404 research outputs found

    A Review of Near-Collision Driver Behavior Models

    Get PDF
    Objective: This article provides a review of recent models of driver behavior in on-road collision situations. Background: In efforts to improve traffic safety, computer simulation of accident situations holds promise as a valuable tool, for both academia and industry. However, to ensure the validity of simulations, models are needed that accurately capture near-crash driver behavior, as observed in real traffic or driving experiments.<p> Method: Scientific articles were identified by a systematic approach, including extensive database searches. Criteria for inclusion were defined and applied, including the requirement that models should have been previously applied to simulate on-road collision avoidance behavior. Several selected models were implemented and tested in selected scenarios.<p> Results: The reviewed articles were grouped according to a rough taxonomy based on main emphasis, namely avoidance by braking, avoidance by steering, avoidance by a combination of braking and steering, effects of driver states and characteristics on avoidance, and simulation platforms.<p> Conclusion: A large number of near-collision driver behavior models have been proposed. Validation using human driving data has often been limited, but exceptions exist. The research field appears fragmented, but simulation-based comparison indicates that there may be more similarity between models than what is apparent from the model equations. Further comparison of models is recommended.<p> Application: This review provides traffic safety researchers with an overview of the field of driver models for collision situations. Specifically, researchers aiming to develop simulations of on-road collision accident situations can use this review to find suitable starting points for their work

    The Application of Driver Models in the Safety Assessment of Autonomous Vehicles: A Survey

    Full text link
    Driver models play a vital role in developing and verifying autonomous vehicles (AVs). Previously, they are mainly applied in traffic flow simulation to model realistic driver behavior. With the development of AVs, driver models attract much attention again due to their potential contributions to AV certification. The simulation-based testing method is considered an effective measure to accelerate AV testing due to its safe and efficient characteristics. Nonetheless, realistic driver models are prerequisites for valid simulation results. Additionally, an AV is assumed to be at least as safe as a careful and competent driver. Therefore, driver models are inevitable for AV safety assessment. However, no comparison or discussion of driver models is available regarding their utility to AVs in the last five years despite their necessities in the release of AVs. This motivates us to present a comprehensive survey of driver models in the paper and compare their applicability. Requirements for driver models in terms of their application to AV safety assessment are discussed. A summary of driver models for simulation-based testing and AV certification is provided. Evaluation metrics are defined to compare their strength and weakness. Finally, an architecture for a careful and competent driver model is proposed. Challenges and future work are elaborated. This study gives related researchers especially regulators an overview and helps them to define appropriate driver models for AVs

    Microsimulation models incorporating both demand and supply dynamics

    Get PDF
    There has been rapid growth in interest in real-time transport strategies over the last decade, ranging from automated highway systems and responsive traffic signal control to incident management and driver information systems. The complexity of these strategies, in terms of the spatial and temporal interactions within the transport system, has led to a parallel growth in the application of traffic microsimulation models for the evaluation and design of such measures, as a remedy to the limitations faced by conventional static, macroscopic approaches. However, while this naturally addresses the immediate impacts of the measure, a difficulty that remains is the question of how the secondary impacts, specifically the effect on route and departure time choice of subsequent trips, may be handled in a consistent manner within a microsimulation framework. The paper describes a modelling approach to road network traffic, in which the emphasis is on the integrated microsimulation of individual trip-makers’ decisions and individual vehicle movements across the network. To achieve this it represents directly individual drivers’ choices and experiences as they evolve from day-to-day, combined with a detailed within-day traffic simulation model of the space–time trajectories of individual vehicles according to car-following and lane-changing rules and intersection regulations. It therefore models both day-to-day and within-day variability in both demand and supply conditions, and so, we believe, is particularly suited for the realistic modelling of real-time strategies such as those listed above. The full model specification is given, along with details of its algorithmic implementation. A number of representative numerical applications are presented, including: sensitivity studies of the impact of day-to-day variability; an application to the evaluation of alternative signal control policies; and the evaluation of the introduction of bus-only lanes in a sub-network of Leeds. Our experience demonstrates that this modelling framework is computationally feasible as a method for providing a fully internally consistent, microscopic, dynamic assignment, incorporating both within- and between-day demand and supply dynamic

    Integrated self-consistent macro-micro traffic flow modeling and calibration framework based on trajectory data

    Get PDF
    Calibrating microscopic car-following (CF) models is crucial in traffic flow theory as it allows for accurate reproduction and investigation of traffic behavior and phenomena. Typically, the calibration procedure is a complicated, non-convex optimization issue. When the traffic state is in equilibrium, the macroscopic flow model can be derived analytically from the corresponding CF model. In contrast to the microscopic CF model, calibrated based on trajectory data, the macroscopic representation of the fundamental diagram (FD) primarily adopts loop detector data for calibration. The different calibration approaches at the macro- and microscopic levels may lead to misaligned parameters with identical practical meanings in both macro- and micro-traffic models. This inconsistency arises from the difference between the parameter calibration processes used in macro- and microscopic traffic flow models. Hence, this study proposes an integrated multiresolution traffic flow modeling framework using the same trajectory data for parameter calibration based on the self-consistency concept. This framework incorporates multiple objective functions in the macro- and micro-dimensions. To expeditiously execute the proposed framework, an improved metaheuristic multi-objective optimization algorithm is presented that employs multiple enhancement strategies. Additionally, a deep learning technique based on attention mechanisms was used to extract stationary-state traffic data for the macroscopic calibration process, instead of directly using the entire aggregated data. We conducted experiments using real-world and synthetic trajectory data to validate our self-consistent calibration framework

    Statistical modelling and analysis of traffic: a dynamic approach

    Get PDF
    In both developed and emerging-economies, major cities continue to experience increasing traffic congestion. To address this issue, complex Traffic Management Systems (TMS) are employed in recent years to help manage traffic. These systems fuse traffic-surveillance-related information from a variety of sensors deployed across traffic networks. A TMS requires real-time information to make effective control decisions and to deliver trustworthy information to users, such as travel time, congestion level, etc. There are three fundamental inputs required by TMS, namely, traffic volume, vehicular speed, and traffic density. Using conventional traffic loop detectors one can directly measure flow and velocity. However, traffic density is more difficult to measure. The situation becomes more difficult for multi-lane motorways due to drivers lane-change behaviour. This research investigates statistical modelling and analysis of traffic flow. It contributes to the literature of transportation and traffic management and research in several aspects. First, it takes into account lane-changes in traffic modelling through incorporating a Markov chain model to describe the drivers lane-change behaviour. Secondly, the lane change probabilities between two adjacent lanes are not assumed to be fixed but rather they depend on the current traffic condition. A discrete choice model is used to capture drivers lane choice behaviour. The drivers choice probabilities are modelled by several traffic-condition related attributes such as vehicle time headway, traffic density and speed. This results in a highly nonlinear state equation for traffic density. To address the issue of high nonlinearity of the state space model, the EKF and UKF is used to estimate the traffic density recursively. In addition, a new transformation approach has been proposed to transform the observation equation from a nonlinear form to a linear one so that the potential approximation in the EKF & UKF can be avoided. Numerical studies have been conducted to investigate the performance of the developed method. The proposed method outperformed the existing methods for traffic density estimation in simulation studies. Furthermore, it is shown that the computational cost for updating the estimate of traffic densities for a multi-lane motorway is kept at a minimum so that online applications are feasible in practice. Consequently the traffic densities can be monitored and the relevant information can be fed into the traffic management system of interest
    • …
    corecore