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A review of near-collision driver behavior models
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Objective: This paper provides a review of recent models of driver behavior in on-
road collision situations.
Background: In the efforts to improve traffic safety, computer simulation of accident
situations holds promise as a valuable tool, both for academia and industry. However,
in order to ensure the validity of simulations, models are needed that accurately cap-
ture near-crash driver behavior, as observed in real traffic or driving experiments.
Method: Scientific papers were identified by a systematic approach, including ex-
tensive database searches. Criteria for inclusion were defined and applied, including
the requirement that models should have been previously applied to simulate on-road
collision avoidance behavior. Several selected models were implemented and tested
in selected scenarios.
Results: The reviewed papers were grouped according to a rough taxonomy based
on main emphasis, namely: Avoidance by braking, avoidance by steering, avoidance
by a combination of braking and steering, effects of driver states and characteristics
on avoidance, and simulation platforms.
Conclusion: A large number of near-collision driver behavior models have been pro-
posed. Validation using human driving data has often been limited, but exceptions
exist. The research field appears fragmented, but simulation-based comparison indi-
cates that there may be more similarity between models than what is apparent from
the model equations. Further comparison of models is recommended.
Application: This review provides traffic safety researchers with an overview of the
field of driver models for collision situations. Specifically, researchers aiming to de-
velop simulations of on-road collision accident situations can use this review to find
suitable starting points for their work.

Keywords: driver behavior, models, simulation, collisions, accidents, crashes, avoid-
ance

Road traffic accidents are a global problem, causing
enormous economic and social costs, and more than a
million fatalities every year (World Health Organiza-
tion, 2009). A considerable proportion of severe acci-
dents involve on-road collisions (see e.g. Najm, Smith,
& Yanagisawa, 2007). It is widely accepted that the
behavior of vehicle drivers contributes strongly to acci-
dent causation, and much research effort has therefore
been directed at understanding the relationship between
driver behavior and safety, as well as what can be done

This work was supported by a grant from the VIN-
NOVA Swedish Governmental Agency for Innovation Sys-
tems (2009-02766).

to avoid or improve behaviors associated with crashes
(J. D. Lee, 2008).

A time-honored approach in these endeavors has
been the description and prediction of human driver be-
havior by means of models (see e.g. Gibson & Crooks,
1938). In recent years, some traffic safety researchers
have applied quantitative driver behavior models in
computer simulation. For example, simulation of road
networks with many simulated drivers has been used
to study the potential safety impact of envisioned in-
frastructure improvements (see, for example, Saka &
Glassco, 2001). Also, estimates of the expected reduc-
tion of accidents from driving support technology, such
as collision warning systems, have been obtained from
computer simulations of the final seconds leading up to
a crash (see e.g. T. Brown, Lee, & McGehee, 2001).
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In general, computer simulation can provide a means
of obtaining data regarding a system under study in
a manner that is more controlled, repeatable, cheap,
fast, and safe than obtaining similar data from real-life
measurements. As a consequence, simulations may al-
low more powerful statistical analyses, or more com-
plete testing and comparison of large numbers of al-
ternative system designs. Computer simulations there-
fore hold great promise as an important tool for traffic
safety research and development, both within industry
and academia.

However, there is one general constraint: The results
of simulations will never be more valid than the models
on which the simulations are based. In order to realize
any of the above-mentioned benefits of computer sim-
ulation of accidents, a crucial requirement is the avail-
ability of well-defined, quantitative models that accu-
rately capture the behavior of drivers in the considered
accident situations.

A number of authors have reviewed the driver mod-
eling literature, from various perspectives (Reid, 1983;
Michon, 1985; Ranney, 1994; Ghazi Zadeh, Fahim, &
El-Gindy, 1997; Brackstone & McDonald, 1999; Hel-
bing, 2001; MacAdam, 2003; X. Wang, Yang, Shan,
& Wang, 2006; Cody & Gordon, 2007; Plöchl &
Edelmann, 2007; Weir & Chao, 2007; Jürgensohn,
2007; Oppenheim et al., 2010). Among these, only
Reid (1983) focused specifically on the modeling of
accident-related driving behavior, concluding that at the
time of writing there was “no well-developed and vali-
dated model for the detailed study of accidents” (p. 23).
The other listed reviews all addressed models of driving
behavior in general, with no specific focus on accident
situations, and many also focused on models that were
qualitative rather than quantitative, or models that for
other reasons were not specified to the extent needed
for implementation in computer simulation.

The aim of this review is to describe recent
simulation-ready models of driver behavior in accident
situations involving on-road collisions. The limitation
to on-road collision accidents is adopted to keep the re-
view manageable in size.

The remainder of the text will be organized as fol-
lows: First, some background will be provided on cur-
rent theory and empirics regarding on-road collision ac-
cidents. Then, the method for identifying suitable mod-
els to review will be presented, including inclusion and
exclusion criteria. Next, the identified models will be
presented. In a concluding section, the models will be
discussed and compared to the theoretical and empiri-
cal accounts of accident causation. Some suggestions

for future work will be given as well.

Background

A brief presentation regarding theoretical and empir-
ical results on driver behavior in near-collision situa-
tions will now be given, in order to provide a general
outline of the reality that the driver models reviewed in
this paper typically should aim to reproduce.

Based on U.S. accident statistics, Najm et al. (2007)
proposed a typology of 37 pre-crash scenarios. A ma-
jority of these involved on-road collisions, with motor
vehicles, cyclists, pedestrians, animals or other objects,
occurring both at intersections and non-intersection lo-
cations. Examples of collision accident classes that can
be found in the paper are: (a) rear-end collisions, with
sub-classes lead vehicle decelerating (LVD), lead vehi-
cle moving (LVM), and lead vehicle stationary (LVS);
(b) intersection collisions; and (c) head-on collisions.

As a support when reasoning about the transition
from normal driving into accidents, many authors have
introduced divisions of the pre-crash timeline into a se-
quence of states. The division adopted by Najm and
Smith (2004) is shown in the left part of Figure 1.

Non-critical collision avoidance

In everyday driving, a driver will routinely pass from
a low risk state into the conflict state, for example when-
ever a slower moving lead vehicle is encountered, and
then back again to the low risk state as a result of suc-
cessful use of acceleration, deceleration, steering, or a
combination thereof.

Several accounts have been proposed regarding how
such everyday collision avoidance is achieved. A re-
curring concept in these is satisficing: Drivers will nor-
mally not apply collision avoidance at the very instant a
collision course is established (which could be referred
to as optimizing), but instead at some later time, related
to the safety margins of the driver (see e.g. Summala,
2007).

D. Lee (1976) introduced the quantity τ = θ/θ̇, where
θ is the angle subtended by an obstacle on the driver’s
retina, and demonstrated that τ is a close estimate of
time to collision (TTC). Furthermore, he proposed that
drivers initiate braking when τ passes a certain thresh-
old, independent of speed, and he also demonstrated
how τ̇, the time derivative of the same quantity, could
hypothetically be used during control of braking. Fajen
(2005, 2008) proposed another model, integrating satis-
ficing aspects also in the control of an ongoing braking
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Figure 1. : The four driving conflict states adopted by
Najm and Smith (2004), alongside the crash causation
model of Engström et al. (in press).

maneuver. Kiefer, LeBlanc, and Flannagan (2005) ana-
lyzed a large dataset of test track driving, and found that
test subject brake initiation could be described as occur-
ring at a speed-dependent threshold for inverse TTC,
decreasing linearly with increasing speed.

Timing of steering initiation in normal avoidance
may be subject to the same general patterns, although
with later timing than braking responses (Kiefer et al.,
2005; Najm & Smith, 2004). As for braking, models
are available regarding the visual cues that are used by
drivers during steering, and how these cues are trans-
lated into control actions (Land & Horwood, 1995;
Wann & Wilkie, 2004).

It has been repeatedly observed that drivers are ca-
pable of adapting their control behavior to the specific
vehicle they are driving (MacAdam, 2003). Neverthe-
less, experiments on open-loop control (where drivers
are deprived of visual and inertial feedback) also sug-

gest that drivers’ understanding of the dynamics of their
vehicles may be fundamentally limited (Cloete & Wal-
lis, 2009).

Transitions to critical collision events

Sometimes, normal driving passes into more critical
states. A near-crash state can be defined, for exam-
ple, in terms of the kinematics of the momentary traf-
fic situation (Najm & Smith, 2004), or in terms of the
severity of required avoidance maneuvering (S. E. Lee,
Llaneras, Klauer, & Sudweeks, 2007). The crash state
can be regarded as being reached when it is no longer
possible to avoid the collision.

It is still a matter of scientific debate exactly why
these transitions from normal to critical driving some-
times occur. Accident statistics and empirical studies
point to many factors that correlate with accident risk,
such as fatigue, alcohol intoxication, distractions, age,
driving experience, and driving style (see e.g. J. D. Lee,
2008 for an overview), and a variety of competing qual-
itative models have been proposed for explaining how
these factors come into play.

One view is available from information processing
models of human behavior. In this paradigm, human
behavior in general has been described as the result
of information processing along a sequence of stages,
for example: (a) sensory processing, (b) perception, (c)
cognition and memory, (d) response selection, and (e)
response execution (Wickens & Hollands, 2000). Acci-
dents have been modeled as due to errors, occurring at
different points along the sequence of processing, caus-
ing degradation of the normal behavior in the form of,
for example, slips, lapses, or mistakes (Wickens & Hol-
lands, 2000). The frequency of such errors can then be
assumed to vary with accident-related factors such as
those listed above. van Elslande and Fouquet (2007)
provided one example of how a model based on infor-
mation processing can be applied in the study of traffic
accident causation.

Alternatives to this type of model exist and one ex-
ample, focusing mainly on the role of attention in ac-
cident causation, is illustrated alongside the pre-crash
timeline division in Figure 1. This model is due to
Engström, Victor, and Markkula (in press; see also
Engström, 2011), who discussed driver behavior us-
ing the metaphor of schemata, “functional units of ac-
tion control at different levels of abstraction” (p. 38),
such as for example recognize traffic light, or follow
the car ahead. They hypothesized that, under normal
circumstances, proper schemata selection (based on the
driver’s understanding of how the traffic situation will
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evolve in the near future) is sufficient to avoid critical
events. Engström et al. referred to this mechanism as a
proactive barrier, and proposed that it fails when there
is a mismatch between the selected schemata and the
traffic situation at hand, such that early conflict reso-
lution is either unsuccessful or absent altogether. Can-
didate factors which could be hypothesized to increase
the risk of such mismatches include infrequent events,
misleading contextual cues, and cognitive distractions.
For example, cognitive distraction has been observed
to impair driver ability to adapt gap acceptance judg-
ments to road conditions, when turning at an intersec-
tion (Cooper & Zheng, 2002), and in straight-line col-
lision situations, unexpected braking stimuli and cogni-
tive distractions have been empirically linked with later
brake reactions (Green, 2000; Salvucci, 2002).

In the model proposed by Engström et al., when
the proactive barrier fails, the crash may still be pre-
vented by the reactive barrier: Visual stimuli, such as
the looming of the obstacle on the retina, are hypothe-
sized to cause bottom-up reflex activation of near-crash
avoidance schemata. Recent naturalistic driving studies
have highlighted the strong relationship between visual
distraction and crashes (see e.g. Dingus et al., 2006;
S. E. Lee et al., 2007), and Engström et al. proposed that
these observations could be understood in terms of the
reactive barrier failing when the driver’s gaze is off the
road ahead. It has been shown that the most common
driver behavior in rear-end crashes is no maneuver at all
(S. E. Lee et al., 2007; Wiacek & Najm, 1999), and in
accident statistics this was linked to driver distraction
by Yan, Harb, and Radwan (2008).

Critical collision avoidance

Models of why a near-crash collision situation may
arise, such as outlined above, can be complemented
with models of more exactly when and how near-crash
collision avoidance maneuvering is then carried out by
the driver.

Maneuver timing has been studied by many re-
searchers, in terms of the reaction time from a stimu-
lus to an evasive reaction, and reaction time estimates
have been proposed as functions of a range of parame-
ters: Stimulus eccentricity, number of obstacles, night-
time versus daytime driving, age, gender, as well as the
above-mentioned cognitive distraction and stimulus ex-
pectancy (Delaigue & Eskandarian, 2004; Green, 2000;
Muttart, 2003; B. Wang, Abe, & Kano, 2002). In addi-
tion, limitations on just noticeable differences of chang-
ing stimuli, as prescribed by Weber’s law (Gray, 2010,
p. 263), have also been discussed as introducing con-

straints regarding the earliest time at which a driver can
react to a change in the traffic scene (see e.g. D. Lee,
1976).

As for the manner in which drivers carry out critical
collision avoidance maneuvering, braking only (with-
out steering) has been identified as the most natural
first response for most drivers, and steering (alone or
with braking) has been observed more frequently at low
values of TTC, such that the driver may perceive that
braking is insufficient to avoid the crash (Adams, 1994;
S. E. Lee et al., 2007; Wiacek & Najm, 1999)1.

Several researchers have noted a tendency of drivers
not to apply steering to the full stability limits of their
vehicles, and to brake and collide in situations where
steering could have avoided the collision. It has been
proposed that such behavior may be due to (a) drivers
having very little experience of applying high lateral ac-
celerations, or (b) perceived added risks from abruptly
steering away from one’s own lane (Adams, 1994;
Lechner & van Elslande, 1997). Breuer (1998) com-
pared normal driving in real traffic with driving in a
double lane change maneuver (similar to that of ISO,
1999), and argued that the high lateral accelerations in-
duced in such test track maneuvers are very rare in real
traffic.

Braking at the vehicle’s limits seems more common
(Lechner & van Elslande, 1997; McGehee et al., 1999),
but also in this context it has been argued that lack of
experience of, and low expectancy for, critical braking
may limit the magnitude of avoidance maneuvering em-
ployed by drivers (Dilich, Kopernik, & Goebelbecker,
2002).

In general, an important question is whether the mod-
els of non-critical collision avoidance presented ear-
lier are valid in more critical situations. Hollnagel and
Woods (2005, p. 146) defined different control modes
and argued that, whereas control often relies on antic-
ipation and planning (tactical and strategical control
modes), in more urgent or unusual situations control
may rather be driven by salient features of the imme-
diate situation (opportunistic control mode) or even be-
come random (scrambled control mode). This relates
clearly to the above-mentioned observations of non-
response behavior in crashes (S. E. Lee et al., 2007;
Wiacek & Najm, 1999), and also to reports from ac-
cident reconstructions on driver control overreactions
(Malaterre, Ferrandez, Fleury, & Lechner, 1988).

1 S. E. Lee et al. (2007) also observed steering responses
in situations with high TTC, where there was presumably
enough time for the driver to plan a more controlled maneu-
ver, but this relates less to critical collision avoidance.
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Collision avoidance support systems

Finally, an important aspect of driver behavior in re-
lation to collision accidents is driver response to warn-
ings and interventions from in-vehicle support systems,
which may hold potential for helping drivers avoid or
mitigate collision accidents, for example by redirect-
ing gaze of visually distracted drivers to the collision
threat (see, for instance, J. D. Lee, McGehee, Brown,
& Reyes, 2002), or by applying autonomous brak-
ing or steering of the vehicle (Itoh, Horikome, & Ina-
gaki, 2010). A complication in this context is the phe-
nomenon of behavioral adaptation, by which driver re-
sponse to a support system may change over time with
exposure to the system (Smiley, 2000). The driver’s
long-term behavior with respect to a support system,
in terms of acceptance, reliance, disuse, or even mis-
use of the system, may depend on a multitude of fac-
tors. Examples include perceived system reliability, the
degree to which the system can be understood by the
driver, and the specifics of warning or intervention de-
sign (J. D. Lee & See, 2004; Meyer, 2004).

Method

Candidate scientific papers for this review were gath-
ered using a systematic approach, from the following
sources: (a) Database searches (see Appendix A for
details), (b) reference lists of candidate articles, (c) re-
searcher web pages, and (d) previous knowledge of the
authors and their colleagues. Both peer-reviewed and
non-peer-reviewed publications were considered.

Inclusion of candidate papers in this review was then
decided based on the following criteria: (a) They should
be written in English, and published in the year 2000
or later; however, some influential references of older
date were also included; (b) they should describe driver
behavior models capable of controlling a simulated ve-
hicle laterally and/or longitudinally, using some input
from a simulated traffic situation, thus excluding papers
describing models of, for example, perception only or
actuation only; (c) they should address traffic on public
roads, as opposed to race track driving; and (d) they
should describe simulation of near-crash on-road colli-
sion situations. No strict definition of what constitutes
a near-crash situation (in terms of, for example, kine-
matics or response severity, as discussed above) was
adopted, since candidate articles would rarely give in-
formation regarding such details. Therefore, applica-
tion of the final inclusion criterion involved subjective
judgment to some degree. In borderline cases, we have
opted for inclusion rather than exclusion. However,

based on this criterion, papers reporting on the use of
crash-free traffic simulation in combination with surro-
gate safety measures (see e.g. Saka & Glassco, 2001)
were consistently excluded.

Some of the driver models presented in the reviewed
papers were implemented and simulated in selected sce-
narios; details will be provided as part of the review be-
low. The choice of implemented models was based on
an ambition to cover several different classes of models,
but was also limited by the fact that many of the papers
did not provide enough details to allow implementation.

Models of driver behavior in
collision situations

In this section, driver models will be presented, fol-
lowing a rough taxonomy based on the main aspect of
collision avoidance behavior addressed by the model in
question. The first two subsections will be devoted to
models with an emphasis on avoidance by either brak-
ing alone or steering alone, respectively. Then, models
focused on the interplay of braking and steering will
be covered. Thereafter, models will be described that
emphasize how driver states and driver characteristics
affect near-collision behavior. The last subsection will
review papers in which a main topic of discussion has
been the simulation platforms used for studying colli-
sion situations.

When providing model equations, a consistent nota-
tion will be used for recurring mathematical quantities,
thus often departing from the exact symbols used by the
original authors.

Avoidance by braking

Two main classes of deceleration-related driver mod-
els may be discerned: Those that do not take the con-
cept of satisficing into account, and those that do. A
defining characteristic of the former class is that these
models will react to an obstacle at arbitrarily long dis-
tances. Below, the two classes will be reviewed sepa-
rately.

Many of the models introduced below were origi-
nally proposed within the context of large-scale agent-
based traffic simulations, or microscopic simulations,
where obstacles are generally lead vehicles, and where
driver models are referred to as car-following models
(Brackstone & McDonald, 1999; Helbing, 2001).

Models assuming long-distance reactions to obsta-
cles. A well-known longitudinal control model of this
type is the car-following model by Gazis, Herman, and
Rothery (1961), often referred to as the GHR model. It
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was not developed specifically to study collision situ-
ations, but is presented here since several more recent
models, either based on the GHR model or similar to it,
have been applied in such contexts. The main equation
in the GHR model is:

ẍF(t) = λ · ∆ẋff(t − TR) (1)

where ∆xff(t) = xL(t)− xF(t), and xL(t) and xF(t) denote
the positions along the road (increasing in the forward
direction) of the fronts of the leading and following ve-
hicles, respectively2. Dots denote differentiation with
respect to time, TR is a time lag (or an apparent reaction
time), and λ is a sensitivity term defined as

λ = a
ẋm

F (t)

∆xl
ff

(t − TR)
(2)

where a, l and m are constants.
Thus, a GHR driver aims to keep the same speed as

the lead vehicle (Equation 1), and corrects for speed dif-
ferences more swiftly at high speeds and low headway
distances (Equation 2). Figure 2 illustrates the model’s
long-distance reaction in an LVS scenario (left panel),
as well as the more realistic, delayed deceleration pulse-
type response in an LVD scenario (right panel). Since
the GHR model, in this most basic form, disregards the
physical extensions of vehicles, it tends to ∆xff = 0 in
both scenarios, corresponding to the two vehicles over-
lapping completely (i.e. a negative headway distance).

Over the years, much research has been devoted to
the study of real traffic data in order to find the best pa-
rameter settings for the GHR model, but without con-
clusive results (Brackstone & McDonald, 1999; Ozaki,
1993). Sultan, Brackstone, and McDonald (2004) sug-
gested that more realism could be obtained in scenarios
involving lead vehicle accelerations and decelerations
(such as LVD, but not LVS and LVM), by adding accel-
eration terms to Equation 1.

H. Yang and Peng (2010) instead expanded on a
GHR-like model by taking into account a number of
error-inducing behaviors, as well as stochasticity (un-
predictability) of driver behavior, in order for crashes
to be generated in their simulations. Their core longi-
tudinal control model, derived from a large data set of
driving in real traffic, can be written as

ẍF(t) = P (∆x(t − TR))∆ẋ(t − TR)+
C × [∆x(t − TR) − ẋF(t − TR)∆Td] (3)

where P(∆x) is a cubic polynomial, C a constant, and
∆Td the driver’s desired time headway. The first term

on the right hand side may be compared to Equation 1,
and the cubic polynomial P(∆x) proposed by H. Yang
and Peng bears some resemblance to a 1/∆x func-
tion, corresponding to a GHR model with m = 0 and
l = 1. The remaining term (proportional to C) achieves
time headway control. Stochasticity was introduced
by drawing acceleration values from a probability dis-
tribution around the value determined by Equation 3,
with variance determined by another polynomial in dis-
tance headway. The introduced error-inducing behav-
iors were (a) a Weber ratio (Gray, 2010, p. 263) limiting
detection of small changes in range rate; (b) eyes-off-
road behavior, modeled as variations in reaction time
(TR); and (c) mind-off-road behavior, modeled as tem-
porary increases in acceleration control variability.

In simulation, this model generated rear-end crashes
at approximately twice the rate observed in accident
statistics. Yang and Peng argued that this discrepancy
could be due to an inability of Equation 3 to account
well for highly critical collision avoidance behavior.
The LVD scenario behavior shown in the right panel
of Figure 2, obtained for the model as written in Equa-
tion 3, without stochasticity and error-inducing behav-
iors, indicates that the model comes close to avoiding
the collision, but features clear oscillations in the brak-
ing response. In the LVS and LVM scenarios, this im-
plementation of the model is unstable, due to the time
headway control (not shown in the left panel of Fig-
ure 2).

Other models in this general class have been pro-
posed by Chung, Song, Hong, and Kho (2005), who
suggested a new formulation for the λ term of the
GHR model, and Mehmood, Saccomanno, and Hellinga
(2001), who based their model on system dynamics
concepts. Kuge, Yamamura, Boer, Ward, and Manser
(2006) parameter-fitted a model of this class to non-
critical driving with and without a support system in-
volving a haptic gas pedal, and used these two parame-
ter settings to predict the impact of support system pres-
ence on a more critical LVD scenario.

In summary, this class of braking model has seen
much application in collision avoidance contexts, and

2 The definition of the longitudinal distance between ve-
hicles differs between models. Most models use the distance
between the front of the following vehicle and the back of the
lead vehicle, denoted ∆x. However, in the GHR model, the
vehicles are pointlike so that, if the extension of the vehicles
were to be taken into account in that model, the longitudinal
distance would correspond to the front-to-front (or, equiv-
alently, back-to-back) distance. Hence, for that model the
notation ∆xff is used.
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Figure 2. : Behavior of selected driver models focusing on braking. In both panels, the solid gray line shows
behavior of the lead vehicle (length lL = 4.5m). The left panel shows model behavior in a scenario with a stationary
lead vehicle. At time t = 20 s, headway values were 21 m and decreasing for the Gazis et al. (1961) and Wada et
al. (2007, 2009) models, and the Gipps (1981) model was stable at 2 m. The right panel shows model behavior in
a lead vehicle decelerating scenario, with initial time headway of 1.5 s and constant 0.4g lead vehicle deceleration
starting at time t = 0 s and ending at full stop. At time t = 15 s, headway values were -4.5 m for the Gazis et
al. model, -0.4 m for the Yang and Peng (2010) model (here simulated without stochasticity and error-inducing
behaviors), and 2 m for the Gipps and Wada et al. models. Parameters for the Gazis et al. model were: TR = 0.7 s,
a = 1.1, l = 1, and m = 0.9 (from Ozaki, 1993). Parameters for the Yang and Peng model were: TR = 0.7 s, C = 1,
∆Td = 1.5 s. P(∆x) was estimated from their Figure 3. Parameters for the Gipps and Wada et al. models were as
proposed in the corresponding papers.

the work of H. Yang and Peng (2010) is especially no-
table. However, thorough validation on real accident
data is lacking so far. Furthermore, the inherent inabil-
ity of these models to generalize to less critical scenar-
ios, where a real driver may not always initiate brak-
ing as quickly as possible, may make them less useful
in applications where both normal and critical collision
avoidance must be simulated.

Delayed constant deceleration models. An addi-
tional set of models, which can be considered a subclass
to the one discussed above, is delayed constant decel-
eration models. Here, this term is used when referring
to models of the following general type, which has seen
much use in previous research:

Starting at a (reaction) time T after a stim-
ulus S , the driver applies a constant decel-
eration D.

Such a model approximates the behavior of the GHR
model in the critical LVD scenario (cf. the right panel

of Figure 2), and shares that model’s limitations with
respect to less critical situations.

The most frequent context of application for this type
of model has been the study of active safety warning
systems, especially forward collision warning systems.
Computer simulation with such a model, with the active
safety warning constituting the stimulus S , has been
used for optimizing system parameter settings, and to
make predictions on potential traffic safety benefits on
a societal level (T. Brown et al., 2001; Fitch et al., 2008;
Krishnan, Gibb, Steinfeld, & Shladover, 2001 and also
Sugimoto & Sauer, 2005, although the model used in
that case was slightly more advanced). Other uses of
this type of model has been assessment of safety im-
pact of in-vehicle information systems, with S being the
first glance back towards the road after a lead vehicle
has begun deceleration (Smith, Chang, Cohen, Foley,
& Glassco, 2005), development of road geometry de-
sign guidelines, with S being the sudden appearance of
an unexpected obstacle (Fambro, Fitzpatrick, & Koppa,
2000), and a study of accident causation mechanisms,
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with S representing the establishment of an initial col-
lision course (Davis, 2007; Davis & Swenson, 2006).
McMillan, Christiaen, and Stark (2001) also relied on
this general account of collision avoidance behavior for
estimating the collision probability inherent in a given
empirically observed rear-end situation, but instead of
defining S explicitly they varied brake initiation timing
and deceleration magnitude around the empirically ob-
served values.

Indeed, in all of the research cited above except that
by Fambro et al. (2000), varying at least one of the
quantities T and D was part of the approach. Often,
the initial kinematics of the vehicles involved was also
varied. In all cases except one (T. Brown et al., 2001),
parameter variation was introduced using probability
distributions, taken from previous literature or from a
data set used in the corresponding research project. An-
other common factor in much of the abovementioned
research has been the use of the driver model in anal-
ysis of recorded driving data, to answer what if? types
of questions, such as: what if a forward collision warn-
ing system had been present in this situation? (Fitch
et al., 2008; Sugimoto & Sauer, 2005), what if a lead
vehicle had suddenly braked during the performance of
the in-vehicle secondary task? (Smith et al., 2005), or
what if this traffic situation would have looked slightly
different? (Davis & Swenson, 2006; McMillan et al.,
2001).

Although the simplicity of this type of model may
rightfully raise questions of validity (for instance re-
garding the inability of satisficing behavior), it may
nevertheless serve as an example of how also very basic
quantitative driver models can be put to some use in the
study of traffic safety. In some of the research cited
above, the resulting overall model dynamics was even
tractable analytically, so that actual simulation was not
needed (Davis, 2007; Fambro et al., 2000; Krishnan et
al., 2001; McMillan et al., 2001).

Models assuming timed brake application. A satis-
ficing driver approaching an obstacle may be assumed
to exhibit a safety margin-related, timed transition from
a non-decelerating state to a decelerating state. Lon-
gitudinal driver models have been proposed that try to
capture such a phenomenon. In the much cited model
by Gipps (1981), the mode transition in LVS, LVM, and
LVD scenarios, as exemplified in Figures 2 (left panel)
and 3, occurs when the vehicle speed prescribed by the

equation

ẋF(t) = bFTR +

[
b2

FT 2
R − bF

(
2[∆x(t − TR) − sL]

−ẋF(t − TR)TR −
ẋL(t − TR)2

bL

)]1/2
(4)

falls below the initial cruising speed of the following
vehicle. This equation, as written above, is difficult to
interpret, but the assumption from which it is derived,
using basic Newtonian mechanics, is clear: The follow-
ing vehicle driver is assumed to adjust speed to a value
such that, if the lead vehicle should suddenly brake with
an assumed maximum deceleration bL < 0, the fol-
lowing vehicle driver will be able to avoid a collision
without exceeding the own preferred maximum decel-
eration bF , as long as the actual reaction time does not
exceed a safety reaction time 1.5TR. sL is the effective
size of the lead vehicle, “the physical length plus a mar-
gin into which the following vehicle is not willing to
intrude” (Gipps, 1981, p. 106). It may be noted that,
in contrast to the GHR model, which predicts vehicle
acceleration at each time step, the Gipps model oper-
ates directly on the vehicle speed. Gipps demonstrated,
however, that in his model the effective deceleration in
a simulation time step will never exceed bF .

Figure 2 shows that in an LVD scenario, the Gipps
model replicates the delayed constant deceleration type
of behavior already seen for non-satisficing models, but
manages to avoid the collision and to stop in a con-
trolled manner. In an LVS scenario, the model gener-
ates a clearly identifiable, timed brake initiation. Inter-
estingly, Figure 3 indicates that inverse TTC at brake
initiation, as predicted by the Gipps model, exhibits
a similar dependence on following vehicle speed as
that observed by Kiefer et al. (2005) in their test track
data, although with a different effect of lead vehicle
speed (higher values of inverse TTC for LVS than for
LVM, rather than the other way around). Further sup-
port for the Gipps model was provided by K. Lee and
Peng (2004), in their benchmark comparison of car-
following models measuring model performance when
fitting normal driving and non-critical approach se-
quences. K. Lee and Peng (2004) and Peng (2002) also
proposed a slight modification to the Gipps model that,
however, does not seem to have a large impact on the
types of scenarios studied here.

In its original formulation, the Gipps model will
never lead to actual crashes in simulation, which is
clearly a limitation in the study of near-crash and crash
events. However, as in the case of the GHR model,
some researchers have adapted the Gipps model to
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study accident situations. A crash-inclusive variation
to the model was proposed by Hamdar and Mahmas-
sani (2005), with the aim of mimicking driver behavior
in traffic situations of general panic (e.g. during evacua-
tions due to natural disasters or similar events). Another
variation, aimed at driving in more normal traffic condi-
tions, was proposed by Xin, Hourdos, Michalopoulos,
and Davis (2008). Their approach was based on com-
plementing the basic Gipps model with a number of in-
sights from psychology (not dissimilar to what H. Yang
& Peng, 2010 did with their GHR-like model). A vi-
sual scanning interval, mimicking a divided attention
to driving, was introduced, and at each scan a new tar-
get speed according to Equation 4 would only be set if
changes in relative position or motion exceeded percep-
tual thresholds (Weber ratios), or if the lead vehicle de-
viated from a desired time headway ∆Td by more than
a certain fraction (headway satisficing). It was demon-
strated that the model could be parameter-fitted to se-
quences of real driving from both a data set of normal,
non-critical traffic, and a data set of six crashes and four
near-crashes, involving a total of 54 vehicles on a high
crash-rate section of a US freeway.

Another general means of introducing satisficing in a
behavior model is to include concepts from fuzzy logic
(Zadeh, 1965), where fuzzy states are typically defined
as intervals for involved state variables, and control
actions may be modeled as occurring only once devi-
ation from a non-action state becomes large enough.
Steigerwald (2002) carried out a simulation study of
the safety effects of collision warning systems, using
the fuzzy logic car-following model of McDonald, Wu,
and Brackstone (1997). This model was driven by fuzzy
rules such as, for example if distance divergence is Too
Far and relative speed is Closing then the driver’s re-
sponse is No Action (keep current speed). Steigerwald
observed crashes in his simulations, and found reduc-
tions in crash rate when driver response to collision
warnings was included, modeled as a decreased reac-
tion time setting in the car-following model.

Finally, the following quantity, which has been used
in two separate models of braking behavior, will be con-
sidered:

KdB =

{
10 log10(K) sign(−∆ẋ) if K ≥ 1
0 if 0 ≤ K < 1 (5)

where K =
∣∣∣4 · 107 · ∆ẋ/∆x3

∣∣∣ km h−1m−3 (note the non-
SI unit, used by the original authors, for relative speed).
This quantity was defined by Wada, Imai, Tsuru, Isaji,
and Kaneko (2007), based on a retinally oriented ac-
count reminiscent of that of D. Lee (1976). When a

collision course is established, KdB will rise from zero,
and will reach higher values as the vehicle approaches
collision. Wada, Imai, et al. (2007) found that in less
critical situations, driver control of deceleration could
be well described as a strategy in which dKdB/d∆x is
held constant. Furthermore, they found that brake ini-
tiation timing could be modeled as occurring once a
lead vehicle speed dependent variant of KdB surpassed
a threshold (Wada, Doi, et al., 2007; Wada, Hiraoka, &
Doi, 2009). Figure 3 indicates that this brake initiation
model is qualitatively similar to what the Kiefer et al.
(2005) and Gipps (1981) models predict, although with
no visible difference between LVM and LVS. In an LVS
scenario the behavior of the model by Wada, Imai, et
al. (2007) and Wada et al. (2009) is also qualitatively
similar to that given by the Gipps model (Figure 2, left
panel), but with stronger and more brief deceleration,
whereas the right panel of Figure 2 suggests that a strat-
egy in which dKdB/d∆x is kept constant is not realistic
in the more critical LVD scenario, as indicated by the
authors themselves.

Akita, Inagaki, Suzuki, Hayakawa, and Tsuchida
(2007) incorporated the KdB quantity in their piece-
wise linear auto-regressive exogenous inputs (PWARX)
model of driver speed keeping. By use of clustering al-
gorithms on data in the (KdB,∆ẋ,∆x) space from a small
simulator study (n = 2), four speed keeping modes, of
which one was collision avoidance, were identified and
separated. For each of these modes, a separate ARX
model, each on the form:

p(k + 1) = aKdB(k) + b∆ẋ(k) + c∆x(k) + dp(k) (6)

was fitted to the data. In this equation, k denotes simu-
lation time step, p is the pedal input, and a, b, c, and d
are driver-dependent constants. Judging by the figures
provided by Akita et al. (2007), it however seems as if
braking events in their dataset were sparse, and possibly
not highly critical.

In summary, this class of braking model may be
more generally applicable than other models, since it is
able to exhibit satisficing behavior in less critical sce-
narios, such as LVS and LVM. Figure 3 points to a
possible convergence in this respect between some of
the models. Furthermore, the simulated behavior of
the Gipps (1981) model seems more stable than the
simulated non-satisficing models. Whereas validation
on real accident data is generally missing also for this
model class, Xin, Hourdos, Michalopoulos, and Davis
(2008) have provided a commendable exception. Fur-
ther details on their work, including calibrated values
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Figure 3. : Inverse time to collision at brake initiation,
as a function of following vehicle speed, in the lead ve-
hicle stationary (LVS) and lead vehicle moving (LVM)
scenarios, for the Gipps (1981) and Wada et al. (2009,
Equation 9) models, respectively, as compared to the
results of Kiefer et al. (2005). In both simulated sce-
narios, the initial following vehicle speed was 30 m/s,
and in the LVM scenario the lead vehicle speed was 15
m/s. The two curves for the Wada et al. model are not
identical, but are close enough to appear overlapping in
this figure.

for model parameters, can be found in (Xin, Hourdos,
& Michalopoulos, 2008).

Avoidance by steering

Few driver models are specifically designed for col-
lision avoidance by steering. However, many models of
steering have been benchmarked on rapid evasive ma-
neuvers that mimic collision avoidance situations, such
as the ISO double lane change (ISO, 1999). Here, the
main objective has typically not been to create mod-
els that accurately replicate human behavior in accident
situations. Rather, research has been more focused on
finding models that perform well in terms of path track-
ing and stabilization. Nevertheless, since detailed steer-
ing models are important in some collision-related ap-
plication contexts, all identified steering models tested
on rapid evasive maneuvers have been included in this
review, and their control performance will be reported
below. A later section will then describe how some
models have been tuned for sub-optimal performance,
to account for inter-driver behavior variability in colli-
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Figure 4. : Steering behavior of selected driver models
carrying out a 20 m single lane change, at 20 m/s. Pa-
rameters for the models were chosen as proposed in the
corresponding papers. Among the parameter sets pro-
posed by MacAdam (2001), the following was adopted:
A preview time of 1.3 s, a response delay of 0.2 s, and
10 preview points.

sion avoidance.

Traditionally, driver models with steering capabili-
ties have been based on classical control theory (Jürgen-
sohn, 2007). Even though other types of models have
been developed recently, most of the steering models
are still based on, or contain elements from, control the-
ory. Typically, the input to such models is a desired path
containing the desired lateral road position over time.
In order to correct deviations from this desired path, the
steering models output one of the following quantities:
(a) The steering wheel angle, (b) the vehicle steering
angle, or (c) the lateral acceleration.

When simulating models that operate on steering an-
gles rather than directly on lateral acceleration, a ve-
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hicle model must be incorporated in the simulation.
For our simulations (see Figure 4) we used the simu-
lation environment of Benderius, Markkula, Wolff, and
Wahde (2011), and implemented the vehicle dynam-
ics model of Thommyppillai, Evangelou, and Sharp
(2009), with parameters as specified in Appendix B.

Models using path preview. In order to predict devi-
ations before they occur, driver models often use path
preview. The simplest form is single point preview,
where the expected deviation in, for instance, lateral po-
sition or heading angle is measured at a single point lo-
cated a distance S p in front of the vehicle. The distance
S p is often defined as a function of a constant preview
time Tp as

S p(t) = ẋ(t)Tp (7)

where ẋ(t) is the longitudinal speed of the vehicle.
Reński (2001) and M. Lin, Popov, and McWilliam

(2003) independently of each other proposed two sim-
ilar single point preview models, in which the vehicle
steering angle δ(t) is given by

δ(t) = Kϵ(t − TR) (8)

where ϵ(t) is the angle between the heading of the vehi-
cle and the preview point, TR the driver reaction time,
and K a gain constant3. Both Reński and M. Lin et al.
showed that this driver model was capable of carrying
out a double lane change maneuver, and studied model
behavior for varying parameter settings. Furthermore,
Reński optimized model parameters to reproduce the
recorded trajectory of a real driver.

Guo, Ding, Zhang, Lu, and Wang (2004) also used
single point preview in their preview-follower model,
originally proposed by Guo and Fancher (1983). Within
this model, the current acceleration, velocity, and posi-
tion of the vehicle are used in order to predict the lateral
error at time t + Tp. Then, the steering wheel angle re-
quired to correct this previewed error is calculated, as-
suming a simple vehicle model. Guo et al. (2004) com-
pared data from a simulator study where drivers carried
out a double lane change maneuver, with model output
for a preview time of 1.4 s, and found good agreement.
The same model was used in a double lane change also
by Gao, Zheng, Guan, and Guo (2002). Figure 4 sug-
gests that when parameterized as proposed by Guo et
al. (2004), this model can manage a rapid single lane
change very well, although with some problems regain-
ing stability afterwards.

Based on the preview-follower model, Zhuang, Yu,
and Li (2005) applied an artificial neural network in or-
der to calculate optimal preview times for a variety of

different test tracks at different vehicle speeds. It was
found that optimal preview times (for the model used)
were in the range from 1.1 to 1.3 s, and that higher
speeds required slightly longer preview times (suggest-
ing that Equation 7 should, in fact, be somewhat non-
linear).

Overall, it may be noted at this point that the use of
a desired path in combination with some form of path
preview may raise questions regarding model validity in
real collision situations. One could argue that this type
of preview, as well as some of the even more advanced
control theory practices reviewed below, imply that the
modeled driver plans ahead in a more controlled fash-
ion than what may be the case in accident situations.
Alternative standpoints are also possible, however, and
the topic will be considered further in the discussion.

Multi-level models. Donges (1978) provided the first
example of another class of driver models, the two-level
driver models, which typically include path preview as
discussed above. The two levels are called anticipation
and stabilization (the latter also compensation or guid-
ing). At the anticipation level, steering is estimated in
an open-loop manner based on the curvature of the pre-
viewed desired path and a simplified vehicle dynamics
model. The vehicle model is referred to as the internal
vehicle model, representing the driver’s understanding
of the vehicle. Deviations from the desired path can, for
instance, occur as a result of system noise or simplifica-
tions in the internal vehicle model. At the stabilization
level, the model compensates for such deviations in a
closed-loop manner.

A recent two-level model was introduced by
Edelmann, Plöchl, Reinalter, and Tieber (2007). In this
model, a nonlinear vehicle dynamics model is locally
linearized and used at the anticipation level. By using
two preview points in front of the vehicle (in order to
anticipate changes in curvature) a steering wheel angle
estimate can be calculated.

Plöchl and Lugner (2000) introduced a three-level
driver model. If large local path deviations occur, the
third level can temporarily override anticipation and
stabilization in order to steer towards the desired path
as quickly as possible without using path preview. This
approach is interesting especially in relation to the po-
tential concerns raised above, regarding the use of pre-
view in models of critical collision avoidance.

3 It may be noted, however, that M. Lin et al. (2003) them-
selves referred to their model as a two-level model, as dis-
cussed in the next section.
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Models using optimization over a preview horizon.
Another class of model determines a steering response
by optimizing over a preview horizon (also referred to
as the preview interval). This relates to the control
theory concept of optimal control (see e.g. Kleinman,
Baron, & Levison, 1970; Vinter, 2010). Here, the term
optimal does not imply that these models cannot exhibit
satisficing behavior. Optimization criteria can be de-
fined so as to manage a trade-off between, for example,
path deviation and steering effort, which would typi-
cally be referred to as satisficing.

An early driver model optimizing over a preview
horizon was introduced by MacAdam (1981). The
model determines, in each time step, the vehicle steer-
ing angle that minimizes a path deviation cost function
over the preview horizon. The top panel of Figure 4
shows good tracking performance for this model, even
with comparably small steering wheel inputs (middle
panel). In a later version of this model (MacAdam,
2001, 2003), the original linear internal vehicle model
was replaced by a non-linear one, improving the per-
formance of the driver model in situations close to the
limits of the vehicle’s capabilities. The extended model
also offers the possibility to have the preview time vary-
ing in magnitude depending on upcoming road geome-
try. When using this feature in a double lane change, the
preview time was shown to vary within a range from 0.6
to 2.0 s.

Peng (2002) developed a driver model that extends
MacAdam’s original model (1981) with a more general
cost function, as well as the capability of updating the
internal vehicle model during operation, something that
is often referred to as vehicle adaptation. These exten-
sions were later shown to improve control performance
in a double lane change maneuver Ungoren and Peng
(2005).

Prokop (2001) and Butz and von Stryk (2005) pro-
posed models with a variety of terms in their cost func-
tions, including satisficing-related terms aimed at limit-
ing lateral accelerations. These two models differ from
the other reviewed optimal control models in that they
are two-level models, first determining a desired path by
optimization over the preview interval, and then apply-
ing stabilization control to follow the optimized trajec-
tories. Butz and von Stryk provided examples of their
model’s behavior in a double lane change maneuver, for
a number of different weightings of their optimization
criteria. A similar model can also be found in (Vögel,
von Stryk, Bulirsch, Wolter, & Chucholowski, 2003).

Yoshida, Shinohara, and Nagai (2008) employed
an optimization method similar to the one used by

MacAdam to derive open-loop steering interventions
for use in an active safety system, aimed at achieving
automatic collision avoidance.

Models using multi-point preview. Models optimiz-
ing over a preview horizon show good stabilization ca-
pabilities in relation to rapid maneuvers (see e.g. Fig-
ure 4). However, optimizing over a interval may, de-
pending on sampling rate and optimization method, be
computationally intensive. An alternative approach is to
use multi-point preview, in which the driver model uses
a discrete number of points in front of the vehicle for its
tracking behavior. Typically, the points are individually
weighted and positioned at fixed preview times.

The model by Sharp, Casanova, and Symonds (2000)
uses a multi-point preview control scheme, where
points are positioned at fixed preview times in front of
the vehicle. The vehicle steering angle δ(t) is given by

δ(t) = Kψψe(t) + K1ye1(t) +
n∑

i=2

Kiyei(t) (9)

where ψe(t) is the heading error compared to the tangent
of the desired path, ye1(t) the vehicle’s lateral deviation,
yei(t) the lateral deviation of the preview points, and Kψ,
K1, and Ki are gain constants. The model was origi-
nally intended for race track applications, but was used
by Wenzel, Burnham, Williams, and Blundell (2005)
for studying the utility of a stability support system in
a double lane change maneuver. The large overshoot
seen in our simulations (Figure 4) is probably due to
the fact that Sharp’s parameterization is tuned for race
car dynamics.

In the multi-point model by Thommyppillai et al.
(2009) a non-linear vehicle model is linearized for dif-
ferent values of the vehicle speed and the front axle slip
ratio. An adaptive control strategy, where control gains
are derived depending on vehicle properties, is then de-
termined by using the linearized vehicle model. In the
same paper, the authors compared the adaptive control
strategy with a fixed gain strategy, and found that the
model with adaptive gains showed significantly better
tracking performance.

Another multi-point driver model, which has been
used in a double lane change, was proposed by
Chatzikomis and Spentzas (2009). The model uses a
combination of two error measures: (a) Errors in head-
ing angle, and (b) errors in lateral position. A vehicle
steering angle is then calculated using a weighted sum
of both errors, and an adaptive control strategy based on
longitudinal speed. By determining error weights us-
ing stochastic optimization, Chatzikomis and Spentzas
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found that, for their model, heading angle errors were a
more important input than lateral position errors. Fig-
ure 4 indicates that this model achieves good tracking
performance, despite large steering magnitudes.

Other models of steering. Some models will now
be described that do not fit into the model classes out-
lined above. Gao and Jiang (2009) proposed a model
in which path planning is implemented. At any instant
in time, all feasible trajectories are determined based
on the current vehicle state, steering limit, and lane
boundaries. The best trajectory is then chosen accord-
ing to a safety index, based on the distance to the center
line, and a maneuverability index, based on the required
change in the lateral acceleration.

A piecewise polynomial steering model intended for
obstacle avoidance was proposed by Kim et al. (2005).
The model consists of four modes, each modeled in the
form

δS W(t) = a∆x(t) + b∆ẋ(t) + c∆y(t) if d ≤ ∆x(t) < e
(10)

where δS W(t) is the steering wheel angle, and ∆x(t) and
∆y(t) the longitudinal and lateral distances, measured
relative to the obstacle. The parameters a, b, c, d, and e
are constants which Kim et al. determined from driving
data. Each mode represents a specific steering behavior
that is activated depending on the longitudinal distance
to the obstacle; see Equation 6 for a similar model of
driver braking behavior.

A driver model based on a neural network was pro-
posed by Y. Lin, Tang, Zhang, and Yu (2005). The
model has two outputs, steering wheel angle and steer-
ing wheel rate, and uses seven inputs, one of which is
the lateral displacement from the desired path, another
is the lateral displacement of a preview point, and the
rest are vehicle state properties. Y. Lin et al. (2005)
tested the model, by first training the network on driv-
ing data, in various steering maneuvers.

A steering model that differs from the models pre-
viously discussed in this section, in the sense that it
models a purely open-loop response, was introduced by
Araszewski, Toor, Overgaard, and Johal (2002). It was
developed for the reconstruction of single lane change
maneuvers in accident situations. For a given vehicle
speed and given longitudinal and lateral lane change
distances it generates a sine or triangle wave steering
wheel response. The authors did not report on any use
or validation of the model in reconstruction of actual
accidents.

Avoidance by a combination of braking and steer-
ing

In several of the papers cited in the previous sec-
tion (e.g. Butz & von Stryk, 2005; Chatzikomis &
Spentzas, 2009; Guo et al., 2004; MacAdam, 2001;
Prokop, 2001), models of braking were also proposed
in order to adjust speed in normal driving conditions,
for example in curve negotiation. This section will fo-
cus specifically on models that have been used for sim-
ulating the combined use of braking and steering in col-
lision avoidance.

The driver model proposed by Jurecki and Stańczyk
(2009) is capable of both steering and braking, and was
designed specifically for collision avoidance at intersec-
tions. The braking of the model is defined as

ab(t) + K1ȧb(t) = K2∆y(t − TRb) + K3
∆ẋ(t)
∆x(t)

(11)

where ab(t) is the vehicle deceleration, ∆x(t) and ∆y(t)
the longitudinal and lateral distances to the conflicting
car (driving in a direction perpendicular to the modeled
driver’s vehicle), TRb the braking reaction time, and K1,
K2, and K3 are constants. The steering of the model is
defined as

δ(t) + K4δ̇(t) = K5∆y(t − TRs) (12)

where δ(t) is the vehicle steering angle, TRs the steering
reaction time, and K4 and K5 are constants. In order to
find suitable values for the model constants, Jurecki and
Stańczyk used driving data acquired from a test track
experiment.

By conducting an experiment where subjects were
asked to drive around a test track, Yamakado and
Abe (2008) found a relation between lateral (steering)
and longitudinal (braking) accelerations during driving.
They defined this relation, in the Laplace frequency do-
main (frequency variable s), as

ax(s) = −sign(ay(s)ȧy(s))
Kȧy(s)
1 + Td s

+ ax0(s) (13)

where ax(s) is the longitudinal acceleration, ay(s) the
lateral acceleration, K a gain constant, Td a delay time,
and ax0(s) a model input denoting the working point of
the longitudinal acceleration. In practice, this means
that longitudinal acceleration will, with a delay deter-
mined by Td, tend to (a) ax0 , if lateral acceleration is
constant; (b) a more negative value than ax0 , if lateral
acceleration is increasing (to either left or right); or (c)
a more positive value than ax0 , if lateral acceleration
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is decreasing. Yamakado and Abe complemented this
model with the preview-follower model of Guo et al.
(2004), and found good agreement between their simu-
lations and single lane change data from a test track.

In another class of driver models, generally exhibit-
ing satisficing behavior, control inputs are calculated
based on road or obstacle boundaries rather than (as
for the steering models discussed so far) on a desired
path (predefined or optimized). For instance, Gordon
and Magnuski (2006) introduced a driver model that,
by treating all navigation as collision avoidance, is ca-
pable of both braking and steering. According to the
current state of the vehicle dynamics, the model esti-
mates the point where the vehicle would cross the lane
boundary. By applying appropriate control input, the
driver shifts the estimated crossing point further down
the road. Similar models, based on fuzzy logic, nav-
igate as a result of always trying to keep lane bound-
ary distances within safe margins (El Hajjaji & Oulad-
sine, 2001; Zeyada, El-Beheiry, El-Arabi, & Karnopp,
2000). Zeyada et al. showed that their relatively simple
model manages both to negotiate a sharp turn, and to
avoid an obstacle.

Gordon and Best (2006) introduced another model
that does not require a desired path. Based on road
geometry, a velocity vector field is determined for the
drivable area. At each point in the vector field, the de-
sired velocity, acceleration, heading, and yaw rate are
determined. The steering angle and the deceleration are
then derived using simple control strategies.

Sugimoto and Sauer (2005) carried out what-if sim-
ulations of reconstructed rear-end accidents to estimate
the potential benefit of a collision avoidance support
system. Their driver model responded to collision
warnings either by open-loop evasive steering behav-
ior(implemented as one period of a sine wave), by an
open-loop evasive braking behavior (implemented as a
delayed constant deceleration), or by a combination of
the two. However, although the simulated scenarios
were based on actual accidents, the authors provided
only limited empirical support for the driver model it-
self.

Effects of driver states and characteristics

Next, models will be discussed that emphasize vari-
ability in near-collision behavior, due to (a) visual dis-
traction, (b) driving skill and style, and (c) other driver
states and characteristics.

Effects of visual distraction. Several researchers have
put modeling emphasis on the collision-related effects

of glances directed away from the forward roadway,
e.g. to mirrors or in-vehicle displays. Two phenomena
which have been recurrently addressed in this context
are (a) visual allocation strategies, determining how a
driver will control eyes on/off road behavior; and (b)
off-road glances delaying driver reactions to a potential
forward collision threat at least until gaze is again on
the road ahead.

Smith et al. (2005), studied the safety effects of in-
vehicle information systems, by replaying in simulation
actual recorded vehicle following sequences, including
on/off road glance data. Thus, in this case, there was no
need for a separate model of visual allocation, only the
stimulus-reaction type braking response previously dis-
cussed in the section on delayed constant deceleration
models.

Delorme and Song (2001) proposed a model of driver
behavior for use in traffic microsimulation. The model
was based on structuring the driving task into separate
driving schemata, such as following and overtaking. In
the context of this review, the main importance of this
model was the proposed approach of relating the occur-
rence of speedometer glances and side glances to the
currently active driving schema, and the use of exter-
nally scripted commands to trigger glances relating to
in-vehicle secondary tasks. Deceleration and braking
behavior, available when gaze was on-road, was then
triggered by TTC thresholds and was implemented as
linear control of range and range rate. No validation or
calibration on critical driving situations was provided,
however.

In the attention-based rear-end collision avoidance
model (ARCAM) of T. Brown, Lee, and McGehee
(2000), visual allocation was driven by an uncertainty
regarding the collision potential with respect to a lead
vehicle. In ARCAM, uncertainty increases as a function
of time during off-road glances, and on-road glances are
triggered when uncertainty reaches a threshold level.
Deceleration in response to collision situations is then
delayed by an expectancy-dependent reaction time, and
deceleration magnitude is set as a function of the colli-
sion potential quantity, in closed-loop control (not de-
fined in detail by the authors). ARCAM was validated
to some extent on simulator data, by T. L. Brown, Lee,
and McGehee (2001), and was put to practical use by
J. D. Lee et al. (2002). They used the model to ex-
trapolate from data found in a simulator study on visual
distraction and collision warnings, thus demonstrating
a potential benefit of computer simulation as a comple-
ment to tests with real drivers in the loop.
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Effects of driving skill and driving style. Some au-
thors have studied how to adapt driver behavior models
to represent varying levels of driver skill, as well as dif-
ferent driving styles. This has been done, for example,
in the context of simulation-based estimation of vehicle
handling properties (Data, Pascali, & Santi, 2002), and
to support arguments on how to adapt the dynamics of
an articulated vehicle to suit different driver skill levels
(X. Yang, Rakheja, & Stiharu, 2001).

All of the reviewed models in this group have been
control-theoretic models of avoidance by steering, sim-
ilar to those discussed earlier in this paper, and all have
been applied to double lane change maneuvers: X. Yang
et al. (2001) used a single-point preview model, ex-
tended with provisions for stabilization of truck-trailer
articulation. Data et al. (2002) used a two-level model.
The model of Noh, Jung, Choi, and Yi (2007) per-
formed optimization over a preview horizon. Erséus
(2010) adopted the high-level architecture of MacAdam
(2003), but proposed new formulations for the individ-
ual sub-modules. Irmscher and Ehmann (2004) used
the driver component of a commercial simulation envi-
ronment, but did not describe the driver model in full
detail 4.

Among these authors, only Data et al. (2002) did not
discuss any specific dimensions of driving skill or style.
They varied the preview time and control gain param-
eters of their model, resulting in variations in steering
wheel behavior that were qualitatively similar to what
had been observed for three drivers on a test track.

The other authors listed above have all addressed
driving skill in the parameterizations of their models.
The strongest common denominator has been the treat-
ment of the preview time parameter, which has consis-
tently been set to higher values when representing more
skilled drivers. In the case of X. Yang et al. (2001),
this was also complemented with a lower control gain
setting. Furthermore, all of these authors have mod-
eled less skilled drivers as having slower and more in-
exact steering responses, although achieved in slightly
different ways by different authors. Erséus (2010) and
Irmscher and Ehmann (2004) also increased the accu-
racy of the internal vehicle model as a function of in-
creasing skill. In terms of validation, Noh et al. (2007)
and Erséus (2010) were alone in comparing their results
with real driving data, from a test track and a driving
simulator, respectively.

Additionally, Irmscher and Ehmann (2004) varied
model parameters to capture behavior of aggressive
drivers. These were hypothesized to over-estimate the
cornering abilities of their vehicle, and to use shorter

preview distances and less smooth desired paths. The
combination of low skill and high aggressivity was
shown to result in a driver model that was prone to con-
trol loss in the double lane change maneuver.

Effects of other driver states and characteristics.
In addition to the aspects considered above, several
other driver states and characteristics have been mod-
eled and simulated in the context of collision avoidance.
Some of these contributions come from Salvucci and
colleagues, who use the cognitive architecture ACT-R
(atomic component of thought-rational) to model driver
behavior in general (Salvucci, 2006). ACT-R is mod-
ular, and at its core are a number of buffers, written to
and read from by the various modules and by central IF-
THEN type production rules, firing in series at frequen-
cies up to a maximum rate (typically one production
rule every 50 ms), thus acting as a central bottleneck
for cognition. This cognitive architecture has been used
to model and reproduce a large number of experimental
results (Anderson & Lebiere, 1998).

In two related papers, Salvucci (2002) and Salvucci
and Taatgen (2008) extended the ACT-R driver model
to account for cognitive distraction due to a secondary
task where several words needed to be kept in memory.
In these contributions, both the primary driving task and
the secondary cognitive task were modeled as requiring
repeated firing of production rules in a central process-
ing resource. Since these production rules fired serially,
performance of the cognitive secondary task resulted
in a general slow-down of driving-related processing in
the model, which caused increases in reaction times to
safety-critical lead vehicle braking events, as observed
in a driving simulator experiment.

Salvucci, Chavez, and Lee (2004) modified the ACT-
R model of driving in order to study effects of old age
on brake response, in a situation with risk of stop light
violation, but without intersecting traffic (thus making
the model a borderline case for inclusion in this re-
view). Based on previous work on ACT-R and aging,
they introduced a 13% slow-down of production rule
firing rate, and were thus able to reproduce an interac-
tion effect observed in a test track experiment: When
driving with a visual-manual secondary task, brake re-
action times of both young (25-36 years) and old (>55
years) drivers increased, but the increase was signifi-
cantly greater for the older drivers.

4 Also MacAdam (2001), Prokop (2001), and Ungoren
and Peng (2005) discussed, to some extent, how to param-
eterize their steering models to account for effects of driving
skill and style, but put less emphasis on this issue.
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A similar slow-down due to old age was introduced
by B. Wang et al. (2002), in a control theoretic model
due to Allen (1982), controlling lane position and head-
ing to follow a predefined desired path. B. Wang et
al. studied the behavior of this model for values of its
neuromuscular delay parameter corresponding to sim-
ple task reaction times reported in the experimental lit-
erature (around 0.30 s and 0.45 s, for young and old
drivers, respectively, i.e. an increase of 50% with age).
They also varied the amount of derivative control of
the model, citing previous researchers who found such
control to be less pronounced in older drivers. Their
simulations predicted that aged drivers should perform
worse (deviate more from the desired path, use wider
steering movements, or a combination thereof) during a
single lane change, especially on a low friction road sur-
face, and that they would benefit from a proposed four-
wheel steering control algorithm. These predictions
were not validated on any actual driving data, however.

Age-related slowing of reaction time (by 20%) was
also included in the driver-vehicle simulation model by
Delaigue and Eskandarian (2004), aimed at predicting
total stopping distances of passenger cars in emergency
braking. Based on previous literature, they proposed
a non-driver-specific model of braking foot movement,
triggered by a braking stimulus, but with a driver-
specific reaction time delay. Expressions were provided
for the mean and variance of this delay, as a function of
driver age, driver gender, and degree of expectancy of
the stimulus. However, the driver parts of their model
were not subject to any validation.

Simulation platforms

A number of researchers have proposed entire
platforms for simulation of traffic with collisions
(Furukawa, Seki, & Fujikawa, 2009; Kitaoka et al.,
2009; Wood, Dumbuya, Zhao, Hill, & Thomas, 2003;
Yuhara & Tajima, 2006). This is reminiscent of the
high-level perspective adopted in the previously men-
tioned field of microscopic traffic simulation, although
the driver models reviewed here differ markedly from
the car-following models typically used in that field (see
Brackstone & McDonald, 1999; Helbing, 2001). None
of the reviewed papers provided full specifications of
the driver models, but strong common denominators
can nevertheless be discerned, especially in terms of the
adopted general model architectures, which are clearly
inspired by information processing concepts (Wickens
& Hollands, 2000). In a first step, the proposed driver
models perceive the traffic surroundings, and build a
mental representation of it. Then, based on this rep-

resentation, rule-based decisions on actions are made,
and finally the actions are carried out, in terms of vehi-
cle operation and control.

A majority of the models (Furukawa et al., 2009;
Kitaoka et al., 2009; Yuhara & Tajima, 2006) include
explicit, probabilistic mechanisms for error generation,
at all three stages of processing outlined above. The
errors are introduced in order to have simulations gen-
erate accidents, with the purpose of estimating safety
impacts of various active safety systems. Kitaoka et
al. (2009) and Yuhara and Tajima (2006) also included
basic on/off road visual distraction behavior. Wood et
al. (2003) did not include any explicit accident causa-
tion mechanisms, but instead manually tuned decision-
making of their driver models to reproduce a specific
head-on collision event from real traffic.

Furthermore, Kitaoka et al. (2009) put a stronger
emphasis than the others on driver characteristics and
states, and Yuhara and Tajima (2006) were alone in in-
cluding a specific evasive maneuvering mode, triggered
by a TTC criterion. However, thorough validation on
accident-related data from real traffic seems to be lack-
ing for all models.

Garcia, Libreros, and Contreras (2008) proposed an
infrastructure-oriented simulation platform, aimed at
predicting risk of accidents due to visibility problems
at skewed intersections.

Discussion

The discussion below will focus on three topics,
namely (a) how to choose models for use in future ap-
plications, (b) potential areas for future model devel-
opment, and (c) issues related to model validation and
comparison. Some concluding remarks will also be
made.

Putting the reviewed models to use

The reviewed papers show a wide range of applica-
tions of driver models in computer simulation. Notable
examples of methodologies include the use of simula-
tion for (a) identification of preferable designs for ve-
hicles or infrastructure (see e.g. T. Brown et al., 2001;
Garcia et al., 2008; B. Wang et al., 2002); (b) analysis
of naturalistic driving data, for example to answer what-
if? questions (see e.g. Davis & Swenson, 2006; Fitch et
al., 2008); (c) interpolation within, or extrapolation be-
yond, a limited data set of human driving (see e.g. Kuge
et al., 2006; J. D. Lee et al., 2002); and (d) reconstruc-
tion of accidents (Araszewski et al., 2002; Sugimoto &
Sauer, 2005).
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Other authors have focused less on specific applica-
tions, but have instead used their driver models to for-
malize and test hypotheses on underlying psychologi-
cal mechanisms (Salvucci & Taatgen, 2008; Salvucci et
al., 2004; possibly also e.g. Wada, Doi, et al., 2007;
H. Yang & Peng, 2010; Xin, Hourdos, Michalopoulos,
& Davis, 2008). In other words, it seems that driver
models may be of value in applications, both directly as
components in simulation tools to be used by vehicle or
infrastructure designers, and indirectly as components
in research methodologies providing scientific knowl-
edge that can shape guidelines for design.

Overall, it is clear that a wealth of different driver
models has been proposed, with models of widely vary-
ing forms and modeling paradigms, from the simplest
linear control laws to full cognitive architectures. For
the researcher aiming to use or extend an existing driver
model, the choice of one model from this seemingly
fragmented field of research is not a trivial one, and no
straightforward general recommendations can be pro-
vided here. It seems likely that the high complexity
of driver behavior will continue to force researchers to
limit their modeling scope so as to fit the specific ap-
plication at hand, just as it has for the authors of the
reviewed papers.

As an illustrative and important example, it may be
noted that different authors have had to consider differ-
ent application-specific requirements regarding which
parts of the pre-crash timeline (Fig. 1) to cover. Many
researchers have mainly been interested in the details
of control in near-crash and crash phases, and have thus
not needed to provide any account of why these states
were reached in the first place (see e.g. Delaigue &
Eskandarian, 2004; Jurecki & Stańczyk, 2009, and the
large body of work on avoidance by steering). Other re-
searchers have included in their scope also the low risk
and conflict driving states, and have therefore needed to
incorporate mechanisms causing transitions to the more
critical states: Either visual distraction behavior (see
the section on visual distraction, as well as e.g. Xin,
Hourdos, Michalopoulos, & Davis, 2008), or explicit
error-generating mechanisms (see the section on sim-
ulation platforms, as well as H. Yang & Peng, 2010).
In relation to the qualitative models of accident causa-
tion presented in the background, it may be noted that
the error-centric approach bears clear marks of the in-
formation processing paradigm (Wickens & Hollands,
2000), whereas the visual distraction approach may be
more closely tied to qualitative models such as that of
Engström et al. (in press).

However, some models seem especially recommend-

able for use in future work: (a) The delayed constant de-
celeration models are, despite (or thanks to) their sim-
plicity, noteworthy for having proved useful in a wide
range of applications. The inherent limitations with re-
spect to less critical collision avoidance need to be taken
into account, however. (b) If an application requires a
braking model that can also exhibit non-critical, satis-
ficing deceleration responses, the possible signs of con-
vergence with empirical data seen in Figure 3 suggest
that the models of Wada, Imai, et al. (2007); Wada,
Doi, et al. (2007); Wada et al. (2009) or Gipps (1981)
can provide good starting points. (c) The Xin, Hourdos,
Michalopoulos, and Davis (2008) model, which builds
on the Gipps model, is unique in that it is the only model
in this review to have been fitted to time series data from
actual crashes. (Davis & Swenson, 2006 used the same
data set, but placed less emphasis on driver modeling.)
(d) Among the steering models, those that do not re-
quire explicit definition of a desired collision avoidance
path seem preferable to us, assuming that they can be
further validated on real crash-avoidance data (Gordon
& Best, 2006; Gordon & Magnuski, 2006; Gao & Jiang,
2009). (e) If a steering model using a desired path is
preferred, the approach of Plöchl and Lugner (2000) to
activate a specific mechanism in cases where path devi-
ations become large is noteworthy, since a large instan-
taneous shift of the desired path is one possible concep-
tualization of what occurs in a collision emergency. (f)
Given the current lack of validation of steering models
on real accident situations, it cannot be excluded that
simple open-loop responses, such as those proposed by
Sugimoto and Sauer (2005) or Araszewski et al. (2002),
are good enough for many applications. (g) The ACT-
R models of Salvucci (2006) and colleagues illustrate
the potential benefits of adopting an existing cognitive
architecture that has been subjected to much previous
validation and tuning.

Suggestions for future model development

Comparing the reviewed models with the statements
made in the background section of this paper, some sug-
gestions can be made regarding possible areas for future
model development work.

First of all, it may be noted that among the reviewed
models, the models which address braking only are gen-
erally much simpler in their formulations than the mod-
els involving steering. For example, the braking mod-
els typically operate directly on vehicle acceleration or
speed, rather than on the vehicle’s pedals. For some ap-
plications, more detailed models of collision-avoidance
braking control could therefore prove useful.
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Another observation that can be made is that al-
though some authors have modeled reactions to colli-
sion warnings in various ways (e.g. Fitch et al., 2008;
J. D. Lee et al., 2002; Steigerwald, 2002), none of the
reviewed models have addressed the phenomena of ac-
ceptance, reliance, and behavioral adaptation to long-
term system exposure. This is not a trivial endeavor,
but will be required if driver models are to be used for
generating more than theoretical upper limits for pre-
dicted potential benefits of safety systems. Assuming
a continued increase in proliferation of collision avoid-
ance technology, these aspects of driver behavior are
certainly worthy of modeling efforts.

Additionally, current technological trends point to an
increased presence of support systems providing au-
tonomous braking or steering interventions. Driver
avoidance behavior in interaction with control inter-
ventions from the vehicle may take on qualitatively dif-
ferent forms than non-assisted avoidance, but this as-
pect has not been addressed in any of the reviewed pa-
pers (A possible exception is the paper by Kuge et al.,
2006). Addressing this gap is desirable especially since
intervening systems will require the type of rigorous
testing for which simulation can be an important tool.

Furthermore, some of the reviewed models have been
capable of behaviors such as visual distraction, and oth-
ers have accounted for between-driver variability in col-
lision avoidance control, but the issue of when and why
drivers adopt risky behaviors, such as for example look-
ing away from the road ahead, has not been addressed.
In the terms used by Engström et al. (in press, presented
in the background of this paper), this can be expressed
as simulation models having focused mostly on the re-
active barrier. In general, there is ample room for fur-
ther research regarding simulations with driver models
in the study of accident causation. Among the reviewed
papers, only Davis and Swenson (2006) explicitly ad-
dressed such a goal, studying how rear-end crash re-
sponsibility may be attributable to more than one driver
in a line of traffic. One possibility here could be to
carry out simulations with driver models derived from
competing qualitative models of accident causation, as
a means of clarifying which qualitative models work
best. Furthermore, several factors known to be involved
in accident causation have received limited or no atten-
tion in the reviewed papers. For example, quantitative
models of the effects of alcohol and fatigue on collision
avoidance are absent altogether.

Another notable feature of many of the models, is
the use of engineering practices not in line with cur-
rent knowledge of human psychology. For example,

rather than operating on the type of visual cues that hu-
man drivers seem to use (see e.g. Fajen, 2005; Wann
& Wilkie, 2004), most reviewed models use high res-
olution data regarding, for example, longitudinal and
lateral positions of vehicles. (Exceptions include the
model by Wada, Doi, et al., 2007, and to some extent
also those by H. Yang & Peng, 2010, Xin, Hourdos,
Michalopoulos, & Davis, 2008, and Reński, 2001.) Fur-
thermore, several driver models include features such as
(a) preview, despite arguments that in urgent situations,
control may shift to more short-sighted modes of op-
eration (Hollnagel & Woods, 2005), and (b) advanced
internal vehicle models, despite observations that hu-
man drivers may not have a correct grasp of the dy-
namics of their vehicles (Cloete & Wallis, 2009). In
our opinion, psychology-oriented modelers could ben-
efit from acknowledging that these types of practices
can be powerful in the construction of phenomenolog-
ical models, aimed at reproducing observed behavior
data without necessarily making claims on underlying
psychological (or neurobiological) mechanisms. It may
however also be rightfully suggested to engineering-
oriented modelers that models based on an understand-
ing of such mechanisms could generalize better to wider
scopes of application. In addition, it is our opinion that
there may be logical pitfalls to avoid when using en-
gineering methods, such as taking for granted that an
inexperienced driver behaves as if having an internal
vehicle model that is mathematically simple.

It may also be noted that the types of collision sce-
narios for which driver models have been developed re-
main limited in number, with a heavy focus on rear-
end scenarios. In order to achieve full credibility of
simulation as a safety research approach, models will
at some point need to address more diverse and com-
plex pre-crash scenarios. Similarly, it would seem
relevant to widen the modeling scope to also include
collision-avoidance with other vehicles than passenger
cars. (Among the reviewed papers, X. Yang et al., 2001
provided the only exception.) It could also be relevant
to study to what extent models developed for one type
of scenario or vehicle may be useful for other types.

Related to this issue, the mechanisms governing se-
lection of maneuver type, as a function of the traffic sit-
uation, have not been given more than marginal atten-
tion among the reviewed models. The probabilities for
braking versus steering in the model of Sugimoto and
Sauer (2005) were not situation-dependent, and Jurecki
and Stańczyk (2009) appear not to have put their sta-
tistical observations into simulation-ready model prac-
tice. Furthermore, although some of the reviewed mod-
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els could theoretically reproduce the no-maneuver re-
sponse so often seen in real collision accidents (Wiacek
& Najm, 1999), this aspect has not been studied by any
of the authors.

Thus, there may be a need for considering sepa-
rate modes of collision avoidance control (Hollnagel &
Woods, 2005). Some of the reviewed models do in-
clude specific provisions for urgent situations (Plöchl
& Lugner, 2000; Yuhara & Tajima, 2006; and possibly
Akita et al., 2007), but an analysis of whether or not
this is preferable is lacking. Currently it seems unclear
whether critical avoidance is best modeled with (a) the
same models as for normal avoidance, giving different
response to the critical situation, (b) different parame-
terizations of the normal avoidance models, or (c) dif-
ferent models altogether.

In general, we would argue that none of the reviewed
models have fully adopted the view of critical collision-
avoidance maneuvering as a highly unexpected and un-
usual task. As suggested in the background above, be-
havior may become erratic or random in accident sit-
uations. Furthermore, if drivers do attempt more con-
trolled maneuvers, their perceptual attunement to the
critical situation may be limited, resulting in misinter-
pretations or maladjusted control actions. These aspects
remain largely unexplored in current simulation models
of driver behavior.

Model validation and comparison

Many of the reviewed models are capable of mak-
ing highly detailed predictions on drivers’ use of pedals
and steering wheel during collision avoidance, as well
as the effects on this control of various driver-related
factors. However, validation of the models on relevant
human data has rarely been achieved to the same level
of detail. One important reason for this is probably that
it is far from trivial to collect data on collision avoid-
ance behavior, especially if the data are to be represen-
tative of behavior in unexpected collision situations in
real traffic. Hopefully, recent and ongoing naturalis-
tic driving studies (see e.g. Dingus et al., 2006) can
provide researchers with better possibilities to achieve
good model validation.

It is also clear, however, that even with good data, it is
not evident how to carry out validation. In many papers,
validation seems to have been limited to visual estima-
tion of the match between time-series data on human
and parameter-fitted driver model behavior. Although
far beyond the scope of this discussion, more ambitious
and rigorous methodologies for quantitative validation
of driver models definitely seem to be needed. When

the aim of a model is to test hypotheses on underlying
psychological mechanisms, it needs to be shown that
successful fits of observed data are not simply due to a
highly flexible model (Roberts & Pashler, 2000). In ap-
plied contexts, model flexibility may be less of a prob-
lem, but it still needs to be shown (e.g. by means of
cross-validation or holdout validation techniques; see
Hastie, Tibshirani, & Friedman, 2009, p. 222) that a
proposed parameter set is not the result of over-fitting
to the human behavior data used. Another possible per-
spective is that, due to the stochastic nature of crashes,
validation of models addressing near-collision control
behavior may need to operate rather on distributions of
trajectories or of other measures of behavior. For mod-
els covering also normal driving, the approach of com-
paring simulated crash frequency to accident statistics
(see e.g. H. Yang & Peng, 2010), may be one important
part of a validation methodology.

Regardless of how the agreement between model
and data is quantified, an important future develop-
ment would be an increase in the practice of compar-
ing driver models in actual simulation. Already the
very basic comparisons presented in this review sug-
gest dissimilarities and similarities which may not have
been evident from the mathematical formulations of the
compared models. The left panel of Figure 2 illustrates
the fundamental difference between satisficing and non-
satisficing models of braking. Figure 3 indicates a pos-
sible convergence, in terms of non-critical brake initi-
ation timing, between the models of Gipps (1981) and
Wada et al. (2009) on the one hand, and the data set of
Kiefer et al. (2005) on the other. For researchers who
are mainly interested in whether or not a given simu-
lated scenario results in a collision or not, Figure 4 can
be taken to suggest that it may be enough to adopt a
rather simple model of avoidance by steering: For ex-
ample, all models would have avoided a stationary ob-
stacle at a longitudinal position of 40 m.

In our opinion, comparison of models ought to be
much more frequent in this research field than it cur-
rently is. As is clear from the present review, for a given
traffic scenario or behavioral phenomenon, there are
often several competing driver models, but it is rarely
known how these models differ in terms of their behav-
ior, or in terms of how well they are able to reproduce
the corresponding behavior of human drivers. In order
for novel near-collision behavior models to be of value,
either from a scientific or an applied point of view,
their development should be complemented with com-
parative investigations. Some model developers who
have set good examples in this respect are K. Lee and
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Peng (2004), Ungoren and Peng (2005), and MacAdam
(2003).

Concluding remarks

We have provided a review of recent simulation-
ready models of driver behavior in accident situations
involving on-road collisions. The results show a some-
what fragmented research field, in which many differ-
ent models have been proposed for a wide variety of
applications. However, based on the results obtained
from simulations of existing models, we suggest that,
in some cases, there may be more similarity between
the models than what is immediately apparent from the
corresponding equations.

Some models have been identified that may deserve
attention in future work. However, it has also been em-
phasized that, due to the complexity of the processes be-
ing modeled, it seems likely that for the foreseeable fu-
ture, the scope of requirements to set for a driver model
will need to be strictly limited to fit the intended context
of application.

Specific suggestions for future work on model devel-
opment have been made, but it has also been argued that
a major remaining challenge is an improved paradigm
for validation and comparison of already existing mod-
els.

Key points

• Computer simulation of accident situations holds
promise as a valuable tool for traffic safety research.
• This paper is a review of near-collision driver be-

havior models that are suitable for use in computer sim-
ulation.
• A wide variety of models has been proposed, but

validation on collision-relevant human behavior data
has so far often been limited.
• Simulation-based comparison suggests some non-

trivial similarities between existing models, and further
comparison of this kind is recommended.
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Appendix A
Literature database searches

Databases searched: ARL, IEEE Xplore, ISI Web of
Science, Inspec, PubMed, SAE, Scopus, TRIS.

Search queries varied depending on search syntax
and the features of the individual databases. Example
for Scopus: TITLE-ABS-KEY((collision*
or accident* or incident* or safety
or "driv* support" or "driv*

assistance") AND (simulat* or
quantitative or mathematic* or
model*) AND (driver W/6 model*)) AND
PUBYEAR AFT 1999

Appendix B
Vehicle model parameters

Table B1
: Vehicle model parameters (Thommyppillai et al.,
2009, p. 1538), used when simulating driver steering
models (see Figure 4).
Parameter Symbol Value Unit
Mass M 1400 kg
Yaw inertia Iz 2500 kg m2

Front axle distance a 1.16 m
Rear axle distance b 1.54 m
Steering gear ratio G 17 -
Stiffness factor Bm 11.5 -
Shape factor Cm 1.3 -
Peak factor Dm 2500 N
Curvature factor Em 0.3 -


