507 research outputs found

    Image Restoration Techniques Using Fusion to Remove Motion Blur

    Get PDF
    Restoration techniques are oriented towards modelling the degradation and applying inverse process to recover the original image. The image gets blurred due to relative motion between object and detector (Motion Blur), and/or improperly focused image capturing device. This work presents a comparison of different image restoration process where, different filtering method are used with RL-Deconvolutionfor different applications. The proposed approach combines two different restoration method by using DWT

    Modulation Transfer Function Compensation Through A Modified Wiener Filter For Spatial Image Quality Improvement.

    Get PDF
    Kebergunaan data imej yang diperolehi dari suatu sensor pengimejan amat bergantung kepada keupayaan sensor tersebut untuk meresolusikan perincian spatial ke satu tahap yang boleh diterima. The usefulness of image data acquired from an imaging sensor critically depends on the ability of the sensor to resolve spatial details to an acceptable level

    Colour depth-from-defocus incorporating experimental point spread function measurements

    Get PDF
    Depth-From-Defocus (DFD) is a monocular computer vision technique for creating depth maps from two images taken on the same optical axis with different intrinsic camera parameters. A pre-processing stage for optimally converting colour images to monochrome using a linear combination of the colour planes has been shown to improve the accuracy of the depth map. It was found that the first component formed using Principal Component Analysis (PCA) and a technique to maximise the signal-to-noise ratio (SNR) performed better than using an equal weighting of the colour planes with an additive noise model. When the noise is non-isotropic the Mean Square Error (MSE) of the depth map by maximising the SNR was improved by 7.8 times compared to an equal weighting and 1.9 compared to PCA. The fractal dimension (FD) of a monochrome image gives a measure of its roughness and an algorithm was devised to maximise its FD through colour mixing. The formulation using a fractional Brownian motion (mm) model reduced the SNR and thus produced depth maps that were less accurate than using PCA or an equal weighting. An active DFD algorithm to reduce the image overlap problem has been developed, called Localisation through Colour Mixing (LCM), that uses a projected colour pattern. Simulation results showed that LCM produces a MSE 9.4 times lower than equal weighting and 2.2 times lower than PCA. The Point Spread Function (PSF) of a camera system models how a point source of light is imaged. For depth maps to be accurately created using DFD a high-precision PSF must be known. Improvements to a sub-sampled, knife-edge based technique are presented that account for non-uniform illumination of the light box and this reduced the MSE by 25%. The Generalised Gaussian is presented as a model of the PSF and shown to be up to 16 times better than the conventional models of the Gaussian and pillbox

    Encoding of relative location of intensity changes in human spatial vision

    Get PDF
    The psychophysical experiments and numerical modelling reported in the present study are an investigation into the encoding of relative location of intensity changes in the human visual system. The study attempted, successfully, to explain some geometric illusions resulting from closely spaced image features ('crowding'), and determined the nature of information necessary for making judgments about the separation of intensity changes for different stimulus configurations. Experiments performed fell into two basic categories; those concerned with spatial interference, and studies of spatial interval judgments. The first set of experiments, studying spatial interference with relative localisation for intensity changes, was based on measurements made with stimuli composed of lowpass filtered bars and edges. The most successful model, which accounted for all of the data, was Watt and Morgan's (1984, 1985) MIRAGE; the results suggest that a good explanation of some geometric illusions can be derived using the principles of low-level vision. Spatial interference is strong evidence for combination of information across spatial scales, and the MIRAGE algorithm makes some highly accurate predictions. Relating the separation of image features is a fundamental task for the visual system, but there is no clear understanding of what information the system has available to perform this task. The second set of experiments explored the perception of separation, and precision of judgments of separation, for bars with a variety of orthoaxial contrast profiles. The data indicate that information is combined across spatial scales (as in MIRAGE) under certain circumstances in making separation judgments; this combination of information across scale occurs when the information on the scales combined is in agreement (ie. all scales have some task-related information), but when variance is added on coarser scales which is not relevant to the task, the system is capable of selecting the finest scales of filters available, and using only the information in the finest scale. This adaptive scale-selection process operates even at very brief exposure durations

    Moving-object reconstruction from camera-blurred sequences using interframe and interregion constraints

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1988.Includes bibliographical references.Supported by the AT&TFoundation through a Bell Laboratories Ph.D. scholarship.Stephen Charles Hsu

    Denoising techniques - a comparison

    Get PDF
    Visual information transmitted in the form of digital images is becoming a major method of communication in the modern age, but the image obtained after transmission is often corrupted with noise. The received image needs processing before it can be used in applications. Image denoising involves the manipulation of the image data to produce a visually high quality image. This thesis reviews the existing denoising algorithms, such as filtering approach, wavelet based approach, and multifractal approach, and performs their comparative study. Different noise models including additive and multiplicative types are used. They include Gaussian noise, salt and pepper noise, speckle noise and Brownian noise. Selection of the denoising algorithm is application dependent. Hence, it is necessary to have knowledge about the noise present in the image so as to select the appropriate denoising algorithm. The filtering approach has been proved to be the best when the image is corrupted with salt and pepper noise. The wavelet based approach finds applications in denoising images corrupted with Gaussian noise. In the case where the noise characteristics are complex, the multifractal approach can be used. A quantitative measure of comparison is provided by the signal to noise ratio of the image

    Reduced and coded sensing methods for x-ray based security

    Full text link
    Current x-ray technologies provide security personnel with non-invasive sub-surface imaging and contraband detection in various portal screening applications such as checked and carry-on baggage as well as cargo. Computed tomography (CT) scanners generate detailed 3D imagery in checked bags; however, these scanners often require significant power, cost, and space. These tomography machines are impractical for many applications where space and power are often limited such as checkpoint areas. Reducing the amount of data acquired would help reduce the physical demands of these systems. Unfortunately this leads to the formation of artifacts in various applications, thus presenting significant challenges in reconstruction and classification. As a result, the goal is to maintain a certain level of image quality but reduce the amount of data gathered. For the security domain this would allow for faster and cheaper screening in existing systems or allow for previously infeasible screening options due to other operational constraints. While our focus is predominantly on security applications, many of the techniques can be extended to other fields such as the medical domain where a reduction of dose can allow for safer and more frequent examinations. This dissertation aims to advance data reduction algorithms for security motivated x-ray imaging in three main areas: (i) development of a sensing aware dimensionality reduction framework, (ii) creation of linear motion tomographic method of object scanning and associated reconstruction algorithms for carry-on baggage screening, and (iii) the application of coded aperture techniques to improve and extend imaging performance of nuclear resonance fluorescence in cargo screening. The sensing aware dimensionality reduction framework extends existing dimensionality reduction methods to include knowledge of an underlying sensing mechanism of a latent variable. This method provides an improved classification rate over classical methods on both a synthetic case and a popular face classification dataset. The linear tomographic method is based on non-rotational scanning of baggage moved by a conveyor belt, and can thus be simpler, smaller, and more reliable than existing rotational tomography systems at the expense of more challenging image formation problems that require special model-based methods. The reconstructions for this approach are comparable to existing tomographic systems. Finally our coded aperture extension of existing nuclear resonance fluorescence cargo scanning provides improved observation signal-to-noise ratios. We analyze, discuss, and demonstrate the strengths and challenges of using coded aperture techniques in this application and provide guidance on regimes where these methods can yield gains over conventional methods

    Modeling and applications of the focus cue in conventional digital cameras

    Get PDF
    El enfoque en cámaras digitales juega un papel fundamental tanto en la calidad de la imagen como en la percepción del entorno. Esta tesis estudia el enfoque en cámaras digitales convencionales, tales como cámaras de móviles, fotográficas, webcams y similares. Una revisión rigurosa de los conceptos teóricos detras del enfoque en cámaras convencionales muestra que, a pasar de su utilidad, el modelo clásico del thin lens presenta muchas limitaciones para aplicación en diferentes problemas relacionados con el foco. En esta tesis, el focus profile es propuesto como una alternativa a conceptos clásicos como la profundidad de campo. Los nuevos conceptos introducidos en esta tesis son aplicados a diferentes problemas relacionados con el foco, tales como la adquisición eficiente de imágenes, estimación de profundidad, integración de elementos perceptuales y fusión de imágenes. Los resultados experimentales muestran la aplicación exitosa de los modelos propuestos.The focus of digital cameras plays a fundamental role in both the quality of the acquired images and the perception of the imaged scene. This thesis studies the focus cue in conventional cameras with focus control, such as cellphone cameras, photography cameras, webcams and the like. A deep review of the theoretical concepts behind focus in conventional cameras reveals that, despite its usefulness, the widely known thin lens model has several limitations for solving different focus-related problems in computer vision. In order to overcome these limitations, the focus profile model is introduced as an alternative to classic concepts, such as the near and far limits of the depth-of-field. The new concepts introduced in this dissertation are exploited for solving diverse focus-related problems, such as efficient image capture, depth estimation, visual cue integration and image fusion. The results obtained through an exhaustive experimental validation demonstrate the applicability of the proposed models

    Bayesian image restoration and bacteria detection in optical endomicroscopy

    Get PDF
    Optical microscopy systems can be used to obtain high-resolution microscopic images of tissue cultures and ex vivo tissue samples. This imaging technique can be translated for in vivo, in situ applications by using optical fibres and miniature optics. Fibred optical endomicroscopy (OEM) can enable optical biopsy in organs inaccessible by any other imaging systems, and hence can provide rapid and accurate diagnosis in a short time. The raw data the system produce is difficult to interpret as it is modulated by a fibre bundle pattern, producing what is called the “honeycomb effect”. Moreover, the data is further degraded due to the fibre core cross coupling problem. On the other hand, there is an unmet clinical need for automatic tools that can help the clinicians to detect fluorescently labelled bacteria in distal lung images. The aim of this thesis is to develop advanced image processing algorithms that can address the above mentioned problems. First, we provide a statistical model for the fibre core cross coupling problem and the sparse sampling by imaging fibre bundles (honeycomb artefact), which are formulated here as a restoration problem for the first time in the literature. We then introduce a non-linear interpolation method, based on Gaussian processes regression, in order to recover an interpretable scene from the deconvolved data. Second, we develop two bacteria detection algorithms, each of which provides different characteristics. The first approach considers joint formulation to the sparse coding and anomaly detection problems. The anomalies here are considered as candidate bacteria, which are annotated with the help of a trained clinician. Although this approach provides good detection performance and outperforms existing methods in the literature, the user has to carefully tune some crucial model parameters. Hence, we propose a more adaptive approach, for which a Bayesian framework is adopted. This approach not only outperforms the proposed supervised approach and existing methods in the literature but also provides computation time that competes with optimization-based methods
    corecore