59,229 research outputs found

    Applying psychological science to the CCTV review process: a review of cognitive and ergonomic literature

    Get PDF
    As CCTV cameras are used more and more often to increase security in communities, police are spending a larger proportion of their resources, including time, in processing CCTV images when investigating crimes that have occurred (Levesley & Martin, 2005; Nichols, 2001). As with all tasks, there are ways to approach this task that will facilitate performance and other approaches that will degrade performance, either by increasing errors or by unnecessarily prolonging the process. A clearer understanding of psychological factors influencing the effectiveness of footage review will facilitate future training in best practice with respect to the review of CCTV footage. The goal of this report is to provide such understanding by reviewing research on footage review, research on related tasks that require similar skills, and experimental laboratory research about the cognitive skills underpinning the task. The report is organised to address five challenges to effectiveness of CCTV review: the effects of the degraded nature of CCTV footage, distractions and interrupts, the length of the task, inappropriate mindset, and variability in people’s abilities and experience. Recommendations for optimising CCTV footage review include (1) doing a cognitive task analysis to increase understanding of the ways in which performance might be limited, (2) exploiting technology advances to maximise the perceptual quality of the footage (3) training people to improve the flexibility of their mindset as they perceive and interpret the images seen, (4) monitoring performance either on an ongoing basis, by using psychophysiological measures of alertness, or periodically, by testing screeners’ ability to find evidence in footage developed for such testing, and (5) evaluating the relevance of possible selection tests to screen effective from ineffective screener

    Illumination invariant stationary object detection

    Get PDF
    A real-time system for the detection and tracking of moving objects that becomes stationary in a restricted zone. A new pixel classification method based on the segmentation history image is used to identify stationary objects in the scene. These objects are then tracked using a novel adaptive edge orientation-based tracking method. Experimental results have shown that the tracking technique gives more than a 95% detection success rate, even if objects are partially occluded. The tracking results, together with the historic edge maps, are analysed to remove objects that are no longer stationary or are falsely identified as foreground regions because of sudden changes in the illumination conditions. The technique has been tested on over 7 h of video recorded at different locations and time of day, both outdoors and indoors. The results obtained are compared with other available state-of-the-art methods

    Autonomous real-time surveillance system with distributed IP cameras

    Get PDF
    An autonomous Internet Protocol (IP) camera based object tracking and behaviour identification system, capable of running in real-time on an embedded system with limited memory and processing power is presented in this paper. The main contribution of this work is the integration of processor intensive image processing algorithms on an embedded platform capable of running at real-time for monitoring the behaviour of pedestrians. The Algorithm Based Object Recognition and Tracking (ABORAT) system architecture presented here was developed on an Intel PXA270-based development board clocked at 520 MHz. The platform was connected to a commercial stationary IP-based camera in a remote monitoring station for intelligent image processing. The system is capable of detecting moving objects and their shadows in a complex environment with varying lighting intensity and moving foliage. Objects moving close to each other are also detected to extract their trajectories which are then fed into an unsupervised neural network for autonomous classification. The novel intelligent video system presented is also capable of performing simple analytic functions such as tracking and generating alerts when objects enter/leave regions or cross tripwires superimposed on live video by the operator

    PlaceRaider: Virtual Theft in Physical Spaces with Smartphones

    Full text link
    As smartphones become more pervasive, they are increasingly targeted by malware. At the same time, each new generation of smartphone features increasingly powerful onboard sensor suites. A new strain of sensor malware has been developing that leverages these sensors to steal information from the physical environment (e.g., researchers have recently demonstrated how malware can listen for spoken credit card numbers through the microphone, or feel keystroke vibrations using the accelerometer). Yet the possibilities of what malware can see through a camera have been understudied. This paper introduces a novel visual malware called PlaceRaider, which allows remote attackers to engage in remote reconnaissance and what we call virtual theft. Through completely opportunistic use of the camera on the phone and other sensors, PlaceRaider constructs rich, three dimensional models of indoor environments. Remote burglars can thus download the physical space, study the environment carefully, and steal virtual objects from the environment (such as financial documents, information on computer monitors, and personally identifiable information). Through two human subject studies we demonstrate the effectiveness of using mobile devices as powerful surveillance and virtual theft platforms, and we suggest several possible defenses against visual malware

    Search Tracker: Human-derived object tracking in-the-wild through large-scale search and retrieval

    Full text link
    Humans use context and scene knowledge to easily localize moving objects in conditions of complex illumination changes, scene clutter and occlusions. In this paper, we present a method to leverage human knowledge in the form of annotated video libraries in a novel search and retrieval based setting to track objects in unseen video sequences. For every video sequence, a document that represents motion information is generated. Documents of the unseen video are queried against the library at multiple scales to find videos with similar motion characteristics. This provides us with coarse localization of objects in the unseen video. We further adapt these retrieved object locations to the new video using an efficient warping scheme. The proposed method is validated on in-the-wild video surveillance datasets where we outperform state-of-the-art appearance-based trackers. We also introduce a new challenging dataset with complex object appearance changes.Comment: Under review with the IEEE Transactions on Circuits and Systems for Video Technolog

    Are object detection assessment criteria ready for maritime computer vision?

    Get PDF
    Maritime vessels equipped with visible and infrared cameras can complement other conventional sensors for object detection. However, application of computer vision techniques in maritime domain received attention only recently. The maritime environment offers its own unique requirements and challenges. Assessment of the quality of detections is a fundamental need in computer vision. However, the conventional assessment metrics suitable for usual object detection are deficient in the maritime setting. Thus, a large body of related work in computer vision appears inapplicable to the maritime setting at the first sight. We discuss the problem of defining assessment metrics suitable for maritime computer vision. We consider new bottom edge proximity metrics as assessment metrics for maritime computer vision. These metrics indicate that existing computer vision approaches are indeed promising for maritime computer vision and can play a foundational role in the emerging field of maritime computer vision

    Real time sobel square edge detector for night vision analysis

    Get PDF
    Vision analysis with low or no illumination is gaining more and more attention recently, especially in the fields of security surveillance and medical diagnosis. In this paper, a real time sobel square edge detector is developed as a vision enhancer in order to render clear shapes of object in targeting scenes, allowing further analysis such as object or human detection, object or human tracking, human behavior recognition, and identification on abnormal scenes or activities. The method is optimized for real time applications and compared with existing edge detectors. Program codes are illustrated in the content and the results show that the proposed algorithm is promising to generate clear vision data with low noise

    A search for Earth-crossing asteroids, supplement

    Get PDF
    The ground based electro-optical deep space surveillance program involves a network of computer controlled 40 inch 1m telescopes equipped with large format, low light level, television cameras of the intensified silicon diode array type which is to replace the Baker-Nunn photographic camera system for artificial satellite tracking. A prototype observatory was constructed where distant artificial satellites are discriminated from stars in real time on the basis of the satellites' proper motion. Hardware was modified and the technique was used to observe and search for minor planets. Asteroids are now routinely observed and searched. The complete observing cycle, including the 2"-3" measurement of position, requires about four minutes at present. The commonality of asteroids and artificial satellite observing, searching, data reduction, and orbital analysis is stressed. Improvements to the hardware and software as well as operational techniques are considered
    corecore