and 21 phenotypes. All the phenotypes are

morphine response.

• Paraclique 28 consists of 8 genes 15 phenotypes. All the phenotypes are

ethanol response.

The genes in each of these four paracliques form putative networks potentially

associated with both ethanol response and the particular phenotype.

 17

2.1.4 QTL Analysis

We used QTL Reaper to perform expression Quantitative Trait Locus (eQTL)

mapping for the saline and ethanol treated RMA datasets, as well as the saline vs.

ethanol S-score dataset, using a subset of informative microsatellite and SNP

markers that have been used to genotype the BXD family [49, 50], and are available

from GeneNetwork (genenetwork.org/genotypes/BXD.geno). QTL Reaper is the

batch version of WebQTL, available from GeneNetwork. For each gene, we

performed interval mapping to find the marker with the maximum Likelihood Ratio

Statistic (LRS). A marker with the highest LRS for a gene is the possible location of a

QTL.

 Genes in a paraclique have a strong tendency to map to relatively few eQTL’s

on a small number of chromosomes. For instance, 801 of 846 genes in the largest LXS

paraclique have loci on only 5 chromosomes (5, 7, 14, 17, and 18). Of these,

chromosomes 7 and 18 account for 631 of the 846 gene loci. Furthermore, two

eQTL’s alone account for 492 genes: rs6394492 on chromosome 7 with 257 genes and

rs3720827 on chromosome 18 with 235 genes. Such eQTL enrichment is observed in

all 42 paracliques, possibly signaling some ethanol network regulatory function of

genes associated with the QTL’s.

 One of the strengths of combining eQTL mapping with paraclique analysis is

the identification of markers that span multiple paracliques. Such markers can aid in

identifying genes responsible for trans-network ethanol regulation. The 13 eQTL’s in

Table 2 appeared in 10 or more of the 42 LXS paracliques.

2.1.5 Maximal Clique Enumeration

Maximal clique enumeration, another graph-theoretic tool, can screen for genes with

high network interconnectivity within the graph as a whole. Because of the extent of

overlap between maximal cliques, genes that are members of many maximal cliques

may be key participants in multiple ethanol-regulated biological networks. The top

ten genes by maximal clique count are shown in Table 3.

 18

Table 2. The eQTL's appearing in at least 10 paracliques.

eQTL Genes Paracliques Chromosome

Rs6394492 446 11 7

Rs3720827 395 17 18

mCV24811501 126 15 3

mCV24401139 114 18 3

Rs13483103 88 10 17

D18Mit122 88 10 18

gnf03.037.709 68 12 3

Rs3664070 66 11 3

Rs13477062 66 10 3

Rs4231907 61 12 18

Rs13459176 52 12 15

Rs3707453 35 13 15

Rs3674751 24 13 3

Table 3. The top ten LXS S-score genes by maximal clique count.

Gene Maximal Cliques

C80913 99743705

1110005A03Rik 79324822

Vkorc1 74501989

Timm10 67123030

Gpm6b 65821042

Ndufc1 63138892

Syn2 62637391

5730403B10Rik 54873775

Jtb 53013778

Ptpla 50882906

 19

2.2 Time Series Analysis of the Developing Mouse Cerebellum
Most of this section was previously published in [51]. My co-authors designed and

performed a microarray experiment on the developing cerebellum in mice,

gathering data at prenatal and postnatal time points. They provided the normalized

data, on which I performed graph-based analysis, one of three analyses described in

the publication. I also helped write the paper. Only those parts of the paper

necessary to describe and provide context for my contributions are included here.

As with the previous section, I have made numerous minor edits for clarity and to

make the style and terminology consistent with the rest of this dissertation.

 There are two major goals in time series analysis. One is to make predictions

by extrapolating observed trends into the future. The other is to find temporal

patterns in data in order to better understand the processes behind whatever is

being measured [52]. When performing time series analysis on gene expression

during developmental stages, the first goal, prediction, is of less relevance than the

second goal, in the sense that prenatal development occurs but once for an

organism. Gene expression during prenatal development may be of limited value at

predicting future gene expression in an organism.

 The data analyzed in this section deviate from the standard time series model

in that the measurements were not taken at evenly spaced intervals. Prenatal

measurements were taken at one-day (24-hour) intervals, whereas postnatal

measurements were taken at 3-day (72-hour) intervals. The graph-based analysis did

not need to specifically account for this deviation.

2.2.1 Data Description

Here we report a novel time series transcriptome database that spans critical

embryonic as well as postnatal cerebellar developmental times. We performed

microarray analysis on whole cerebellar tissues from two inbred strains of mouse,

C57BL/6J (B6) and DBA/2J (D2) at 24-hour intervals in embryonic development from

embryonic day 12 (E12) to postnatal day 0 (P0), and at 3-day intervals from P0 to P9

in the postnatal period, and recombinant inbred mice between these two genotypes

(BXDR lines) at 3–7 representative time points (E12.5, E15.5, E18.5, P0, P3, P6 and

P9), and three mutant lines of mice whose mutant genes are known to target a single

cerebellum cell type, the cerebellar granule cell at E15.5 (Math1 KO and meander tail

mutant) or at E13.5, E15.5 and E18.5 (Pax6 KO). We illustrate the use of this

developmental time series transcriptome data with three bioinformatics analyses:

differential equation modeling to predict transcripton and offtime, paraclique

analysis to identify genes with similar dynamics, and dynamical system modeling to

infer transcriptional causal relationship from the time series data. We also

 20

demonstrate the utility of a new web-based toolkit called Cerebellar Gene

Regulation in Time and Space (CbGRiTS) as a data exploration and analysis

platform for studying gene regulatory networks in cerebellar development.

 A genome-scale microarray analysis was conducted using the Illumina

Mouse WG-6v1 Expression Bead Chip platform on pooled RNA samples from

microdissected whole cerebellar tissues (3–10) from B6 and D2 strains at 24-hour

intervals from E12 to P0 and then every 3 days until P9. The samples were collected

from timed-matings to minimize developmental noise. The reliability among

biological replicates (typically N=3) was examined by calculating the Pearson

correlation coefficient between replicates in each group. The median correlation

coefficient was 0.99 and the chips with correlation coefficient lower than 0.97 were

discarded. After eliminating individual chips with low fidelity, each time point

contained 3 biological replicates except the E14 time point of B6 (N=2) and P9 of D2

(N=1). In the time series data, of the 46,632 probesets in the Illumina platform, 24,257

probes were significantly different (factorial ANOVA, false discovery rate 5%) from

the median signal intensity at one or more time points, which indicates that more

than half of the transcripts (52%) queried with the microarray platform were

dynamically expressed during cerebellar development. In contrast, only 7141 probes

showed different temporal expression pattern between the two strains (false

discovery rate 5%). These differentially regulated genes are the candidate genes that

may underlie strain differences in cerebellar development and function.

 To facilitate resource sharing, the CbGRiTS microarray data resource is

publicly available at www.cbgrits.org (GEO accession number GSE60437).

 As stated, more than half of the genes tested were dynamically regulated

during cerebellar development. The developmental time and time window of gene

expression would presumably be an indication of a gene’s potential role during

development.

2.2.2 Paraclique Method

To construct a data structure suitable for graph algorithm clustering, we first

calculated all pairwise Pearson correlations between microarray probes across

developmental time points. In most analyses, such correlations are expected to

follow a reasonably normal probability distribution, and indeed, that is the case for

both the B6 and D2 data (Figure 5). Such correlations constitute edge weights in a

graph, the vertices being probes. To convert from a weighted to an unweighted

graph, we selected a correlation threshold of 0.9 and retained those edges with

correlation magnitudes at or above this threshold, discarding edges with weights

below the threshold. Selecting an ideal threshold for such graphs has been the

 21

subject of recent study [15-17], but it remains for the most part analogous to the

selection of p-value to determine significance. A threshold of 0.9 yields an

exceptionally low correlation p-value over the 12 and 13 time points of the B6 and

DBA data, which translates into the expectation that dense subgraphs will have very

low rates of false positives. Once we obtained an undirected graph, we applied the

paraclique algorithm [19] using a proportional glom factor of 0.9 for both strains,

meaning that new vertices must be connected to 90% or more of the vertices in the

original maximum clique to become part of the resulting paraclique.

Figure 5. The distribution of Pearson correlations in the B6 strain. For paraclique-based clustering,

we calculated all pairwise Pearson correlations between probes in the microarray data across

developmental time points. As expected, both the B6 and D2 data showed a reasonably normal

probability distribution. Based on the distribution, we used a correlation coefficient threshold of

0.9 to construct the graph and a proportional glom factor of 0.9 to generate paracliques.

2.2.3 Paraclique Results

Next, we explored our data to identify clusters of genes that shared similar

expression patterns with the idea that they may be related to common

developmental events in the cerebellum. To this end, we employed paraclique

analysis to identify sets of genes that share the same temporal expression pattern.

The paraclique algorithm clusters transcripts based on correlated temporal

expression patterns using graph-based methods [53], with the underlying premise

that common temporal expression patterns could be due to common developmental

processes and/or transcriptional control mechanisms. Paraclique, k-clique

 22

communities and other clique-based clustering algorithms generally tend to produce

superior results [21, 31] and are highly resistant to false positives, as compared to

commonly used, and less computationally demanding, clustering methods.

 Paraclique analysis produced 473 clusters with 12,074 transcripts for the B6

data, and 469 clusters with 10,095 transcripts for the D2 data, using a correlation

coefficient threshold of 0.9. The paraclique size ranged from 10 to 381 transcripts

(Figure 6). Each paraclique (cluster) represents a group of transcripts whose

expression pattern is highly correlated, either positively or negatively, over time. To

illustrate this pattern, we generated a “signature” for each paraclique by averaging

the expression value of each paraclique element at each time point. Such a signature

shows the expression profile across time for the paraclique as a whole (Figure 7). In

order to examine the hypothesis that high correlation of temporal expression

patterns among paraclique members is due to common developmental processes,

we utilized the DAVID Bioinformatics Database [54, 55] to perform Gene Ontology

(GO) [56] enrichment analysis. Many of the paracliques showed enrichment for

brain and development related categories, indicative of common developmental

processes and/or transcriptional control mechanisms. Further, detailed anatomical

analysis with in situ hybridization (ISH) databases revealed that many of the genes

have expression in the same cell type or in cells derived from the same progenitor

pool.

Figure 6. The distribution of the number of genes in paracliques. 70% of paracliques had 20 genes

or fewer and only 15 paracliques contained more than 100 genes.

76

255

58

25 16 10 18 15

0

50

100

150

200

250

300

10 11-20 21-30 31-40 41-50 51-60 70-100 Over
100

 23

Figure 7. The signature expression pattern of paraclique 3 in the B6 strain. In a paraclique, all

genes have high correlation with each other across time. These correlations are both positive and

negative. A paraclique can thus be divided into two groups of correlates. Genes in one group have

high positive correlation with each other and high negative correlation with genes in the other

group. A signature expression pattern is the average expression value of all the members of each

group at each time point, and represents the expression profile across time for the cluster as a

whole. Because of the negative correlations, the behavior of two groups of genes in a paraclique

tends to appear as mirror images of each other. Each paraclique exhibited a distinct expression

profile, with different paracliques exhibiting widely varying signatures.

Gene ontology-based enrichment analysis was performed on paracliques containing

genes known to be involved in brain development. One example, B6 paraclique 3,

had significant enrichment for development-related functional categories. The top 10

most enriched GO terms are listed in Table 4. Paraclique 3 contains 27 members,

including Eomes, Plxnb2, Pcsk9 and Lhx9. The GO analysis of the cluster showed

enrichment for both brain-related and development-related categories. Although

certain portions of the correlation in the temporal domain could be due to general

developmental processes, such as cell/tissue growth and proliferation, the highly

significant p-values for brain-specific categories indicate that a large portion of

paraclique 3 members may have common regulatory mechanisms.

2.3 A Custom Algorithm for Protein-Protein Interaction Prediction
Most of this section was previously published in [57]. My co-authors developed an

algorithm to predict interactions between proteins, producing a network (graph)

consisting of known and predicted protein-protein interactions. I designed and

implemented a custom algorithm to produce overlapping dense subgraphs that met

criteria supplied by domain scientists, specifically that there must be a certain

number of overlapping subgraphs. Again, only those parts of the paper necessary to

6

7

8

9

10

11

12

13

14

E12 E13 E14 E15 E16 E17 E18 E19 P0 P3 P6 P9
L

o
g

 E
x
p

re
s
s
io

n
 L

e
v

e
l

Time Points

124 probes

147 probes

 24

Table 4. The ten most enriched GO categories for B6 paraclique 3.

GO Term P-value

Neuron Differentiation 1.89E-09

Forebrain Development 1.10E-08

Pattern Specification Process 4.49E-08

Neuron Fate Commitment 6.93E-08

Transmission of Nerve Impulse 7.48E-08

Cell Fate Commitment 1.71E-07

Synapse 1.09E-06

Synaptic Transmission 1.35E-06

Regionalization 1.57E-06

Developmental Protein 2.48E-06

describe and provide context for my contributions are included here. And again, I

have made numerous minor edits for clarity and to make the style and terminology

consistent with the rest of this dissertation.

 In this study, we present a comprehensive pairwise analysis and prediction of

the entire human PPI network using the principles of short co-occurring polypeptide

regions as mediators of PPIs. Through this massive computational analysis, we

predict approximately 170,000 PPIs, of which 140,000 have not been reported

previously.

 Our computationally predicted interactome represents a comprehensive all-

to-all interaction network in humans. This network generates a wide range of

testable hypotheses concerning biological processes and informs our understanding

of the overall architecture of cellular function. Here, we demonstrate the usefulness

of this new predicted interactome through prediction of gene functions,

experimental verifications and analysis of putative protein complexes.

2.3.1 Motivation

Protein-protein interactions (PPIs) are essential molecular interactions that define

the biology of a cell, its development and responses to various stimuli. Physical

interactions between proteins can form the basis for protein functions,

communications, and regulation and controls within a cell. Such interactions can

result in the formation of protein complexes that perform specific tasks. Similarly,

internal and external signals are often realized and communicated through the

 25

formation of stable or transient PPIs. Due to their central importance to the integrity

of communication networks within a cell, PPIs are thought to involve important

targets for drug discovery [58] and are linked to a number of cellular conditions and

diseases [59].

 Protein interactions can be represented as an interaction network, where the

proteins are interactors (nodes) and connections (interactions) are shown as edges.

The graph produced by the interaction prediction method consisted of 11194 nodes

and 172183 edges. The edges represent both known and predicted interactions. It

was expected that between 2000 and 8000 complexes would exist, with significant

overlap.

2.3.2 Algorithm

To decompose the predicted protein pairs into putative complexes, we applied a

novel algorithm that combines pre-existing graph-theoretic tools with hierarchical

clustering concepts. The algorithm has three independent stages: the initialization

stage, which consists of generating an initial set of clusters, the merge stage, which

determines which two clusters to merge next, if any, and the glom stage, which

evaluates vertices for inclusion into a cluster. The initialization stage is run once,

after which the merge and glom stages run alternately until either the desired

number of clusters is reached or until neither stage results in a change to any cluster.

 Since initialization is an independent step, any initial clustering may be used.

It is not required that the initial clustering be overlapping, although stages two and

three may grow the clusters so that the end result is overlapping. We chose to use

the set of all maximal cliques as the initial clustering. The set of maximal cliques

forms a natural overlapping clustering of a graph with the most rigid requirements,

namely that all edges be present within each cluster. Real-world graphs often have

many small and medium sized maximal cliques, and the protein prediction graph is

no exception. These clusters are then allowed to merge and grow in stages two and

three, gradually relaxing the stringency until the desired number of clusters is

reached. To enumerate all maximal cliques, we used the well-known algorithm of

Bron and Kerbosch described in [37] with bitwise improvements from [36].

 In the merge stage, the overlap of all clusters is evaluated and the two clusters

with the highest overlap proportion are merged. If no two clusters overlap by a

proportion greater than a parameter m, then no clusters are merged.

 In the glom stage, every vertex not already belonging to a particular cluster is

considered for inclusion into a cluster in similar fashion to the paraclique algorithm

described in [76]. Those vertices with connectivity proportion greater than g, the

proportional glom factor, are added to the cluster. The first time through the glom

 26

stage, every cluster is considered. Subsequent glom stages only consider the cluster

newly created by the merge stage, as all other clusters have previously been

considered. The process is depicted in Figure 8.

Figure 8. The algorithm to find overlapping protein complexes.

In practice, calculating all pairwise overlaps to find the highest degree of overlap

can make the merge stage computationally prohibitive. A small change, however,

yields a good approximation version that can be run until the number of clusters is

reduced to the point where the exact version can take over. Rather than merging the

clusters with the highest overlap, the approximation version merges the first two

clusters encountered with overlap at least a, the approximation parameter. For the

protein prediction graph, which was initialized with more than 100,000 maximal

cliques, we ran the approximation version until the number of clusters reached

20,000, at which point we switched to the exact version. Ultimately, a list of 8,739

paracliques were identified and characterized through a statistical analysis of the

GO annotations of each member protein.

2.3.3 Results

Protein complexes can be defined as a group of proteins that interact with each other

to form a functional unit. Paracliques [19, 28, 31] can be computationally identified

as a sub group of proteins within the interaction network with high degree of

interconnectivity and may define putative complexes. Given the size of the human

PPI network, prediction of paracliques requires advanced computational approaches

Maximal Cliques
Glom Vertices to

Complexes

Merge the Two
Complexes with
Highest Overlap

Output Desired
Number of
Complexes

 27

to complete a thorough analysis within a reasonable timeframe. We have applied a

novel graph-theoretic approach to automatically identify paracliques within the

network (see Methods for details). Our analysis led to a number of interesting

predictions. For each paraclique, a statistical analysis of gene ontology (GO) term

enrichment was performed. The top GO terms for each paraclique were computed,

along with a p-value for the observed enrichment. Here we discuss paracliques 1359,

1409 and 2164 (Figure 9).

Figure 9. Three protein complexes chosen for further, in-depth analysis. Shown are complex 1359

(A), complex 1409 (B) and complex 2164 (C).

 Paraclique 1359 is a complex of six proteins with 13 interactions. O00151

(PDLIM1) is a cytoskeletal protein that acts as an adapter to bridge other proteins

(like kinases) to the cytoskeleton. P20929 (NEB) is a muscle protein involved in

maintaining the structural integrity of sarcomeres and membranes associated with

the myofibrils (F-actin stabilization). The rest of the members (P08670 (VIM), P14136

(GFAP), P17661 (DES) and P41219 (PRPH)) are intermediated filament proteins. On

the basis of GO enrichment (p-value 6.5E-07), one may conclude that the activity of

this complex is associated with cytoskeleton and structural integrity of the cell.

 Paraclique 1409 is a complex of six proteins with 14 interactions. Q02246

(CNTN2) is involved in cell adhesion and the remaining proteins (O94779 (CNTN5),

Q02246 (CNTN2), Q12860 (CNTN1), Q8IWV2 (CNTN4), Q9P232 (CNTN3), and

Q9UQ52 (CNTN6)) are involved in cell surface interaction during nervous system

development. On the basis of GO enrichment, we can assign this complex to cell

adhesion (p-value 2.2E-10).

 28

 Paraclique 2164 is a complex of five proteins with 10 interactions. Three of its

members (P32298 (GRK4), P34947 (GRK5) and P43250 (GRK6)) are G protein-

coupled receptor kinase and the remaining two (Q9NP86 (CABP5) and Q9NZU8

(CABP1)) are calcium-binding proteins. Considering the fact that biological

interaction between G-protein coupled receptor and calcium-binding proteins has

been widely reported and seems essential in signaling pathways, one may conclude

that this complex plays a role in G-protein coupled signaling pathway, a claim that

is supported by enriched Gene Ontology term (p-value 3.75E-08).

2.4 Maximum Clique Enumeration
Most of this section was previously published in [60]. One of my co-authors

designed and implemented an algorithm to enumerate all maximum cliques in a

graph. My contribution was to select a suite of publicly-available transcriptomic

datasets from which to construct graphs, to help test the algorithm on these graphs,

and to help write the paper. I have included most of the paper here, since it is

necessary to provide context for my contribution. I have made numerous minor

edits for clarity and to make the style and terminology consistent with the rest of

this dissertation.

The maximum clique enumeration (MCE) problem asks that we identify all

maximum cliques in a finite, simple graph. MCE is closely related to two other well-

known and widely-studied problems: the maximum clique optimization problem,

which asks us to determine the size of a largest clique, and the maximal clique

enumeration problem, which asks that we compile a listing of all maximal cliques.

Naturally, these three problems are NP-hard, given that they subsume the classic

version of the NP-complete clique decision problem. MCE can be solved in principle

with standard enumeration methods due to Bron, Kerbosch, Kose and others.

Unfortunately, these techniques are ill-suited to graphs encountered in our

applications. We must solve MCE on instances deeply seeded in data mining and

computational biology, where high-throughput data capture often creates graphs of

extreme size and density. MCE can also be solved in principle using more modern

algorithms based in part on vertex cover and the theory of fixed-parameter

tractability. While FPT is an improvement, these algorithms too can fail to scale

sufficiently well as the sizes and densities of our datasets grow.

An extensive testbed of benchmark graphs are created using publicly

available transcriptomic datasets from the Gene Expression Omnibus (GEO).

Empirical testing reveals crucial but latent features of such high-throughput

biological data. In turn, it is shown that these features distinguish real data from

random data intended to reproduce salient topological features. In particular, with

 29

real data there tends to be an unusually high degree of maximum clique overlap.

Armed with this knowledge, novel decomposition strategies are tuned to the data

and coupled with the best FPT MCE implementations.

Several algorithmic improvements to MCE are made which progressively

decrease the run time on graphs in the testbed. Frequently the final runtime

improvement is several orders of magnitude. As a result, instances which were once

prohibitively time-consuming to solve are brought into the domain of realistic

feasibility.

2.4.1 Background

Any algorithm that relies on maximum clique has the potential for inconsistency.

This is because graphs often have more than just one maximum clique.

Idiosyncrasies between algorithms, or even among different implementations of the

same algorithm, are apt to lead to an arbitrary choice of cliques. This motivates us to

find an efficient mechanism to enumerate all maximum cliques in a graph. These can

then be examined using a variety of relevant criteria, for example, by the average

weight of correlations driven by strain or stimulus [61].

 We therefore seek to solve the Maximum Clique Enumeration (MCE) problem.

Unlike maximal clique enumeration, for which a substantial body of literature exists,

very little seems to be known about MCE. The only exception we have found is a

game-theoretic approach for locating a predetermined number of largest cliques

[62].

 While very little prior work seems to have been done on MCE, the problem of

maximal clique enumeration has been studied extensively. Since any algorithm that

enumerates all maximal cliques also enumerates all maximum cliques, it is

reasonable to approach MCE by attempting first to adapt existing maximal clique

enumeration algorithms. An implementation of an existing maximal clique

enumeration algorithm also provides a useful runtime benchmark that should be

improved upon by any new approach. Besides maximal clique enumeration

algorithms, another potential strategy is to compute the maximum clique size and

then test all possible combinations of vertices of that size for connectivity. While this

approach may be reasonable for very small clique sizes, as the maximum clique size

increases the runtime quickly becomes prohibitive, and we mention it only for

completeness, and focus our efforts on modifying and extending existing algorithms

for enumerating maximal cliques.

 To enumerate all maximal cliques, we used the well-known backtracking

algorithm of Bron and Kerbosch described in [37] with bitwise improvements from

[36]. Many variations of backtracking algorithms exist, but as a basis for

 30

improvement, we chose to implement the original algorithm for three reasons. First,

an enormous proportion of the time consumed by enumeration algorithms is spent

in outputting the maximal cliques that are generated. This output time is a practical

limitation on any such approach. Second, since a graph can have as many as

3n/3 maximal cliques [39], and the Bron-Kerbosch algorithm achieves this bound in

the worst case [40], no algorithm with a theoretically lower asymptotic runtime

exists. Third, and most importantly, the improvements we introduce do not depend

on the particulars of any one backtracking algorithm; they can be used in

conjunction with any and all of them.

2.4.2 Results and Discussion

Using the Bron-Kerbosch algorithm as a benchmark, we designed, implemented,

and extensively tested three algorithmic improvements, the last based on

observations about the nature of graphs produced by transcriptomic data. Along

with describing these improvements, we will describe our existing tool for finding a

single maximum clique, based on the theory of fixed-parameter tractability [24, 27].

Such a tool is essential for all three improvements, since the first two rely on

knowledge of the maximum clique size, and the last uses the maximum clique

finding tool as a subroutine. All codes are written in C/C++ and compiled in Linux.

For testing, we use 100 graphs derived from 25 different datasets which are publicly

available on GEO. We concentrate on transcriptomic data, given its abundance, and

eschew synthetic data, having learned long ago that effective algorithms for one

have little bearing on the other. (The pathological matchings noted in [63] for vertex

cover can be extended to clique, but likewise they too are of course hugely irrelevant

to real data.) In an effort to improve performance, we scrutinize the structure of

transcriptomic graphs and explore the notion of maximum clique covers and

essential vertex sets. Indeed, we find that with the right preprocessing we are able to

tailor algorithms to the sorts of data we routinely encounter, and that we can now

solve instances previously considered unassailable.

2.4.2.1 Algorithms

In the following sections, we describe each of the MCE algorithms we implemented

and tested. The first is the algorithm of Bron and Kerbosch, which we call Basic

Backtracking and use as a benchmark. Since all our subsequent improvements make

use of an algorithm that finds a single maximum clique, we next describe our

existing tool, called Maximum Clique Finder (MCF), which does just that. We next

modify the Basic Backtracking algorithm to take advantage of the fact that we only

want to find the maximum cliques and can quickly compute the maximum clique

 31

size. We call this approach Intelligent Backtracking, since it actively returns early from

branches that will not lead to a maximum clique. We then modify MCF itself to

enumerate all maximum cliques, an approach we call Parameterized Maximum Clique,

or Parameterized MC. In a sense this is another backtracking approach that goes even

further to exploit the fact that we only want to find maximum cliques. Finally, based

on observations about the properties of biological graphs, we introduce the

concepts maximum clique covers and essential vertex sets, and apply them to

significantly improve the runtime of backtracking algorithms.

2.4.2.2 Basic Backtracking

The seminal maximal clique publication of Bron and Kerbosch describes two

algorithms. A detailed presentation of the second, which is an improved version of

the first, is provided. It is this second, more efficient, method that we implement and

test. We shall refer to it here as Basic Backtracking. All maximal cliques are

enumerated with a depth-first search tree traversal. The primary data structures

employed are three global sets of vertices: COMPSUB, CANDIDATES and NOT.

COMPSUB contains the vertices in the current clique, and is initially empty.

CANDIDATES contains unexplored vertices that can extend the current clique, and

initially contains all vertices in the graph. NOT contains explored vertices that

cannot extend the current clique, and is initially empty. Each recursive call performs

three steps:

 Select a vertex v in CANDIDATES and move it to COMPSUB.

 Remove all vertices not adjacent to v from both CANDIDATES and NOT. At

this point, if both CANDIDATES and NOT are empty, then COMPSUB is a

maximal clique. If so, output COMPSUB as a maximal cique and continue the

next step. If not, then recursively call the previous step.

 Move v from COMPSUB to NOT.

Note that NOT is used to keep from generating duplicate maximal cliques. The

search tree can be pruned by terminating a branch early if some vertex of NOT is

connected to all vertices of CANDIDATES.

 Vertices are selected in a way that causes this pruning to occur as soon as

possible. We omit the details since they are not pertinent to our modifications of the

algorithm.

 32

 The storage requirements of Basic Backtracking are relatively modest. No

information about previous maximal cliques needs to be retained. In the

improvements we will test, we focus on speed but also improve memory usage.

Thus, such limitations are in no case prohibitive for any of our tested methods.

Nevertheless, in some environments, memory utilization can be extreme. We refer

the interested reader to [36].

 Our Basic Backtracking implementation serves as an initial benchmark upon

which we can now try to improve.

2.4.2.3 Finding a Single Maximum Clique

We use the term Maximum Clique Finder (MCF) to denote the software we have

implemented and refined for finding a single clique of largest size [30]. MCF

employs a suite of preprocessing rules along with a branching strategy that mirrors

the well-known FPT approach to vertex cover [27, 64]. It first invokes a simple

greedy heuristic to find a reasonably large clique rapidly. This clique is then used for

preprocessing, since it puts a lower bound on the maximum clique size. The

heuristic works by choosing the highest degree vertex, v, then choosing the highest

degree neighbor of v. These two vertices form an initial clique C, which is then

iteratively extended by choosing the highest degree vertex adjacent to all of C. On

each iteration, any vertex not adjacent to all of C is removed. The process continues

until no more vertices exist outside C. Since |C| is a lower bound on the maximum

clique size, all vertices with degree less than |C - 1| can be permanently removed

from the original graph. Next, all vertices with degree n - 1 are temporarily removed

from the graph, but retained in a list since they must be part of any maximum

clique. MCF exploits a novel form of color preprocessing [30], used previously in

[65] to guide branching. This form of preprocessing attempts to reduce the graph as

follows. Given a known lower bound k on the size of the maximum clique, for each

vertex v we apply fast greedy coloring to v and its neighbors. If these vertices can be

colored with fewer than k colors, then v cannot be part of a maximum clique and is

removed from the graph. Once the graph is thus reduced, MCF uses standard

recursive branching on vertices, where each branch assumes that the vertex either is

or is not in the maximum clique.

2.4.2.4 Intelligent Backtracking

Given the relative effectiveness with which we can find a single maximum clique, it

seems logical to consider whether knowledge of that clique's size can be helpful in

enumerating all maximum cliques. As it turns out, knowledge of the maximum

clique size k leads to a small, straightforward change in the Basic Backtracking

 33

algorithm. Specifically, at each node in the search tree we check if there are fewer

than k vertices in the union of COMPSUB and CANDIDATES. If so, that branch

cannot lead to a clique of size k, and so we return. See Algorithm 1. While the

modification may seem minor, the resultant pruning of the search tree can lead to a

substantial reduction in the search space. In addition to this minor change to

branching, we apply color preprocessing as previously described to reduce the

graph before submitting it to the improved backtracking algorithm. Color

preprocessing combined with the minor branching change we call Intelligent

Backtracking.

Algorithm 1: Intelligent Backtracking.

Input: A graph G and the size C of a maximum clique in G

Output: All maximum cliques in G

1 IntBack(COMPSUB, CANDIDATES, NOT)

2 if |COMPSUB| + |CANDIDATES| < C then return

3 if |CANDIDATES| = |NOT| = 0 and |COMPSUB| = C then

4 output COMPSUB, a maximum clique

5 Choose a vertex u ∈ CANDIDATES ∪ NOT

6 For each v ∈ CANDIDATES \ N(u)

7 IntBack(COMPSUB ∪ {v}, CANDIDATES ∩ N(v), NOT ∩

 N(v))

8 CANDIDATES = CANDIDATES \ {v}

9 NOT = NOT ∪ {v}

Algorithm 1: Intelligent backtracking. A minor change to the Bron-Kerbosch algorithm uses the

precomputed maximum clique size to trim the recursion tree. The input graph has typically been

reduced using color preprocessing.

2.4.2.5 Parameterized Enumeration

Given that MCF employs a vertex branching strategy, we investigated whether it

could be modified to enumerate not just one, but all maximum cliques. It turns out

that MCF, also, lends itself to a straightforward modification that results in

enumeration of all maximum cliques. The modification is simply to maintain a

global list of all cliques of the largest size found thus far. Whenever a larger

maximum clique is found, the list is flushed and refreshed to contain only the new

maximum clique. When the search space has been exhausted, the list of maximum

cliques is output.

 We must take special care, however, to note that certain preprocessing rules

used during interleaving are no longer valid. Consider, for example, the removal of

 34

a leaf vertex. The clique analogue is to find a vertex with degree n - 2 and remove its

lone non-neighbor. This rule patently assumes that only a single maximum clique is

desired, because it ignores any clique depending on the discarded vertex. Therefore

this particular preprocessing rule must be omitted once branching has begun.

2.4.2.6 Maximum Clique Covers

If we view MCF as a black box subroutine that can be called repeatedly, it can be

used in a simple greedy algorithm for computing a maximal set of disjoint

maximum cliques. We merely compute a maximum clique, remove it from the

graph, and iterate until the size of a maximum clique decreases. To explore the

advantages of computing such a set, we introduce the following notion:

Definition 1. A maximum clique cover of G = (V, E) is a set V' ⊆ V with the property

that each maximum clique of G contains some vertex in the cover.

 The union of all vertices contained in a maximal set of disjoint maximum

cliques is of course a maximum clique cover (henceforth MCC), because all

maximum cliques must overlap with such a set. This leads to a useful reduction

algorithm. Any vertex not adjacent to at least one member of an MCC cannot be in a

maximum clique, and can thus be removed.

 In practice, we find that applying MCC before the earlier backtracking

algorithms yields only marginal improvement. The concept of MCC does, however,

lead to a much more powerful approach based on individual vertices. Since any

improvement made by MCC is subsumed by the next approach, we do not test MCC

by itself.

2.4.2.7 Essential Vertex Sets

Our investigation of the MCC algorithm revealed that it typically does not reduce

the size of the graph more than the preprocessing rules already incorporated into

MCF. For example, MCF already quickly finds a lower bound on the maximum

clique size and removes any vertex with degree lower than this bound. Upon closer

examination, however, we found that for 74 of 75 graphs that we initially tested for

the conference version of this paper, only one clique was needed in an MCC. That is

to say, one maximum clique covered all other maximum cliques. And in our current

testbed of 100 graphs, in every case a single maximum clique suffices for an MCC. In

fact this coincides closely with our experience, in which we typically see high

overlap among large cliques in the transcriptomic graphs we encounter on a regular

basis. Based on this observation, we shall now refine the concept of MCC. Rather

 35

than covering maximum cliques with cliques, we cover maximum cliques with

individual vertices.

 We define an essential vertex as one that is contained in every maximum

clique. Of course it is possible for a given graph to have no such vertex, even when it

contains many overlapping maximum cliques. But empirical testing of large

transcriptomic graphs shows that an overwhelming number contain numerous

essential vertices. And for purposes of reducing the graph, even one will suffice. An

essential vertex has the potential to be extremely helpful, because it allows us to

remove all its non-neighbors. We employ the following observation: for any

graph G, ω(G) > ω(G/v) if and only if v covers all maximum cliques, where ω(G) is

the maximum clique size of G.

 We define an essential set to be the set of all essential vertices. The Essential

Set (ES) algorithm (Algorithm 2) finds all essential vertices in a graph. It then

reduces the graph by removing, for each essential vertex, all non-neighbors of that

vertex. The ES algorithm can be run in conjunction with any of the backtracking

MCE algorithms, or indeed prior to any algorithm that does MCE by any method,

since its output is a reduced graph that still contains all maximum cliques from the

original graph. As our tests show, the runtime improvement offered by the ES

algorithm can be dramatic.

Algorithm 2: The Essential Set (ES) Algorithm.

Input: A graph G

Output: A reduced graph G’

1 M = MCF(G), where M is one maximum clique

2 For each v ∈ M

3 G’ = G \ v

4 M’ = MCF(G’)

5 if |M’| < |M| then G = N(v)

6 return G’

Algorithm 2: The Essential Set (ES) algorithm.The ES algorithm finds all essential vertices in a

graph and removes their non-neighbors.

2.4.2.8 Implementation

We implemented all algorithms in either C or C++. The code was compiled using the

GCC 4.4.3 compiler on the Ubuntu Linux version 10.04.2 operating system as well as

the GCC 3.3.5 compiler under Debian Linux version 3.1. All timings were conducted

in the latter Debian environment on dedicated nodes of a cluster to ensure no effect

 36

on timings from concurrent processes. Each node had a dual-core Intel Xeon

processor running at 3.20 GHz and 4 GB of main memory.

2.4.2.9 Testing

In the conference version of this paper, we used three different datasets at 25

thresholds each to derive a total of 75 graphs on which to test our algorithmic

improvements. While these graphs certainly sufficed as an initial proof of concept,

two concerns could be raised regarding them. First, one might argue that three

datasets are not a sufficiently large sample size to provide a true sense of the overall

nature of transcriptomic data or an algorithmic improvement's general effectiveness

on such data, the large number of thresholds notwithstanding. And second, since

the three datasets are proprietary and not publicly available, the results were not as

readily reproducible as they might otherwise have been. Obtaining de-identified

versions, while feasible, was an unnecessary obstacle to reproducibility.

 We address such concerns here by creating a new suite of transcriptomic

graphs on which to test our algorithmic improvements. The suite consists of graphs

derived from 25 datasets obtained from the Gene Expression Omnibus (GEO) [66], a

publicly-accessible repository. For each dataset, graphs were created at four

different thresholds, for a total of 100 graphs. The datasets were selected to provide

a reasonably diverse sampling of experimental type, species, and mRNA microarray

chip type. They cover 8 different species and a number of different experimental

conditions such as time series, strain, dose, and patient. Since our graphs are derived

from thresholding correlation values, we excluded from consideration any dataset

with fewer than 12 conditions. Thresholding correlations calculated using so few

conditions can produce unacceptably large rates of false positives and false

negatives. The number of conditions range from a low of 12 to a high of 153. Nine of

the datasets had not been log-transformed, in which case we performed log-

transformation. Four of the datasets contained missing values; in these cases we

used correlation p-values rather than correlations for the threshold. Table 5 lists the

GEO datasets used for testing.

 From the expression data, we first constructed weighted graphs in which

vertices represented probes and edge weights were Pearson correlation coefficients

computed across experimental conditions. We then converted the weighted graphs

into unweighted graphs by retaining only those edges whose weights were at or

above some chosen threshold, t. For each dataset, we chose four values for t. All

size/density values were within the spectrum typically seen in our work with

biological datasets. The smallest graph had 3,828 vertices and 310,380 edges; the

largest had 44,563 vertices and 2,052,228 edges.

 37

Table 5. GEO datasets used for testing MCE.

Dataset Title Organism

GDS3505 Seedling roots response to auxin and ethylene availability Arabidopsis thaliana

GDS3521 Retina response to hypoxia and subsequent reoxygenation:

time course

Mus musculus

GDS3538 Age and diet effect on canine skeletal muscles Canis lupus familiaris

GDS3561 Occupational benzene exposure: peripheral blood

mononuclear cells (HumanRef-8)

Homo sapiens

GDS3579 Fer-1 null mutants Caenorhabditis elegans

GDS3592 Ovarian normal surface epithelia and ovarian cancer

epithelial cells

Homo sapiens

GDS3595 Macrophage response to H1N1 and H5N1 influenza viral

infections

Homo sapiens

GDS3603 Renal cancer response to rapamycin analog CCI-779

treatment:

Homo sapiens

GDS3605 Spared nerve injury model of peripheral neuropathic pain:

dorsal horn of spinal cord

Rattus norvegicus

GDS3610 Nasopharyngeal carcinoma Homo sapiens

GDS3622 Nrf2-deficient lung response to cigarette smoke: dose

response and time course

Mus musculus

GDS3623 Heart regeneration in zebrafish Danio rerio

GDS3639 Male and female fruit flies of various wild-type laboratory

strains

Drosophila melanogaster

GDS3640 Copper effect on liver cell line: dose response and time

course

Homo sapiens

GDS3644 Cerebral palsy: wrist muscles Homo sapiens

GDS3646 Celiac disease: primary leukocytes Homo sapiens

GDS3648 Cardiomyocyte response to various types of fatty acids in

vitro

Rattus norvegicus

GDS3661 Hypertensive heart failure model Rattus norvegicus

GDS3672 Hypertension model: aorta Mus musculus

GDS3690 Atherosclerotic Coronary Artery Disease: circulating

mononuclear cell types

Homo sapiens

GDS3715 Insulin effect on skeletal muscle Homo sapiens

GDS3716 Breast cancer: histologically normal breast epithelium Homo sapiens

GDS3703 Addictive drugs effect on brain striatum: time course Mus musculus

GDS3707 Acute ethanol exposure: time course Drosophila melanogaster

GDS3692 Lean B6.C-D7Mit353 strain: various tissues Mus musculus

 38

 The number of maximum cliques for the graphs in our testbed ranged from 8

to 74486. As seen with our previous testbed, there was no discernible pattern based

on graph size or density. One might ask why there is such wide, unpredictable

variability. It turns out that the number of maximum cliques can be extremely

sensitive to small changes in the graph. Even the modification of a single edge can

have a huge effect. Consider, for example, a graph with a unique maximum clique of

size k, along with a host of disjoint cliques of size k - 1. The removal of just one edge

from what was the largest clique may now result in many maximum cliques of

size k - 1. Edge addition can of course have similar effects. See Figure 10 for an

illustrative example.

Figure 10. Maximum clique sensitivity. The number of maximum cliques cliques in a graph can be

highly subject to perturbations due, for example, to noise. For example, a graph may contain a

single maximum clique C representing a putative network of size k, along with any number of

vertices connected to k - 2 vertices in C. In (a), there is a single maximum clique of size k = 5, with

"many" other vertices (only three are shown) connected to k - 2 = 3 of its nodes. In (b), noise results

in the removal of a single edge, creating many maximum cliques now of size k - 1 = 4.

 For each algorithm on each graph, we conducted timings on a dedicated node

of a cluster to avoid interference from other processes. If the algorithm did not

complete within 24 hours, it was halted and the graph was deemed to have not been

solved. We chose thresholds to spread the runtimes of the graphs out over the five

algorithms we were testing. The largest (smallest in the case of correlation p-value)

threshold was selected so that a majority of the algorithms, if not all, solved the

graph. The smallest (largest in the case of correlation p-value) threshold was selected

so that at least one of the algorithms, but not all, solved the graph.

 On each graph we timed the performance of Basic Backtracking, Intelligent

Backtracking, and Paramaterized MC. We then reduced the graphs using ES and

retested with Intelligent Backtracking and Parameterized MC, in which case the

runtimes include both the reduction and the enumeration step. As expected, Basic

Backtracking was found to be non-competitive. Both Intelligent Backtracking and

 39

Parameterized MC showed a distinct, often dramatic, improvement over Basic

Backtracking. Figure 11 shows the runtimes of each of the five methods on all 100

test graphs. On some of the easier graphs, ones taking less than three minutes to

solve, the overhead of ES actually caused a minor increase in the overall runtime.

But on the more difficult instances its true benefit became apparent, reducing

runtime by an order of magnitude or more. And in all cases where two or fewer

algorithms solved the graph, the algorithm was either ES with Intelligent

Backtracking, ES with Parameterized MC, or both.

Figure 11. Timings on various approaches to MCE on 100 biological graphs. Timings include all

preprocessing, as well as the time to find the maximum clique size, where applicable. Runs were

halted after 24 hours and deemed to have not been solved, as represented by those shown to take

86400 seconds. The graph instances are sorted first in order of runtimes for Basic Backtracking,

then in order of runtimes for Intelligent Backtracking. This is a reasonable way to visualize the

timings, though not perfect, since graphs that are difficult for one method may not be as difficult

for another, hence the subsequent timings are not monotonic.

2.4.2.10 Observations

ES serves as a practical example of an innovative algorithm tailored to handle a

difficult combinatorial problem by exploiting knowledge of the input space. It

succeeds by exploiting properties of the graphs of interest, in this case the

overlapping nature of maximum cliques. More broadly, these experiments

underscore the importance of considering graph types when testing algorithms.

 It may be useful to examine graph size after applying MCC and ES, and

compare to both the size of the original graph and the amount of reduction achieved

 40

by color preprocessing alone. Figures 12 and 13 depict original and reduced graph

sizes for five graphs we originally tested.

 While MCC seems as if it should produce better results, in practice we find it

not to be the case for two reasons. First, the vertices in an MCC may collectively be

connected to a large portion of the rest of the graph, and so very little reduction in

graph size takes place. And second, any reduction in graph size may be redundant

with FPT-style preprocessing rules already in place.

Figure 12. Reduction in graph size for four preprocessing methods. On five representative graphs

from our testbed, each of the four preprocessing methods greatly reduces the graph size.

Figure 13. Zoomed view of reduction in graph size from preprocessing. Zooming in on Figure 12

shows how ES preprocessing results in the smallest reduced graph, often leaving only a small

fraction of the vertices left by other methods.

 41

 It would have probably been fruitless to test and design our algorithms

around random graphs. (Yet practitioners do just that with some regularity.) In fact

it has long been observed that the topology of graphs derived from real

relationships differs drastically from the Erdös-Rényi random graph model

introduced in [67]. Attempts to characterize the properties of real data graphs have

been made, such as the notion of scale-free graphs, in which the degrees of the

vertices follow a power-law distribution [68]. While attempts have been made to

develop the scale-free model into a formal mathematical framework [69], there

remains no generally accepted formal definition. More importantly, the scale-free

model is an inadequate description of real data graphs [70]. We have observed that

constructing a graph so the vertices follow a power law (scale-free) degree

distribution, but where edges are placed randomly otherwise using the vertex

degrees as relative probabilities for edge placement, still results in graphs with

numerous small disjoint maximum cliques. For instance, constructing graphs with

the same degree distribution as each of the 75 biological graphs in our original

testbed resulted in maximum clique sizes no greater than 5 for even the highest

density graphs. Compare this to maximum clique sizes that ranged into hundreds of

vertices in the corresponding biological graphs. Other metrics have been introduced

to attempt to define important properties, such as cluster coefficient and diameter.

Collectively, however, such metrics remain inadequate to model fully the types of

graphs derived from actual biological data. The notions of maximum clique cover

and essential vertices stem from the observation that transcriptomic data graphs

tend to have one very large highly-connected region, and most (very often all) of the

maximum cliques lie in that space. Furthermore, there tends to be a great amount of

overlap between maximum cliques, perhaps as a natural result of gene pleiotropism.

Such overlap is key to the runtime improvement achieved by the ES algorithm.

 42

Chapter 3 Algorithms for Bipartite Graphs

This chapter describes algorithms to find dense subgraphs in bipartite graphs and

their application to biological data.

3.1 Maximal Biclique Enumeration
Most of this section was previously published in [71]. The description and analysis

of the algorithm, along with preliminary performance results, also appears in Yun

Zhang’s dissertation [72]. Yun designed and implemented an algorithm to

enumerate all maximal bicliques in bipartite graphs. My contribution was to

improve the speed of the algorithm’s implementation and to help test its

performance against a recently developed data mining algorithm, LCM-MBC, which

achieves the same result. I also performed additional background literature review

and helped write the paper. I have taken the liberty of making numerous minor

edits for clarity and to make the style and terminology consistent with the rest of

this dissertation. Only those parts of the paper necessary to provide sufficient

context for my contribution are included here. I therefore omit the description and

analysis of the algorithm, which appear in both Yun’s dissertation and the published

paper.

 Integrating and analyzing heterogeneous genome-scale data is a huge

algorithmic challenge for modern systems biology. Bipartite graphs can be useful for

representing relationships across pairs of disparate data types, with the

interpretation of these relationships accomplished through an enumeration of

maximal bicliques. Most previously-known techniques are generally ill-suited to this

foundational task, because they are relatively inefficient and without effective

scaling. In this paper, a powerful new algorithm is described that produces all

maximal bicliques in a bipartite graph. Unlike most previous approaches, the new

method neither places undue restrictions on its input nor inflates the problem size.

Efficiency is achieved through an innovative exploitation of bipartite graph

structure, and through computational reductions that rapidly eliminate non-

maximal candidates from the search space. An iterative selection of vertices for

consideration based on non-decreasing common neighborhood sizes boosts

efficiency and leads to more balanced recursion trees. The new technique is

implemented and compared to previously published approaches from graph theory

and data mining. Formal time and space bounds are derived. Experiments are

performed on both random graphs and graphs constructed from functional

 43

genomics data. It is shown that the new method substantially outperforms the best

previous alternatives.

 The new method is streamlined, efficient, and particularly well-suited to the

study of huge and diverse biological data. A robust implementation has been

incorporated into GeneWeaver, an online tool for integrating and analyzing

functional genomics experiments, available at http://geneweaver.org. The enormous

increase in scalability it provides empowers users to study complex and previously

unassailable gene-set associations between genes and their biological functions in a

hierarchical fashion and on a genome-wide scale. This practical computational

resource is adaptable to almost any applications environment in which bipartite

graphs can be used to model relationships between pairs of heterogeneous entities.

3.1.1 Background

Bicliques have a long history of applications. The enumeration of maximal bicliques

can be traced at least as far back as the seminal work reported in [73]. There the

problem was defined in terms of rectangles, binary relations and concept lattices.

Subsequent progress on concept lattices was surveyed in [74, 75]. Algorithms for

their identification were applied to the analysis of gene co-expression data in [76,

77].

 A variety of biological challenges can be addressed by finding maximal

bicliques in bipartite graphs. Representative applications include biclustering

microarray data [78-80], optimizing phylogenetic tree reconstruction [81],

identifying common gene-set associations [19], integrating diverse functional

genomics data [82], analyzing proteome-transcriptome relationships [83], and

discovering patterns in epidemiological research [84]. Statistical approaches have

been applied to some of these problems, but in many cases a discrete approach is

beneficial or required because of the structure and diversity of the data under study.

 Let us describe a few specific examples. Bicliques have been used in the

analysis of gene expression data to represent subsets of genes and subsets of

conditions, each pair with a high similarity score [78]. Graph-theoretical approaches

have been proposed in this setting to find bicliques in the resultant bipartite graphs

that model genes and conditions with vertices, and co-expression levels with edge

weights [79, 80, 85]. Bicliques have been used in phylogenetics to improve the

accuracy of tree reconstruction [81]. Such a tree denotes evolutionary relationships

among species thought to have a common ancestor. Data with no fewer than k genes

sampled from no fewer than m species are extracted from sequence databases. This

operation is equivalent to finding maximal bicliques with partite set sizes at

least k and m. Bicliques have been used in epidemiological research to identify sets

http://geneweaver.org/

 44

of individuals who share common sets of features. Bipartite graphs can help capture

relationships between organisms and a wide range of factors. Maximal bicliques are

particularly useful in case-control studies involving categorical features such as

genotypes and exposures [84].

 Our work has been largely motivated by the computational demands of

systems like GeneWeaver [82, 86], a web-based software platform for the integration

of functional genomics data. GeneWeaver includes a database containing lists of

genes from diverse sources, along with descriptive metadata associated with these

lists. Through gene homology, the lists can be combined across species such that

genes on the lists are translated to a common reference. This enables the

construction of a bipartite graph, with vertices representing individual genes. A

suite of tools built on the enumeration of maximal bicliques and other bipartite

analyses allows the user to identify groups of genes that are associated with related

biological functions, all without any prior knowledge or assumption about such

group associations. Efficiency and scalability are paramount, because real-time

maximal biclique enumeration is required for web-based user-driven analyses, as

well as for effective computations over the entire data repository.

3.1.1.1 The Maximal Biclique Enumeration Problem

In each of the aforementioned applications involving an integration of multiple sets

of genome-scale data, bipartite graphs can be used to represent relationships across

pairs of heterogeneous data types. An interpretation of such a relationship is

accomplished through an enumeration of maximal bicliques. Let us be precise about

what this means. A bipartite graph is one whose vertices can be partitioned into a

pair of non-empty, disjoint partite sets such that no two vertices within the same

partite set are connected by an edge. Let G denote a bipartite graph, let U and V

denote its two partite sets, and let E denote its edge set. A biclique in such a graph is

a complete bipartite subgraph, that is, a bipartite subgraph containing all

permissible edges. The notion is formalized as follows:

Definition 2. Let denote a bipartite graph. A biclique is a

subgraph of induced by a pair of two disjoint subsets, ⊆ and ⊆ , such that ∈

 ∈ ∈ .

 A maximum biclique is a largest biclique in a graph. Unlike the well-known

maximum clique problem, there are two distinct variants of the maximum biclique

problem: the vertex maximum biclique problem and the edge maximum biclique

problem. The former asks that we find a biclique with the largest number of vertices,

 45

and can be solved in polynomial time [26]. The latter asks that we find a biclique

with the largest number of edges, and is -complete [87]. In biological

applications, the edge maximum biclique is often desirable because it models more

balanced connectivity between the two vertex classes. For example, an edge

maximum biclique may group together numerous related biological processes and a

modest set of their common genes, whereas a vertex maximum biclique may instead

group together only a tiny set of related biological processes with great numbers of

common genes.

 A maximal biclique is one not contained in any larger biclique. Examples of

maximum and maximal bicliques are shown in Figure 14. The enumeration version

of our problem is to find all maximal bicliques in a bipartite graph. In so doing, it

turns out that we actually generate both edge maximum and vertex maximum

bicliques. Thus, we are chiefly concerned with this enumeration problem,

formalized as follows:

Input : A bipartite graph .

Output: All maximal bicliques, or subsets of and of , for which the induced

subgraph is complete, and there are no subsets , or and

 , such that is also complete.

Figure 14. Maximum and maximal bicliques. A bipartite graph G1 has an edge maximum

biclique B1({u1,u2},{v1,v2,v3}) with 5 vertices and 6 edges, and a vertex maximum

biclique B2({u3,u4,u5,u6,u7},{v5}) with 6 vertices and 5 edges. Both B1 and B2 are maximal.

As observed in [88], the maximal biclique enumeration problem cannot be solved in

polynomial time since the number of maximal bicliques may be exponential in the

graph size. Nevertheless, there remains a demand for efficiency, because we often

need exact solutions to large-scale instances in real time. The Maximal Biclique

Enumeration Algorithm (MBEA) that we will define here finds all maximal

 46

bicliques. It exploits structure inherent in bipartite graphs. It employs a branch-and-

bound technique to prune non-maximal candidates from the search tree. Its pruning

is accelerated by directly removing dominated vertices from the candidate set. Our

experimental results demonstrate that the resultant reduction in search space

enables MBEA to scale to the tens of thousands of nodes currently encountered in

analyzing large biological data sets. In addition, we created an improved version,

iMBEA, that selects candidate vertices in the order of common neighborhood size

and that uses an enhanced version of branch pruning.

3.1.1.2 Related Work

With widespread applications such as those just discussed, one would expect a

plethora of algorithms targeting maximal bicliques on bipartite graphs. Most

algorithms that achieve this purpose, however, are either not tailored for bipartite

graphs or not designed specifically for maximal biclique enumerations. Most

existing graph algorithms for solving this problem fall into two main categories: (i)

those designed for bipartite graphs but that either place undue restrictions on the

input or require reduction to other problems, and (ii) those designed for general

graphs and are thus unable to take advantage of bipartite graph structure. See [72]

for a list of these algorithms, their inputs and outputs (with restrictions, if any), and

the methods they use.

3.1.1.3 Algorithms for Bipartite Graphs

Existing algorithms for finding maximal bicliques in bipartite graphs are further

divided into the following three approaches: exhaustive search with restrictions on

outputs, reduction to the clique enumeration problem on general graphs, and

reduction to the frequent itemset mining problem in transaction databases.

 The most intuitive approach entails exhaustively building all subsets of one

partite set, finding their intersections in the other partite set, and checking each for

maximality. Algorithms based on exhaustive search must generally place one or

more restrictions on the problem to reduce its enormous search space. Moreover,

exhaustive search requires storing generated bicliques to determine their

maximality. An iterative algorithm is presented in [81] to build subsets

progressively, from pairs of vertices to collections of larger and larger sizes. It limits

the sizes of both biclique partite sets, yet still requires enormous amounts memory

to store the lists used to generate subgraphs and decide maximality. The algorithm

described in [84] builds bicliques based on set expansion and extension operations.

It employs a hash table that determines maximality to avoid pairwise biclique

comparisons, and a queue to maintain bicliques prioritized by figure-of-merit values

 47

(e.g., p-values). Users can specify constraints on the figure-of-merit values to filter

out bicliques of insufficient interest.

 The second approach relies on graph inflation. As observed in [89], the

enumeration of maximal bicliques in a bipartite graph can be transformed into the

enumeration of maximal cliques in a general graph by adding all possible edges

between vertices within the same partite set, thereby transforming each of the two

disjoint vertex sets into a clique. Intuitively, this approach seems neither practical

nor scalable. The enormous number of edges that may be needed would seem to

result in a concomitant increase in problem difficulty. Given a bipartite graph

 where | | , | | , | | , the number of edges needed to transform

 to a corresponding graph is (

) (

). Thus, this method transforms the

problem of finding maximal bicliques in a bipartite graph with edge density

 to

the problem of finding maximal cliques in a graph with density
 (

) (

)

(

)

.

Note that might be dense even if is sparse. When has two vertex sets of equal

size and no edges (i.e. | | | | , | | , has a density

 ≃ 50%. But as we

shall see in chapter 4, the intuitive notion that adding so many edges results in a

more difficult problem instance does not necessarily hold in practice.

 A third approach comes from the field of data mining. It was observed in [90]

that a transactional database can be represented by a bipartite graph, with a one-to-

one correspondence between frequent closed itemsets and maximal bicliques. A

subset of items is defined as a frequent itemset if it occurs in at least s transactions,

where s is a parameter called the support. On one hand, a frequent itemset and the

set of transactions containing the frequent itemset form a biclique. On the other

hand, the adjacency lists of a bipartite graph can be viewed as a transaction database

by treating each vertex in one partite set as an item and each vertex in the other

partite set as a transaction that contains a subset of items. A biclique can thus be

mapped to a frequent itemset. A maximal biclique corresponds to a frequent closed

itemset, where a frequent itemset I is said to be closed if the set of transactions

containing I do not contain a superset of I. The support of a frequent itemset is the

number of transactions in which the set occurs. Enumerating all maximal bicliques is

equivalent to enumerating all frequent closed itemsets with support at least 1. Figure

15 shows a mapping between these two problems. A correspondence between

maximal bicliques of a general graph and frequent closed itemsets has been

shown [91], leading to the suggestion that FPclose and similar frequent itemset

mining methods [92-96] may be helpful in enumerating maximal bicliques.

Implementations of this approach require a post-processing step to obtain the

 48

transaction set for each frequent closed itemset, as described in [97]. This is because

the published methods output only the frequent itemsets (which correspond to half

bicliques). Although this post-processing step is straightforward enough, it can be

prohibitively time-consuming when the number of maximal bicliques is large.

Moreover, known methods take the support level as an input parameter, and find

only frequent closed itemsets above the given support. (In general, the lower the

support, the longer the algorithms take. A support of 1 is the most difficult, since at

this level all frequent closed itemsets must be found.)

Figure 15. Equivalence between closed itemsets and maximal bicliques. A closed itemset is a set of

items for which no superset of items appear in the same transactions. Each closed itemset in a set

of transactions corresponds to a maximal biclique when the transactions are depicted as a bipartite

graph. The closed itemset {C,D,E} corresponds to the maximal biclique {C,D,E,3,5,6}. Other closed

itemsets/maximal bicliques include {A,E,1,4,7}, {A,E,F,1,7}, {B,C,E,3,4}, {B,D,E,1,3}, {A,B,D,E,F,1} and

several others.

3.1.1.4 Algorithms for General Graphs

Maximal bicliques can also be found with algorithms designed for general graphs.

Such algorithms of course lack any efficiency gains that might be accrued from

utilizing bipartite graph structure. The maximal biclique enumeration problem was

studied from a theoretical viewpoint in [88], where the focus was on graphs of

bounded arboricity. It was proved that all maximal bicliques in a graph of

 49

order n and arboricity a can be enumerated in time. This approach is not

practical for large graphs, however, because it is unrealistic to expect that arboricity

would be limited in practice [90]. A suite of consensus algorithms was presented in

[98] for finding complete bipartite (but not necessarily induced) subgraphs.

Unfortunately, these algorithms need to keep all maximal bicliques in memory. The

Modular Input Consensus Algorithm (MICA), the most efficient among them, has

space complexity and time complexity , where denotes the number of

maximal bicliques. An algorithm (MineLMBC) based on divide-and-conquer was

proposed in [99] to mine large maximal bicliques from general graphs by putting

size constraints on both vertex sets to iteratively prune the search space. The

algorithm reduces the space complexity to and the time complexity to .

The algorithm on dense graphs from the 2nd DIMACS Challenge benchmarks

outperforms MICA when minimum biclique sizes are constrained by certain

thresholds.

 To solve the biclique enumeration problem, restrictions on either inputs or

outputs have been proposed to reduce the search space. These include bounding the

maximum input degree [79], bounding an input’s arboricity [88] and bounding the

minimum biclique size [81, 99] or figure-of-merit [84]. Naturally, no algorithm

relying on these restrictions can solve arbitrary bipartite instances.

3.1.2 Implementation and Testing

We implemented MBEA and iMBEA and compared them to existing

implementations of what should be the two strongest competitors: MICA [98],

currently the fastest graph-theoretical algorithm for finding bicliques in general

graphs, and LCM-MBC [97], currently among the most advanced data mining

algorithms for finding pairs of frequent closed patterns, improving upon LCM [96].

An efficient implementation of MICA is available at

http://genome.cs.iastate.edu/supertree/download/biclique/README.html. Efficient

codes for LCM can be found at http://fimi.ua.ac.be/src/. Version 2 is reported to be

the faster of the two available LCM implementations. The authors of [97] graciously

provided us with their implementation of LCM-MBC, which we used in our

comparisons. MBEA/iMBEA and MICA accept graphs in a simplified DIMACS edge

list format. LCM/LCM-MBC is not DIMACS compatible, however, and required us

to convert an edge list into an equivalent adjacency list for the smaller partite set.

Graphs come in many formats, of course, so we did not charge any time for this

simple conversion.

 All implementations were compiled on and timings performed under the

Ubuntu 12.04 (Precise Pangolin) x64 operating system on a Dell OptiPlex 9010

 50

Minitower with an Intel Core i7-3770 3.4 GHz processor, 16.0 GB DDR3 non-ECC

SDRAM memory at 1600 MHz (4 DIMMs), and a 500 GB 7200 RPM SATA hard

drive. Only sequential implementations of MBEA, MICA and LCM-MBC were

compared, each making use of a single compute core. MBEA and iMBEA were

written in C and compiled with the GNU gcc compiler with O3 optimization turned

on. The MICA and LCM-MBC implementations were also complied with the -O3

flag. The wallclock running times we report include both I/O and computation, but

exclude the time taken to print out the maximal bicliques. They are the average of

ten, five or three runs for graphs that can be finished within one minute, one hour or

three days, respectively. Runs that exceeded three days were killed and omitted

from the averages. We employed standard data reduction techniques to reduce the

size of bipartite graphs for all methods tested. For example, during pre-processing,

two or more vertices with the same neighborhood are merged into a single vertex;

this process is reversed at post-processing.

3.1.2.1 Biological Graphs

We tested the algorithms on biological graphs derived from functional genomics

data. One set of graphs, which was extracted from cerebellum data, was created

using a matrix of correlation p-values for gene expression to phenotypes across

strains of mice in a single population [100]. The matrix consists of 45137 genes

represented by microarray measures of transcript abundance and 782 phenotypes to

which the transcript abundances are correlated. A bipartite graph is obtained by

placing an edge only where the correlation p-value is at or below some preset

threshold. The density of this graph can be varied by adjusting the threshold. The

lower the p-value threshold, the lower the graph density. To test a wide variety of

densities, we created twenty graphs over a range of thresholds, from 0.01 to 0.20,

with a step of 0.01.

 The second set of graphs, which represent phenotype-gene associations, was

created from a correlation matrix between 33 phenotypes and 17539 genes,

calculated over a panel of more than 300 mice. For each threshold, a phenotype-gene

edge is present if the correlation is at or above the threshold. We created graphs with

a range of thresholds, so that the lowest threshold ran in a small fraction of a second

and the largest in tens of minutes.

 In both sets, edge density increases across the range of thresholds, from

roughly 0.2% to about 2.5% in the cerebellum graphs, and from roughly 6.6% to as

high as 37.4% in the pheno-gene graphs. Computational demands increase even

more rapidly, because the number of maximal bicliques tends to grow exponentially

with a linear increase in threshold values.

 51

3.1.2.2 Random Graphs

In addition to biological graphs, we tested iMBEA and LCM-MBC on random

bipartite graphs, using two different random graph models. The first is the classic

Erdo s-Rényi random graph model. Here, we fixed the number of vertices in each

partite set at 300 and varied the density from 0.1 to 0.28. The density range was

selected so that the lowest would run in well under a second and the highest would

require several minutes. We also tested graphs with 400 and 500 vertices, but the

results were similar enough to graphs with 300 vertices that we omit their

discussion.

 For the second random graph model, we modified the Erdo s-Rényi model so

that we could study graphs with both high and low degree variability. The graph

generator takes as input these four parameters: the size m of the larger partite set,

the size n of the smaller partite set, the average vertex degree μ in the smaller partite

set, and the coefficient of variation CV of the degrees in the smaller partite set.

(Recall that CV = σ/μ, where σ is the standard deviation and μ is the mean.) These

specifications were used to assign vertex degrees to the smaller partite set. No edges

were produced within a partite set, of course. The assigned degrees in the smaller

partite set were used to place edges, selecting each endpoint in the larger partite set

with uniform probability. For example, if a vertex in the smaller partite set had been

assigned degree three, then three neighbors for it were uniformly selected from the

larger partite set.

 We created three sets of random graphs with this graph generator. The first

set fixed the number of vertices in one partite set at 10,000 and in the other partite

set at 1000, the edge density at 4.5%, and varied the CV from 0.3 to 1.2. The purpose

of this set was to test the behavior of MBEA versus iMBEA when the CV is varied, it

being our intuition that iMBEA might be better suited to graphs with higher CV. The

second and third sets of graphs were created to test iMBEA versus LCM-MBC when

the relative partite set sizes were varied. In one set, the size of the larger partite set is

fixed at 10,000 and the size of the smaller partite set is varied from 100 to 1000. In the

other set, the size of the smaller partite set is fixed at 500 and the size of the larger

partite set is varied from 5000 to 50,000. In both sets we used an edge density of

3.0%, which provided a wide spectrum of partite set sizes while keeping runtimes

within reason.

3.1.3 Results and Discussion

In this section, we compare runtimes of the various algorithms. MICA turns out not

to be competitive on any of our graphs. We therefore exclude its timings from our

presentation. For instance, iMBEA outperforms MICA by more than three orders of

 52

magnitude on even modest-sized biological graphs. On a somewhat larger graph,

iMBEA finishes in under an hour while MICA runs for over three days without

completion. And on the largest graphs, MICA runs out of memory. Thus, we feel it

is manifest that MICA does not belong in the same class as algorithms such as

MBEA and iMBEA, which are specifically targeted at bipartite graphs. We first

concentrate on MBEA and iMBEA on both biological and random graphs in order to

demonstrate the performance gained by iMBEA’s improved pruning. We then move

on to compare iMBEA and LCM-MBC on two sets of biological graphs and three sets

of random graphs.

3.1.3.1 Comparison of MBEA and iMBEA

In Figure 16 we compare the runtimes of MBEA and iMBEA on the twenty

cerebellum graphs. The curves cross at a p-value threshold of about 0.07. iMBEA is

roughly three times as fast as MBEA at around threshold 0.20. These results confirm

our expectations that the relative simplicity of MBEA wins on sparse graphs

produced at lower thresholds, while the improvement overhead of iMBEA more

than pays for itself once higher thresholds generate graphs that are sufficiently

dense. We also compared MBEA and iMBEA on random bipartite graphs. As shown

in Figure 17, while reasonably close, iMBEA consistently outperforms MBEA. The

sorted candidate vertex selection and enhanced pruning of iMBEA appear still to

produce performance gains. These gains are not as significant, however, as they

were for biological graphs. This may be due at least in part to the rather smoothed

overall topology of random graphs, as opposed to the uneven density and highly

irregular features typically seen in graphs like those in GeneWeaver. To look closer

into this behavior, we varied the CV with which random graphs were built. We

found, as illustrated in Figure 18, that iMBEA outperforms MBEA on random

bipartite graphs over the entire CV range tested. The performance gap is smaller

when the CV is low, probably due to MBEA’s relative simplicity and reduced

overhead. As the CV increases, however, the performance gap between MBEA and

iMBEA widens. These results help explain iMBEA’s superior performance on

biologically-derived graphs, which very often exhibit high variation in vertex

degree. When comparing our algorithms to other methods, we employ only iMBEA

for simplicity. It is possible that on some inputs MBEA would do slightly better.

 53

Figure 16. Performance comparison of MBEA and iMBEA on 20 cerebellum graphs from

GeneWeaver. As the size and density of the graphs increases, the small overhead incurred by

iMBEA’s pruning checks is quickly rewarded with performance gains from the additional

pruning.

Figure 17. Performance of MBEA versus iMBEA on random graphs. Although runtimes are close,

iMBEA consistently outperforms MBEA on random graphs.

 54

Figure 18. Effect of graph degree structure on MBEA and iMBEA. The average delay time of MBEA

and iMBEA on random graphs with the same size and density, but varying degree distribution.

On graphs with low coefficient of variation, the performance gap between MBEA and iMBEA is

narrower than on graphs with high coefficient of variation. This confirms our expectation that the

pruning enhancements of iMBEA have a larger effect on graphs with diverse degree structure.

3.1.3.2 Comparison of iMBEA and LCM-MBC

Figure 19 shows the average runtimes of iMBEA and LCM-MBC on the biological

graphs tested. The top chart shows the phenotype-gene graphs, and the bottom two

charts show two ranges of p-values for the cerebellum graphs. The performance

disparity is most notable when the graphs grow denser. On both the cerebellum and

pheno-gene graphs, the maximal bicliques in the densest graph exceed the 2 GB disk

storage limit of the LCM-MBC implementation, causing the program to halt

prematurely, reporting only a portion of the maximal bicliques. The runtime of these

two graphs would certainly be much higher if the limit were removed. The results of

iMBEA and LCM-MBC on random bipartite graphs are shown in Figure 20. Both

methods scale to graphs with thousands of vertices in each partite set. The iMBEA

algorithm, however, consistently and convincingly outperforms LCM-MBC.

 These figures highlight iMBEA’s advantages in scalability. Methods tend not

to look very different when graphs are sparse. As data quality improves, however,

GeneWeaver and analysis tools of its ilk tend to employ denser graphs in order to

capture deeper latent structure. This is where the design enhancements of iMBEA

really start to become conspicuous and unmistakable.

 55

Figure 19. Performance of iMBEA and LCM-MBC on GeneWeaver graphs. The GeneWeaver

graphs were constructed from two different phenotype-gene similarity matrices. Each edge is

either present or absent based on whether it is at or above (or at or below, when p-values are used)

a given threshold. The graphs in the top chart were created from a correlation matrix of 33

phenotypes and 17539 genes. Graphs in the bottom two charts were created from a matrix of

correlation p-values for gene expression to phenxotypes in a single mouse population, using 782

phenotypes and 45137 genes. As the threshold moves to the right along the x-axis, the graphs

generally grow larger and denser. The pheno-gene graphs range from 6.6% to 34.7% density, while

the cerebellum graphs range from about 0.2% to about 2.5% density.

3.2 The Parabiclique Algorithm
Most of this section was previously published in [101]. I designed and implemented

the algorithm, using the MBEA algorithm from section 3.1 as a subroutine. I have

made numerous minor edits for clarity and to make the prose style and terminology

consistent with the rest of this dissertation.

3.2.1 Overview

We present a novel algorithm for extracting dense, disjoint subgraphs from bipartite

graphs. Our procedure successively removes such subgraphs, known as

parabicliques, by iteratively isolating a maximum biclique and then expanding it in

the presence of missing edges. Hence it relies on our previous work on efficiently

finding solutions to the NP-complete maximum biclique problem. It is also resilient

 56

Figure 20. Performance of iMBEA and LCM-MBC on random bipartite graphs. The Erdo s-Rényi

random bipartite graphs in the top chart have the number of vertices in each partite set fixed at

300, but the density is varied from 0.1 to 0.28, showing how density affects runtime. Similar results

on graphs with each partite set fixed at 400 and 500 vertices are omitted for space considerations.

The graphs in the bottom two charts were generated using the random graph generator described

in the text, with CV of 1.0 and density of 0.03. In the bottom left chart, the size of the larger partite

set is fixed at 10,000 while the size of the smaller partite set is varied. In the bottom right chart, the

converse occurs; the size of the smaller partite set is fixed at 500 while the size of the larger partite

set is varied. In all three cases, the performance disparity between iMBEA and LCM-MBC is

apparent.

to noise in the form of outliers, poorly correlated raw data and so forth. We have

implemented the algorithm and tested it on heterogeneous biological graphs that

represent, among other things, associations between genes and diseases,

phenotypes, and even microbes. This approach to biological data analysis can be

employed as a tool for discovering, confirming and hypothesizing the many roles of

genes, gene products and a wide variety of other biological network agents.

3.2.2 Background

Bipartite graphs provide a natural way to model associations between pairs of

heterogeneous object classes. Maximally connected subgraphs in bipartite graphs,

called bicliques, have proved useful in a huge array of application domains, from

 57

computational biology [102, 103] to wireless networks [104]. Hosts of algorithms

address the related problem of biclustering, or co-clustering, in which the rows and

columns of a matrix are clustered simultaneously [105, 106]. A two-dimensional

matrix can be interpreted as a weighted bipartite graph, and so finding bicliques in

undirected graphs can be viewed as a special case of biclustering in which matrix

entries are binary.

 Here we extend the paraclique notion to the problem of effective bipartite

graph clustering. Informally, a parabiclique is a maximum biclique augmented with

additional vertices that preserve high but not perfect density. As with paraclique,

the main motivations are to decompose highly overlapping edge sets and provide

effective data clustering in the presence of noise.

3.2.3 Edge Maximum and Vertex Maximum Bicliques

A maximal biclique B is one to which no vertex can be added to form a larger

biclique. That is, B is not properly contained in any other biclique. A maximum

biclique is the largest biclique in a graph. For both maximal and maximum bicliques,

we must distinguish between two variants: vertex-maximal (or maximum) and

edge-maximal (or maximum). In the former, the size of a biclique is its number of

vertices; in the latter, the size is the number of edges. Figure 21 illustrates the

difference. More telling from an algorithmic standpoint, the vertex-maximum

biclique in a graph can be found in polynomial time, but the problem of finding the

edge-maximum biclique is NP-complete [87].

Figure 21. The difference between vertex maximum and edge maximum. The bipartite graph in (a)

is shown in (b) with its vertex-maximum biclique highlighted in blue and in (c) with its edge-

maximum biclique highlighted in blue.

 (a) (b) (c)

 58

 In practice, edge-maximal biclique is generally the more interesting of the two

problem variants. It is probably not surprising that it is the NP-complete problem

that is the more useful. Edge-maximal bicliques tend to contain multiple vertices

from each class, and thus have a higher ratio of edges to vertices and more

relationships per vertex. In the domain of biological data analysis, this translates to

more relevant molecular response networks and other sorts of putative functional

modules. Fortunately, an asymptotically efficient algorithm for enumerating all

edge-maximal bicliques, and one that we will use in our implementation of

parabiclique, can be found in section 3.1, as published in [72].

3.2.4 Parabiclique Algorithm

We begin by finding a maximum biclique, B. Every vertex not contained in B is then

evaluated. If a vertex has sufficient connectivity to B, it is added to B. Otherwise it is

discarded. Connectivity to B is generally determined using two parameters, g and h,

one for each vertex class. As with the paraclique algorithm, these are either glom

terms or proportional glom factors. In the former case they denote the number of edges

allowed to be missing; in the latter case they denote the proportion of edges that

must be present. Algorithm 3 depicts g and h as proportional glom factors.

 In order to handle cases for which the maximum biclique contains only a few

representatives from one class, we sometimes include two additional parameters, w

and x, which specify the minimum number of vertices a maximum biclique must

contain from each class. (If the biclique contains fewer vertices, then vertices from

the other class are not considered for inclusion.) Adjusting parameters g, h, w, and x

allows the algorithm to be fine-tuned to bipartite graphs from different application

domains. As just one example, testing gene-geneset graphs from GeneWeaver [86]

revealed that a proportional glom factor of 0.25 was not unreasonably low, because

two genesets having that proportion of common genes are significant. Figure 22

displays an example of a parabiclique.

 For efficiency and scalability, we employ the powerful biclique enumeration

algorithm, MBEA, as described in [72], to find a maximum biclique. Once a starting

maximum biclique has been identified, vertex connectivity computations require at

most quadratic time.

 Preliminary applications have been revealing. In gene-geneset graphs from

GeneWeaver, for example, we have been able to identify novel and potentially

revealing associations between disparate experiments using this algorithm.

 59

Algorithm 3: Parabiclique.

Input: A bipartite graph G with partite sets U and V,

proportional glom factors g and h, and parameters w and x

Output: A parabiclique, P

1 P = B = Maximum biclique in G, with partite sets W ⊆ U and

 X ⊆ V

2 if |W| ≥ w
3 for each v ∈ V \ X

4 if v is connected to at least g|W| vertices in W

5 P = P ∪ {v}

6 if |X| ≥ x
7 for each v ∈ U \W

8 if v is connected to at least g|X| vertices in X

9 P = P ∪ {v};

10 return P;

Algorithm 3: Extracting a single parabiclique from a bipartite graph G. Disjoint parabicliques are

iteratively extracted by setting G = G \ P with each successive call to the algorithm. Iteration

continues until some stopping condition is reached, typically when a predetermined number of

parabicliques is extracted or when |B| falls below some value. Shown is the proportional glom

factor variant. To use glom terms instead, replace g|X| and g|W| with |X| − g and |W| − g

respectively.

Figure 22. A parabiclique. Vertices of the maximum biclique are in grey. Green vertices are

missing just one edge to vertices in the opposing class, thus are included in the parabiclique when

g ≥ 1.

 60

Chapter 4 Algorithms for Multipartite Graphs

A preliminary version of this chapter was presented at the 2nd ACM International

Workshop on Big Data in Life Sciences (BigLS 2015) [107]. Here I have extended both

the theoretical results and applications discussion, including full proofs of the

theoretical results, where proof sketches were presented in the conference paper due

to space limitations.

 Functional genomics, the effort to understand the role of genomic elements in

biological processes, has led to an avalanche of diverse experimental and semantic

information defining associations between genes and various biological concepts

across species and experimental paradigms. Integrating this rapidly expanding

wealth of heterogeneous data, and finding consensus among so many diverse

sources for specific research questions, require highly sophisticated big data

structures and algorithms for harmonization and scalable analysis. In this context,

multipartite graphs can often serve as useful structures for representing questions

about the role of genes in multiple, frequently-occurring disease processes. The main

focus of this chapter is on developing and analyzing an efficient algorithm for dense

subgraph enumeration in such graphs. Theoretical results include showing that the

tight upper bound of 3n/3 on the number of maximal cliques in a graph also applies

to the number of maximal k-cliques in k-partite graphs for all k ≥ 3. Our enumeration

algorithm has time complexity O(3n/3) and therefore realizes the best possible

asymptotic behavior. We also give a new proof that finding a vertex-maximum 3-

clique in a 3-partite graph is NP-hard, and extend it to show NP-hardness for

finding a vertex-maximum k-clique in a k-partite graph. We also describe and test

two problem-reduction heuristics for the algorithm. Empirical testing on both real

and synthetic data demonstrates the algorithm’s performance. We also describe

concrete applications to biological data and scalability issues in the context of big

data analysis.

 The rest of this chapter is organized as follows. Section 4.1 provides

background on clique enumeration and the challenge of data integration in

functional genomics. In section 4.2, we discuss vertex and edge maximum k-partite

cliques and prove that finding a vertex-maximum k-partite clique in a k-partite

graph is NP-hard for all k ≥ 3. In section 4.3, we discuss how biological data is

integrated and mapped onto multipartite graphs. In section 4.4, we provide a

specific example of modeling query results from a GeneWeaver data integration tool

as a multipartite graph, applying our maximal k-partite clique enumeration

algorithm, and interpreting the results. In section 4.5, we give an upper bound on

the number of maximal k-cliques in a k-partite graph for all k ≥ 3, and show that the

 61

bound is asymptotically tight. In section 4.6, we present an algorithm, BK-K, to

enumerate all maximal k-cliques in a k-partite graph. Section 4.7 addresses a specific

type of k-partite graph, a set intersection graph, and shows that maximal k-partite

clique enumeration in such a graph can be accomplished by enumerating all

maximal bicliques in an easily constructed corresponding graph. Section 4.8 briefly

discussed alternate problem formulations that, with minor modifications to the

algorithm, can be solved by BK-K. In section 4.9, we demonstrate the scaling

properties of our algorithm via empirical runtime results on selected random and

real-world graphs. Section 4.10 describes two preprocessing heuristics and gives

empirical results on their performance. And finally, section 4.11 provides a chapter

summary.

4.1 Background
Investigation into the biomolecular basis of normal biological processes in health,

disease, development, environmental exposure and speciation has accelerated

rapidly with the advent of functional genomics. It is now readily feasible to assess

the role of genetic variants, genomic features and gene products across biological

systems and states, resulting in many large sets of data consisting of quantitative or

discrete associations of biomolecular endpoints with various functional,

biobehavioral or disease-related endpoints. The increasing efficiency of data

collection methods across the biological sciences has led to an explosive growth in

the size and heterogeneity of the corresponding data sets made available for

analysis. Moreover, advances in data exposure and discovery have vastly increased

the scale and diversity of potential inputs for analysis.

 It is widely understood that diseases often share certain features with one

another and with normal biological processes as well. In the human immune system,

the allergic response and auto-immune diseases are good examples of this. It is also

well known that co-occurring disorders may be attributable to common underlying

biology. This is particularly the case for behavioral disorders, in which the overlap

among conditions makes differential diagnosis and precise therapeutics highly

challenging. Furthermore, it is also a common practice to study the biological basis

of disease related endpoints in diverse species, where detailed biological

investigation in controlled environments is more readily feasible. Finding consensus

among diverse studies of similar diseases within and across species, and

understanding the conditions under which specific results vary across studies,

requires the large-scale integration, comparison and contrast of greatly diverse and

very often massive data sets. For example, the last decade has seen the development

of platforms capable of simultaneous quantification of DNA methylation at over

 62

450,000 sites, arrays targeting sequences at the exon level with more than 1.2 million

probes, and the emergence of RNA-sequencing technologies producing hundreds of

millions of reads per study. Genetic mapping analyses implicate variants in disease

across the entire genome, and high-content screens examine mutation and drug

effects over large numbers of compounds and molecular endpoints.

 A major challenge is that diversity of data collection methods applied to

particular disease questions vary over time and across investigators, and make for

very sparse data around specific research areas, genomic features and experimental

paradigms. This problem can be addressed through data harmonization techniques.

For example, the alignment of gene products across species through homology,

allows the construction of a large matrix of gene × experiment associations [108].

Another complication is that many of the problems we wish to solve are difficult

even on data sets of moderate size.

The specter of big data naturally makes the challenge all the more formidable.

In [109], we described our work on highly scalable maximum clique solvers for

genuinely large graphs, that is, graphs so large they will not fit within core memory.

Using our algorithms on Darter, a Cray XC30 at Oak Ridge National Laboratory, we

were able to solve the maximum clique problem on graphs built from the California

road network with as many as 1.9 million nodes and 2.7 million edges in 153

seconds.

The multipartite enumeration algorithm presented herein is extensible to a

wide range of problems in big data analytics. Bipartite graphs are widely used to

model data from two types of heterogeneous entities. Adding additional data types

naturally extends the model. As a general framework, one only needs the notion of

association, similarity or its inverse, difference or distance, between each pair of

nodes belonging to different data types. When nodes denote sets containing

elements from the same superset, Jaccard similarity can be employed to estimate

similarity between members of different partite sets. Diverse similarity measures

may be used within the same graph among different partite sets. For instance, two

partite sets consisting of nodes representing genesets from two different disease

terms could use Jaccard as the similarity metric; while a third partite set

representing ontological categories could use enrichment scores.

There is vast untapped potential in relational databases containing extensive

collections of biological and biomedical data, and few algorithmic approaches to

extract and analyze global similarity of related data resources. Relational databases

can be mapped onto multipartite graphs as well, tables being the partite sets, rows

the nodes, and edges a relation between rows in different tables, such as foreign

keys.

 63

In recent work, we demonstrated the use of clique enumeration for

identifying dense networks of co-expressed genes and differentially co-expressed

genes [36] and the use of maximal biclique enumeration to enable a data driven

classification of disease related experiments based only on the intersection of

experimental results provided in the form of genesets [72]. This algorithm has been

implemented in the web service, GeneWeaver [86], which enables users to apply

bipartite graph analysis to collections of genesets selected from a large database.

Here we explore the use of semantic information about the experiments, including

the disease concepts or other descriptive text found in geneset metacontent, to

enable the comparison of experimental results grouped into categories representing

distinct concepts or diseases, and represented as a multipartite graph. To find genes

related to the shared biological mechanisms underlying multiple concepts or

diseases, we enumerate maximal k-partite cliques in this graph.

 While determining whether a graph is bipartite can be done in polynomial

time, in general determining whether a graph is k-partite is NP-complete for all k ≥ 3.

The complexity is inherited from the related problem of graph coloring, in that a

graph is k-partite if and only if it is k-colorable.

 A result of Moon and Moser [39], proven independently by Miller and Muller

[110], is that the maximum number of maximal cliques in a graph with n vertices is

3n/3. A simpler proof of this bound for maximal independent sets can be found in

[111].

 The classic algorithm for enumerating all maximal cliques in a graph is due to

Bron and Kerbosch [37]. The time complexity of this algorithm was shown in [40] to

be O(3n/3), and is thus asymptotically optimal. Much recent work has been devoted

to the enumeration of maximal bicliques [72], partly because the problem is

equivalent to the data mining problem of enumerating closed frequent itemsets in

transactional data [91]. In the present work we give theoretic results on the problem

of enumerating k-partite cliques in k-partite graphs, as well as an asymptotically

optimal algorithm.

 When, even after filtering and preprocessing, the remaining multipartite

graph is too large to fit in core memory, the algorithm presented here would then be

mapped onto a big data solution, using out-of-core techniques such as those we

devised in [64]. Such direct approaches, while more time-consuming from an

implementation standpoint, have numerous advantages in flexibility and

performance over simple general-purpose implementations of MapReduce [112],

such as Hadoop [113].

 64

4.2 Vertex and Edge Maximum
The size of a clique can be measured by either the number of vertices or the number

of edges. The number of edges in an n-clique is

, which is a monotonically

increasing function of when , so both vertex and edge measures give

equivalent results when determining whether one clique is smaller, the same size, or

larger than another clique. But a k-partite clique
 has ∑

 vertices and

∑ ∑

 edges, so the size of one k-partite clique compared to another can

differ depending on whether vertices or edges are used as a measure. Consider, for

instance, and . The former has more vertices, but the latter has more edges.

Figure 23 illustrates the difference in a 3-partite graph. We must therefore

distinguish between edge and vertex measures when considering maximum and

maximal k-partite cliques.

Figure 23. Different results from different measures of k-partite clique size. A 3-partite graph is

shown on the left. Its vertex-maximum 3-partite clique is highlighted in green in the middle

graph, and its edge-maximum 3-partite clique is shown in green in the graph on the right.

 The choice of metric has major algorithmic consequences. A prominent

example is that, in a bipartite graph, we can find a vertex-maximum biclique in

polynomial time [26], while finding an edge-maximum biclique is NP-hard [87]. It is

worth noting that showing NP-hardness for finding the edge-maximum biclique

also resolved, perhaps unknowingly, a conjecture in quadratic programming, stated

in [114], that the problem of minimizing a product of linear functions is NP-hard.

Showing NP-hardness for edge-maximum biclique would actually prove a stronger

version of the conjecture, namely that it is true even when values are binary.

 We now consider the complexity of finding a vertex-maximum k-partite

clique in a k-partite graph. As mentioned above, when k = 2, there is a known

polynomial time algorithm. But when k = 3, the problem becomes NP-hard. Our

proof uses a reduction from 1-in-3 SAT to 3-partite independent set. It is a simplified

version of a reduction given in [115], where it was used to show approximation

results rather than NP-hardness. We provide a new proof of correctness for our

simplified reduction. The original proof relies on approximation ratios, and appears

 65

to contain a flaw. We then extend the proof to show NP-hardness on all k-partite

graphs for k ≥ 3.

Theorem 1: Finding a vertex-maximum k-partite clique in a k-partite graph is NP-

hard for all k ≥ 3.

Proof: We reduce a version of 1-in-3 SAT to 3-partite independent set, and thus to the

complementary 3-partite vertex-maximum clique problem. 1-in-3 SAT is a variant of

3-SAT that asks, given a Boolean formula in 3CNF, if it has a satisfying assignment

such that each clause has exactly one true literal. 1-in-3 SAT was shown to be NP-

hard in [26], even when restricted to a version where no clause contains a negated

literal. Note that we are reducing a decision problem to a decision problem.

 Let be a 1-in-3 SAT instance with no negated literals, where

and each clause . We reduce to an instance G of 3-partite

independent set, where and | | | | | | , such that is

satisfiable if and only if G has an independent set of cardinality 4m. The reduction

proceeds as follows.

 For each clause in , we add nine vertices to G: , ,

 , , , , , , and , and we add the following 12 edges to this nine-

vertex subgraph:

 , , ,

 , , ,

 , , ,

 , , .

 Figure 24 shows the resulting subgraph.

 Next, for each pair of identical literals in different clauses, and , , we

add the following six edges to G:

 () (2 edges)

 () (2 edges)

 , (2 edges)

 Figure 25 shows an example.

 66

Figure 24. A subgraph representing one clause of a 1-in-3 SAT instance. Such a subgraph, Ci, is

produced for each clause of the 1-in-3 SAT instance in the reduction to an instance of 3-partite

independent set. Vertices , and represent literal ; vertices , and represent

literal ; and vertices , and represent literal .

Figure 25. Edges added between two subgraphs, each representing a clause. Six edges are added

between subgraphs for each pair of identical literals in different clauses. In the above example,

and are identical literals appearing in clauses and , prompting the addition of the six red

dashed edges. If a pair of clauses has two literals in common, then 12 edges will be added between

the two respective subgraphs.

 67

 The construction of G is now complete. It has vertices and

edges, where is the number of identical pairs of literals in different clauses. Since

all pairs of clauses must be compared for identical literals, the reduction has time

complexity .

 Observe that all the u vertices are independent, all the v vertices are

independent, and all the c vertices are independent. Now define ∈ ,

 ∈ , ∈ . Then G is a 3-partite graph with partite sets X, Y

and Z, each with 3m vertices.

Claim: is satisfiable if and only if G has an independent set of cardinality 4m.

 Proof: We first prove the reverse (only if) implication. Suppose is satisfiable.

Then given a satisfying assignment A of , we can construct an independent set I of

size 4m in G by doing one of the following for each clause Ci:

1. If is the one literal set to true in A, add vertices , , , and to I.

2. If is the one literal set to true in A, add vertices , , , and to I.

3. If is the one literal set to true in A, add vertices , , , and to I.

 Each group of four added vertices is an independent set. And if two clauses

Ci and Cj do not share at least one identical literal, then of course no pair of vertices

from different groups will be adjacent. Examining all the possible ways that Ci and

Cj can share at least one identical literal shows that no two vertices can be adjacent.

Therefore I is an independent set of cardinality 4m.

 We now prove the forward (if) implication. Suppose G has an independent

set I of cardinality 4m. We show how to construct a satisfying assignment of from

I.

 First, observe that each nine-vertex induced subgraph of G corresponding to a

clause Ci has three maximum independent sets of cardinality 4: ,

 and , so that each subgraph can contribute at

most four vertices to I. Therefore, to achieve the assumed 4m cardinality, I must

include exactly four vertices from each nine-vertex subgraph, exactly one of which is

a c vertex.

 To construct an assignment A for , we set, for each clause Ci, the literal to

true when vertex is included in I. We set the other two literals in Ci to false.

We claim that A is a valid assignment for . Observe that exactly one literal has been

set to true in each clause. Therefore, as long as there are no conflicts (a literal set to

true in one clause but false in another) the assignment is valid.

 68

 Assume A has a conflict between identical literals and where .

Without loss of generality, say and . This means that ∈ and

 . Thus, one of the two vertices in must be in I. But ∈ implies

 ∈ , and is adjacent to both vertices in because and

are identical literals. We have contradicted the assumption that contains two

adjacent vertices. Therefore A does not have any conflicts, and is a valid assignment

for .

 Having reduced 1-in-3 SAT to 3-partite independent set, and thus to 3-partite

vertex-maximum clique, we have shown that finding a vertex-maximum 3-partite

clique in a 3-partite graph is NP-hard. The results readily generalize to the problem

of finding a vertex-maximum k-partite clique in a k-partite graph as follows.

 Given a 3-partite graph G, we can construct an arbitrary k-partite graph, k > 3,

by adding vertices, each connected to all other vertices in the graph. Each new

vertex is the sole member of a new partite set. A k-partite clique in G’ is vertex-

maximum if and only if it consists of a vertex-maximum 3-partite clique in G and all

 added vertices.

 Thus we have shown that finding a vertex-maximum k-partite clique in a k-

partite graph is NP-hard for all k ≥ 3. □

4.3 Exploratory Data Integration Using Multipartite Graphs
An unweighted k-partite graph can be constructed from any k sets of objects where

there is a similarity (or distance) measure between any two objects in different sets.

The application of a threshold to the similarity value between two objects results in

either an edge or a non-edge. As in the set-set graph, the objects themselves can be

sets, in which case we can apply a similarity metric appropriate to set comparisons,

such as Jaccard similarity.

 For example, a set of experiments represented in a gene x experiment

association matrix can be divided into submatrices based on semantic content, e.g.,

relevance to different co-occurring diseases. The resulting adjacency matrix can thus

be represented as a k-partite graph consisting of one partite set containing genes and

one additional partite set for each semantic term describing a set of genesets. See

Figure 26.

 From an application perspective, the k-partite graph representation of

biological associations has a broad potential impact. Virtually any triple store can be

represented as a 3-partite graph, enabling the comparison of triples that feature a

common entity. Thus, many bioinformatics data resources, including data from

model organism databases, MEDLINE abstracts, Electronic Medical Records (EMR),

 69

Figure 26. Construction of a k-partite graph by partitioning one partite set of a bipartite graph

(k=3). Maximal k-partite cliques like the triclique denoted by red edges contain nodes from every

partite set.

chemoinformatics resources, and a host of drug-gene-disease databases including

the Comparative Toxicogenomics Database (CTD) [116] can be analyzed

simultaneously using this approach. To facilitate this, we have mapped many of

these data resources onto one another in the GeneWeaver system. The federation of

closely related biological databases may represent a relatively small data size, but

the strategy can achieve incredible integrative effects at the level of precision

medicine [117, 118].

 EMR mining is another promising application area for k-partite graph

applications in big data analytics. For example, EMR record integration through k-

partite analysis can be used to aggregate individual data from clinical sequencing

and laboratory procedures into much larger resource data sets, thereby allowing

physicians to make use of evidence-based medicine within much smaller

subpopulations, e.g. how does a single patient with a history of alcohol abuse

present within the context of a larger population of patients with similar behavioral

backgrounds, clinical findings, and disease markers. More importantly, however,

this area highlights remaining work in the practical implementation of multipartite

graph analytics within the constraints provided by ever increasing demands on

 70

scalable computing. EMR big data advocates argue the need for boundless

aggregation of all applicable data for use with appropriate analytic algorithms,

requiring that exhaustive measures of k-partite sets must be executed within a

landscape of constantly changing data density and size. One means that big data

provides to address this issue is to encourage partial computation of smaller, fault-

tolerant data sets. Examining how our approach can be applied within scalable

cloud computing environments using the aggregation of smaller, possibly pre-

computed, k-partite sets into larger maximal k-cliques, for example, will allow us to

explore the dynamic management of time sensitive queries.

4.4 Multipartite Data Integration Example
As a sample application we constructed a 3-partite graph. Vertices in one partite set

represent genesets containing the terms alcohol or ethanol in their descriptive

metacontent. (Alcohol is frequently used by researchers in alcoholism, where it is

intended to refer to ethanol or ethyl alcohol.) Vertices in the second partite set

represent genesets associated with stress or anxiety in their descriptive metacontent.

Vertices in the third partite set represent the genes that are the elements in these sets.

Jaccard similarity was calculated between each pair of vertices in different partite

sets representing genesets, then thresholded to place either an edge or non-edge.

Edges between vertices in the partite set representing genes and vertices in the other

partite sets represent a gene’s membership in a geneset.

 Using the k-partite clique enumeration algorithm, genes from genesets related

to alcohol or ethanol and anxiety or stress, were analyzed. The search for the terms

alcohol or ethanol and anxiety or stress yielded a graph with 836 x 264 x 32093

vertices and 394,789 edges. See Figure 27. The graph had 79,998 maximal tricliques,

which were enumerated in a runtime of 81.58 seconds. The maximal tricliques were

then filtered, removing those with only one vertex in a partite set, a process

analogous to requiring a minimum support for itemsets in data mining. The result

was 39,586 filtered maximal tricliques. One triclique contained two genesets related

to alcohol/ethanol and seven sets related to anxiety/stress. The alcohol or ethanol

related sets contain genes annotated to the medical subject heading term alcoholism

(GS128735) and genes encoding protein biomarkers of alcohol abuse (GS216653)

[119]. The stress related sets contained genes annotated to the Gene Ontology terms

“response to stress” (GS193563, GS210507), “cellular response to stress” (GS180482,

GS197275), “regulation of response to stress” (GS190410, GS207306) in mouse and

human, as well as genes experimentally shown to be differentially expressed in the

nucleus accumbens brain region between high responding and low responding lines

of selectively bred rats (GS135132) [120]. The 3-clique contained four gene vertices

 71

labeled Tnf, Il1b, Il1a and Il6. Bioinformatics software tools were used to assess the

putative function of this group of genes. KEGG-Pathway enrichment analysis shows

all four genes within a cytokine-cytokine receptor interaction pathway (Benjamini

FDR adjusted p=6.8 x 10-4). BIOCARTA indicated three are found in signaling

through the IL1R pathway (FDR adjusted p=0.01). These results suggest that the

relationship of alcoholism and stress response is associated with cytokine response,

a neuroimmune mechanism. Many studies have shown a role for this neuroimmune

system in behavior, specifically alcohol and drug addiction [121, 122], as well as

neuropsychiatric disorders such as depression and anxiety [123, 124].

Figure 27. A tripartite graph constructed from GeneWeaver data. Two partite sets contain genesets

returned by queries. The third partite set contains all genes in the returned genesets. This graph

contained 79998 maximal tricliques.

4.5 An Upper Bound on the Number of Maximal k-partite Cliques
As mentioned, the number of maximal cliques in a graph has a tight upper bound of

3n/3. The same tight bound of 3n/3 was shown for the number of maximal bicliques in

a general graph [125], which differs from the upper bound of 2n/2 on the number of

maximal bicliques in a bipartite graph. Here we show that the number of maximal k-

partite cliques in a k-partite graph has an asymptotically tight bound of 3n/3 for all k ≥

3. Our proof uses techniques similar to those used by Moon and Moser.

 First, we make the following observation, which is also key to our

modification of the BK algorithm in section 4.6.

 72

Observation 1. If is a k-partite graph, and is constructed by adding all

intrapartite edges to , then ⊆ is a maximal clique in if and only if ⊆ is a

maximal k-partite clique in , where contains the same vertices in as C in .

That is, any maximal k-partite clique in is a maximal clique in . We use this

observation in the following theorem.

Theorem 2. For all k ≥ 3, the maximum number of maximal k-partite cliques in a k-

partite graph of order n is ~ 3n/3.

Proof: By Observation 1, every maximal k-partite clique in G is a maximal clique in a

graph G’ constructed by adding all possible intrapartite edges. Therefore the upper

bound of 3n/3 for the number of maximal cliques in a graph applies to the number of

k-partite cliques in k-partite graphs.

 To show that the upper bound is asymptotically tight, we construct balanced

3-partite, 4-partite, and 5-partite graphs, each with Ω(3n/3) maximal k-partite cliques.

We then show that the constructions extend to the general k-partite case. For each

fixed k, we construct a balanced k-partite graph G of order n (i.e. each partite set has

n/k vertices) such that the number of maximal k-partite cliques is at least g(n), where

g(n) is a function of k and n based on the specific construction. On the other hand,

based on a classic result of Moon and Moser, a graph of order n can have at most

 maximal cliques. It turns out that g(n) and F(n) grow asymptotically on

the same order as n tends to infinity no matter the value of k. Thus the maximum

number of maximal k-partite cliques in a k-partite graph is asymptotically the same

order as the maximum number of maximal cliques of a general graph with the same

number of vertices. □

Proof: We construct balanced 3-partite, 4-partite, and 5-partite graphs, each with

 maximal k-partite cliques. We then show that the constructions extend to the

general k-partite case.

 3-partite. Let be a tripartite graph where | | | | | |

 . Suppose , and . Let

{()| } | {()| }. That is, is the result of removing

(the edges of) n disjoint triangles | from a balanced complete

tripartite graph.

 Now consider any partition of the sequence . That is, I, J and K

are nonempty subsets of , they are pairwise disjoint and their union is

 . Observer that ⊆ , ⊆ and ⊆ , with | ∈ , | ∈

 73

and | ∈ constituting a maximal triclique of . Put another way,

there is a bijection between the set of partitions of and the set of maximal

tricliques of . Any partition can be obtained by choosing from

without replacement elements to be in , elements to be in , and elements to be

in . Since we require the partite sets to be nonempty, we have

and . For fixed and , the number of possible choices for is

(

) (

). Thus, the total number of partitions of is

 ∑ ∑ (

) (

)

 . Simplifying, we have ∑ (

)

 . We know from Moon and Moser’s 1965 paper that a general graph

with vertices can have a maximum of maximal cliques. Since

 , we conclude that the number of maximal tricliques of is ~ 3n/3.

 4-partite. Next we construct a balanced 4-partite graph with maximal

4-partite cliques.

 Let be a 4-partite graph where | | | | | |

| | . Suppose , , and

 . Define

 and similar notations for , and . Construct by removing

(the edges of) the following disjoint triangles from a balanced complete 4-partite

graph.

 | , among

 | , among

 | , among

 | , among

 We obtain a lower bound for , the number of maximal 4-partite cliques in

 . There are at least ∑ ∑ (

) (

)

 ways to choose

vertices from , from , from and from Thus, the

number of maximal 4-partite-cliques of is at least

 . Observe that has a total of 12n vertices and a general graph with 12n vertices

can have maximal cliques. Since

 , we

have that

 . Therefore the number of maximal 4-partite cliques of is

~ 3n/3.

 5-partite. Next we construct a balanced 5-partite graph with maximal

5-partite cliques.

 74

 Let be a 5-partite graph where | | | | | |

| | | | . Suppose , ,

 and . Define

 and similar notations for , ,

and . Construct by removing (the edges of) the following disjoint triangles

from a balanced complete 5-partite graph.

 | , among , ,

 | , among

 | , among

 | , among

 Observe that has at least

maximal 5-partite cliques. A general graph with 15n vertices can have

maximal cliques. Since

 , the number of maximal 5-

partite cliques of is ~ 3n/3.

 Extension to general k. Now consider a balanced k-partite graph , with

 . There are three possible cases.

 Case 1: mod 3. Suppose each partite set in has n vertices. We group

the partite sets into groups of 3, for a total of groups. Next we remove (the edges

of) n disjoint triangles as we did for the tripartite case. In total we remove

disjoint triangles. The resulting graph has maximal k-

partite cliques. A general graph with vertices can have maximal

cliques. Since

 , the number of maximal k-partite cliques of is ~ 3n/3.

 Case 2: mod 3. Suppose each partite set in has 3n vertices. We first

take four partite sets and remove (the edges of) 4n disjoint triangles among them, as

we did for 4-partite case. Next we group the remaining partite sets into groups of 3,

for a total of groups. We remove (the edges of) 3n disjoint triangles for

each group as we did for the tripartite case. In total we remove (

)

disjoint triangles. The resulting graph has at least

 maximal k-partite cliques. A general graph with vertices can

have maximal cliques. Since

 , the number of maximal k-

partite cliques of is ~ 3n/3.

 Case 3: mod 3. Suppose each partite set has 3n vertices. We first take

five partite sets and remove (the edges of) 5n disjoint triangles among these partite

sets as we did for the 5-partite case. Next we group the remaining partite sets into

groups of 3, for a total of groups. We remove (the edges of) 3n disjoint

 75

triangles for each group as we did for the tripartite case. The resulting graph has

at least

maximal k-partite cliques. A general graph with vertices can have

maximal cliques. Since

 , the number of maximal k-partite cliques of

is ~ 3n/3.

 In summary, for every k ≥ 3, we have shown that there is a balanced k-partite

graph whose number of maximal k-partite cliques is ~ 3n/3, or asymptotically the

same order as the maximum number of maximal cliques of a general graph with the

same number of vertices. □

4.6 A k-partite Clique Enumeration Algorithm
In 1973 Bron and Kerbosch published two recursive backtracking algorithms for

enumerating all maximal cliques in a graph. The first was a basic version; the second

one used a pivot vertex. They recognized that the second one was superior, saving

many recursive calls in practice, especially on graphs containing large numbers of

non-maximal cliques. We shall refer to this second algorithm as the BK algorithm.

 The hallmark of the BK algorithm is the use of three dynamically changing

vertex sets in a recursive backtracking strategy. The set P contains the current clique,

the set R contains vertices that can extend the current clique, and the set X contains

vertices that have already been tried. We refer to any minor variant on this basic

scheme as a Bron-Kerbosch algorithm.

 One major advantage of the BK algorithm is that previously found maximal

cliques do not need to be retained in memory, but can be discarded after they are

output. Only the graph and vertex sets P, R and X need to be stored. Hence a

signature of BK implementations is very low memory overhead above what is

necessary to store the graph. Duplicating the same maximal clique is prevented by

clever use of the set X. Many subsequent modifications to the BK algorithm have

been suggested, most focusing on improving the method for selecting pivot vertices.

For instance, the modification in [40] chooses the pivot not just from P, but from P ∪

X. In [126], the vertex first in a degeneracy ordering is chosen for the pivot, which

can result in faster performance on sparse graphs. A BK-based algorithm to

enumerate all maximal cliques in order of size was given in [127]. Maximal clique

enumeration algorithms using schemes different from that employed by Bron and

Kerbosch have been published. For instance, see [35]. But empirical testing has

shown that BK-based algorithms outperform alternatives [128].

 As far as we are aware, only two algorithms have been published to

enumerate k-partite cliques in k-partite graphs. The CLICKS algorithm in [129]

frames the problem in terms of categorical data clustering, seeking to enumerate all

 76

subspace clusters, where a subspace cluster is effectively a k-partite clique in a k-

partite graph without the requirement that every partite set have at least one node in

the cluster. Such clusters are called full-space clusters when each partite set has at

least one node in the cluster. CLICKS is inspired by Bron-Kerbosch and employs a

similar recursive backtracking strategy. It holds all discovered maximal k-partite

cliques in memory and then post-processes each one. (An obvious improvement

would quite naturally be to post-process and output each maximal clique when it is

discovered, rather than store them all, although this will not materially change the

worst-case runtime of the algorithm.) The algorithm in [130] is less efficient. It calls

as a subroutine an algorithm to enumerate all maximal bicliques. The subroutine

must be called between each pair of partite sets. All subsets of each maximal biclique

must then be considered in turn to determine if they can be extended to k-partite

cliques with k > 2. The authors observe that this algorithm scales poorly, but scaling

is not the focus of their article.

 The modifications we introduce to the BK algorithm so that it enumerates

maximal k-partite cliques in k-partite graphs can be integrated into any maximal

clique enumeration algorithm that uses BK-style recursive backtracking. The

modifications stem from Observation 1 in the previous section, which states that

when adding all possible intrapartite edges to a k-partite graph G to form a graph G’,

then any maximal k-partite clique in G will be a maximal clique in G’. Therefore, any

algorithm that enumerates all maximal cliques in general graphs can be adapted to

enumerate maximal k-partite cliques in a k-partite graph. Applying Observation 1,

we modified the BK algorithm to enumerate all k-partite cliques in a k-partite graph.

The resulting algorithm (Algorithm 4) is called BK-K, for Bron-Kerbosch k-partite.

Theorem 3. The time complexity of the BK-K algorithm is O(3n/3).

Proof: The complexity of the Bron-Kerbosch algorithm was shown to be O(3n/3) in

[39]. Our modification adds a one-time preprocessing step to insert all intrapartite

edges (line 1) and a check that each maximal clique contains one vertex from each

partite set (line 8). The preprocessing step can be performed in O(n2) time. The check

that a maximal clique contains a vertex from each partite set can be performed with

k array accesses by maintaining a size k array storing the number of vertices from

each partite set in R. If a hash table is used, maintaining the array adds a constant

time lookup to each insertion and deletion from R. The overall complexity of BK-K

is therefore () . □

 77

Algorithm 4: BK-K: k-partite Bron-Kerbosch with pivot.

Input: a k-partite graph,
Output: all maximal k-partite cliques in G

1 Add all possible intrapartite edges to
2
3 BK-K(
4 if and are both empty
5 report as a maximal clique
6 choose a pivot vertex in
7 for each vertex in
8 if contains at
 least one vertex from each partite

 set

9 BK-K)
10
11

Algorithm 4. A modification (lines 1 and 8) to the Bron-Kerbosch algorithm results in an algorithm

to enumerate all maximal k-partite cliques in a k-partite graph.

4.7 Multipartite Set Intersection Graphs
We define a k-partite set intersection graph to be a k-partite graph in which vertices in

one partite set represent elements and vertices in all other partite sets represent sets.

Edges between sets signify that the sets have at least one element in common. Edges

between an element and a set signify that the element is a member of the set. Figure

28 shows an example of a 3-partite set intersection graph.

 Our definition of a set intersection graph does not require that elements of all

sets be represented by vertices in the graph, although such may be the case. Such

graphs can be applied to problems in bioinformatics and computational biology

when searching for relationships between sets of entities. For example, in the

GeneWeaver system, groups of genesets may be selected from a database and

represented as a k-partite graph. One may select a group of genesets with some

commonality, such as relation to a particular trait or ontology term, and another

group of genesets with a different commonality, such as association with a

particular disease. One would seek to find subsets of genes in common between the

trait or ontology term and the disease. Such an application could be extended to

other problems in ontology comparison and cross-mapping.

 78

Figure 28. A 3-partite set intersection graph. Vertices and comprise one partite set;

vertices , and comprise a second partite set; and vertices a, b, c, d and e

comprise the third partite set. One partite set always consists of set elements. Interpartite edges

indicate either that sets have at least one element in common or that an element is a member of a

set. Such graphs have no intrapartite edges.

 We have shown that enumerating maximal bicliques in a bipartite graph is

not equivalent to enumerating maximal k-cliques in k-partite graphs. As it turns out,

however, when graphs are restricted to k-partite set intersection graphs,

enumerating maximal k-partite cliques can be accomplished by enumerating

maximal bicliques in an easily constructed corresponding bipartite graph. Given a k-

partite set intersection graph G, the corresponding bipartite graph Gb is G with all

edges between sets removed, so that only edges between sets and elements remain.

Vertices in Gb that represent elements form one partite set; vertices that represent

sets, which in G were partitioned into two or more partite sets, form the second

partite set in Gb.

Theorem 4. A k-partite clique in a k-partite set intersection graph G is maximal if and

only if its corresponding vertices form a maximal biclique in the bipartite graph Gb.

Proof. Let G be a k-partite set intersection graph and Gb the corresponding bipartite

graph. Consider a maximal k-partite clique K in G. Every element vertex in K has an

 79

edge to every set vertex in K. Since only edges between set vertices are removed

when constructing Gb, this is still true when considering K in Gb. Therefore K is a

biclique in Gb. And K is maximal; otherwise K would not be maximal in G. Now

consider a maximal biclique B in Gb. By the same reasoning, B must be a k-partite

clique in G, and must be maximal. □

 Figures 28 and 29 illustrate the mapping of maximal tricliques to maximal

bicliques in a 3-partite set intersection graph. The two partite sets containing

genesets in the 3-partite graph in Figure 28 are combined into on partite set in Figure

29. The same method can be applied regardless of the number of partite sets in

which vertices represent sets. Therefore enumerating maximal k-partite cliques in a

k-partite set intersection graph can be accomplished by enumerating maximal

bicliques in a corresponding bipartite graph, for any k > 2.

 Note that Theorem 4 states that maximal k-partite cliques are actually

maximal bicliques when the non-element partite sets are viewed as a single partite

set. It does not imply the reverse. That is, maximal bicliques do not necessarily map

to maximal k-cliques in such graphs. For instance, vertices {b,c}, b, and c form a

maximal biclique in the graph in Figure 28, but not a maximal triclique in the graph

in Figure 29.

 A corollary to Theorem 4 is that the number of maximal k-partite cliques in an

n by m set intersection graph, where n is the number of vertices in the graph

excluding the element vertices, and m is the number of element vertices, is bounded

by the maximum number bicliques possible in an n by m bipartite graph, ,

where .

 As a result of Theorem 4, the set of all k-partite cliques in a k-partite set

intersection graph are exactly those maximal bicliques in the corresponding bipartite

graph that have at least one vertex from each of the partite sets. Stated another way,

the problem of enumerating all maximal k-cliques in a k-partite set intersection

graph reduces to the problem of enumerating all maximal bicliques in the

corresponding bipartite graph, filtering out those maximal bicliques that do not

contain vertices from all partite sets.

4.8 Alternate Problem Formulations
With minor changes, the BK-K algorithm can be modified to solve several closely

related problems on k-partite graphs, including the following.

1. Find all vertex and/or edge maximum k-partite cliques.

2. Output all cliques with at least (or exactly) k vertices (or edges).

3. Output all cliques with at most k vertices (or edges).

 80

Figure 29. The bipartite graph corresponding to the 3-partite set intersection graph of Figure 28.

Vertices representing sets now comprise a single partite set, regardless of how they were

partitioned in the 3-partite set intersection graph. Edges between sets have been removed. By

Theorem 4, enumerating maximal bicliques in the graph above is will yield all maximal 3-partite

cliques in the graph of Figure 28.

 With a minor modification to input parsing, the algorithm can be adapted to

address the following, more general problem. For purposes of this problem we

define a relaxed k-partite clique to be k-partite clique with any number of additional

intrapartite edges. The problem is related to graph coloring.

 Input: a graph G and a partition of G into k classes

 Output: all relaxed k-cliques in G with at least one

 vertex in each of the k classes

 If we construct graph in the same manner as a k-partite set intersection graph,

but omit the partite set whose vertices represent set elements, then we obtain a k-

partite set-set graph. In a k-partite set-set graph, the problem of enumerating

maximal k-partite cliques does not reduce to the problem of enumerating maximal

bicliques. This is because in the k-partite set intersection graph, all vertices in a k-

clique must have the same set element in common; in other words, all edges in a k-

clique represent the same element. In a k-partite set-set graph, such is not necessarily

the case. Edges in a k-clique can represent different set elements.

 81

4.9 Empirical Scaling Tests
We implemented BK-K in C++ and compiled it with g++ under gcc version 4.6.3,

using the –O3 flag. Compilation and testing were done on the Ubuntu Linux 12.04

(Precise Pangolin) operating system. All reported timings were obtained on a Dell

OptiPlex 9010 Minitower with an Intel Core i7-3770 3.4 GHz processor, 16.0 GB

DDR3 non-ECC SDRAM memory at 1600 MHz (4 DIMMs), and a 500 GHz 7200

RPM SATA hard drive.

 Since BK-K enumerates maximal k-partite cliques in k-partite graphs for any k

≥ 2, we first tested it on bipartite graphs, comparing it to MBEA, one of the fastest

existing algorithms for enumerating maximal bicliques in bipartite graphs [72]. BK-

K is surprisingly competitive, and in fact outperforms MBEA on random graphs

when the edge density is above a certain point.

 The random graphs we tested were all constructed with partite set sizes

selected to yield as close as possible to 4 million potential edges. That is, in each

bipartite graph with partite sets and and edge set , | | | |

million. For instance, the random graph with 2:1 partite set ratio has 2830 and 1415

vertices in its respective partite sets. The number of actual edges varies with density,

of course.

 The density at which BK-K begins to outperform MBEA depends on the ratio

of the partite set sizes. The more unbalanced the sizes, the higher the density at

which BK-K overtakes MBEA. See Figures 30 and 31. MBEA is tailored for real-

world graphs, which tend to be sparse and are often very unbalanced, with partite

set size ratios of 100 or more not being uncommon. So it is not surprising that the

relative performance of MBEA improves with lower density and more unbalanced

partite sets.

 On a series of real-world graphs created from genesets at varying Jaccard

similarities, although competitive, BK-K does not quite catch up to the performance

of MBEA as the Jaccard similarity threshold decreases. See Figure 32. Unfortunately,

unlike with random graphs, it can be difficult to control both density and number of

vertices in graphs created from thresholded similarity metrics. Relaxing the

threshold can always introduce new edges (except in an already complete graph),

but doing so may also introduce new (formerly isolated) vertices. The result can

actually be a net decrease in density. The graphs tested for Figure 32 had densities

between 0.17 and 0.30, increasing in all but on case as the Jaccard similarity

decreased. The largest and highest density graph, created using a Jaccard threshold

of 0.13, had more than 313 million maximal bicliques.

 82

Figure 30. A comparison of MBEA and BK-K on random bipartite graphs with four different

partite set size ratios at varying density. MBEA performs better on very sparse graphs, but is

overtaken by BK-K as the density increases. As the partite set size ratio increases, the density at

which BK-K outperforms MBEA also increases.

Figure 31. The density above which BK-K outperforms MBEA on random bipartite graphs. The

crossover point increases with the ratio of the partite set sizes, on graphs where |U| * |V| ≈

4,000,000.

 83

Figure 32. A comparison of MBEA and BK-K on real-world bipartite graphs. The series of graphs

was created from a pair of partite sets with varying Jaccard similarity. One partite set has 586

genesets from a GeneWeaver “alcohol” query; the other has 384 genesets mapped to brain regions

by the Allen Brain Atlas. The size, density and number of maximal bicliques typically increase as

Jaccard similarity decreases.

To investigate how BK-K scales with the size of multipartite graphs, we next tested a

suite of random graphs with 3 and 4 partite sets. The graphs were balanced, with

partite set sizes from 500 to 7500 vertices and density fixed at 0.01. As shown in

Figure 33, when the density is fixed, the number of partite sets makes little

difference in the runtime. We also created 5-partite graphs to test, but found that at

density of 0.01 the largest 5-partite clique contained only one vertex from each of

four partite sets, and two vertices from the fifth, i.e. the largest 5-partite clique was

1x1x1x1x2. This illustrates how increasing the number of partite sets can quickly

result in extreme data sparseness, an example of the “curse of dimensionality.”

4.10 Preprocessing Heuristics
 In this section we present two preprocessing heuristics and describe the

results of empirical testing of each. The heuristics are interpartite edge removal and

intrapartite edge removal. For the interpartite heuristic, we remove all interpartite

edges whose endpoints, which are in different partite sets, have no common

neighbor in a third partite set. For the intrapartite heuristic, we remove all

intrapartite edges that have no common neighbor in another partite set. When

applied prior to adding all intrapartite edges, the interpartite rule results in the

removal of all vertices that are not part of a 3-clique. Each heuristic has time

 84

Figure 33. Runtime of BK-K on random balanced 3-partite and 4-partite graphs. The density of the

graphs was fixed at 0.01.

complexity . The two rules may seem remarkably similar; however empirical

testing reveals that the interpartite heuristic works well in practice, especially on

graphs with low density, while the intrapartite rule never results in a runtime

reduction, and often increases the runtime significantly. See Figure 34 for the effect

of each heuristic on random tripartite graphs with 2000 vertices in each partite set.

 The interpartite heuristic can be generalized to remove all vertices that are not

part of a (k-1)-clique for k-partite graphs where . Given the resulting

 , however, it is not clear whether such a generalization will

provide any benefit beyond that provided by the basic rule, especially given the

sporadic improvement yielded by the basic heuristic.

4.11 Multipartite Summary
We have described the mapping of functional genomics data onto multipartite

graphs, and presented an algorithm, BK-K, to enumerate all maximal k-partite

cliques in such graphs. We have also discussed an example using graphs derived

from keyword-related genesets. Scaling results for an implementation of BK-K

suggest that its performance is affected much more by density and the number of

maximal k-partite cliques than by the number of partite sets. It even performs well

enough on bipartite graphs to be a serious contender against state-of-the-art

maximal biclique enumeration algorithm. Multipartite problems arise in the analysis

of existing and proposed big data repositories, from which graphs and be

constructed and solved by mapping algorithms such as ours onto custom big data

 85

infrastructures. A first impulse when faced with problems of this magnitude,

especially in the context of big data, is often to seek an approximate or randomized

solution. In contrast, our methods provide the potential for continued scalability

with which exact algorithms can be utilized in real-world big data applications.

Figure 34. The speedup achieved by interpartite and intrapartite preprocessing. Testing was

conducted on random 3-partite graphs with 2000 vertices in each partite at various densities.

Interpartite preprocessing is very effective on graphs with low density, being more effective the

lower the density. It gradually becomes ineffective as density increases; although at no time does

its overhead produce a substantial runtime cost. Conversely, intrapartite preprocessing is never

effective. It results in much longer runtimes at low density, and while its overhead eventually

becomes insubstantial as density increases, at no point does it provide any benefit.

 86

Chapter 5 Recap and Concluding Remarks

In this work we have discussed the development and application of algorithms for

finding dense structure in graphs. The algorithms were applied to a variety of omics

data. The algorithms followed a progression from algorithms on general graphs to

bipartite graphs to multipartite graphs, and included both algorithmic and

theoretical advances, as well as practical implementations and applications. In this

chapter we summarize the main contributions of this dissertation and suggest

directions for future research.

5.1 Summary of Contributions
In chapter 2, we first described analysis on an acute ethanol response dataset.

Contributions included combining gene expression and phenotypes into a single

graph in a novel way by using correlations between recombinant inbred mouse

strains alongside phenotype measurements about each strain. Genes in several

paracliques containing addiction-related phenotypes are candidates for being

members of ethanol-responsive regulatory networks. QTL analysis on this dataset

further identified potential ethanol-responsive locations on the mouse genome. Of

particular interest were QTL’s that appeared in multiple paracliques. Such QTL’s

may indicate signaling hubs between different networks. We next described the

analysis of time series data in the developing mouse cerebellum. We developed

paraclique signatures to apply to such time series data. Each signature split a

paraclique into two anti-correlated parts. Such signatures proved useful for

visualizing the behavior of co-expressed groups of genes over time. We then

developed an algorithm, based on maximal cliques, to return a preset number of

overlapping subgraphs. The algorithm was motivated by a predicted PPI network,

for which domain scientists sought a certain number of overlapping protein

complexes. The algorithm, however, could be used on any undirected graph where a

preset number of overlapping clusters is sought. And finally in chapter 2, we

performed experiments on algorithms to enumerate all maximum cliques,

demonstrating that the MCE algorithm allowed the solution of transcriptomic

graphs that were far beyond the reach of other algorithms.

 In chapter 3, we helped improve an algorithm, iMBEA, to enumerate all

maximal bicliques. Through empirical experiments on random graphs and genomics

graphs, we demonstrated that iMBEA outperforms its closest competitor, namely

LCM-MBC, a data mining algorithm. We then extended the notion behind the

paraclique algorithm from general graphs to bipartite graphs, resulting in the novel

 87

parabiclique algorithm. In developing the new algorithm, we had to address the

difference between a vertex-maximum and edge-maximum biclique. The

parabiclique can use either type as the basis for growing parabicliques.

 In chapter 4, motivated by the problem of heterogeneous data integration in

functional genomics, we investigated maximum and maximal k-cliques in

multipartite graphs. We were able to prove several new theoretical results. By

modifying the Bron-Kerbosch algorithm, we created an algorithm to enumerate all

maximal k-cliques in a k-partite graph, and proved the algorithm was asymptotically

optimal. We also showed several alternate problem formulations that the new

algorithm could be easily modified to solve.

 Although the graph algorithms developed in this dissertation are motivated

by particular problems in computational biology, they are designed to work on an

abstract graph model, and make no assumptions about the source of their input

graphs. Therefore they are widely applicable to data from many diverse fields, as

long as the data can be modeled as sets of entities and relationships.

5.2 Future Work

Here we list some of the questions that this research leaves open and suggest

avenues for future exploration. We proceed in the order the research was presented.

 The gene-phenotype paraclique research in section 2.1 was completed prior to

the development of the parabiclique algorithm of section 3.2. Therefore a potential

research topic is a comparison of the gene-phenotype paracliques to parabicliques

obtained from constructing a bipartite graph with the same data. The cross-

paraclique eQTL’s in section 2.1 also warrant deeper investigation. Such eQTL’s

appearance in multiple paracliques may signify hub genes that function as signaling

connections between multiple biomolecular networks. It should be possible to

validate that a single gene underlies such an eQTL.

 The time series signatures of paracliques in section 2.2, which divide the

positive and negative correlates into two groups, could be applied to other types of

data with a logical ordering of samples, such as dosages, oxygen levels or nutrient

levels.

 The algorithm designed to find overlapping clusters (“complexes”) in section

2.3 is somewhat cumbersome. Further, since its input is the set of all maximal cliques

in a graph, it will quickly run into scaling issues when applied to graphs derived

from some sources besides PPI networks. It also has a tendency to produce many

very large clusters with high overlap. This may be an artifact of either the nature of

PPI data or the use of maximal cliques, but in any event a more efficient, scalable

 88

graph-theoretic algorithm that achieves a similar goal (producing a given number of

overlapping clusters) can probably be designed.

 Our efforts with MCE suggest a number of areas with potential for further

investigation. A formal definition of the class of graphs for which ES achieves

runtime improvements may lead to new theoretical complexity results, perhaps

based upon parameterizing by the amount of maximum clique overlap.

Furthermore, such a formal definition may form the basis of a new model for real

data graphs. We have noted that the number of disjoint maximum cliques that can

be extracted provides an upper bound on the size of an MCC. If we parameterize by

the maximum clique size and the number of maximum cliques, does an FPT

algorithm exist? In addition, formal mathematical results may be achieved on the

sensitivity of the number of maximum cliques to small changes in the graph.

 Note that any MCC forms a hitting set over the set of maximum cliques,

though not necessarily a minimum one. Also, a set D of disjoint maximum cliques,

to which no additional disjoint maximum clique can be added, forms a subset

cover over the set of all maximum cliques. That is, any maximum

clique C D contains at least one v ∈ D. See Figure 35. To the best of our knowledge,

this problem has not previously been studied. All we have found in the literature is

one citation that erroneously reported it to be one of Karp's original NP-complete

problems [131].

Figure 35. The subset cover problem. The decision version of the subset cover problem asks if

there are k or fewer subsets that cover all other subsets. A satisfying solution for k = 4 is the

highlighted subsets.

 For the subset cover problem, we have noted that it is NP-hard by a simple

reduction from hitting set. But in the context of MCE we have subsets all of the same

size. It may be that this alters the complexity of the problem, or that one can achieve

tighter complexity bounds when parameterizing by the subset size. Alternately,

consider the problem of finding the minimum subset cover given a known

 89

minimum hitting set. The complexity of this tangential problem is not at all clear,

although we conjecture it to be NP-complete in and of itself. Lastly, as a practical

matter, exploring whether an algorithm that addresses the memory issues of the

subset enumeration algorithm presented in [35] and improved in [36] may also

prove fruitful. As we have found here, it may well depend at least in part on the

data.

 The iMBEA algorithm in chapter 3 can possibly be improved. Specifically, an

algorithm to enumerate maximal bicliques might be designed that has time

complexity O(2n/2), which would achieve the asymptotically optimal runtime on

bipartite graphs. One could also devise an efficient algorithm to find an edge

maximum biclique without needing to enumerate all maximal bicliques in the

process. One approach would be to prune the search tree based on the largest

biclique found so far, much like current algorithms for finding a maximum clique.

 The parabiclique algorithm could be extended to para-k-clique algorithm.

One drawback of applying such an algorithm, however, may be that as the number

of partite sets increases, so does the dimensionality of the data, and thus the

sparseness of the graph.

 The work on multipartite graphs suggests numerous lines of research that

remain to be addressed, both algorithmic and theoretical. For k-partite graphs, k ≥ 3,

one cannot do better asymptotic performance than what we present here. However,

our results leave open the possibility of a O(2n/2) maximal biclique enumeration

algorithm. Such an algorithm, or at least its runtime, would be specific to bipartite

graphs, since the number of maximal bicliques in general graphs is 3n/3. Also, it may

be possible to do better than our O(3n/3) enumeration algorithm if one seeks only to

find a vertex-maximum or edge-maximum k-partite clique. There also remains the

problem of enumerating maximal k-partite cliques in general graphs. Theoretical

open questions include, for random graphs, both general and k-partite, the

possibility of deriving an expected number of maximal k-partite cliques at a given

graph density. In this work we have only considered finding k-partite cliques in k-

partite graphs, but algorithms could be developed to find k-partite cliques in general

graphs, provided the partition of the graph into partite sets was part of the input.

 Applications in biology and other fields may be found for the alternative

problem formulations given for the BK-K algorithm. Similarly, all the algorithms

and analytic techniques developed in this dissertation, because they operate on

abstract graph models, may find applications beyond the data on which they were

focused in this dissertation. Such is my hope.

 90

References

 91

1. Setubal JC, Meidanis J: Introduction to Computational Molecular Biology.

Boston: PWS Publishing Company; 1997.

2. Balasundaram B, Butenko S: Graph Domination, Coloring and Cliques in

Telecommunications. In: Handbook of Optimization in Telecommunications.

Edited by Resende MC, Pardalos P: Springer US; 2006: 865-890.

3. Gutiérrez Y, Vázquez S, Montoyo A: A graph-Based Approach to WSD

Using Relevant Semantic Trees and N-Cliques Model. In: Computational

Linguistics and Intelligent Text Processing. Edited by Gelbukh A, vol. 7181:

Springer Berlin Heidelberg; 2012: 225-237.

4. Pattillo J, Youssef N, Butenko S: Clique Relaxation Models in Social

Network Analysis. In: Handbook of Optimization in Complex Networks. Edited

by Thai MT, Pardalos PM: Springer New York; 2012: 143-162.

5. Giarratani F, Hewings G, McCann P: Handbook of industry studies and

economic geography. Cheltenham, UK ; Northampton, MA: Edward Elgar;

2013.

6. Xu-Hua Y, Bao S, Bo W, You-Xian S: Mean-field Theory for Some Bus

Transport Networks with Random Overlapping Clique Structure.

Communications in Theoretical Physics 2010, 53(4):688.

7. Mehrotra A, Trick MA: Cliques and clustering: A combinatorial approach.

Oper Res Lett 1998, 22(1):1-12.

8. National Research Council (U.S.). Committee on Mathematical Challenges

from Computational Chemistry.: Mathematical challenges from

theoretical/computational chemistry. Washington, D.C.: National Academy

Press; 1995.

9. Bultinck P: Computational medicinal chemistry for drug discovery. New

York; London: Marcel Dekker ; Momenta; 2004.

10. Stevens K, Kirkpatrick B: Efficiently Solvable Perfect Phylogeny Problems

on Binary and k-State Data with Missing Values. In: Algorithms in

Bioinformatics. Edited by Przytycka T, Sagot M-F, vol. 6833: Springer Berlin

Heidelberg; 2011: 282-297.

11. Flikkema PG, West B: Clique-based randomized multiple access for energy-

efficient wireless ad hoc networks. In: Wireless Communications and

Networking, 2003 WCNC 2003 2003 IEEE: 20-20 March 2003 2003. 977-981

vol.972.

12. Turán P: On an Extremal Problem in Graph Theory. Matematikai és Fizikai

Lapok (in Hungarian) 1941, 48:436-452.

13. Aigner M: Turán's Graph Theorem. The American Mathematical Monthly 1995,

102(9):808-816.

 92

14. West DB: Introduction to graph theory, 2nd edn. Upper Saddle River, N.J.:

Prentice Hall; 2001.

15. Perkins AD, Langston MA: Threshold Selection in Gene Co-Expression

Networks Using Spectral Graph Theory Techniques. BMC Bioinformatics

2009, 10.

16. Zhang B, Horvath S: A general framework for weighted gene co-expression

network analysis. Statistical Applications in Genetics and Molecular Biology 2005,

4(1):article 17.

17. Borate BR, Chesler EJ, Langston MA, Saxton AM, Voy BH: Comparison of

threshold selection methods for microarray gene co-expression matrices.

BMC Research Notes 2009, 2.

18. Palla G, Derényi I, Farkas I, Vicsek T: Uncovering the overlapping

community structure of complex networks in nature and society. Nature

2005, 435(7043):814-818.

19. Chesler EJ, Langston MA: Combinatorial genetic regulatory network

analysis tools for high throughput transcriptomic data. In: Systems Biology

and Regulatory Genomics. Edited by Eskin E, vol. 4023: Springer; 2006: 150–165.

20. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin

NE, Langston MA et al: Complex trait analysis of gene expression uncovers

polygenic and pleiotropic networks that modulate nervous system

function. Nature Genetics 2005, 37(3):233-242.

21. Jay J, Eblen J, Zhang Y, Benson M, Perkins A, Saxton A, Voy B, Chesler E,

Langston M: A systematic comparison of genome-scale clustering

algorithms. BMC Bioinformatics 2012, 13(Suppl 10):S7.

22. McClosky B, Hicks I: Combinatorial algorithms for the maximum k-plex

problem. J Comb Optim 2012, 23(1):29-49.

23. Karp R: Reducibility among combinatorial problems. In: Complexity of

Computer Computations. Edited by Miller R, Thatcher J: Plenum Press; 1972:

85--103.

24. Downey RG, Fellows MR: Parameterized Complexity. New York: Springer;

1999.

25. Hastad J: Clique is Hard to Approximate Within n1-ε. In: Proceedings of the

37th Annual Symposium on Foundations of Computer Science 1996. IEEE

Computer Society.

26. Garey MR, Johnson DS: Computers and Intractability: A Guide to the

Theory of NP-Completeness: W. H. Freeman and Company; 1979.

27. Abu-Khzam FN, Langston MA, Shanbhag P, Symons CT: Scalable parallel

algorithms for FPT problems. Algorithmica 2006, 45(3):269-284.

 93

28. Langston MA, Perkins AD, Saxton AM, Scharff JA, Voy BH: Innovative

Computational Methods for Transcriptomic Data Analysis: A Case Study in

the Use of FPT for Practical Algorithm Design and Implementation. The

Computer Journal 2008, 51:26-38.

29. Niedermeier R: Invitation to Fixed-Parameter Algorithms: Oxford

University Press; 2006.

30. Eblen JD: The Maximum Clique Problem: Algorithms, Applications, and

Implementations. PhD Dissertation. University of Tennessee; 2010.

31. Eblen JD, Gerling IC, Saxton AM, Wu J, Snoddy JR, Langston MA: Graph

Algorithms for Integrated Biological Analysis, with Applications to Type 1

Diabetes Data. In: Clustering Challenges in Biological Networks. Edited by

Chaovalitwongse WA: World Scientific; 2009: 207-222.

32. Baldwin NE, Collins RL, Langston MA, Leuze MR, Symons CT, Voy. BH:

High Performance Computational Tools for Motif Discovery. In:

Proceedings, IEEE International Workshop on High Performance Computational

Biology (HiCOMB): 2004; Santa Fe, New Mexico.

33. Fernández-Baca D: The Perfect Phylogeny Problem. In: Steiner Trees in

Industry. Edited by Cheng X, Du D-Z: Springer; 2002.

34. Bomze I, Budinich M, Pardalos P, Pelillo M: The Maximum Clique Problem.

In: Handbook of Combinatorial Optimization. Edited by Du D-Z, Pardalos PM,

vol. 4: Kluwer Academic Publishers; 1999.

35. Kose F, Weckwerth W, Linke T, Fiehn O: Visualizing plant metabolomic

correlation networks using clique–metabolite matrices. Bioinformatics 2001,

17:1198-1208.

36. Zhang Y, Abu-Khzam FN, Baldwin NE, Chesler EJ, Langston MA, Samatova

NF: Genome-scale computational approaches to memory-intensive

applications in systems biology. In: Proceedings, Supercomputing: 2005; Seattle,

Washington.

37. Bron C, Kerbosch J: Algorithm 457: finding all cliques of an undirected

graph. Proceedings of the ACM 1973, 16(9):575-577.

38. Harley ER: Comparison of Clique-Listing Algorithms. In: International

Conference on Modeling, Simulation and Visualization Methods: 2004 2004; Las

Vegas. CSREA Press: 433-438.

39. Moon JW, Moser. L: On Cliques in Graphs. Israel J Math 1965, 3:23-28.

40. Tomita E, Tanaka A, Takahashi H: The Worst-Case Time Complexity for

Generating all Maximal Cliques and Computational Experiments.

Theoretical Computer Science 2006, 363:28-42.

 94

41. Wolen AR, Phillips CA, Langston MA, Putman AH, Vorster PJ, Bruce NA,

York TP, Williams RW, Miles MF: Genetic dissection of acute ethanol

responsive gene networks in prefrontal cortex: functional and mechanistic

implications. PLoS One 2012, 7(4):e33575.

42. Zhang L, Wang L, Ravindranathan A, Miles MF: A new algorithm for

analysis of oligonucleotide arrays: application to expression profiling in

mouse brain regions. Journal of molecular biology 2002, 317(2):225-235.

43. R. E. Kennedy, R. T. Kerns, X. Kong, K. J. Archer, Miles MF: SScore: an R

package for detecting differential gene expression without gene expression

summaries. Bioinformatics 2006, 22(10):1272-1274.

44. Fisher RA: Statistical methods for research workers. Edinburgh, London,:

Oliver and Boyd; 1925.

45. Kugler KG, Mueller LA, Graber A: MADAM - An open source meta-analysis

toolbox for R and Bioconductor. Source code for biology and medicine 2010, 5:3.

46. Storey JD, Tibshirani R: Statistical significance for genomewide studies.

Proceedings of the National Academy of Sciences of the United States of America

2003, 100(16):9440-9445.

47. Csardi G, Nepusz T: The igraph Software Package for Complex Network

Research. InterJournal 2006, Complex Systems:1695.

48. Chen J, Bardes EE, Aronow BJ, Jegga AG: ToppGene Suite for gene list

enrichment analysis and candidate gene prioritization. Nucleic Acids Res

2009, 37(Web Server issue):W305-311.

49. Williams RW, Gu J, Qi S, Lu L: The Genetic Structure of Recombinant

Inbred Mice: High-Resolution Consensus Maps for Complex Trait

Analysis. Genome Biology 2001, 2:0046.0041-0046.0018.

50. Shifman S, Bell JT, Copley RR, Taylor MS, Williams RW, Mott R, Flint J: A

high-resolution single nucleotide polymorphism genetic map of the mouse

genome. PLoS biology 2006, 4(12):e395.

51. Ha T, Swanson D, Larouche M, Glenn R, Weeden D, Zhang P, Hamre K,

Langston M, Phillips C, Song M et al: CbGRiTS: Cerebellar gene regulation

in time and space. Developmental Biology 2015, 397(1):18-30.

52. Shumway RH, Stoffer DS: Time Series Analysis and Its Applications

(Springer Texts in Statistics), 3 edn: Springer-Verlag New York, Inc.; 2011.

53. Voy BH, Scharff JA, Perkins AD, Saxton AM, Borate B, Chesler EJ, Branstetter

LK, Langston MA: Extracting gene networks for low dose radiation using

graph theoretical algorithms. PLoS Computational Biology 2006, 2(7):e89.

 95

54. Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis

of large gene lists using DAVID Bioinformatics Resources. Nature Protocols

2009, 4(1):44-57.

55. Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools:

paths toward the comprehensive functional analysis of large gene lists.

Nucleic Acids Research 2009, 37(1):1-13.

56. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,

Dolinski K, Dwight SS, Eppig JT et al: Gene ontology: tool for the unification

of biology. Nature Genetics 2000, 25:25–29.

57. Schoenrock A, Samanfar B, Pitre S, Hooshyar M, Jin K, Phillips CA, Wang H,

Phanse S, Omidi K, Gui Y et al: Efficient prediction of human protein-

protein interactions at a global scale. BMC Bioinformatics 2014, 15(1):383.

58. Khan SH, Ahmad F, Ahmad N, Flynn DC, Kumar R: Protein-protein

interactions: principles, techniques, and their potential role in new drug

development. Journal of biomolecular structure & dynamics 2011, 28(6):929-938.

59. Nibbe RK, Chowdhury SA, Koyuturk M, Ewing R, Chance MR: Protein-

protein interaction networks and subnetworks in the biology of disease.

Wiley interdisciplinary reviews Systems biology and medicine 2011, 3(3):357-367.

60. Eblen JD, Phillips CA, Rogers GL, Langston MA: The maximum clique

enumeration problem: algorithms, applications, and implementations. BMC

Bioinformatics 2012, 13 Suppl 10:S5.

61. Baldwin NE, Chesler EJ, Kirov S, Langston MA, Snoddy JR, Williams RW,

Zhang B: Computational, integrative and comparative methods for the

elucidation of genetic co-expression networks. Journal of Biomedicine and

Biotechnology 2005, 2:172-180.

62. Rota Bulò S, Torsello A, Pelillo M: A game–theoretic approach to partial

clique enumeration. Image Vision Comput 2009, 27(7):911-922.

63. Fernau H: On Parameterized Enumeration. In: Computing and Combinatorics.

Edited by Ibarra O, Zhang L, vol. 2387: Springer Berlin Heidelberg; 2002: 564-

573.

64. Rogers GL, Perkins AD, Phillips CA, Eblen JD, Abu-Khzam FN, Langston

MA: Using out-of-core techniques to produce exact solutions to the

maximum clique problem on extremely large graphs. In: Proceedings,

ACS/IEEE International Conference on Computer Systems and Applications: 2009;

Rabat, Morocco. 374-381.

65. Tomita E, Kameda T: An Efficient Branch-and-bound Algorithm for Finding

a Maximum Clique with Computational Experiments. J Glob Optim 2007,

37(1):95-111.

 96

66. Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene

expression and hybridization array data repository. Nucleic Acids Res 2002,

30(1):207-210.

67. Erdös P, Rényi A: On the evolution of random graphs. Publication of the

Mathematical Institute of the Hungarian Academy of Sciences 1960, 5:17-61.

68. Barabási AL, Albert R: Emergence of scaling in random networks. Science

1999, 286:509-512.

69. Li L, Alderson D, Doyle JC, Willinger W: Towards a Theory of Scale Free

Graphs: Definition, Properties, and Implications. Internet Mathematics 2005,

2(4):431-523.

70. Keller EF: Revisiting "scale-free" networks. BioEssays : news and reviews in

molecular, cellular and developmental biology 2005, 27(10):1060-1068.

71. Zhang Y: Scalable Graph Algorithms with Applications in Genetics.

University of Tennessee; 2008.

72. Zhang Y, Phillips CA, Rogers GL, Baker EJ, Chesler EJ, Langston MA: On

finding bicliques in bipartite graphs: a novel algorithm and its application

to the integration of diverse biological data types. BMC Bioinformatics 2014,

15(1):110.

73. Malgrange Y: Recherche des sous-matrices premières d’une matrice à

coefficients binaires. Applications à certains problèmes de graphe. In:

Deuxième Congrès de l’AFCALTI: 1962; Paris. Gauthier-Villars.

74. Berry A, Bordat J-P, Sigayret A: A local approach to concept generation. Ann

Math Artif Intell 2007, 49(1-4):117-136.

75. Kuznetsov SO, Obiedkov S: Comparing Performance of Algorithms for

Generating Concept Lattices. Journal of Experimental and Theoretical Artificial

Intelligence 2002, 14:189-216.

76. Kaytoue-Uberall M, Duplessis S, Napoli A: Using Formal Concept Analysis

for the Extraction of Groups of Co-expressed Genes. In: Modelling,

Computation and Optimization in Information Systems and Management Sciences.

Edited by Le Thi H, Bouvry P, Pham Dinh T, vol. 14: Springer Berlin

Heidelberg; 2008: 439-449.

77. Kaytoue M, Kuznetsov SO, Napoli A, Duplessis S: Mining gene expression

data with pattern structures in formal concept analysis. Journal of Information

Sciences: Special Issue on Information Engineering Applications Based on Lattices

2011, 181(10):1989-2001.

78. Cheng Y, Church GM: Biclustering of expression data. In: Proceedings,

International Conference on Intelligent Systems for Molecular Biology: 2000. 93-103.

 97

79. Tanay A, Sharan R, Shamir R: Discovering Statistically Significant

Biclusters in Gene Expression Data. Bioinformatics 2002, 18:136-144.

80. Wang H, Wang W, Yang J, Yu PS: Clustering by pattern similarity in large

data sets. In: Proceedings of the 2002 ACM SIGMOD international conference on

Management of data; Madison, Wisconsin. 564737: ACM 2002: 394-405.

81. Sanderson MJ, Driskell AC, Ree RH, Eulenstein O, Langley S: Obtaining

maximal concatenated phylogenetic data sets from large sequence

databases. Mol Biol Evol 2003, 20(7):1036-1042.

82. Baker EJ, Jay JJ, Philip VM, Zhang Y, Li Z, Kirova R, Langston MA, Chesler

EJ: Ontological Discovery Environment: a system for integrating gene-

phenotype associations. Genomics 2009, 94(6):377-387.

83. Kirova R, Langston MA, Peng X, Perkins AD, Chesler EJ: A systems genetic

analysis of chronic fatigue syndrome: combinatorial data integration from

SNPs to differential diagnosis of disease. In: Methods of Micorarray Data

Analysis VI. Edited by McConnell P, Lim S, Cuticchia AJ. Scotts Valley,

California: CreateSpace Publishing; 2009: 81-98.

84. Mushlin RA, Kershenbaum A, Gallagher ST, Rebbeck TR: A graph-

theoretical approach for pattern discovery in epidemiological research. IBM

Systems Journal 2007, 46(1):135-149.

85. Liu J, Wang W: OP-Cluster: Clustering by Tendency in High Dimensional

Space. In: Proceedings of the Third IEEE International Conference on Data Mining.

952138: IEEE Computer Society 2003: 187.

86. Baker EJ, Jay JJ, Bubier JA, Langston MA, Chesler EJ: GeneWeaver: a web-

based system for integrative functional genomics. Nucleic Acids Res 2012,

40(Database issue):D1067-1076.

87. Peeters R: The maximum edge biclique problem is NP-complete. Discrete

Applied Mathematics 2003, 131(3):651-654.

88. Eppstein D: Arboricity and bipartite subgraph listing algorithms. Inf Process

Lett 1994, 51(4):207-211.

89. Makino K, Uno T: New Algorithms for Enumerating All Maximal Cliques.

In: Algorithm Theory - SWAT 2004. Edited by Hagerup T, Katajainen J, vol.

3111: Springer Berlin Heidelberg; 2004: 260-272.

90. Zaki MJ, Ogihara M: Theoretical foundations of association rules In: 3rd

ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge

Discovery: 1998; Seattle, Washington.

91. Li J, Li H, Soh D, Wong L: A Correspondence Between Maximal Complete

Bipartite Subgraphs and Closed Patterns. In: Knowledge Discovery in

 98

Databases: PKDD 2005. Edited by Jorge A, Torgo L, Brazdil P, Camacho R,

Gama J, vol. 3721: Springer Berlin Heidelberg; 2005: 146-156.

92. Zaki MJ, Hsiao C-j: CHARM: an efficient algorithm for closed itemset

mining. In: Proceedings of the 2002 SIAM international conference on data mining:

2002; Arlington, VA. 457--473.

93. Wang J, Han J, Pei J: CLOSET+: searching for the best strategies for mining

frequent closed itemsets. In: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining; Washington,

D.C. 956779: ACM 2003: 236-245.

94. Grahne G, Zhu J: Efficiently using prefix-trees in mining frequent itemsets.

In: IEEE Workshop on Frequent Itemset Mining Implementations: 2003; Melbourne,

FL.

95. Grahne G, Zhu J: Reducing the main memory consumptions of FPmax* and

FPclose. In: IEEE Workshop on Frequent Itemset Mining Implementations: 2004;

Brighton, UK.

96. Uno T, Kiyomi M, Arimura H: LCM ver.2: Efficient mining algorithms for

frequent/closed/maximal itemsets. In: IEEE Workshop on Frequent Itemset

Mining Implementations: 2004; Brighton, UK.

97. Li J, Liu G, Li H, Wong L: Maximal Biclique Subgraphs and Closed Pattern

Pairs of the Adjacency Matrix: A One-to-One Correspondence and Mining

Algorithms. IEEE Trans on Knowl and Data Eng 2007, 19(12):1625-1637.

98. Alexe G, Alexe S, Crama Y, Foldes S, Hammer PL, Simeone B: Consensus

algorithms for the generation of all maximal bicliques. Discrete Appl Math

2004, 145(1):11-21.

99. Liu G, Sim K, Li J: Efficient mining of large maximal bicliques. In:

Proceedings of the 8th international conference on Data Warehousing and Knowledge

Discovery; Krakow, Poland. Springer-Verlag 2006: 437-448.

100. Chesler EJ, Wang J, Lu L, Qu Y, Manly KF, Williams RW: Genetic Correlates

of Gene Expression in Recombinant Inbred Strains: a Relational Model

System to Explore Neurobehavioral Phenotypes. Neuroinformatics 2003,

1(4):343-357.

101. Phillips CA, Jay JJ, Baker EJ, Chesler EJ, Langston MA: On bipartite graph

decomposition in the presence of noise, with applications to biological data

clustering. In: 11th Cologne-Twente Workshop on Graphs and Combinatorial

Optimization: 2012; Munich, Germany. 215-219.

102. Pati A, Vasquez-Robinet C, Heath LS, Grene R, Murali TM: XcisClique:

analysis of regulatory bicliques. BMC Bioinformatics 2006, 7:218.

 99

103. Schweiger R, Linial M, Linial N: Generative probabilistic models for

protein-protein interaction networks--the biclique perspective.

Bioinformatics 2011, 27(13):i142-148.

104. Fan Z-J, Liao M-X, He X-X, Hu X-H, Zhou X: Efficient algorithm for extreme

maximal biclique mining in cognitive frequency decision making. In:

Communication Software and Networks (ICCSN), 2011 IEEE 3rd International

Conference on: 27-29 May 2011 2011. 25-30.

105. Madeira SC, Oliveira AL: Biclustering algorithms for biological data

analysis: a survey. IEEE/ACM Transactions on Computational Biology and

Bioinformatics 2004, 1:24-45.

106. Tanay A, Sharan R, Shamir R: Biclustering Algorithms: A Survey. In:

Handbook of Bioinformatics. 2004.

107. Phillips CA, Wang K, Bubier J, Baker EJ, Chesler EJ, Langston MA: Scalable

multipartite subgraph enumeration for integrative analysis of

heterogeneous experimental functional genomics data. In: ACM International

Workshop on Big Data in Life Sciences: 2015.

108. Jay JJ: Cross Species Integration of Functional Genomics Experiments.

International Review of Neurobiology 2012, 104:1-24.

109. Hagan RD, Phillips CA, Wang K, Rogers GL, Langston MA: Toward an

efficient, highly scalable maximum clique solver for massive graphs. In:

IEEE International Conference on Big Data: 27-30 Oct. 2014 2014. 41-45.

110. Miller RE, Muller DE: A problem of maximum consistent subsets. IBM

Research Report RC-240, Watson Research Center, Yorktown Heights, NY 1960.

111. Wood D: On the Number of Maximal Independent Sets in a Graph. Discrete

Mathematics & Theoretical Computer Science 2011, 13:17-20.

112. Dean J, Ghemawat S: MapReduce: simplified data processing on large

clusters. Commun ACM 2008, 51(1):107-113.

113. White T: Hadoop: The Definitive Guide: O'Reilly Media, Inc.; 2009.

114. Pardalos P, Vavasis S: Quadratic programming with one negative

eigenvalue is NP-hard. J Glob Optim 1991, 1(1):15-22.

115. Clementi AF, Crescenzi P, Rossi G: On the Complexity of Approximating

Colored-Graph Problems Extended Abstract. In: Computing and

Combinatorics. Edited by Asano T, Imai H, Lee DT, Nakano S-i, Tokuyama T,

vol. 1627: Springer Berlin Heidelberg; 1999: 281-290.

116. Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D,

King BL, Wiegers TC, Mattingly CJ: The Comparative Toxicogenomics

Database's 10th year anniversary: update 2015. Nucleic Acids Res 2015,

43(Database issue):D914-920.

 100

117. Castro VM, Minnier J, Murphy SN, Kohane I, Churchill SE, Gainer V, Cai T,

Hoffnagle AG, Dai Y, Block S et al: Validation of Electronic Health Record

Phenotyping of Bipolar Disorder Cases and Controls. American Journal of

Psychiatry 2015, 172(4).

118. Potash JB: Electronic Medical Records: Fast Track to Big Data in Bipolar

Disorder. The American Journal of Psychiatry 2015.

119. Torrente MP, Freeman WM, Vrana KE: Protein biomarkers of alcohol abuse.

Expert Review of Proteomics 2012, 9(4):425-436.

120. Clinton SM, Stead JDH, Miller S, Watson SJ, Akil H: Developmental

underpinnings of differences in rodent novelty-seeking an emotional

reactivity. The European Journal of Neuroscience 2011, 34(6):994-1005.

121. Cui C, Shurtleff D, Harris RA: Neuroimmune Mechanisms of Alcohol and

Drug Addiction. International Review of Neurobiology 2014, 118:1-12.

122. Mayfield J, Ferguson L, Harris RA: Neuroimmune Signaling: A Key

Component of Alcohol Abuse. Current opinion in neurobiology 2013, 23(4):513-

520.

123. Jones KA, Thomsen C: The Role of the Innate Immune System in

Psychiatric Disorders. Molecular and Cellular Neuroscience 2013, 53:52-62.

124. Miller AH, Haroon E, Raison CL, Felger JC: Cytokine Targets in the Brain:

Impact on Neurotransmitters and Neurocircuits. Depression and anxiety 2013,

30(4):297-306.

125. Gaspers S, Kratsch D, Liedloff M: On Independent Sets and Bicliques in

Graphs. Algorithmica 2012, 62(3-4):637-658.

126. Eppstein D, Löffler M, Strash D: Listing All Maximal Cliques in Sparse

Graphs in Near-Optimal Time. In: Algorithms and Computation. Edited by

Cheong O, Chwa K-Y, Park K, vol. 6506: Springer Berlin Heidelberg; 2010:

403-414.

127. Zhang Y, Abu-Khzam FN, Baldwin NE, Chesler EJ, Langston MA, Samatova

NF: Genome-Scale Computational Approaches to Memory-Intensive

Applications in Systems Biology. In: Supercomputing, 2005 Proceedings of the

ACM/IEEE SC 2005 Conference: 12-18 Nov. 2005 2005. 12-12.

128. Abu-Khzam FN, Baldwin NE, Langston MA, Samatova NF: On the Relative

Efficiency of Maximal Clique Enumeration Algorithms, with Application

to High-Throughput Computational Biology. In: Proceedings, International

Conference on Research Trends in Science and Technology: 2005; Beirut, Lebanon.

129. Zaki MJ, Peters M, Assent I, Seidl T: Clicks: An effective algorithm for

mining subspace clusters in categorical datasets. Data & Knowledge

Engineering 2007, 60(1):51-70.

 101

130. Liu Q, Chen Y-PP, Li J: k-Partite cliques of protein interactions: A novel

subgraph topology for functional coherence analysis on PPI networks.

Journal of Theoretical Biology 2014, 340(0):146-154.

131. Malouf R: Maximal Consistent Subsets. Comput Linguist 2007, 33(2):153-160.

 102

Vita

Charles Phillips was born in Columbia, Missouri. After graduating from Rock

Bridge High School, he attended the University of Missouri for two years, majoring

first in Physics and then in Computer Science. He left school to pursue a career in

restaurant management, working his way up to General Manager at Domino’s

Pizza. After working in various capacities at Godfather’s Pizza and Papa John’s

Pizza, he returned to school. He earned an Associate of Applied Science degree in

Computer Information Systems from Moberly Area Community College in 2003 and

went on to earn a Bachelor of Science with Distinction degree in Computer Science

from Columbia College of Missouri in 2005. He is currently a PhD candidate at the

University of Tennessee. During his graduate studies he worked as a research

assistant in the Biosciences Division at Oak Ridge National Laboratory. While at the

University of Tennessee he has received the Chancellor’s Citation for Extraordinary

Professional Promise and was named the ACM/IEEE Computer Science Teaching

Assistant of the Year. He is currently studying under the direction of Dr. Michael A.

Langston.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2015

	Multipartite Graph Algorithms for the Analysis of Heterogeneous Data
	Charles Alexander Phillips
	Recommended Citation

	Guide to the Preparation of

