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Abstract. This investigation is concerned with reconstructing the original images of a
scene's overlapping moving surfaces, given a sequence of frames blurred by camera inte-
gration. Conventional image formation models do not account for the blurred transition
zone at the interface between images of occluding surfaces moving with different velocities,
and unique reconstruction of a surface is impossible using only intraframe, intraregion data.
Specifically, the component of the input signal that is periodic with wavelength equal to
the blur distance (exclusive of any DC level) is unrecoverable, and its absence leaves a vis-
ible artifact in the deblurred image when the blur is not minute compared to the size of
the surface. Most existing approaches to resolving ambiguity rely on a priori information
about the signal to be recovered. The approach proposed here exploits constraints from
multiple frames and multiple overlapping surfaces to achieve more complete restoration.
Once it is assumed that the positions of all surfaces and boundaries are known throughout
time, restoration is a linear measurement-inversion problem: in this respect the treatment
is routine. The novel aspect of this work is a coherent theory of the determinacy of recon-
struction as a function of surface and boundary velocities, making use of the correct model
of transition zones. Feasibility of the approach is studied by-examining its performance
with noise, sampling, and errors in system identification.

Three prototype reconstruction problems are examined, primarily for a simple one-
dimensional model of blurred image formation and reconstruction. (1) Intraregion re-
construction processes observations in the interior of a blurred region, avoiding transition
zones. (2) Transition zone compensation augments the intraregion problem with data from
a blurred boundary, assuming that prior knowledge of the contribution of one side to the
zone allows it to be subtracted off at the outset. (3) Interregion reconstruction also uses
data from the blurred boundary, replacing prior knowledge of one side with the requirement
that the boundary move in lockstep with one side. Each reconstruction problem is analyzed
by finding the nullspace of the linear transformation that maps input surface images to a set
of blurred observations in one or more frames. The predictions of unrecoverable components
are confirmed by computing the expected MSE of a linear least-squares reconstruction given
random process input signals and by visually inspecting a restored test picture.

It is found that the new methods can produce deblurred images of better quality than
the conventional intraframe, intraregion approach. Due to the existence of unfavorable
combinations of velocities, however, the constraints are not guaranteed to determine the
original input signal uniquely. Furthermore, observation noise and boundary position esti-
mation errors may weaken the advantage of transition zone compensation and interregion
reconstruction over the conventional approach.

Thesis Supervisor: Dr. William F. Schreiber

Title: Professor of Electrical Engineering
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Chapter 0

Introduction

Many advances in the main areas of electronic picture processing-image coding, image

enhancement, and image restoration-can be attributed to a growing use of scene analysis

and image understanding techniques in problems formerly approached by signal processing

alone. The image models employed have progressed from purely intensity-based represen-

tations to those containing increasing levels of scene semantics. More to the point, use of

the optical flow field of a time-varying image makes various image processing procedures

more efficient and less detrimental to the picture quality. Interframe image coding, noise

reduction, and spatial or temporal sampling rate conversion are the applications of motion

compensation previously investigated. On the other hand, the area of image deconvolution

has not yet been touched by dynamic scene analysis.

The ultimate goal of this research is to reconstruct the original images of a scene's

overlapping moving surfaces, given a sequence of frames blurred by camera integration.

The individual deblurred images may be used directly for object recognition and inspection

tasks, or may be combined through animation to synthesize the image sequence that would

be recorded by an ideal non-integrating camera, at any desired frame rate. Sharp images

are welcomed in scientific, industrial, biomedical, security, and entertainment applications.

The primary concern of this thesis is the problem of motion-blurred image restoration

subsequent to analysis of the scene configuration. Conventional image formation models

do not account for the blurred transition zone at the interface between images of occluding

surfaces moving with different velocities, and unique reconstruction of a surface is impossible

using only intraframe, intraregion data. Specifically, the component of the input signal

13
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Figure 0.1: General model of image formation

that is periodic with wavelength equal to the blur distance (exclusive of any DC level) is

unrecoverable, and its absence leaves a visible artifact in the deblurred image when the blur

is not minute compared to the size of the surface. Most existing approaches to resolving

ambiguity rely on a priori information about the signal to be recovered. The approach

proposed here exploits constraints from multiple frames and multiple overlapping surfaces

to achieve more complete restoration. Once it is assumed that the positions of all surfaces

and boundaries are known throughout time, restoration is a linear measurement-inversion

problem: in this respect the treatment is routine. The novel aspect of this work is a coherent

theory of the determinacy of reconstruction as a function of surface and boundary velocities,

making use of the correct model of transition zones. Feasibility of the approach is studied

by examining its performance with noise, sampling, and errors in system identification.

0.1 Model of Image Formation

A fairly general model of image formation is shown in Figure 0.1. Three-dimensional objects

moving through space are illuminated, and a two-dimensional scene is formed by perspective

projection. A sequence of blurred images is then recorded by the camera, a noisy nonlinear

spatio-temporal filter and sampler. This research, however, considers only the much simpler

model of Figure 0.2. Flat, rigid, opaque surfaces bearing time-invariant brightness patterns

undergo time-varying shifts. As represented by a switch, one surface is visible at every

14
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scene camera

Surface 1 Shft

Surfaoce n ~Sh ft

f H

Figure 0.2: Simple model of image formation used in this research

location according to the arrangement of surfaces in depth. A permissible scene is shown in

Figure 0.3. A noisy linear camera contains a temporal integrator and sampler, and a spatial

filter and sampler. In this model, image reconstruction is the problem of estimating the

union of input surface patterns, symbolized by f, given the union of output frames, g. The

entire chain of processes in the scene and camera is denoted by H, a linear transformation

specified by the shifts and switch positions.

The simple model is restrictive in some aspects but flexible in others. The translatory

motion assumption forbids scenes containing deformable objects, rotation, or translation

in depth. Violation does not ipso facto preclude reconstruction, since the system H is

always defined. The assumption certainly facilitates the task of scene analysis, but the most

important reason for it is mathematical tractability, so that the system can be analyzed

in closed form. On the other hand, since boundaries are not assumed to move in lockstep

with a surface, objects are permitted to undergo erosion or dilation at edges. The model

allows for such changes in shape because each input surface can be thought of as extending

to infinity in all directions, using the switch to define the part actually visible.

A further simplifying assumption will be maintained in all but one chapter of this thesis:

surfaces may only translate horizontally. In this event, points on different rows do not

interact during the process of forming blurred frames. A convenient simplification, therefore,

is to process each line of the image sequence separately. While it may be suboptimal to

ignore interline dependencies, it is easier to study image formation, scene analysis, and

15
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d

Figure 0.3: Snapshot of scene permissible under the simple model

image reconstruction for a time-varying image with only one spatial dimension.

0.2 Outline of the Thesis

Following this introduction, the thesis consists of six chapters and concluding remarks. The

first four chapters deal with the uniqueness of reconstruction from a theoretical standpoint,

while the last two chapters consider practical issues. Accordingly, perfect knowledge of the

system H and noiseless, spatially continuous data are assumed in the beginning.

Chapter 1 examines the motivations for this research, namely, the underdeterminacy

of image deconvolution when only-one frame and one surface is processed at a time. The

input signal components that are completely annihilated by the blurring system are deemed

unobservable modes. Signal modeling approaches to resolving ambiguity are reviewed.

Chapter 2 develops the principal results of this thesis, for one-dimensional blur and

reconstruction. Three scenarios are examined-intraregion reconstruction, reconstruction

after transition zone compensation, and uncompensated interregion reconstruction-using

one or more frames of data. The structure of the nullspace of H is found to vary sys-

tematically with the velocities of boundaries and surfaces adjacent in space or time. This

effort yields necessary and sufficient conditions on velocity quotients for unique reconstruc-
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tion. Some predictions are surprising; for example, rational and irrational quotients impart

different properties to H.

Chapters 3 and 4 partially extend -the foregoing results to observations with arbitrary

camera integration time and to linear motion in two dimensions, respectively. These

chapters are not essential to the sequel and may be skipped without loss of continuity.

Chapter 5 takes up the issues of noisy and discretized data, using linear least squares

estimation to measure performance characteristics and produce test pictures. Experiments

confirm the predicted structure of the nullspace and demonstrate that the new approach of

this thesis can be an improvement over the conventional intraframe, intraregion restoration,

even with less than perfect data. Noise and finite bandwidth are found to bridge the gap

between physical reality and the theoretical curiosities of previous chapters.

Chapter 6 barely scratches the surface on another practical issue, the sensitivity of

reconstruction to errors in identifying the system H. Specifically, the artifacts induced

by errors in boundary position and blur estimates are displayed. An accurate method of

local boundary estimation based on minimizing the linear least squares cost function is

established.

When the simple image formation model is valid, this thesis shows that reconstruction

via interframe and interregion constraints has three principal limitations: first, certain

velocity combinations will create unobservable modes that no number of frames can recover;

second, high SNR is needed for the interregion constraints to be reliable; third, robust

segmentation is a prerequisite. Much work is still required before fully automatic, real-time

image sequence restoration can be carried out. Nevertheless, the subject of this thesis is

another excellent illustration of the manifold benefits of dynamic scene analysis in image

processing.

17
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Chapter 1

Underdeterminacy of

Conventional Restoration

This chapter introduces the restoration problem for one-dimensional signals, demonstrating

that a single motion-blurred frame does not contain enough information to uniquely recon-

struct the input. It is found that a priori signal models do not reliably resolve this ambiguity.

These limitations suggest that in order to restore even- one object in a blurred image se-

quence, it is necessary to exploit couplings between multiple objects and frames-the focus

of this thesis investigation.

1.1 Motion Blur and Deconvolution

Two elementary explanations of underdeterminacy and its consequences will be presented.

First, the conventional frequency-domain formulation of the image restoration problem as-

sumes support on the infinite interval and shift-invariant blur. This explanation is indirect

because physical observations have finite spatial extent. Second, a signal-domain formula-

tion provides a boundary condition interpretation.

When the surface displacement during the exposure of one frame is b, the point spread

function is a rectangular pulse of length b. The frequency response is the sinc function

sin bw/2
H(w) = be,2

with transmission zeros at w 2b 4 , ... (Figure 1.1). Image restoration is, roughly speak-

ing, the problem of finding F(w) given G(w) = H(w)F(w). The obvious solution is inverse

19
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Figure 1.1: Frequency response of motion blur

filtering, i.e., PF(w) = -G(w). However, restoration is an underdetermined problem be-

cause Fourier components of the input signal at the zero frequencies are nulled out by the

blur, and their amplitudes cannot be determined from the blurred signal alone. In other

words:

The component of the input signal that is periodic with wavelength b (exclusive of any DC

level) is unobservable.

On the infinite interval, the unobservable component contains 0% of the signal energy

as long as F(w) is bounded at the zeros, since the latter occupy a vanishingly small fraction

of the spectrum. Hence, failure to recover this component is usually inconsequential. If

the observation is windowed to a finite interval, though, the periodic component is still

unobservable, but now its share of the total energy in a finite segment of the input signal

can be a positive fraction.

In the absence of additional a priori or a posteriori information, the resulting ambiguity

in certain components of the image may have undesirable visible consequences. A trivial

way to deal with ambiguity is the pseudoinverse method of image restoration, which sets

the unobservable component to zero but recovers all other components perfectly (in the

absence of noise). For example, the input signal segment in Figure 1.2a is decomposed

into its periodic and nonperiodic components, with respect to horizontal motion blur of

one-eighth the input signal width. A noiseless blurred image restored by the pseudoinverse

method would look like Figure 1.2d. The characteristic artifact of motion blur restoration

20



(a)
Original

(c)
Unobservable
component

(b)
Blurred

(d)
Observable
component

Figure 1.2: Orthogonal decomposition of an image:
(a) original;
(b) motion-blurred image;
(c) periodic component with respect to this blur (re
dynamic range expanded by 2.8);
(d) non-periodic component recovered by pseudoini

produced with DC shift and

rerse.
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is a "ghost"-like periodic replication of prominent image features. In fact, all parts of the

surface contribute with equal weight to the unobservable component. Although an artifact

is usually thought of as an added perturbation, this artifact is really caused by absence of

an internal component of the desired signal.

The power in this unobservable component is 4% of the variance of the original image.

Since this percentage seems surprisingly large, its order of magnitude can be checked by the

following argument. A segment of length L from a signal of bandwidth r has L independent

dimensions or degrees of freedom, while the subspace of signals with DC-free periods of

length b has b - 1 degrees of freedom. Therefore, for a spectrally white image the fraction

of unobservable energy is (b- 1)/L, or 11% for the above example. Since the image is really

low-pass, the actual unobservable energy is less.

For purposes of this investigation, the simple Fourier transform description of degrada-

tion and restoration is deficient. Some reasons for abandoning the frequency domain are

the following:

1. The Fourier transform is defined as an integral on (-oo, oo). Unless prior considera-

tions (e.g., finite support input signal) dictate that the blurred image is zero outside

the observation interval, the Fourier transform of the output signal, G(w), is not

completely specified by a finite-length observation.

Moreover, it does not help to represent the impulse response and finite-length signals

by Fourier series, because the observed image segment is not generated by circular

convolution.

2. The frequency response H(w) does not readily explain the nonzero energy in the

unobservable component of reconstruction from a finite, noise-free observation of a

blurred image.

3. The concept of frequency response is restricted to shift-invariant convolutions and

cannot describe the blurred image formed by overlapping surfaces moving at different

speeds.

4. The Fourier representation does not show how side information gathered in the signal

domain can overcome underdeterminacy.
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Accordingly, the theory of reconstruction from multiple frames and multiple surfaces will

be expressed in terms of linear transformations in the signal domain.

A signal-domain description of motion-blur restoration is straightforward and provides

another explanation of underdeterminacy in conventional restoration. This discussion as-

sumes that the observed signal segment, of finite or infinite length, is produced by shift-

invariant motion blur; a segment that lies entirely inside a uniformly translating region

satisfies this requirement. A signal f(z) filtered by impulse response h(z) can be recovered

exactly from blurred signal g(x) by applying any inverse filter whose impulse response k(z)

satisfies

-ooh(x) * k(x) = J h(x - u)k(u) du = (x).
Any convolutional inverse for h(x) must be IIR (infinite impulse response), for the convo-

lution of two finite support signals can only have longer support than either input and thus

could not be 6(x). Both one-sided (causal, anticausal) and two-sided inverse filters exist for

deconvolution of motion blur, but the following causal filter is the most revealing:

00

kcausa,(x) = b6(')(x - rb),
r=O

where b is the amount of blur and 6(1) is the doublet d6(x).

f(x) = kcuI() * g(x) is recursively computable by

f(x) = f(x - b)+ bg(z), (1.1)

provided that suitable boundary conditions on f(z) are given-for instance, if f(z) is known

on some interval of length b [Slepian67, Woods85, Ku86]. In general, however, such knowl-

edge is unavailable and so the periodic component is unconstrained. One could try to guess

f(x) on an interval of length b, but any error f(x) - f(z) will be propagated periodically.

Often this error is correlated with the true signal, giving rise to ghost artifacts of period b.

Yet another explanation of underdeterminacy is that any finite observation interval

in the blurred signal depends on an input signal interval longer by the amount b. The

corresponding system of linear equations has more unknowns than equations, so to speak.

Therefore, the observation cannot uniquely specify the original signal.

In summary, a signal f(x) to be recovered from a finite segment of a motion-blurred

recording can be expressed as the sum of its observable and unobservable components:

f(z) = fobs(X) + funobs(x).
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Until fnob(x) is pinned down, there exists a whole space of reconstructions that are con-

sistent with the data.
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1.2 Resolving Underdeterminacy by Signal Modeling

There are basically two complementary strategies leading to estimation of the unobserv-

able periodic component: utilizing a signal model or expanding the observation domain.

The former exploits a priori expectations concerning the unknown signal but ignores the

possibility of using observations in spatial or temporal proximity to the initial domain; the

latter exploits interframe and interregion relationships but largely ignores signal properties.

Neither strategy alone reliably reconstructs the unobservable component, so both should

be considered in any practical system for restoring motion-blurred image sequences. Signal

modeling approaches, to be surveyed in this section, fail if the model is inappropriate for the

specific image to be restored. Constraints from an expanded observation set are insufficient

for unique reconstruction if unfavorable surface and boundary velocity relationships hold,

as demonstrated in the rest of this thesis.

A signal model disambiguates funob8(x) by favoring some choices of f(x) in the space

of consistent reconstructions. The preference is expressed through a cost functional J(f).

Many different models have appeared in the signal reconstruction literature, but the best

choice depends on the kind of signal to be recovered-e.g., continuous-tone imagery, bilevel

patterns, power spectra, probability density functions-as well as the specific observation

model, such as shift-invariant convolution or tomographic projections. Therefore, not all

of the following approaches are suitable for restoring natural images degraded by uniform

motion blur.

1.2.1 Deterministic Models

Deterministic properties of the unknown signal can sometimes narrow the set of acceptable

reconstructions. These are often expressed as inequality or equality constraints on functions

of individual samples or groups of samples. Possibilities are constraints on total energy,

support, and minimum/maximum value. For example, a range constraint can be expressed

by

Cls- BI, if s > B;

J(f) = f)(x)] dz, [s] = , if A < s < B; (1.2)

Cls-Al, if s < A.

Neither energy nor support makes sense for the kind of signals considered in this research,

but even dynamic range is practically useless because most samples of fobs(x) should be far
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away from the clipping levels and would satisfy the constraint for many choices of funobs(X)-

1.2.2 - Statistical Models

Many approaches seek to maximize the likelihood of f(z) or some other quantity based on

an underlying statistical model for the unknown signal. Since simple models can hardly

begin to describe natural scenes, it may be best to think of cost functionals J(f) as merely

recipes for selecting f(x), disregarding any probabilistic connotations.

1. The statistics most commonly available (or assumed) about f(x) are first and second

moments, f(x) = E{f(x)} and Rj(z,y) = E(f(z)-f(x))(f(y)-f(y))}. These

lead to inner-product functionals such as covariance-weighted energy,

J(f) = J(f(x) - (z))R 1 (x, y)(f(y) - (y)) dx dy, (1.3)

the L 2-norm smoothness metric

|dx il'2 d(1.4)

and minimum energy metric

J(f)= f 2()d (1.5)

Since fobs(z) and funobs(z) are orthogonal, setting f,,obs(x) to zero minimizes energy

(pseudoinverse approach).

2. Another way to utilize second moments is autocorrelation matching, which minimizes

the discrepancy between the expected autocorrelation and actual autocorrelation of

the reconstruction [Sahasrabudhe79]. For stationary processes, the cost functional is

something of the form

J(f) R= (r) - J f(x)f(x+r) + ) dx d.

3. A number of entropy-like expressions can be developed from likelihood functionals for

photon allocation models of image formation, where the probability of a picture cell

containing n photons is governed by laws of statistical mechanics [Frieden80]. The

principle of maximum degeneracy selects the f(z) whose photon distribution could

have occurred in the largest number of ways, leading to expressions like

J(f) = - f() log f(x) dx.
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4. The final example is to model the derivative of a signal as a sequence of independent

Laplacian random variables [Ku86]. The log likelihood takes the form

J(f) d dx, (1.6)

which can be interpreted as an Ll-norm measure of smoothness.

To use any of these criteria, J(fob + funobs) should be minimized with respect to

fubs(x). The inner-product cost functionals can be minimized by solving linear equa-

tions, while the autocorrelation matching and maximum entropy methods require nonlinear

optimization procedures. In principle, the Ll-smoothness metric can be minimized by linear

programming; however, there is a simple, nearly optimum approximation that requires only

a few median computations [Ku86].

Which method is best able to estimate f,,bs(zX)? If there is little or no energy at

frequencies 2, 4, . in some subregion of f(x), then the pseudoinverse can correctly restore

that area. The reconstructed subregion can then serve as boundary condition for the rest

of the image. For example, the large blank area in the lower left quadrant of Figure 1.2a

could be used. The hard part is detection of a suitable subregion of f(x), if one indeed

exists, since only fbs(x) is known. In the absence of this detection step, the subregion

must default to the whole observation interval and periodic artifacts will usually appear.

The other inner-product functionals perform no better than pseudoinverse, apparently

because fobs(x) and funobs(X) tend to be nearly orthogonal for reasonable wide-sense station-

ary processes (§5.1). The author has no direct experience with autocorrelation matching,

but it is probably unable to resolve ambiguity since it is insensitive to phase. The success

of maximum entropy methods seems to depend strongly on the picture. Surprisingly, the

Ll-smoothness criterion often works very well, in contrast to the failure of L2-smoothness.

Therefore, this approach is highly recommended for the signal modeling strategy of unique

motion-blur restoration.

1.3 Summary

Conventional image restoration works from one region of a single frame. The presence of

zeros in the Fourier transform of a boxcar point spread function suggests that the original

signal cannot be completely recovered from a motion-blurred observation. The missing
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component is DC-free and periodic, with wavelength equal to the amount of blur. When

the blur is more than a minor fraction of the observation interval, loss of this component

leaves a visible artifact in the deblurred image. This artifact is not a problem in typical

previous studies of image restoration, where a large image is degraded by a relatively small

blur. On the other hand, the difficulty arises when deblurring small moving regions in a

complex scene.

A more precise framework for dealing with operations on finite-length signals is the signal

domain. Reconstruction is underdetermined because a boundary condition requirement-

prior knowledge of a section of the original image-is unfulfilled.

Additional information is needed to recover the unobservable signal component. One

strategy is to minimize the cost function of a signal model, based on expected determin-

istic or statistical properties. A number of common cost functionals have been reviewed.

However, no matter how well combinations of such techniques work for some pictures, there

will be other pictures for which they do poorly. This difficulty, plus the ad hoc nature of

statistical image models, is motivation for an entirely deterministic approach that exploits

constraints from additional observations.
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Chapter 2

One-Dimensional Theory

This chapter addresses the fundamental limits to perfect image restoration from noiseless,

spatially continuous data. The principal theme will be characterization of the nullspace

of the linear transformation that maps surface images to a sequence of blurred frames.

Unique reconstruction is prevented by the existence of nonzero signals in the nullspace,

also known as the unobservable subspace, since arbitrary amounts of these signals can be

added to the input image with no effect on the blurred data. While the component of an

image orthogonal to the nullspace is uniquely specified, the component in the nullspace is

completely unconstrained.

A typical scene contains several overlapping surfaces. Instead of trying to solve the global

image reconstruction problem, however, it is more fruitful to analyze the reconstruction of

a single surface, drawing constraints from at most one adjacent surface and boundary. The

unobservable subspaces will be determined for a progression of reconstruction problems of

increasing complexity:

1. Intraregion, in which data collection is limited to the interior of a blurred region;

2. Transition zone compensation, which augments the intraregion problem with data

from a blurred boundary, assuming that the contribution of the surface on the other

side of the boundary to the zone is known or can be computed;

3. Interregion, which replaces knowledge of the adjacent surface image with the require-

ment that the boundary move in lockstep with that surface.

The reverse interregion problem, where the boundary tracks the surface for which recon-
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struction is desired, does not require special attention. Once the adjacent surface is com-

puted by interregion processing, the desired surface can be reconstructed via transition zone

compensation.

These results are relevant to the global problem. Under favorable circumstances, all the

surfaces in a complex scene can be recovered independently, using local data, or recovered

one after the other, using information propagated from previously computed surfaces. Some

surfaces could even be overdetermined if all available constraints were exploited; conversely,

with unfavorable scene configurations some surfaces might remain underdetermined. All of

this depends on the specific scene in question, and general statements cannot be made.

The reconstruction theory will first be formulated for one-dimensional motion blur from

a camera integrating light for the entire time between successive frames (this is called

100% duty cycle or 360 ° shutter angle). In future chapters, the results will be extended to

arbitrary duty cycle and two-dimensional linear motion.

2.1 Preview

The main findings of this chapter are summarized with an outline of the reasoning involved.

2.1.1 Intraregion

The nullspace for an intraframe, intraregion domain of observation contains all periodic

signals whose periods of wavelength vlT contain no DC component, where vl is the surface

velocity and T is the integration time and frame period. The result is familiar, as the

inverse periods are the zeros of the Fourier transform of a rectangular pulse, namely, a sinc

function.

Now suppose the same surface is observed in another frame, during which it has velocity

v2 $ v. By combining observations from two frames, many of the previous nullvectors are

eliminated, leaving only periodic signals with DC-free periods of length gcd(vlT, v2T). As

later defined in §2.2.2, the greatest common divisor can equal zero, so that, at least in

theory, dual-velocity observations have the potential for complete reconstruction of the

surface. If the gcd is not zero, nullvectors cannot be eliminated entirely. However, the gcd

is never larger, and often much smaller, than both vlT and v2 T. Since unobservable modes

at shorter wavelengths tend to be less visible, an interframe reconstruction is still preferable
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to an intraframe one.

2.1.2 - Transition Zone Compensation

A moving occlusion boundary produces a transition zone in each blurred frame, a region

where the blurred signal is a mixture of information from two adjacent surfaces. Transi-

tion zone compensation is the process of subtracting out the contribution of one surface

using prior knowledge, leaving the remaining blurred signal to provide boundary conditions

for restoring the unknown surface. Depending on velocity relationships, these additional

constraints may or may not suffice for unique reconstruction in one frame of data. The

dichotomy arises from two possible shapes for the region of support of the central linear

transformation, which is either an acute or obtuse triangle. The acute triangle arises when

the unknown surface moves in the same direction as, and faster than, the boundary, and

yields a nullspace consisting of selected signals with DC-free periods of length vlT. Oth-

erwise, the triangle is obtuse and the only nullvector is 0. In particular, the situation of

a blurred object with rigidly attached boundaries moving in front of a stationary surface

leads to a right triangle, which shares the uniqueness property of obtuse triangles.

A second frame is very useful when transition zone compensation in one frame possesses

nontrivial nullvectors. Assuming time-invariant velocities, all unobservable modes will be

eliminated, except for one pathological case: when the unknown surface moves with twice

the velocity of the boundary, all additional frames are redundant and the nullspace is just

as for one frame.

2.1.3 Interregion

The final type of reconstruction problem is called interregion because the blurred data it

employs depends on signals from two surfaces. However, the assumption of time-invariant

velocities and the requirement that the boundary move with the foreground surface nearly

reduces this problem to that of transition zone compensation. When pairs of blurred frames

are shifted so that their transition zones are in register, and then subtracted, the contribu-

tion of the foreground surface completely vanishes. A displaced-frame-difference image is

therefore similar to a single blurred frame that had transition zone compensation applied

to it.

Since an observation of one frame does not permit frame differencing, the nullspace for
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the background surface, moving with velocity vb, consists of signals with DC-free periods

of length vbT, as before.

Additional frames eliminate some of the foregoing nullvectors. Among those that cannot

disappear, however, are the signals that simultaneously have period ( - vb)T, where v,

is the boundary velocity, since their displaced frame difference is zero; therefore, the unob-

servable subspace contains all signals with DC-free periods of length gcd(vbT, (v, - vb)T).

In addition, when the background moves in the same direction as, and faster than, the

boundary, the nullspace could also contain a selection of periodic signals with the original

wavelength vbT. The latter nullvectors exist only if fewer than three consecutive frames are

observed or if the previously stated pathological case occurs.

To sum up, certain signal components cannot be recovered from an observation domain

confined to one region and frame. Some or all of these components can be recovered if

the corresponding nullvectors are incompatible with the constraints provided by additional

observations. For reference, the nullspaces for all of the reconstruction problems have been

tabulated in Figure 2.1, using notation to be explained in the sequel.
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Figure 2.1: Unobservable subspaces of 1D reconstruction problems, 100% duty
cycle: For other notation see text. The results assume that the spatial extent
of observations is "large enough."

33

,

II

Z

0;

11E
_I 

_

_

;

oot:
E-4

.

co

._

110

._

11II
-

I--,

Qto
0

fn

u

0

e=
C

u

-4
A

I

C14

0
o

._

U,

co
In

0_9;
o

1:

eI

, 

- 11II

C,,=Mn

_

_

C

u0
aoE"

s)Q

._tw
4.
w

1:d
1:

Cn

o
z

;Z.hU)

=o
3

X

J2.0-

'j M

CC;

I:_ V.C~v

n;n

P

0

oC C
--
In .

0

II
1-Z

-- 1

c14

I I

Al

0

w

H;:F;S

-4

11

;:Z
5j

4

h

E-

I

v

F

1-1
I I

N

1-

a1

- x_, X 

.- ~U~ IC II0~ 4w >3

0
3

0 0

?Zo 3*
v o-0

) 

-.-

r
-

E"

12,
Q

VI

I

··-- --·---------------------- ·-- -- --·--·----- -----------------------·----------- ·----



2.2 Intraregion Reconstruction

The first class of prototype reconstruction problems is intraregion. The results presented in

this section are not original; in particular, the underdeterminacy of intraframe, intraregion

reconstruction was already explained in Chapter §1. However, the results are developed in

a new framework that is also suitable for analyzing the remaining two classes of problems.

2.2.1 Intraframe

Let f(x, r) be the image function as seen through the lens of the camera, where x and r

are continuous position and time variables. Let T be the duration of each exposure, which

is equal to the frame period, and let t be a discrete time variable taking values 0, T, 2T, ..

Suppose that the blurred image sequence gc(x,t) is observed at t = 0 for x E [vT, L], and

that all optical flow lines contributing to this domain come from a single surface moving

with constant velocity v > 0, i.e.,

g(x, t) = fc(x, r) dr

where

fc(x, r)= f(x - v'r).

Then

gc(x, ) = T Tf(u) du (2.1)

= jLh(x, u)f(u) du (2.2)

where the kernel of this integral equation is

{ -, if vT < < L and < - u < vT;
h(x,u) = vT' -

0, otherwise.

The space-time configuration of this dynamic scene and the region of support of h(x, u) are

sketched in Figure 2.2.

The input signal f(z) is uniquely specified by the observation if and only if the homo-

geneous equation

gc(x,0) = 0 (2.3)
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U

x

Figure 2.2: Intraframe, intraregion observation domain: (left) observation do-
main in space-time, with shading to suggest optical flow lines; (right) corre-
sponding integral operator H with region of support shaded; f and g denote
supports of input and output signals.

is satisfied by only the trivial solution. In other words, the nullspace of the linear transfor-

mation

H: L 2(0, L) - L 2 (vT, L)

defined by (2.1), written N(H), must be the set (0)}. L 2(B, A) denotes the space of square-

integrable functions on the interval (B, A).

Unfortunately, this reconstruction problem is underdetermined and there are nontrivial

solutions. If f(x) is a nullvector then d gc(, 0) = 0, where

d 1
gc(x, 0) = 1-(f(x)- f( - vT)),

so that any nullvector must be periodic with wavelength vT. As the integral over any period

must be zero to satisfy (2.3), the nullspace can be characterized as the set of signals with

DC-free periods of length vT. A basis for N(H) is the set of complex exponentials

{kk(x) = eT , < < L k , 2 3. .

whose frequencies are the zeros of the Fourier transform of the point spread function of

motion blur.
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The results can be summarized as follows.

These are abbreviated to II(z) or Ilo(z) when S is understood from context. Under these

definitions, f may take arbitrary values outside S (i.e., it doesn't have to be zero).

2.2.2 Interframe

Since one frame alone is insufficient for unique intraregion reconstruction, we can consider

combining observations from corresponding intervals of additional frames. Corresponding

intervals are the parts of each blurred frame affected by, and only by, a given set of optical

flow lines, as shown in Figure 2.3. If the velocity were constant for all time, though, the

new frames would merely repeat the information present in the first frame. For this reason,

assume that the velocity, and hence the amount of motion blur, is different in each frame.

However, allow the velocity to change only at the time instants between exposures, in or-

der to preserve the rectangular point spread function in each frame. As first pointed out

by [Ghiglia84], unequal blurs cause the zeros of the frequency response to fall on different

sets of frequencies. With two or more blurred views of the same signal, therefore, a fre-

quency component of the signal is completely invisible only where zeros happen to coincide

(Figure 2.4).

Since the Fourier transform approach is, strictly speaking, not applicable when the

observation domains are finite intervals, the same idea is now developed in terms of linear

spaces in the signal domain. Suppose that the sequence of frames g,(x, iT), i = 1, 2,..., M

36

Definition.

H(z; S) = set of signals with period z in the interval S

= {f If() = f(x + z) whenever x E S and + z E S}

II(O; S) is deemed to be the set of constant signals.

11o(z; S) = set of signals whose average over every subinterval [, x + z] within S is 0

= {f f(x+az)da=OwheneverxESandx+zES

Theorem 2.2.1. For intraregion reconstruction in one frame, the unobservable modes are

N(H) = IIo(vT; S)

(vT;S)n f f (x + avT) da =Oforsomex ESsuch that + vTES .
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Figure 2.3: Interframe, intraregion observation domains: Corresponding obser-
vation domains in space-time, indicated by dark rectangles, are affected by, and
only by, a given set of optical flow lines.

IH

0
(A)

Figure 2.4: Frequency responses of unequal blurs: most zeros do not coincide.
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is available, and that the velocity throughout the integration of frame i is vi. If f(x)

is a nullvector for the interframe reconstruction problem, then g,(x, iT) = 0 for all x in

the corresponding interval in frame i, for all i. Hence, f(x) E Io(viT) for all i, that is,

the nullvector must belong to the nullspace of each individual frame. Consequently, the

unobservable subspace of the interframe problem must be

M

N(H) = nIIo(viT)
i=1

For example, a signal with DC-free periods belongs to the intersection set if its wave-

length evenly divides every viT. In fact it can be shown that such signals are the only

nullvectors as long as the intervals are large enough. Here are the precise statements.

Definition. By analogy with the greatest common divisor of integers, let gcd(zl,..., ZM)

of a set of real numbers be the largest number for which every zi is an integer multiple, or

0 if no such number exists.

Properties:

1. The numbers mi = zi/ gcd(zl,..., zM) are relatively prime integers, if they are de-

fined.

2. gcd(zl,...,zM) < zil for all i.

3. The gcd is zero if and only if zi and zj are incommensurate (zi/zj is irrational) for

some i, j.

gcd is a violently discontinuous function, as illustrated in Figure 2.5.

Proof. Observing gc(x, iT) over an interval of length> min vT insures that the par-

ticipating optical flow lines emanate from an interval of f(x) whose length is at least

min viT + max viT. Therefore, the lemma given in §A.1 is applicable. 
i i

From this discussion we see that as few as two frames could be sufficient, in principle,

to obtain unique reconstruction.
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Theorem 2.2.2. If the length of each corresponding observation interval in a sequence of

frames is at least min viT then the unobservable modes for intraregion reconstruction are

N(H) = Io(gcd(vlT,..., vMT)).
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Figure 2.5: Rational samples of the discontinuous function gcd(z, 1)
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2.3 Transition Zone Compensation

After intraregion restoration the next level of complexity is to deal with two adjoining sur-

faces simultaneously, since the transition zone they share will yield additional constraints

not accessible when the observation domain is restricted to the interior of a region. This

part explores transition zone compensation, in which one surface is already known at full

resolution so that it can be subtracted out of gc(x, t) before attempting to restore the other

surface. The source of this prior knowledge does not matter, whether it arises from previ-

ous reconstruction calculations or, more simply, from absence of motion. Under favorable

circumstances, a compensated transition zone at one end of a blurred region is enough of a

boundary condition to uniquely reconstruct the rest of the region.

2.3.1 Definitions

When two surfaces meet, as in Figure 2.6, there are in general three velocities of concern.

Throughout this chapter define:

ff(x) = "foreground" surface image at r = 0

fb(x) = "background" surface image at r = 0

vf = "foreground" surface velocity

vb = "background" surface velocity

v, = edge velocity (in general $ vb or v).

f dr gro 6 uh'i bockground
. -------- ---- - - ------------- ^------I 

Figure 2.6: Velocities at a boundary
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It is required that ve $ 0, for otherwise there is no transition zone to work with. In general

ve $ vf since the foreground object could be dilating or eroding at the edge. Indeed, by

assigning ve = vb one could model the situation where the so-called background surface is

really a solid object, with rigidly attached edges, translating in front of another surface, the

so-called foreground. For the time being, "foreground" and "background" are just arbitrary

designations.

For argument's sake, choose the coordinate system so that the boundary moves along

the path z = %vr. Also assume that v > 0 (reversing time if necessary), i.e., the space

covered by the foreground is growing. These two assumptions have no effect on the eventual

conclusions, which work even if v, < 0. The foreground surface fc(x, r) = ff(x - vfr) is

exposed where x < ver and the background surface fc(x, r) = fb(x - vbr) is exposed where

z > ver. The subscript c denotes a Composite time-varying scene or image sequence, made

up of background and foreground components.

In the frame integrated from t to t + T, the transition zone occupies the interval z E

[vet, v(t + T)]. The integrated image sequence recorded by the camera is

g(X,t) = t+ T fc(x, r) dr = gf(x,t)+ gb(x,t) (2.4)

where the foreground surface contribution is

f(,t) v T Jvl(t+T) f(u) du, x E [Vet, ve(t + T)] (2.5)st9 t)=&1vT Jr-vf(t+T)f

and, similarly, the background surface contribution is

1 fxt) -Vbt
v(X bT ) - b , )X fb(u) du, X E [t, V(t + T)]. (2.6)

See Figure 2.7.

The preceding geometry and definitions will be retained throughout this chapter. In

the problem of transition zone compensation, though, only the boundary and the unknown

surface-which is deemed background-are relevant since the contribution of the known

surface to gc(x, t) is assumed to be removed. Therefore, ff, gf, and vf are presently irrele-

vant.

2.3.2 Intraframe

The analysis may be limited to reconstruction of the portion of the background surface

that contributes to the transition zone. Let I denote the set of position coordinates of this
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Figure 2.7: Space-time diagram of the image configuration at a boundary, show-
ing transition zones

portion of fb(x). Although the size of the transition zone itself is determined by ve, I will

always be a closed interval at least as long as vbT. Recall that knowledge of the background

surface on any interval of length vbT is sufficient as a boundary condition for reconstructing

the rest of the surface. Therefore, unique reconstruction is possible if one can solve for

fb(x) in I; conversely, without other sources of constraints, reconstruction is not possible

if no part of I can be determined. Accordingly, observability questions can be settled by

concentrating on the transition zone of the blurred image and the optical flow lines that

enter it.

In the blurred frame at t = 0, the transition zone signal after compensation is

b(X,0) = / fb(u)du, E [0,veT]. (2.7)
gb(z, O) - Vb T 1-vb/Ve)X

This integral defines a linear transformation that maps L 2(I) to L 2(0, vT), where set I is

the interval

[0, (v, - vb)T], if vb/v, < 0;

I = [0, veT], if 0 < vb/Ve < 1; (2.8)

[(v, - vb)T, vET], if vb/v, > 1.

The shape of the region of support, as shown in Figure 2.8, depends on the velocity ratio

vb/lve. It changes from an obtuse to an acute triangle as vb/Ve increases'past unity, marking

a significant change in the nullspace of (2.7). (vb/ve = 1 gives a right triangle, which behaves

like an obtuse triangle and will be combined with the vb/v < 1 case.)
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Figure 2.8: Three cases of intraframe transition zone compensation: (left) Space-
time diagrams of a compensated transition zone, showing the background contri-
bution to g, after transition zone compensation; (right) corresponding integral
operators. From top to bottom: vb/ve < 0, 0 < vb/ve < 1, vb/ve > 1.
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Figure 2.9: Linear transformations HL and H_, with sample nullvector of Hz

Using the analogy of finite dimensional matrices, intuition suggests that the linear trans-

formation will be invertible in the obtuse triangle case: a lower triangular matrix with no

zeros on the main diagonal is always invertible. Integral equations with lower triangular

kernel are called Volterra equations and correspond to causal systems. On the other hand,

the acute triangle case appears to be non-invertible: no matter what arbitrary signal is cho-

sen for fb(x), x < 0, the Volterra form of the kernel for x > 0 means that the rest of fb(x)

can be chosen so as to satisfy (2.7). These properties are formalized as follows (Figure 2.9).
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Definition.

Proof. Let F() = fo f(u) du, so that F(Ax)-F(Bz) = (A - B)g(x) = 0, E [0, 1]. If

B < 0 < A then it is trivial to devise functions F(x) meeting this condition. Differentiation

with respect to x yields the equivalent condition in (a). On the other hand, when 0 < B < A

write the condition as F(x) = F(Bx/A), x E [0, A]. Recursive application of the latter

yields F(x) = F((B/A)nx) -, F(0) = 0 as n -, o, so that F(x) must be the zero function.

Therefore the only nullvector is f(x) = 0. I

Returning to the transition zone compensation problem, one can immediately recognize

the linear transformation (2.7) as H L when Vb/IV < 1 and as Hz when vb/Ve > 1. Hence,

gb(,O) =0, E [O0, vT]

fb(x) = 0, x E I, if vb/ve < 1; (2.10)

fb(z) E N(Hz), E [(ve - vb)T, vT], if vb/ve > 1. (2.11)

In addition, it may be assumed that the blurred frame can be observed in some interval

[veT, L] outside the transition zone. In order to have gb(x, 0) = 0 for x > vT, a nullvector

fb(x) must also belong to IIo(vbT) for x > min(vT,(v, - vb)T). (2.10) specifies that the

45

a) Let Hz (read "H-acute") be the linear transformation from L 2(B,A) to L2(0, 1),

where B < 0 < A, given by

1 /Ax
(z) = A- B f(u) du, x E [0,1]. (2.9)

The region of support of the kernel is an acute triangle.

b) Let H\ ("H-obtuse") be the linear transformation from L 2(0, A) to L 2 (0, 1), where

0 < B < A, given by the same formula. The region of support of the kernel is an

obtuse triangle.

Lemma 2.3.2.

a) N(Hz) = f I Bf(Bx) = Af(Ax), for z E [0, 1]}, that is, the graph of any nullvector

for negative abscissae is a scaled and inverted replica of the graph for positive abscissae.

b) N(H_) = {O}, i.e., the only solution of g(x) = 0 when 0 < B < A is f(x) = 0.
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Figure 2.10: Space-time diagram for transition zone compensation example

periodic nullvector is zero over one period and thus everywhere; therefore, the observed

data is sufficient to uniquely recover the background surface as long as it does not move in

the same direction as, and faster than, the boundary. If it does, then nontrivial nullvectors

are not ruled out, and the only restriction on the periodic waveform of a nullvector is (2.11).

In summary, we have deduced this

Theorem 2.3.2. After transition zone compensation in one frame, the unobservable

modes are

N(H) = { (0) if Vb/V < 1;

N(H) n OII(vbT), if Vb/Ve > 1.

Examples

1. Suppose the left edge of an unknown moving object uncovers a stationary surface, as in

Figure 2.10. With Vb = Ve > vf = 0, the moving object can be reconstructed from one

blurred frame once the stationary surface contribution gf(x, 0) = (1- T)ff(x), E

[0, veT] is subtracted out. Of course, one must look ahead into the following frame

in order to observe f (), E [0, veT]. The inherent observability of the stationary

surface has propagated to the moving object through the transition zone.

2. Suppose the right edge of the object just reconstructed occludes an unknown surface

moving twice as fast. Here one has vb > Ve = vf > 0; consequently, observability of the

slower moving region does not propagate to the faster one. With vb/ve = 2 the region

of support of the linear transformation HL is an isosceles triangle, so that functions
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Figure 2.11: Nullvectors of transition zone compensation when vb/v = 2

in N(HL) must have odd symmetry within the interval x' E [-veT, veT]. Therefore,

the nullspace N(HL) n IIo(vbT) consists of signals with DC-free and odd-symmetric

periods of length vbT and can be denoted by odd functions} n IIo(vbT). A natural

basis for this subspace is the set of sinusoids with periods vbT, vbT, , . . phased to2' 3

cross zero at x' = 0, the intersection of the right boundary with r = 0 (Figure 2.11).

2.3.3 Interframe

The preceding results can be extended to observations of two or more successive frames,

assuming that the surface and boundary velocities remain time-invariant. (The time-varying

problem has resisted analysis, but at least the interframe, intraregion results are applicable.)

There is no need to treat boundaries at which Vb/Ve _ 1 since intraframe transition zone

compensation is enough for unique reconstruction. Accordingly, only the case of vb/ve > 1

will be reconsidered.

In the blurred frame at t = T, the transition zone signal after compensation is

), vbT (- /fb(u) du, E [veT, 2vT]. (2.12)
b(x·, T) = ..... bT 2.2
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Taken together, the integrals (2.7) and (2.12) depend on fb(z) in the interval [2(v -

vb)T, veT]. A third constraint on the background signal in that interval can be obtained

by observing the blurred frame gb(x,T) in the interval [2veT, (ve + vb)T], which lies just

outside the transition zone (Figure 2.12). In order for fb(x) to be a nullvector, (2.7) and

(2.12), as well as gb(x,T), x E [2vT, (ve + vb)TI, must all be zero. In other words, it is

required that fb(x) satisfy

fb(z) E N(Hz)

fb( + (Ve - Vb)T) E N(H/) (2.13)

fb(Z) E IIo(vbT; [2(v- vb)T,v vT]).

These simultaneous equations are solved in §A.3, whose conclusions are summed up as

follows:

1. If vb/Ve = 2, the set of solutions to (2.13) consists of all odd-symmetric signals in

IIo(vbT).

2. If vb/ve # 2, the solution set contains only 0.

Therefore, the observed data in two frames is almost always sufficient to recover the-

background surface. In the pathological case of vb/ve = 2, all of the nullvectors from

intraframe transition zone compensation, as displayed in Figure 2.11, survive as nullvectors

in the two-frame problem. Moreover, frames beyond the second are redundant and cannot

reduce the unobservable subspace. Since a nullvector fb(x) must have period vbT and the

relative displacement between the two surfaces after two frames is also vbT, the data segment

gb(x, iT), E [iveT, (i + 1)veT], when fb(x) is a nullvector, is identical to either (2.7) or

(2.12) when i is even or odd, respectively.

To summarize these new findings along with the previously verified observability of the

vb/v, < 1 case, we state the following

48

Theorem 2.3.3. After transition zone compensation in two or more frames, the unob-

servable modes are

N(H) = { 0} if vb/v, 2;
{odd functions} n IIo(vbT), if vb/Ve = 2.
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Figure 2.12: Transition zone compensation in two frames: (top) Space-time di-
agram of relevant observation intervals, showing background contribution to gc
after compensation; (bottom) corresponding integral operators for the observa-
tions in both frames.
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2.4 Interregion Reconstruction

In order to reconstruct a surface using the idea of transition zone compensation, complete

knowledge of an adjoining surface is required. In the absence of such information, though,

certain weaker conditions on the foreground surface's contribution to the transition zone

could still yield new constraints on the unobservable modes of the background, possibly

enough for unique reconstruction.

Specifically, we will assume that the boundary moves in conjunction with the foreground

surface, i.e., v, = vf, and that all velocities are time-invariant. Under these conditions,

the contribution of the foreground surface to the transition zone-whose motion tracks

the boundary-is identical in each frame of a sequence. Because this property gives a

strong constraint on the background surface signal, and because this surface/boundary

configuration should occur frequently in actual scenes, this set of assumptions deserves

special study and will be called the interregion reconstruction problem. The main idea is

that the interregion problem is related to transition zone compensation of the displaced-

frame-difference sequence.

2.4.1 Intraframe

Any possibility of interregion reconstruction using one frame alone can be quickly dis-

missed. In reference to the geometry defined in §2.3.1, recall that the observation of

gc(z,0) for x vT gives an intraframe, intraregion reconstruction problem, for which

the unobservable subspace of the background surface image is lo(vbT). Adding data from

the uncompensated transition zone cannot eliminate any nullvectors because the foreground

signal is unconstrained. Indeed, given any function fb(z) that yields g(z, 0) = gb(z, 0) = 0

for all x > vT, choose

vfT d gb(X + vfT, 0), if x E [-vfT, 0O];

ff(z + vfT), otherwise

to make gc(z, 0) = 0 everywhere else (differentiate (2.5) to obtain this result). Any such

pair (fb, ff) is a nullvector for the intraframe, interregion reconstruction problem.
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2.4.2 Two Frames

Knowledge of M blurred frames is equivalent to knowledge of the first frame and M - 1

difference frames A gc(x, t), where

gc(z, t) = gc(x + vT, t + T) - gc(x, t).

However, since the foreground and boundary have the same velocity, gf(x, t) vanishes and

the displaced frame difference gc(x, t) depends only on the background signal, even within

transition zones:

A g(x, t)= - Vb Afb(u) du, E [Vet, v,(t + T)], (2.15)
VbT J X(1vb/oe):

where A is the operation of linear convolution with 6(x + (ve - vb)T) - 6(x), so that

afb(x) = fb(x + (ve - vb)T) - fb(x). (2.16)

The determination of the nullspace for interregion reconstruction given two frames pro-

ceeds in the same manner as for transition zone compensation in one frame. From the first

frame, g(x, 0) = 0 already restricts nullvectors to ITo(vbT), and now gc(z,T) = 0 should

further narrow the nullspace.

If (2.15) is compared to (2.6), it is evident that Afb(x) is mapped to Agc(x,0) by the

linear transformation H_ or Hz, depending on the velocity ratio vb/ve. Thus,

gc(,0) = g(z,T)= == A ' g c(x,0) = 0

Afb(2) = 0, if vb/Ve < 1; (2.17)

ŽAfb(x) E N(HL), if vb/ve > 1, (2.18)

using (2.10) and (2.11).

(2.17) translates to fb(x) E l((v, - vb)T) for > 0; therefore, by the lemma given in

§A.1, the nullspace is exactly IIo(vbT) n I((ve - vb)T) = flo(gcd(vbT, veT)) as long as the

background surface does not move in the same direction as, and faster than, the foreground

and boundary. This nullspace degenerates to {O} when the velocity ratio is irrational.

If vb/ve > 1, though, additional nullvectors are not ruled out, the only restriction on

the periodic waveform of a nullvector being (2.18). The nullspace can be expressed as

N(HA) n IIo(vbT), which contains IIo(gcd(vbT, veT)) since any function annihilated by A

is most certainly annihilated by HLA . It is not obvious, however, whether this nullspace
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has any "interesting" solutions, that is, signals in IIo(gcd(vbT, veT))' or, more importantly,

signals with fundamental period vbT. Basically the question is whether the simultaneous

equations

fb(x + (Ve - Vb)T) - fb( ) E N(H) (2.19)

fb() E IIo(vbT; [2(e- Vb)T,VeT])

can be fulfilled without having Afb(z) = 0.

One approach for constructing an interesting solution to (2.19) is to start with any

element b E N(HZ) n IIo(vbT), which is known to be a non-trivial space; then A-1 must

be a solution. A - 1 is the operation of deconvolution onto Ho (gcd(vbT, veT))'. The principal

difficulty, however, is that A-l might not exist for certain (or all) choices of 0. As long

as vb/Ve is rational, §A.2 verifies that (2.19) does indeed possess finite nontrivial solutions,

but the answer for irrational vb/v, is not presently known. This gap in the theory is not

serious, though, since the three-frame problem will be solved completely (see also §5.3.4).

While the elements of N(HL) are easy to visualize as scaled antisymmetric functions for

any Vb/v, > 1, the elements of N(HLA) cannot usually be described in a straightforward

way. The following is a rare exception.

Example Suppose the right edge of a moving object occludes an unknown surface moving

twice as fast (Figure 2.13). When vb/ve = 2 the nullspace N(HLA)n IIo(vbT) can be

determined explicitly by expressing a nullvector in IIo(vbT) as

fb(x) = Z akev "bT
k•O

and finding constraints on the ak. Since

,afax a _1)k _-1) eb
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Theorem 2.4.2. For the interregion reconstruction problem using two frames, the unob-

servable modes are

N(H) = IIo(gcd(vbT, veT)), if vb/ve < 1;
N(HLA) n IIo(vbT), if Vb/Ve > 1.

In fact, N(HzA) n IIo(vbT) D IHI(gcd(vbT, veT)). Moreover, D is replaced by D if vb/v is

rational.
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Figure 2.13: Space-time diagram for interframe, interregion reconstruction ex-
ample

ak is arbitrary if k is even. On the other hand, Afb(z) E N(HL) = {odd functions} requires

ck = -C-k, so ak = -a-k if k is odd. Therefore,

fb(x) (odd functions} n Ho(vbT)) $ IIo(vbT/2),

where the direct sum X Y means the set of all signals equal to any function from X

plus any function from Y. A natural basis for the unobservable subspace consists of all

sines and cosines with periods oT, vT, "IT, along with the set of sinusoids with periods2 7 4 ' 6

vbT, vT, bT,. .. phased to cross zero at x' = 0, the intersection of the boundary with r = 0

(Figure 2.14).

2.4.3 Three or More Frames

Interregion reconstruction using three frames is no improvement over two frames when

vb/Ve < 1, while the third frame almost always eliminates some unobservable modes when

vb/ve > 1. The situation is analogous to that of two-frame versus one-frame transition zone

compensation.

Regardless of the velocity ratio or the number of frames observed, any background

signal fb(x) E IIo(gcd(vbT, veT)) still forms a nullvector, since its displaced frame difference

is zero. Therefore, the constraints provided by the third or following frames can do nothing

to remove this class of unobservable modes. There still exists the possibility of affecting the
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Figure 2.14: Nullvectors of interregion reconstruction when b/lv = 2

nullvectors in N(HzL)nIIo(vbT), which are present only when vb/v, > 1. These nullvectors

will now be re-examined.

Building upon the techniques of previous sections, the result can be obtained in short

order. With three frames, a nullvector fb(x) must satisfy Agc(x,T) = 0 in addition to

A gc(x, 0) = 0, leading to the constraints

Afb(x) E N(HL)

Afb(x + ( - b)T) E N(HL)

Afb(x) E TIo(vbT;[2(v,-vb)T,vT]).

Since these equations are of the same form as (2.13), Theorem 2.3.3 can be used to conclude

that

A /fb(X) = 0, if vb/ve $ 2; (2.20)

Afb(x) E {odd functions} n IIo(vbT), if vb/ve = 2.

The nullspace is exactly IIo(gcd(vbT, veT)) as long as vb/ve $ 2. The pathological exception

of vb/v, = 2 could have been foreseen, knowing that frames beyond the second are redun-

dant with respect to signals in the subspace IIo(vbT). Consequently, all of the nullvectors

from interregion reconstruction using two frames, as displayed in Figure 2.14, survive as

nullvectors in the three-frame problem.

54

I-L

I",La



55

Theorem 2.4.3. For the interregion reconstruction problem using three or more frames,

the unobservable modes are

N(H) = II(gcd(vbT, veT)), if vbve 2;
({odd functions} n IIo(vbT)) Io(vbT/2), if Vb/Ve = 2.



2.5 Summary

In any linear measurement-inversion problem, complete recovery of the unknown input

signal is hindered by the existence of a nontrivial nullspace, i.e., unobservable subspace,

because signal components within it are nulled out by the blurring system. For conven-

tional intraframe, intraregion restoration of motion blur, a certain set of periodic signals is

unobservable, and the benefits of additional information can be judged by how much the

set is narrowed down. Therefore, it is important to predict the nullspace for each of the

three prototype reconstruction problems, for image sequences with any number of frames.

It is found that the nullspace depends on the velocities of surfaces and boundaries in a

systematic manner.

The basic assumption underlying all the theorems in this chapter is that a noiseless

and spatially continuous imaging system captures blurred, but otherwise ideal, frames by

100% temporal integration. The interframe, intraregion theory, which additionally requires

piecewise constant velocities, concludes that the wavelength of unobservable modes drops

to the greatest common divisor of the respective blurs in each frame. With luck, this gcd

will be small or zero, and the visibility of missing-signal artifacts in the deblurred image

will diminish.

Time-invariant surface and boundary velocities are assumed for the transition zone

and interregion results. Transition zone compensation depends on prior knowledge of the

contribution of one side to a transition zone so that it can be subtracted off at the outset.

The interframe version seems to be the most successful reconstruction scheme since it can

rule out all nullvectors except for one special combination of velocities.

The interregion theory does not require prior knowledge of one side. Instead, the bound-

ary must move in lockstep with one of the adjacent surfaces, so that subtraction of con-

secutive frames offset by the boundary motion will totally cancel out the contribution of

one side. This method is inferior to transition zone compensation, only because it does

not recover periodic signals of wavelength equal to the greatest common divisor of the two

surface blurs.

The pathology of b/ve = 2, the critical point vb/ve = 1, and the violently discontin-

uous function gcd(zl, z 2) figure prominently in this theory. Consequently, it appears that

infinitesimal velocity perturbations could make structural changes to the nullspace. Such
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sensitivity would be untenable for any results that are to be applied to physical problems.

When §5.3.4 introduces noise into the analysis, however, it will be argued that a signal un-

observable in theory for only a precise combination of velocities is unobservable in practice

for a neighborhood of velocities. Therefore, the idealized results of this chapter should have

some real-world significance.
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Chapter 3

Generalization to Arbitrary Duty

Cycle

Thus far, the theory has been presented assuming maximum camera integration 1. The most

general temporal integration function to be examined in this thesis will be a rectangular

window of any duration up to T. The sequence recorded by the camera is now

g~(z t)~ i t+DT
gc(x, t = A tD fc(2x, ) dr,

where the duty cycle D must be positive and no greater than unity.

All the results for intraframe reconstruction problems follow directly from the previous

work simply by replacing T with DT (redefining Hz suitably) because the symbol T was

used there only to 'denote integration time, never frame period. The same is true for

intraregion reconstruction from multiple frames. These problems need no further discussion,

but are duly recorded in Figure 3.1. In contrast, the other interframe problems should be

re-examined because the presence of time gaps between exposures changes the form of the

linear mapping from surfaces to frames. Unfortunately, a complete characterization of the

nullspace has not been obtained in every case.

'This chapter and the next may be skipped without loss of continuity. The reader may wish to proceed

to Chapter 5, which discusses noise and sampling issues in the one-dimensional, 100% duty cycle framework.
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3.1 Transition Zone Compensation

Suppose two or more frames are observed. Since intraframe transition zone compensation

is enough for unique reconstruction when vb/e < 1, only the case of Vb/e > 1 needs to be

discussed. Following the arguments leading up to (2.13), a nullvector fb(x) must satisfy

fb(x) E N(HL)

fb(z + ( - b)T) E N(HL) (3.1)

fb(x) E HIo(vbDT;[(1 + D)(v -vb)T, v,DT]),

where H/ is the linear transformation defined by

gb(X, ) = bT fb(u) du, E [, VDT]. (3.2)

(See Figure 3.2). These simultaneous equations are studied in §A.4, where it is proved that

the solution depends on vb/ve and D as follows:

1. If vb/ve = 2 and D can be expressed as the ratio of integers mn/n in lowest terms, the

set of solutions to (3.1) consists of all odd-symmetric signals in IIo(vbT/n). But if D

is irrational, the solution set contains only 0.

2. If vb/ve < 2 and D >_ b/ve - 1, or if vb/ve > 2 and D = 1, the solution set contains

only 0.

When the conditions of (2) are satisfied, the observed data in two frames is sufficient

to recover the background surface. In the usual pathological case of vb/v = 2, not all

nullvectors from intraframe transition zone compensation necessarily survive as nullvectors

in the two-frame problem (though they will if m = 1); fb(x) is restricted to the space

IIo(vbT/n), which can be narrower than IIo(vbDT). Finally, additional observations do

not eliminate any of these nullvectors, since frames beyond the second are redundant with

respect to signals in the subspace IIo(vbT/n).

Theorem 3.1. (Partial generalization of Theorem 2.3.3) After transition zone compensa-

tion in two or more frames, the unobservable modes are

N(H) = { {O} , if Vb/Ve $ 2 and D > min( - 1,1);
(odd functions} n IIo(gcd(vbDT, vbT)), if vb/ve = 2.
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Figure 3.2: Transition zone compensation in two frames, D < 1: (top) Space-
time diagram of relevant observation intervals, showing background contribution
to g, after compensation, cf. Figure 2.12; (bottom) corresponding integral op-
erators for the observations in both frames.
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The foregoing results are incomplete since they exclude the parameter range

{(vb/ve,D) I Vb/Ve 2, 0 < D < min(vb/e, - 1, i)} 

There is evidence to suggest that N(H) is {0} or N(Hz) n IIo(vbDT) for a large subset of

this range, but the subset is complicated to describe. Outside the subset, the nullspace is

not presently known. Completion of the results appears to hinge on the iteration behavior

of a certain nonlinear oscillator (§A.4).
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3.2 Interregion Reconstruction

3.2.1 Two Frames

When two frames are observed, the general versions of (2.17) and (2.18) state that a null-

vector f(z) must satisfy

A fb() = 0, if Vb/v, < 1;

A fb(x) E N(HL), if vb/v, > 1.

Hz is defined by (3.2), and Afb(z) is still given by (2.16) independent of the duty cycle.

Unless D = 1 and vb/Ve is rational, it is not known if N(HzA) n Io(vbDT) actually contains

any signals outside of Io (gcd(vbDT, (v- vb)T)). The uncertainty means that the following

theorem, like the result stated in the last chapter for D = 1, could perhaps be strengthened.

3.2.2 Three or More Frames

When three or more frames are observed, only the case of vb/v, > 1 needs to be discussed,

since unobservable modes in Ho (gcd(vbDT, (ve-vb)T)) cannot be affected by frames beyond

the second. Application of Theorem 3.1 to Afb(x) implies that

afb(z) = 0, if vb/v, $ 2 and D > min(' - 1, 1);

Afb(z) = 0, if vb/ve = 2 and D = irrational; (3.3)

zAfb(z) E {odd functions} n Ho(vbT/n), if vblv, = 2 and D = m/n,

a generalization of (2.20).

When vb/v, = 2 and D = m/n, not all nullvectors from reconstruction with two frames

necessarily survive as nullvectors in the three-frame problem (though they will if m = 1);

Afb(x) is restricted to the space Ho(vbT/n), which can be narrower than IIo(vbDT). The

nullspace N(H) can be determined explicitly by expressing a nullvector in Ho(vbDT) as
2,rkn

fb(x) = E ake mbT
k#O
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Theorem 3.2.1. (Generalization of Theorem 2.4.2) For the interregion reconstruction

problem using two frames, the unobservable modes are

N(H) = IIo(gcd(vbDT,(ve- vb)T)), if vb/v, < 1;

N(HLA) n IIo(vbDT), if vb/ve > 1.

In fact, N(HLA) n IIo(vbDT) D IIo(gcd(vbDT, (v, - b)T)).



and finding constraints on the ak. Since

Afb(X) = Ea(ee- - r),rb
kO c

ak is arbitrary if kn/m is an even integer. On the other hand, Afb(x) E odd functions} n

IIo(vbT/n) requires ck = -c-k if k is a multiple of m, and ck = 0 otherwise. Therefore,

fb(Z) E (odd functions} n IIo(vbT/n)) E o(gcd(vbDT, vbT/2)).

(Note that the first term of this direct sum is superfluous when n is even, for then IIo(vbT/n)

C IIo(gcd(vbDT, vbT/2)).) Neither the third frame nor any additional observations can

eliminate these nullvectors, since frames beyond the second are redundant with respect to

signals in the subspaces Ilo(vbT/n) or IIo(vbT/2). In conclusion, we may state this:

Some values of (vb/v,, D) are

transition zone compensation.

not mentioned in this theorem, for the same reason as in
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Theorem 3.2.2. (Partial generalization of Theorem 2.4.3) For the interregion reconstruc-

tion problem using three or more frames, the unobservable modes are

lo (gcd(VbDT, (v - Vb)T)),

if vb/Ve $ 2 and D > min(vb/ve - 1, 1);

N(H) = no (gcd(vDT, (ve - vb)T)),

if Vb/Ve = 2 and D $ m/n with n odd;

({odd functions} n no(vbT/n)) e IIo(gcd(vbDT, vbT/2)),

if Vb/Ve = 2 and D = m/n with n odd.

I



3.3 Summary

This chapter has extended the analysis of unobservable subspaces to accommodate cameras

that integrate light for only part of the time between frames.

There are two reasons why the presentation has been short on discussion and long on

algebra. For one thing, many of the changes necessitated by permitting arbitrary duty

cycle D are just a matter of replacing appropriate occurrences of T with DT. This rule is

true for intraregion reconstruction from any number of frames. It also holds for intraframe

transition zone compensation or interregion reconstruction in two frames; for both of these

problems there is no point in adding more frames as long as Vb/Ve < 1.

For vb/ve > 1, on the other hand, additional frames are needed to achieve more complete

reconstruction. Here the discussion has been limited because the results are mathematically

incomplete. The nullspace is complicated to describe, not only because the variable D

creates many subcases but also because the general solution of (3.1) is not yet known.
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Chapter 4

Generalization to Two Dimensions

The assumption of maximum camera integration (D = 1) will now be reinstated in order

to generalize the first set of image reconstruction results in a different way. It sometimes

happens that signal processing theories in one dimension cannot be extended to higher

dimensions for fundamental mathematical reasons (e.g., polynomial factorization). Fortu-

nately, two-dimensional versions of the three classes of image reconstruction problems can

be solved, under certain reasonable restrictions. Because the techniques needed to deter-

mine unobservable subspaces largely parallel those in one dimension, most of the results are

correspondingly similar (Figure 4.1).

4.1 Intraregion Reconstruction

4.1.1 Intraframe

Suppose that the blurred image sequence g(f, t) is observed at t = 0 for x = (x, y) in an

area that depends on a single surface moving with constant velocity vector = (vx, vy).

Let S be the domain in f(i) that contributes to this area, and assume S is convex to avoid

complications. This problem is essentially one-dimensional, since a coordinate system can

be chosen to make one velocity component vanish; however, the result previously stated as

Theorem 2.2.1 is now repeated for the sake of introducing useful notation. The nullspace

can be characterized as the set of signals with DC-free periods of length 1v1T in the 

direction.
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Figure 4.1: Unobservable subspaces of 2D reconstruction problems, 100% duty
cycle. See D results if vb and f! are parallel.
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Definition.

A frequency-domain interpretation is available if S is the infinite two-dimensional plane.

When the point spread function is a rectangular pulse of length vlIT, the two-dimensional

frequency response is the sinc function

H(w,wy) = H( ) = - T/2O.vT/2

whose zero contours are equally spaced lines perpendicular to v' (Figure 4.2).

4.1.2 Interframe

Let the surface under observation have velocity vi throughout the integration of frame i

in a sequence of M frames, assuming that no two vectors are collinear. (If vi and j are

collinear, the pair of frames is equivalent to a single frame blurred by gcd(JlvlT, IvjlT) in

the same direction.)

With just two frames, the set of unobservable frequencies is the intersection of two

families of zero contours, and is typically a set of isolated points, as shown in Figure 4.3.

The zero contours of a third frame may or may not intersect with any of those points, but

if they don't then all frequency components of the input signal are observable.

69

II(; S) = set of signals with periodicity vector z in the domain S

= {f I f(£) = f( + z-) whenever E S and £ + E S}

II(O; S) is deemed to be the set of constant signals.

IIo(z; S) = set of signals whose average over any straight path [, i + z within S is 0

= {I j f(i + az) da = 0 whenever + a E S, Va E [0,1]}

Theorem 4.1.1. (Generalization of Theorem 2.2.1) For intraregion reconstruction in one

frame, the unobservable modes are

N(H) = Ilo(vT; S)

= I(vuT; S)n f on every line 11 , 3 such that j f(z + avT) da = O} .

s..1^-'"~~`'-Wlr.-- -· L·Y^ --- I- -



(-v
v

Figure 4.2: Zero contours of H(cw)
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Figure 4.3: Intersections of two families of zero contours
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Figure 4.4: Lattice of fundamental period cells

Since the Fourier transform approach is, strictly speaking, not applicable when the

observation domains are finite intervals, the same idea is now developed in the signal domain.

The unobservable subspace is clearly

M

N(H) = f Io(iT).
i=1

When M = 2, a signal belonging to N(H) will have periodicity matrix P2 = [TI132T]. Its

period cells (Figure 4.4) contain no DC and have area I det P21 [Dudgeon84]. Because a two-

dimensional signal can easily be biperiodic (able to satisfy two periodicity constraints of the

form f(z) = f( + z- simultaneously), the wavelength of the lowest-frequency unobservable

signal is not reduced by combining two frames of data. Therefore, low-frequency artifacts

may still be visible in the restored image. In contrast, when biperiodicity is forced on a one-

dimensional signal the fundamental wavelength could be sharply reduced, i.e., gcd(vlT, v2 T)

can be much smaller than vlT or v2T.

The constraints of additional frames can potentially eliminate the lowest-frequency null-

vectors, because two-dimensional signals are not naturally triperiodic. As long as S, the

region to be reconstructed on the basis of the observations, meets certain size and shape

requirements, it can be shown that the periodicity matrix of a signal in the intersection set,
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N(H), "evenly divides" every viT.

Properties:

1. The vectors miij are relatively prime, if they are defined.

2. det(A) < I det[zizIj] for all i,j.

3. The gcd is zero if and only if the solution to [zilj]i = zk is irrational for some i, j, k.

A two-dimensional version of Theorem 2.2.2 will not be stated since analogous conditions

on S have not been formulated in general. However, taking M = 3 as an example, let

S aiiT =ai E [0,1], i= 12,3}

This region suffices to generalize the argument in §A.1 and conclude that the unobservable

subspace must have periodicity matrix P3 = gcd('lT, 62T, i 3T). A non-singular P3 exists if

the solution to P2x = 63T is rational, in which case det P31 will turn out to be 1 det P2 1,

where n is the denominator of j = [n m l]T expressed in lowest terms. Thus the area of the

period cell is reduced by a factor of n. If, on the other hand, the solution Z is irrational,

the nullspace must be {O}.

From this discussion we see that as few as three frames could be sufficient, in principle,

to obtain unique reconstruction.
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Definition. By analogy with the greatest common divisor of real numbers, let

gcd(5l,...,zM) of a set of real vectors be a matrix A = [ALIA 21 of maximum determi-

nant for which every F, equals Affi for some integer vector i, or 0 if no such matrix exists.

(A is not unique, for AQ also fulfills the conditions if Q is an integer matrix with unity

determinant.)
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Figure 4.5: Vector velocities at a boundary

4.2 Transition Zone Compensation

Reconstruction of an unknown two-dimensional surface image after subtracting out the

neighbor's contribution to a transition zone is essentially a one-dimensional problem. As-

suming a constant velocity surface, there can be no interaction between points on different

lines parallel to the motion; therefore, reconstruction could proceed independently on each

parallel line. Depending on the scene configuration, however, the reconstruction problem

reduces to either one-dimensional intraframe or one-dimensional transition zone compensa-

tion problems.

4.2.1 Definitions

Let the occluding boundary be an infinite straight line with unit normal pointing towards

the "background" surface. As shown in Figure 4.5, the three velocities of concern at a

boundary are:

vf = "foreground" surface velocity

vb = "background" surface velocity
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v = velocity of a point on the boundary (in general $ vb or 6f).

These velocities are presumed time-invariant. Note that the component of ve parallel to the

boundary is arbitrary. It is required that ve.h # 0, for otherwise there is no transition zone

to work with. In order to connect two-dimensional problems to the previous results, it is

convenient to define the following associated scalars.

v = Vbjsign(Vb f)

= speed of the background with positive sign for motion away
from the foreground

ve .

= speed of the boundary in the direction parallel to b, using
the same sign convention (undefined if vb-hi = 0).

If the image is examined along a line parallel to v'b, these scalars coincide with their defini-

tions in one dimension (cf. §2.3.1). The usual velocity ratio vb/v, is equal to vb-hii/Fvef.

4.2.2 Intraframe

Consider the foreground surface to be known and its contribution to the transition zone to

be subtracted out. The background surface signal remains to be determined.

Suppose first that vb .ih 0, that is, the background does not move parallel to the

boundary. As far as each line parallel to b is concerned (Figure 4.6a), the boundary

appears to move at speed ve, and the background signal contributes to the transition zone

according to Hz or Ht, depending on vb/ve. Therefore, the one-dimensional transition zone

compensation results from Theorem 2.3.2 are applicable. (Note that a straight boundary

assures that ve is time-invariant regardless of the direction of boundary motion; if v, were

parallel to b then a curved boundary would also work.)

In the special case of Fb.ah = 0, on the other hand, most lines parallel to b do not enter

the transition zone (Figure 4.6b). Along a parallel passing through point x, the background

signal is convolved with a rectangular pulse of length IblDl(. )T, where EA h measures

distance in the direction perpendicular to the boundary and Dl(.ih) is a position-dependent

duty cycle. D 1 (.hft) is 0 for x on the edge of the transition zone closest to the foreground,

ramps linearly to 1 on the opposite edge, and stays at 1 for the rest of the background

region. Accordingly, image reconstruction on any of the parallel lines is a one-dimensional

intraregion problem.
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Figure 4.6: Image configuration at a boundary: (top) Fbh 0; (bottom) bhl = O.
D1 is the effective duty cycle along each parallel of the background surface.
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4.2.3 Interframe

As long as b.zh $ 0, the results are simply copied from Theorem 2.3.3. An interesting new

possibility arises, however, for the special case of iib. = 0. When only frame i is observed,

the nullspace is described by IIo (ibDl ((i- YiT)-i)T). The joint observation of M frames,

therefore, narrows the nullspace to

M-1

n o (D, D1((x - ?e iT) . )T) = IIo (AbD Af (a I)T),
i=O

where

DM(g.h) = gcd (Di(i.-), Dl((i- T)-),..., DI((X- e(M - 1)T)t))

is the effective duty cycle. As depicted in Figure 4.7 for the case of three frames and an

advancing foreground surface, M transition zones, each of width lve T, are formed over the

course of M frames. DM(Zih) = 1 if Z is continuously covered by the background during the

M frames, and DM(Z.ii) ramps between 0 and 1 within the transition zone formed during

frame i = 0.

Suppose now that 2 lies in the transition zone formed during frame i, 1 < i < M - 1.

The background signal along the parallel through Z is blurred by vlYblD 1 (( - veiT) h)T

during frame i, is blurred by IvblT in all earlier frames, and is occluded in later frames.

The nullspace along a parallel is IIo(6b gcd(T, D,((i - {iT)-a)T)), but this is {O} unless

D1 (( - veiT)-h) happens to be rational-a condition attained on a set of parallels whose

total area is zero in the Lebesgue measure. Consequently, the projection of any finite two-

dimensional signal in this transition zone onto N(H) has zero energy. In conclusion, the
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Theorem 4.2.2. (Generalization of Theorem 2.3.2) After transition zone compensation

in one frame, the unobservable subspace along a line parallel to Vb passing through is

{O}, if vf-b/ve-ii _< 1, 0;

N(H) = N(Hz) n o(bT), if ib, /V > 1;

IIo(vbD1(;-)T), if vb-h = 0.

Hz is understood to be the acute-triangular linear transformation replicated onto each

parallel and appropriately positioned over the transition zone.
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Figure 4.7: Interframe transition zone compensation, b -i = 0. DM is the
effective duty cycle along each parallel of the background surface, taking all
three frames into consideration.

77

w

i
J

·...1..---.-�1. .�_-1..1 ---,�- , ..._�I

!
!

, .



effective duty cycle may be simplified to DM(Z.-i) = 0 in a band of width (M - 1)6velT. As

more frames are collected, the uniquely reconstructible area of the background expands.

Theorem 4.2.3. (Generalization of Theorem 2.3.3) After transition zone compensation

in M = 2 or more frames, the unobservable modes are

(0{},
{odd functions} n IIo(VbT),

IIo (FbDM ( i)T),

if vb'-/e', n i 2, 0;

if vb f-/iv.f = 2;

if vb = 0.
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4.3 Interregion Reconstruction

Prior knowledge of the foreground surface is now replaced with the condition e, = f so

that the foreground surface contribution will vanish in the displaced frame difference. For

argument's sake assume that ve.f > 0.

4.3.1 Intraframe

With a single-frame observation, the unobservable subspace for the background surface is

IIo(bT). Given any fb(Z) E IIo(bT) it is possible to find ff(Z) to make g,(£) = 0 in the

transition zone and everywhere else. Once gb(x, 0) is given, the determination of ff(z) is a

one-dimensional problem along lines parallel to if. Recalling §2.4.1, choose

_f() 6IvlT Vvgb(i + vfT, 0), if 3 E transition zone;

f ( + fT), otherwise.

V,6 denotes the derivative in the vf direction with respect to E. Any such pair (fb, ff) is a

nullvector for the two-dimensional intraframe, interregion reconstruction problem.

4.3.2 Two Frames

It can be shown that the displaced-frame-difference image

A gc(, t) = gc(i + eT, t + T) - gc(:, t)

is independent of the foreground signal ff (F) and depends only on the background difference

signal

Afb(Y) = fb( + (e - Vb)T) - fb(Z).

Not surprisingly, this dependence is identical to the relationship between gc(i, t) and fb()

in the transition zone compensation problem. Therefore, Theorem 4.2.2 implies that a

nullvector fb(x) must satisfy

Afb() = 0, if b bh/vel- < 1, $ 0; (4.1)

afb(i) E N(HL) n IIo(vbT), if Vb'fl/Vefi > 1; (4.2)

Afb() E IIo('bD(. f)T), if vb-f = 0. (4.3)

Condition (4.1) translates to fb(i) E If((6ve - vb)T); therefore, the nullspace is narrowed

from IIo(6bT) to HIo(vbT) n ((ve - vb)T) = lo(vbT) n H(vgT) by the information in the
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second frame. (Note that we do not write II0o(vT), since IIo(z) n H(ff') $ IIo(t) n IIo(') in

two dimensions.) Because two-dimensional signals can naturally support biperiodicity, this

intersection set never degenerates to {O}.

Unlike the one-dimensional problem (into which this problem degenerates if vb is parallel

to ve), there is no doubt as to the existence of functions fb(') satisfying (4.2) but not (4.1),

because here A subtracts a pair of one-dimensional signals on different lines parallel to Vb,

not one signal from itself. N(H) is thus the direct sum of these interesting solutions with

no(vbT)n (v6T).

Finally, condition (4.3) states that the background image along a parallel in the transi-

tion zone closest to the foreground is equal to the signal on the parallel (ve - vb)T away, plus

an arbitrary function in IIo(v'bDl(Th)T). On all other parallels in the background, the condi-

tion is redundant since D 1(-i) = 1 and fb() E IIo(vbT) already implies Afb() E IIo(bT).

Therefore, N(H) does contain some signals in addition to all those in IIo(vbT) n II(i4T).

Theorem 4.3.2. (Generalization of Theorem 2.4.2) For the interregion reconstruction

problem using two frames, the unobservable modes are

no(vbT) n (veT), if vb -/v _< 1, # 0;

N(H) = N(HzA) n IIo(YbT), if vb'h/ve'h > 1;

{f Af E IIo(6bDl(i.h)T) }, if Vb.h = 0.

4.3.3 Three or More Frames

When M = 3 or more frames are observed, application of Theorem 4.2.3 to Afb(i) leads

to the result stated below. If v'b-n = 0, there will be a band of width (M - 1)lvelT in

which a nullvector must belong to IIo(bT)n II(VeT). This band expands as more frames

are collected. If vb-i h/v' - = 2, additional frames are redundant and cannot reduce the

unobservable subspace.
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Theorem 4.3.3. (Generalization of Theorem 2.4.3) For the inte±,egion reconstruction

problem using Mi = 3 or more frames, the unobservable modes are

IIo(VbT) n II(veT), if gb' -/ g,- h A 2, 0;

N(H) = {f Af E {odd functions} n IIo(vbT)} n IIo(bT), if vb-h'/f = 2;

{f I Af E IIo(VbDM_1(Y.ih)T) }, if v0.hi = 0.
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4.4 Summary

The nullspaces for reconstruction of motion-blurred surfaces in two dimensions have been de-

termined in this chapter, most results being obvious generalizations of their one-dimensional

counterparts. Two-dimensional reconstruction differs from the one-dimensional case be-

cause the maximum number of independent periodicity vectors is equal to the number of

dimensions. By assuming a straight-line boundary, the one-dimensional theorems on tran-

sition zone compensation and interregion reconstruction can be applied along parallels in

the direction of surface motion to obtain results for two dimensions. The main new feature

is an additional special case to treat a surface moving parallel to the boundary.

Compared to the original one-dimensional, 100% duty cycle theory, the results for ar-

bitrary duty cycle and for motion in two dimensions are incomplete. In the sequel, there

will be no further mention of these extensions. Nevertheless, this digression to generalize

Chapter 2 has enhanced the understanding of the original theory in two ways. First, the

parallel development of Chapters 2-4 created a consistent notation. Second, the findings

negate the hypothesis that reconstruction of one-dimensional images with 100% duty cycle

is entirely a pathological case; on the contrary, they suggest that the unobservable modes

predicted by the original theory will survive in more general scene configurations.
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Chapter 5

Noise and Sampling

Conditions for unique reconstruction have been derived by considering the nullspace of a

linear transformation from one spatially continuous signal to another, but many issues must

be resolved before reconstruction can be carried out with blurred sequences recorded by a

real camera. First of all, the proofs alone do not suggest how to actually construct a unique

or non-unique solution. Second, the impact of noise on observability has yet to be deter-

mined. Third, digital processing requires that continuous images be represented by finite

sets of coefficients; it is possible that sampling the blurred data will destroy information

vital to unique reconstruction. Finally, except in artificial situations the linear transfor-

mation H is unknown and must be estimated from the blurred image sequence itself-the

problem of blind image restoration.

In order to address the first three concerns, this chapter adopts the approach of linear

least squares, i.e. Wiener, estimation. The pertinent equations are reviewed, and the ap-

propriateness of the Wiener approach is considered. Subsequently, the minimum achievable

mean-square error is calculated for a single-pole input signal spectrum over a wide range

of scene parameters. The MSE experiments serve two purposes: first, they corroborate

the analytical results previously derived, linking theory to the physical world: second, they

indicate the quality of reconstruction possible using noisy and/or sampled data, thereby

assessing the relative benefits of interframe and interregion constraints. Furthermore, the

numerical results are supported by examples of restored pictures.

Consider a first-kind Fredholm integral equation

g() = h(x, u)f(u) du,
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where h(x, u) is any square-integrable kernel, not necessarily one arising from observing

a motion-blurred scene. In terms of linear transformations between infinite dimensional

vector spaces, this can be represented abstractly by g = Hf. It is well known that inversion

of such a linear system to recover f is an ill-posed problem [Root87]. H can be characterized

by its singular values (square root of eigenvalues of HTH). The closure of the set of singular

values always includes 0; in other words, if 0 is not itself a singular value then at least there

is a sequence of singular values that converges to 0 [Tricomi85, Devles85]. Consequently,

whether or not H possesses exact nullvectors, there will always exist modes attenuated

so much by the system that noise will render them effectively unobservable. From this

perspective, focusing attention on the nullspace alone, as in the preceding chapters, is like

missing the forest for the trees.

Perhaps there is some justification for overlooking the forest. By the nature of motion

blur, any eigenvector that corresponds to a small singular value must be close to being

periodic with DC-free periods of wavelength vT (or else be a high frequency signal beyond

the passband of interest). The system response to such eigenvectors cannot be too different

from the response to pure sinusoids of period vT, vT/2, vT/3,.... If the latter become

more easily observable given additional information, so does an approximately periodic

signal. Thus, the behavior of exact nullvectors should be representative of the behavior of

near-nullvectors. The preceding argument is merely a heuristic, and the best justification

is that all experimental results can be explained by considering only exact nullvectors.

In this chapter, the duty cycle of camera integration is again assumed to be D = 1, and

only one-dimensional signals are discussed. As a result, if motion blur and reconstruction

occur in the horizontal direction, vertical correlations in the image will be completely disre-

garded. Extensions to two-dimensional motion were not pursued in this thesis investigation

since the computational approach developed for one-dimensional signals with L samples

becomes impractical for two-dimensional signals with L2 samples. Extensions to arbitrary

duty cycle were not studied experimentally, either. In most cases, the only effect of D is

to scale the wavelengths of unobservable modes, so those results are not in doubt once the

D = 1 results have been verified. On the other hand, further experiments would be useful

where the D < 1 theory is incomplete.
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5.1 Linear Least Squares Estimation

Let f and n be uncorrelated zero-mean random vectors with covariances Af, A,. The

general noisy linear observation equation is

g = Hf + n. (5.1)

The Wiener estimator of f, defined as the linear function f = Kg minimizing the expected

mean squared error E lif- f ]2}, is given by

t(g) = PHTA-' g, (5.2)

where

P=(HT 1H + A-')-. (5.3)

P is the covariance of the estimation error f - f, and a spatially averaged normalized error

can be defined as MSE=tr(P)/tr(Af). This ratio is always between 0 and 1, and will serve

as a performance criterion in the sequel.

5.1.1 Justification for Wiener Estimation

The introduction of Wiener estimation, which depends on a statistical model of the input

signal, seems to conflict with the goal of reconstructing fnob, deterministically, using inter-

frame and interregion constraints. It turns out, however, that Af primarily assists in noise

reduction and has almost no effect on resolving underdeterminacy. If the input signal basis

is chosen so that f is partitioned into

funobs J

then the system matrix must be H = [HI 0], with HTH 1 full rank. Partition Af likewise

as

[ A1 A2 1 1
A2 1 A 2 J

Then, in accordance with Figure 5.1, the Wiener estimator for f can be decomposed as

f= [ - 1
A ] (HTH)'HT HAfHT(HAHT + An) g.

1 a _ I-
reconstruction noise reduction

prediction
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f

f

Figure 5.1: Decomposition of signal degradation and restoration into stages

The third factor is the Wiener filter for estimating Hf. The second factor is the inverse

filter for reconstructing ftb given a noiseless observation of Hf. The first factor contains

the optimal predictor of funobs given a noiseless observation of bs. N(H) and N(H)'

occupy roughly disjoint bands of frequency and are therefore uncorrelated as long as f(x)

is wide-sense stationary. Hence, A 21 0, fobs is poorly estimated from g, and the mean

energy of fob, is an approximate lower bound on the error energy, i.e., the irreducible

error. For these reasons, it is fair to say that the addition of a second-order signal model

does not represent a major departure from the approach of this investigation.

Even when its role is limited to noise reduction, however, Wiener filtering of images

has been criticized on at least two counts. Some researchers avoid Bayesian approaches,

maintaining that a random process is a dubious way to model real image signals. A more

practical problem with Wiener filters based on stationary models is subjectively suboptimal

performance in typically non-homogeneous pictures.

To answer the first criticism, it is sufficient to find plausible derivations of the Wiener

equations that view f as a deterministic but unknown signal. Solutions produced by various

regularization techniques are intimately connected to (5.2) and (5.3).

Wiener estimation is equivalent to minimizing the cost function

J (flg) = fTA-1 f + (g - Hf)TIAl(g - Hf) (5.4)

with respect to f. In constrained least squares, A- 1 is simply viewed as a weighting matrix
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that penalizes non-smooth solutions [Hunt73. The estimate is a tradeoff between smooth-

ness of f and closeness of Hf to g. The covariance of f, which consists solely of amplified

observation noise, is not given by (5.3) in this example.

Another approach to regularization is to choose the linear estimator that minimizes the

maximum error covariance as the true f wanders over the a priori set of possible signals

[Root87]. Specifically, suppose f is known to lie in a rectangular parallelepiped of the form

= I fk=O < bk, k

where the bk's are arbitrary constants and the k'S are orthonormal eigenvectors of HTH

corresponding to nonzero eigenvalues. Replace Af in the Wiener filter by bky =0 . It

then turns out that the optimum linear estimator f minimizing maxE {|if -fl } is (5.2),

and the minimax value of squared error is (5.3).

It is not necessary to elaborate on these techniques. The main point is that the Wiener

equations are identical to, or serve as prototypes for, many alternative estimation methods,

both Bayesian and deterministic.

The second criticism is a more significant issue in practice. Nonadaptive Wiener filters

tend to perform more noise reduction around edges and busy areas than necessary for the

optimum subjective tradeoff between noise and sharpness. Superior pictures have been ob-

tained by noise reduction filters adapting to local image activity and direction (for example,

[Anderson76, Powell82, Abramatic82, Knuttson83, Bovik85]), although no applications to

blur restoration have been demonstrated. Ideally, such approaches should be used for the

noise reduction stage of a complete system to restore motion-blurred sequences. However,

further discussion of this subject lies beyond the scope of this research and is not directly

related to the main problem of unobservable modes.

5.1.2 Alternate Performance Criteria

Several reasons for using the Wiener estimator to implement reconstructions in this thesis

have now been advanced. Still, the error covariance (5.3) may not seem like a sound basis

for a performance criterion. An ensemble average quantity like MSE is not too meaningful if

f is a deterministic signal. On the other hand, more important than the absolute magnitude

of the estimation error is how it varies as H is changed, and it is presumed that this variation

is similar whether f is fixed or random. Furthermore, tr(P) equals the sum of reciprocal
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eigenvalues of HTA;lH + A- 1 and is therefore sensitive to the number and magnitude of

small singular values of H, which indicate unobservable modes.

Another possible criterion to monitor is the condition number, or eigenvalue ratio, of

HTA;lH + A-'. Since the maximum eigenvalue is basically fixed by the signal to noise

ratio, the condition number varies with the minimum singular value of H. A large change

in condition number does not always imply changes to all small singular values of H, and

for this reason it may not be as relevant to overall performance as MSE.

Finally, an information-theoretical approach might measure the quality of reconstruction

by the conditional entropy of f given g,

7'(fig) = X-(f) - I(f; g).

H(f) is the entropy of f. Z(f;g) is the average mutual information between f and g,

which reflects how useful the noisy blurred observation is for estimating the input signal

[Gallager68]. For example, if f and n are independent zero-mean Gaussian random vectors,

then

1 (det(HAfH T + An,)
'(f; g) - log

2 det A,

thus, 7H(flg) is sensitive to the singular values of H via the determinant of HAfHT + An.

This approach will not be pursued any further.

5.2 Experimental Setup

With a fixed intraframe, intraregion reconstruction problem designated as a benchmark, the

general plan of this series of experiments is to compare the MSE reductions achievable using

different sets of additional constraints. The surface velocity of this original observation will

be held constant.

* For the class of intraregion reconstruction problems, the observation domain will be

extended spatially in the same frame or temporally to a new frame. The optimum

MSE will be determined as a function of the extended interval length in the former

case; of the surface velocity during the new frame, in the latter.

* For transition zone compensation, the original observation will be extended spatially

to encompass a transition zone, in which the contribution of the adjacent surface has
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Figure 5.2: Single-pole signal spectra: each surface is modeled by a single-pole
power spectrum, with p = 0.74 or p = 0.10, multiplied by a window with infinite
attenuation above w = r (i.e., f = 0.5).

already been subtracted out. The MSE will be evaluated as a function of the boundary

velocity. New frames will also be added.

* The interregion reconstruction experiments will be conducted similarly, except no

prior subtraction is assumed.

Each unknown surface image is modeled as a segment of a spatially continuous, station-

ary random process with single-pole power spectrum, multiplied by a bandlimiting window

(Figure 5.2). SNR is defined as the input signal power divided by the height of the output

white noise spectrum, i.e., SNR=Var(f(z))/No.

Since a signal segment of length L may be represented by the cosine series

f(z)= -fo+ E AfkCOS [0, L[0],
k= l

the following computational simplifications are used. Because the cosine transform approx-

imates the ideal Karhunen-Loeve expansion for this process [Hou87, Clarke81], the cross-

correlations E {fkfl} 0 are set to 0. Also, if Sf(w) is the signal power spectrum then
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Var(fk) - S (rk/L). Since f(z) is bandlimited, only a finite number of terms are nonzero;

accordingly, the input side of the linear system H in (5.1) becomes finite dimensional, and

Af in this basis is a diagonal matrix. H itself is not diagonal, however.

The preceding method of discretizing f(x) is preferable to Nyquist sampling because

accurately computing the coefficients of H in the basis of shifted sinc functions is very

expensive; it was found that even a tiny amount of aliasing could change the zero eigenvalues

of H, masking its truly singular nature. Another advantage of this representation is that

the diagonal of P has a frequency-domain interpretation-it is something like the power

spectrum of the estimation error. The main drawback-that the MSE for a subinterval of

[0, L] is not immediately accessible-is outweighed by the advantages.

In keeping with the theoretical analysis of the previous chapters, blurred frames are

considered to be spatially continuous and observed with infinite bandwidth, only now cor-

rupted by additive white noise. Therefore, the optimum MSE values to be calculated serve

as lower bounds on the actual MSE achievable with discrete and finite bandwidth observa-

tions (to be discussed in §5.5). Since HTA;lH is finite dimensional and can be calculated

analytically, no discrete approximation is involved for the output side of the linear system.
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5.3 Confirmation of Theory

The performance of the optimum Wiener estimates is found to be in excellent agreement

with the theory, in the sense that all differences can be ascribed to observation noise or the

finite bandwidth signal model. Refer back to Figure 2.1 for a summary of the predicted

nullspaces.

5.3.1 Intraregion

5.3.1.1 Intraframe

When the SNR of the data is high, the estimation error in the benchmark problem is dom-

inated by the irreducible error of unobservable modes rather than amplified observation

noise. As shown in Figure 5.3b, the error energy in the cosine transform domain is con-

centrated around basis functions with periods vT/k, k = 1,2,3,.... Consequently, the

error autocorrelation in the signal domain is nearly periodic, with period equal to the blur

distance (Figure 5.3c). These results agree with the theoretical nullspace N(H) = IIo(vT).

There is an intuitive reason that errors at samples spaced vT,2vT,3vT,... apart are

highly correlated. Ignoring noise, f(z) is related deterministically to f(x - vT) via the

difference equation (1.1) once g(z) is observed.

As an aside, one would typically expect better performance in the middle of a finite in-

terval estimation problem than at the ends. A trend of this sort is evident from Figure 5.3d,

but the difference is almost negligible.

5.3.1.2 Interframe

A corresponding interval is now made available from another frame. The surface displace-

ments during successive frames, vlT and v2T, will ordinarily be very close, but we will

examine a wide range of v2/vl in order to allow non-consecutive frames as well. The broken

curves in Figure 5.4 are the optimum MSE's achievable when either of the two frames is

observed alone. v2/v 1 is varied while vlT = 11 is held constant. The solid curve is the MSE

when the two observations are combined, and obviously has to stay below both broken

curves.

Two salient features should be noted. First, the peaks in the interframe MSE are in
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Figure 5.3: Error covariance of optimum intraframe, intraregion reconstruction.
p = 0.10, SNR=50 dB, vT = 11, L = 88.
(a) Covariance P in cosine transform domain (log magnitude);
(b) Diagonal elements of P;
(c) Covariance in signal domain;
(d) Diagonal of (c), with greatly exaggerated vertical scale.
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MSE (dB)

v2/v 

0 0.5 1 1.5 2

Figure 5.4: MSE of intraregion reconstruction vs. v2/vl: vrT = 11 is fixed.
p = 0.10, SNR=50 dB, L = 88.
(dotted) reconstruction using single frame of blur vT or v2T individually;
(solid) reconstruction using both frames.
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one-to-one correspondence with the set of velocity combinations that satisfy

gcd(vlT, v2 T) > 27r/wmax, (5.5)

where wmax is about 0.77r. Specifically, peaks are located at

11 11 22 33 55 44 33 55 77
2T 11, and 22.v2T 3' 2 3' 4 4' 3' 2 3' 4' and22.

Second, the height of a peak is directly related to the magnitude of gcd(vlT, v 2T), and the

arrangement of peaks resembles Figure 2.5. For example, the peak at v2 /v1 = 2/3 is higher

than the one at v2/vl = 3/4; the gcd's are 11/3 and 11/4, respectively.

Both properties could have been predicted by the theory. In principle the nullspace is

II0(gcd(vlT, v2T)), nonempty for all rational v2 /vl, but in practice the only nullvectors that

matter are those with frequencies well within the low-pass signal spectrum Sf(w). Peaks

appear only when gcd(vlT, v2T) is sufficiently large (the nominal cutoff frequency nx in

(5.5) is lower than ir due to the spectral window), and the nullspace is essentially empty

for almost every velocity ratio, even rational ones. Finally, the peaks are highest whenever

N(H) contains nullvectors of lower frequencies, because Sf(w) is a decreasing function of

frequency.

The idealized theory would predict infinitesimally narrow peaks, but observation noise

prevents this from occurring. Although the signals in II (gcd(vlT, v2T)) are no longer exact

nullvectors as v2 T is perturbed away from a peak, they will still be attenuated so much by

H that they remain effectively unobservable and continue to cause high MSE.

5.3.2 Transition Zone Compensation

5.3.2.1 Intraframe

As in Chapter 2 the unknown surface will be regarded as "background" and the known

adjacent surface, whose contribution is perfectly subtracted out of the transition zone, is

"foreground". Assuming that the original intraregion domain of observation abuts a transi-

tion zone, the zone is now appended to the data available to the reconstruction algorithm.

vb/lv, is varied while vbT = 11 is held constant. (In particular, the condition Vblve = 1

could represent the situation where the "background" is really an object moving in front of

a known stationary surface.)

The broken line in Figure 5.5 is the MSE of the benchmark intraframe, intraregion
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Figure 5.5: MSE of transition zone compensation vs.

p = 0.10, SNR=50 dB, L = 88.

(dotted) intraframe, intraregion reconstruction for coi

(solid) transition zone compensation using one or twc

vb/ve

vb/Ve: vbT = 11 is fixed.

mparison;
) frames.
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reconstruction problem. The upper solid curve demonstrates that intraframe transition

zone compensation is markedly less effective when vb/v, > 1, confirming the existence of

the nullspace N(HL) n IIo(vbT) for this range of velocity ratios.

Notice that the MSE gradually decreases from the peak at vb/Ve = 2. This shallow skirt

can be explained by the low-pass nature of Sf(w). At the peak, the region of support of

Hz is an isosceles triangle, and a period-vbT nullvector in N(Hz) can be a pure sinusoid of

wavelength vbT. As vb/ve moves away from 2 in either direction, the triangle becomes more

and more asymmetrical; this requires period-vbT nullvectors to contain higher frequency

harmonics, which are lower in energy.

Another feature is a gradual rise in MSE as IveT!, the width of the transition zone,

decreases (evident in the graphs only for vb/Ve < 0 since the effect is obscured by the peak

at vb/v = 2). Because the total energy due to fb(z) in the transition zone is declining

quadratically with IveTI while the total noise energy in the zone is declining only linearly,

the quality of the boundary condition suffers. In the limit as IveT - 0, of course, the

transition zone vanishes and the MSE must approach that of intraregion reconstruction.

5.3.2.2 Interframe

The corresponding interval in an adjacent frame is added to the previous observation do-

main, choosing the previous frame if the boundary and background surface are moving

apart, or the following frame if they are converging. This procedure avoids adding more

new portions of fb(x) to the set of unknowns.

The lower solid curves in Figure 5.5 exhibit only a narrow peak at v/ve = 2, as the

theory would predict. The constraints provided by the second frame of transition zone com-

pensation rule out unobservable modes in N(HL)nIIo(vbT), except around one pathological

velocity ratio.

5.3.3 Interregion Reconstruction

The interregion reconstruction problem uses the same surface and observation configurations

as transition zone compensation. However, prior knowledge of the foreground contribution

gf(x, t) within the transition zone is replaced, in effect, by the interframe constraint gf(x +

veT, t + T) - gf(x, t) = 0.
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5.3.3.1 Intraframe

Interregion reconstruction is impossible using one frame, as shown by the top solid curves

in Figure 5.6.

5.3.3.2 Two frames

The middle solid curves display properties of both intraregion and transition-zone com-

pensation problems. In the range Vb/V > 1 the MSE broadly peaks at vb/ve = 2. This

agrees with the prediction of nullspace N(HzA) n IIo(vbT) for this range of velocity ratios.

Asymmetry in Hz should again account for the shallow skirt.

Every narrow peak in the MSE corresponds to a velocity combination for which

gcd(vbT, veT) > 2r/w.x,

where wm, is roughly 0.7ir. The height of a peak is directly related to the magnitude of

gcd(vbT, veT). These peaks support the prediction of nullvectors in IIo(gcd(vbT, vT)).

Notice, however, the absence of a peak at vb/lv, = 3 and the scarcity of peaks for negative

Vb/Ve. It appears that vb, v, must also satisfy

gcd(vbT, veT) 2r (5.6)
(5.6)

1- Vb/Ve - ax

to produce a peak, and this is violated by vT = 11/3 as well as most of the potential peak

velocities in the range VeT < 0.

This extra requirement can be explained by the signal spectrum of the foreground surface,

which constrains the set of possible background surface nullvectors even though it is not

being estimated. Suppose the pair (fb, fj) makes a nullvector. From (2.14), ff(x) in the

transition zone is the scaled derivative of gb(z, 0), which is related to fb(x) through Hz or

H. (2.7):

gb(X,0) = |Vbf fb()d, E [0, veT]. (5.7)
vbT 1-.blv)X

An input signal component at frequency w produces an output containing frequency (1 -

vb/v,)w as well as w itself. The inequality (5.6) just means that ff(x) cannot contain

frequencies beyond the nominal bandwidth.
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Figure 5.6: MSE of interregion reconstruction vs. vb/ve: Lcb

p = 0.10, SNR=50 dB, L = 88.
(dotted) intraframe, intraregion reconstruction for comparison;
(solid) interregion reconstruction using one to three frames.

2 3

= 11 is fixed.
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5.3.3.3 Three frames

The main effect of adding a third frame is to discard the shallow skirt to reveal two smaller

peaks, which correspond to modes in o(gcd(vbT, vT)). The tall peak at vb/v = 2

reflects the usual pathological case. §2.4.2 questioned whether signals in the nullspace

N(HzA) n Ho(vbT) but not also in IHo(gcd(vbT, vT)) actually exist; the clear difference in

MSE between two and three frames for velocities in the range vb/V, > 1 indicates that they

do.

5.3.4 Discussion

To summarize, the foregoing experiments confirm that the structure of the nullspace is de-

termined by interregion or interframe velocity ratios in accordance with theory, modified by

the signal model and the existence of observation noise. No specific nullvectors were actually

calculated to verify that N(H) is really {odd functions} n fIo(vbT) or N(HLA) n Ho(vbT),

for example, but the results offer no evidence to the contrary. When properly interpreted,

the results of Chapters 2-4, which might have been dismissed as merely mathematical cu-

riosities, reflect the actual performance under more realistic assumptions.

The set of unfavorable velocity combinations is less extensive than predicted by theory

because the shorter wavelength functions in N(H) become irrelevant when Sf(w) is a low-

pass spectrum. For all intents and purposes, a subspace of the form IIo(gcd(z, z 2)) is

nonempty not for the dense set of all rational zl/z 2 but only for the sparse set of zl/z 2 = mn/n

where m, n are small integers. Velocities are in effect incommensurate whenever inequalities

like (5.5) and (5.6) are violated.

On the other hand, the set of unfavorable velocities is expanded by the presence of

observation noise. A signal component in N(H) at one specific velocity will remain essen-

tially unobservable for a range of neighboring velocities, since its system response remains

buried in noise. Noise keeps infinitesimal velocity perturbations from causing discontinuous

changes in the behavior of reconstruction.

In a Bayesian approach like Wiener estimation, one aspect of proper interpretation

includes defining what is meant by "observability". After all, noise always prevents perfect

estimation, even when far away from an MSE peak, and the signal model prevents total

ignorance. An "observable mode" is one that can be estimated relatively well from the

99

____ll__m1l�_lll1_l______· ^^_4111 �-^---�---LI- .· ·1�-�1�-·1.·^·1- -Il-I ··1_-111_



data, while an unobservable mode" can only be poorly estimated; i.e., the data gives little

information and a priori knowledge is heavily weighted.

In light of this discussion, it is vital to reassess the relevance of the unsolved theoret-

ical problems raised in earlier chapters. The discussion of Theorem 2.4.2 questioned the

existence of "interesting" nullvectors for irrational values of vb/ve, but the question is moot

since they do exist for neighboring rational values. In connection with Theorem 3.1, §A.4

speculates that N(H) = {O} or N(HL)n IIo(vbDT) for almost all points in the (a, 6) plane,

except in a certain set where the nullspace is not yet known. Despite the small area of

that subset, it is still important to determine the nullvectors, if any: in the presence of

noise they affect observability at neighboring values of (a, 6) which were theoretically free

of nullvectors.

100



5.4 Comparison of Reconstructions

In order to best illustrate the theory, the signal and noise statistics were fixed in the preced-

ing section. Here, these parameters are allowed to vary, and the performance of intraregion,

transition zone compensation, and interregion restorations is compared. The benchmark

reconstruction problem is the intraframe observation of a surface segment of length L = 88,

blurred by displacement vbT = 11; the signal spectra are those of Figure 5.2.

Although MSE is a convenient figure of merit, the numbers should not be taken too se-

riously. After all, typical natural scenes do not resemble samples of a homogeneous random

process. Moreover, residual blur, random-looking noise, and periodic artifacts all contribute

to this error metric, but it is unlikely that the subjective visibility of these disparate distor-

tions combine by simple addition. For this reason, test images will supplement the numerical

results. Figure 5.7a shows the original background surface along with a narrow strip of the

foreground. The estimated correlation between points horizontally spaced 1 unit apart is

p = 0.88. The blurred image from one frame is depicted in Figure 5.7b,c, with background

displacement vbT = 11. The transition zone on the left margin is seen to contain some

signal from the foreground, whose displacement is vf T = veT = 8.

5.4.1 Effects of p and SNR

Figures 5.9,5.13,5.17 cover the three classes of reconstruction problems with three lev-

els of noise. As a check on the calculations, it is verified that increasing the amount of

information-e.g., increasing p, SNR, number of frames, or spatial extent of observation, or

performing subtraction in the transition zone-never increased the MSE.

The effect of p on MSE is negligible when the MSE itself is very low, because the

a priori information of signal statistics is not heavily weighted. At high levels of MSE,

decreasing the correlation from p = 0.74 to 0.10 increases MSE by 3 dB or so (Figure 5.8).

Qualitatively, the performance curves are unchanged and so only p = 0.74 data will be

shown and discussed.

The noise level, on the other hand, greatly affects the shape of the curves. The highly

peaked behavior at 50 dB SNR caused by the changing nullspace structure is diminished at

40 and 30 dB. The valleys are rapidly lifted by an increase in noise because at those velocity

ratios the estimation of signals close to the nullspace depends heavily on data, while the
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(a)
Original

(b)
vbT = 11

(c)
vbT = 11

vf T = -8

v f T = 8

Figure 5.7: Original and blurred test images:
(a) original background surface from "cman" (L = 89) and foreground surface

from "quilt", which appears as a narrow strip on thk left;

(b) background blurred by displacement vbT = 11 and foreground surface

blurred by displacement veT = vfT = -8;

(c) veT = vfT = 8.
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MSE (rho-. 74)

OdB.

-10.

-20.

-30
-30

MSE (rho-. 10)
-20 -10 OdB

Figure 5.8: MSE at p = 0.10 vs. MSE at p = 0.74. Data points combined from
intraregion, transition zone compensation, and interregion at all velocity ratios
and SNR levels.
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peaks rise slowly because the data at those velocity ratios is not too useful for estimating

near-nullvectors.

5.4.2 Intraregion

The MSE for the benchmark problem of intraframe, intraregion restoration ranges from -9

to -13 dB as the SNR of the observation varies from 30 to 50 dB (Figure 5.9). Compared

to -4 dB, the MSE of the blurred frame without any processing, the gains are moder-

ate to large. The subjective improvement is significant if a sharp image with artifacts

(Figure 5.10a) or artifacts plus noise (Figure 5.10c) is considered better than a blurred

one with no artifacts or noise. Even so, both the theoretical performance and the visible

artifacts leave something to be desired.

The Wiener MSE for the high SNR observation comes within 0.1 dB of the MSE of a

noiseless pseudoinverse reconstruction, i.e., the variance of funobs(x). Moreover, the recon-

struction in Figure 5.10a is very close to the calculated observable component, Figure 1.2d.

This is reasonable because of the weak correlation between funob and ftb: at its best (at

high SNR) the Wiener estimator recovers only the observable part.

5.4.2.1 Extending the observation spatially

The most straightforward method of improving the benchmark reconstruction is to expand

the length of observation. Since g(x) is correlated even if f(x) is not, the performance must

improve. However, the MSE declines slowly with L (Figure 5.11). Doubling L from 88 to

176 gives less than 2 dB improvement at SNR of 50 dB; only in the limit as L -- oc does the

attainable MSE rival that of reconstructions involving the compensated or uncompensated

transition zone. This approach is not promising because the burden of computation grows

and because regions have limited size.

5.4.2.2 Interframe with unequal velocities

Among the three classes of reconstruction problems, the greatest potential MSE reduction

results from multiple velocity observations of a single surface. Object velocities do not often

change much over the course of a few frames, so the most relevant part of Figure 5.9 is the

neighborhood around v2 /vr = 1. At 50 dB SNR, adding a frame in which the displace-

ment is v 2T = 9.6 makes the MSE drop by 16 dB to reach -28 dB. As demonstrated in
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vP nnlv

-30dB

40

50

30
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50

v2/vi
0 0.5 i 1.5 2

Figure 5.9: MSE of intraregion reconstruction vs. v2 /1 v and SNR. vT = 11 is
fixed. L = 88, p = 0.74.
(dotted) intraframe reconstruction using single frame of blur v2T;
(solid) reconstruction using both frames.
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(a)
SNR=50OdB

(c)
30dB

(e)
50dB

Ax = 1

Figure 5.10: Intraregion reconstruction of an image:
vlT = 11; (right) using two frames, vlT = 11, v2 T = 8.

(a-d) continuous observation;
(e-f) discrete observation, Ax = 1.

(left) using one frame,
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MSE (dB)

n

-10

-20

-30

- SNR-30dB

* 40

50

L
0 44 88 132 176 infty

Figure 5.11: MSE of intraframe, intraregion reconstruction vs. L and SNR.
vT = 11, p = 0.74.

Figure 5.10b, the periodic component in IIo(vlT) is completely recovered and the recon-

struction is virtually indistinguishable from the original. At 30 dB SNR the predicted MSE

improvement is not impressive, but the subjective improvement is still good (Figure 5.10d).

The principal limitation of this approach is that performance is highly variable, de-

grading when v2/vl is close to a ratio of small integers. In Figure 5.12a the velocity ratio

is 3/2 and the interframe reconstruction is missing a periodic component of fundamental

wavelength gcd(16.5, 11) = 5.5.

5.4.3 Transition Zone Compensation

5.4.3.1 Intraframe

Transition zone compensation is not very useful when a nontrivial nullspace is present

(vb/Ve > 1) or when the SNR is worse than 40 dB or so (Figure 5.13). When vb/ve < 1 and

SNR=50 dB, though, an improvement up to 8 dB over the benchmark is possible. That

brings the MSE down to -21 dB, which is far worse than the potential performance of

two-frame intraregion processing, above.
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rlT = 11
vlT = 11

v2 T = 16.5

(a)
SNR=50OdB

(c)
30dB

(e)
50dB

A =1

(b)

(d)

(f)

Figure 5.12. Intraregion reconstruction of an image when ul /v 2 is ratio of small

integers: (left) using one frame, vlT = 11; (right) using two frames, vlT = 11,

v 2 T = 16.5.

(a-d) continuous observation;
(e-f) discrete observation, Ax = 1.
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.......... ...one frame

two frames

C.

SNR30dB -

........................................
40

-3 -2 -1 -. 66 -. 5 .5

MSE dB)

........................

·. . ..

.66
, vb/ve

2 31

Figure 5.13: MSE of transition zone compensation vs. b/vte and SNR. vbT = 11
is fixed. L = 88, p = 0.74.
(dotted) transition zone compensation in one frame;
(solid) in two frames.
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MSE (dB)

zone
n

f
0 0.1 0.2 0.3 0.4 0.5

Figure 5.14: Error spectra of intraregion reconstruction and transition zone
compensation in cosine transform domain. p = 0.74, SNR=50 dB, vbT = 11,
veT = 15.1, L = 88.

Since transition zone compensation theoretically eliminates all unobservable modes when

vb/ve < 1, these predictions are disappointing. Even at 50 dB SNR, the culprit is probably

noise. The boundary condition created after subtracting out the foreground surface is a

reasonably good constraint on the lowest frequency nullvectors (period vbT), but a poor

constraint on higher frequency ones since they are attenuated more by H.. Thus, the MSE

tends to be dominated by the latter (Figure 5.14).

On the other hand, the subjective improvement could still be worthwhile. Sample

pictures confirm that transition zone compensation is very effective in removing artifacts

of unobservable modes when the SNR is high and b/v < 1 (Figure 5.15a). At 30 dB

SNR the artifacts can be reduced only slightly (Figure 5.15c). As expected, modes in

N(H) n IIo(vbT-), for vb/ve > 1, cannot be removed by transition zone compensation

(Figure 5.16a). However, since the rest of the signal in IIo(vbT) has been recovered, the

artifacts are less severe.
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i frame 2 frames

(a)
SNR=50dB

(c)
30dB

(e)
50dB

= 1

(b)

(d)

(f)

Figure 5.15: Reconstruction after transition zone compensation when vb/Ve < 1.

VbT = 11, v,T = -8. (left) using one frame; (right) using two frames.
(a-d) continuous observation;
(e-f) discrete observation, Ax = 1.
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i frame 2 frames

(a)
SNR=50dB

(c)
30dB

(e)
50dB

AX = 1

(b)

(d)

(f)

Figure 5.16: Reconstruction after transition zone compensation when vb/ve > 1
vbT = 11, veT = 8. (left) using one frame; (right) using two frames.
(a-d) continuous observation;
(e-f) discrete observation, Ax = 1.
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5.4.3.2 Interframe

A second frame generally reduces MSE by an additional 1-3 dB (Figure 5.13). In the

velocity range vb/v, > 1 the improvement is greater because a family of unobservable

modes is canceled. Figure 5.16b demonstrates the significance of this cancellation.

5.4.4 Interregion

5.4.4.1 Two frames

Ignoring peaks in MSE due to IIo(gcd(vbT, veT)), the performance of interregion recon-

struction using two frames lies between one- and two-frame transition zone compensation

(Figure 5.17). As long as transition zones can be observed in two successive frames, knowl-

edge of the foreground surface in order to subtract out its contribution may not be all that

valuable.

Test pictures of interregion reconstruction look approximately the same as those of

transition zone compensation when vb/ve is not close to a ratio of small integers. Compare

Figure 5.18 and Figure 5.19 with Figure 5.15 and Figure 5.16.

Unfortunately, the velocity ratio is not under the observer's control and so the peaks

cannot be avoided by choice in a practical problem. For example, when vb/v = 2/3 the

greatest common divisor wavelength is unobservable, and artifacts remain (Figure 5.20).

Therefore, the disadvantage of interregion processing, compared to transition zone compen-

sation, is variable performance. The fluctuations may be smaller than those of two-frame

intraregion reconstruction, but the overall performance is worse.

The leftmost portion of the background surface happens to be relatively devoid of detail,

with little difference among rows. Since only this portion interacts with the foreground, the

experimental results might seem unrepresentative. Actually, the reconstruction artifacts,

or lack thereof, are not fundamentally affected by this blank area because all parts of the

surface contribute with equal weight to the periodic unobservable component.

5.4.4.2 Three frames

The situation is similar to transition zone compensation with two frames. MSE is reduced

1-3 dB by the third frame, except for greater improvement when vb/v, > 1.
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Fwn tr':mO ( MS ()

vb/ve
-3 -2 -i -. 66 -. 5 .5

Figure 5.17: MSE of interregion reconstruction vs
fixed. L = 88, p = 0.74.
(dotted) interregion reconstruction in two frames;
(solid) in three frames.

66 1 2 3

. vb/ve and SNR. vbT = 11 is
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2 frraes

(a)
SNR=50OdB

(c)
30dB

(e)
50dB

Ax = 1

(b)

(d)

(f)

Figure 5.18: Interregion reconstruction of background surface when Vb/ve < 1.
vbT = 11, veT = -8. (left) using two frames; (right) using three frames.
(a-d) continuous observation;
(e-f) discrete observation, Ax = 1.
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3 frames

(a)
SNR=50OdB

(c)
30dB

(e)
50dB

Ax = 1

(b)

(d)

(f)

Figure 5.19: Interregion reconstruction of background urface when vb/v > 1.
vbT = 11, vT = 8. (left) using two frames; (right) using three frames.
(a-d) continuous observation;
(e-f) discrete observation, zAx = 1.
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2 frames 3 frames

(a)
SNR=50dB

(c)
30dB

(e)
50dB

Ax = 1

(b)

(d)

(f)

Figure 5.20: Interregion reconstruction of background surface when b/ve is a
ratio of small integers. VbT = 11, veT = 16.5. (left) using two frames; (right)
using three frames.
(a-d) continuous observation;
(e-f) discrete observation, Ax = 1.
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5.4.5 Review

* The performance characteristics of Wiener estimation are fairly insensitive to the prior

signal spectrum but highly dependent on the SNR of the observation.

* For any fixed SNR level and number of frames, intraregion reconstruction using frames

with different blirs offers the best potential MSE reduction, but results cculd vary

greatly with v2/v 1l.

* High SNR is required to take advantage of constraints between overlapping regions;

otherwise, there is no worthwhile improvement over simple intraframe, intraregion

reconstruction.

* Specifically, transition zone compensation may be the most reliable way, in theory, to

avoid unobservable modes; in practice, however, it is not a panacea for underdetermi-

nacy since noise reduces the quality of the new constraints.

* Interregion processing is potentially comparable to transition zone compensation but

the performance also depends on vb/Ve.
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5.5 Discrete Observations

The nullspace theory developed in Chapter 2 and the Wiener filter performance evaluations

in the last section both assume that the blurred, noisy frames are recorded as infinite

bandwidth, spatially continuous signals. It is of practical importance to determine how

much the results change when the observations are discretized. Since the linear system H

is not shift-invariant, a bandlimited input image does not necessarily produce an equally

bandlimited output image. Therefore, it might not be sufficient to spatially sample the

frames at the Nyquist rate of the input. The following experiments show, however, that it

is sufficient in many cases.

Let the sample spacing be Ax. For this discussion, we assume that the presampling filter

is a rectangular impulse response of width Ax; in other words, samples g(iAx, t), i =

0, 1, 2,..., are obtained by averaging non-overlapping cells in the continuous signal gc(x, t).

Because this filter permits aliasing, it is not optimum for subsequent Wiener estimation

[Malvar86], but it is convenient and mimics the response of a solid-state imaging array

device.

The optimum MSE will be computed as a function of Ax for each of the three classes

of reconstruction problems, on a representative set of velocity ratios. Other parameters are

unchanged from the previous series of experiments. In particular, the signal spectrum cuts

off at r, so that Ax = 1 corresponds to the Nyquist rate. We continue to define SNR in

terms of the noise prior to filtering and sampling.

5.5.1 Intraregion

Performance curves for intraregion reconstruction using one frame blurred by vlT = 11

and two frames blurred by vlT = 11 and v2 T = 9.6 are shown in Figure 5.21. If the MSE

is relatively poor even when the observation is continuous, discretization has almost no

effect. When SNR is at least 40 dB, the performance of the Wiener estimator degrades by

1-2 dB as Ax increases from 0 to 1. As one might expect, the MSE rises sharply when the

sample spacing is increased even further; examination of the error variance in the cosine

transform domain reveals that the MSE comes to be dominated by inability to estimate

high frequencies (Figure 5.22).

A comparison of Figure 5.10e,f with Figure 5.10a,b verifies that sampling at the Nyquist
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MSE (dB)

n uV4 nlv

dx
0 0.5 1 1.4

Figure 5.21: MSE of intraregion reconstruction vs. SNR and sample spacing Az:
L = 88, p = 0.74. The Nyquist rate for the input signal is attained at Ax = 1.
vlT = 11, v2 T = 9.6 are fixed. From top to bottom: SNR=30, 40, 50 dB.
(dotted) reconstruction using single frame of blur vlT;
(solid) reconstruction using both frames.
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MSE (dB)

f
0 0.1 0.2 0.3 0.4 0.5

Figure 5.22: Error spectra of intraframe, intraregion reconstruction vs. Ax.
p = 0.74, SNR=50 dB, vT = 11, L = 88.

rate does not hamper intraregion reconstruction in practice.

5.5.2 Transition Zone Compensation

The velocity-of the surf-ace to be restored is fixed at vbT = 11. Three boundary velocities

are selected, one from each distinct range of velocity ratios: VbIVe < 0, 0 < vb/ve < 1, and

vb/ve > 1 (Figure 5.23). The previous comments regarding large MSE at Ax = 0 apply

equally well to transition zone compensation.

An exclusive feature of the vb/Ve < 0 case is that performance seems to start degrading

well before the Nyquist limit is exceeded, whereas for vb/ve > 0 the MSE is almost flat up

to Ax = 1. For small values of Ax, most of the error energy resides in signals near IIo(vbT);

the corresponding peaks in the error spectrum seem to increase with Ax in the vb/ve < 0

case, but not otherwise.

A likely explanation for the preceding behavior is (5.7). Since H_ for vb/ve < 0 expands

the bandwidth of its input, the Nyquist limit on Ax is not longer 1 but some smaller value.

An alternative explanation in the signal domain appeals to linear algebra. Theoretically,
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MSE (dB)
(a) vb/ve<0

-5-

SNR-30dB

40

50

. r

0

MSE (dB)

0.5

-10.

-15.

-20.

-25
1 1.4 0

(b) O<vb/ve<i

0.5 1

(c) vb/ve>l

... . . . . .... one frame.

two frames.

0.5 i
dx

1.4

Figure 5.23: MSE of transition zone compensation vs. SNR and sample spacing
Ax: L = 88, = 0.74. The Nyquist rate for the input signal is attained at
AX = 1. bT = 11 is fixed; (a) veT = -9.6; (b) veT = 12.4; (c) veT = 6.9; From
top to bottom: SNR=30, 40, 50 dB.
(dotted) reconstruction after transition zone compensation in one frame;
(solid) reconstruction after transition zone compensation in two frames.
Note: performance curves for interregion reconstruction using two or three
frames are virtually identical, except for 1-2 dB improvement.
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H_ has no nullvectors, but (2.8) indicates that its input interval I is larger than its output

interval [0, IveTI] when vb/ve < 0. This suggests that the output interval must be sampled

at least 1- vb/ve more densely than the input interval in order to avoid the underdetermined

condition of more unknowns than constraints. Therefore, the MSE ought to begin rising

around 1/(1 - vb/ve) 0.5. Finally, this effect is not present when 0 < vb/ve < 1, since I

is smaller than the output interval, or when vb/ve > 1, since Hz possesses nullvectors even

without discretization.

These performance predictions are borne out in experiments with picture data. Fig-

ure 5.16e,f, in which Vb/Ve > 1 and observations are sampled at the input signal's Nyquist

rate, does not look any better or worse than Figure 5.16a,b, in which the sampling rate is

infinite. On the other hand, for vb/ve < 0, a comparison of Figure 5.15e with Figure 5.15a

reveals that discretization has impaired the ability of intraframe transition zone compensa-

tion to suppress unobservable modes.

5.5.3 Interregion

Since the qualitative behavior of the optimum MSE with respect to sample spacing is about

the same for transition zone compensation and interregion reconstruction, it is unnecessary

to show the performance curves. The MSE for interregion reconstruction using 2 (or 3)

frames is consistently 1-2 dB better than reconstruction after transition zone compensation

in 1 (or 2) frames, reaffirming that prior knowledge of the foreground surface may not be

overwhelmingly important. Of course, the velocity combinations selected in these examples

do not allow IIo(gcd(vbT, vET)) to be a factor.

The preceding remarks concerning the pictures of transition zone compensation apply

as well to interregion reconstruction (Figures 5.18,5.19,5.20e,f). Discretization seems to

impair interregion reconstruction in two frames if vb/ve < 1 and is far from a ratio of small

integers, but not otherwise.
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5.6 Summary

A standard procedure for estimating a signal from a noisy linear observation is the Wiener

filter. This chapter used Wiener estimation to verify the predicted structure of the un-

observable subspace, to calculate mean-square-error performance given a random process

input, and to evaluate subjective quality for restorations of an actual picture. Experiments

were performed for all three prototype reconstruction problems with varying numbers of

frames.

Initially it is assumed that blurred frames are recorded as spatially continuous signals. It

is found that the variation of MSE as a function of velocity ratio and number of frames can

be completely explained by changes in the dimension of the theoretical nullspace, modified

for finite bandwidth and nonzero noise. However, the elegance of the theoretical results

is not matched by the success of the methods in practice. The value of transition zone

information, compensated or not, is rapidly diminished by observation noise. Thus, neither

transition zone compensation nor interregion reconstruction has the potential to reduce

mean-squared reconstruction error as much as the simpler method of interframe, intrare-

gion reconstruction. At the same time, both intraregion and interregion reconstruction

methods deteriorate for unfavorable velocity ratios. In short, constraints obtained by uti-

lizing multiple frames and overlapping surfaces cannot be guaranteed to overcome the basic

underdeterminacy of the conventional intraframe, intraregion approach.

Additional experiments show that the performance of Wiener reconstruction from con-

tinuous observations is not materially degraded by imposing spatial sampling of the data,

as long as the Nyquist rate for the spectrum of the output signal is heeded.
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Chapter 6

Model Sensitivity and

Identification

It has been shown that interframe and interregion constraints can greatly reduce the un-

derdeterminacy of motion-blur restoration, provided that unfavorable velocity ratios do not

exist. To some extent, noisy and discretized data do not change the basic behavior of re-

construction. However, a prerequisite for the application of any restoration technique is

identification of the image formation system. The linear operator H encapsulates all scene

configuration information and camera properties, including positions and velocities of sur-

faces and their boundaries, the arrangement of surfaces in depth, and camera integration

duration DT. Clearly, many difficult and unsolved problems of scene analysis underlie the

automatic identification of H from an arbitrary image sequence.

This chapter shall focus on boundary position estimation, which is a kind of segmen-

tation problem, and blur estimation, which is related to the motion estimation problem.

First, the sensitivity of reconstruction to errors in H is examined. Then, some approaches

for boundary and blur estimation are presented. As usual, only one-dimensional problems

are discussed.

The method of linear least squares estimation is carried over from the preceding chapter.

The observation is still defined by g = Hf + n, but the reconstruction is performed by

f(g)= (wTA- H + A- ) - i-g

where is the estimated system.
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The covariance of the estimation error f - f can be shown to equal

P 1 =P+AP+PAT + AAT,

where

A = pHTA-l([ - H)

P= (fTA-1 + A-1)-'

Note that P would be the error covariance if the system were actually H.

In this chapter, however, computing the MSE as a performance criterion makes less sense

than before. For example, if a surface is reconstructed perfectly except for a uniform shift,

a large objective error is measured but the subjective quality is unaffected. Furthermore,

since errors in H can produce many qualitatively different reconstruction artifacts, MSE is

less likely to correlate well with subjective quality than when the sole source of artifacts is

unrecovered nullvectors. Thus, sensitivity analysis is limited to trials with a test picture.
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6.1 Effect of Errors in Boundary Position

This section studies the distortions in transition zone compensation and interregion recon-

struction when an error is made in estimating the position of the boundary-more precisely,

the exact position within the original scene and not just some approximate position some-

where around the transition zone in one of the blurred frames. It is assumed that surface

and boundary velocities are known exactly.

An error in boundary position estimation has a far greater effect on the resulting recon-

struction than the mere loss or gain of a few samples near the boundary, which by itself

might not be too visible. Because the role of the transition zone, compensated or not, is

to provide boundary conditions to recover a signal in IIo(vT), reconstruction errors in the

zone will be periodically replicated into the rest of the surface. Except for common peri-

odicity, however, the artifacts due to boundary offset are completely different in character

from those due to a missing nullvector. It is found that a fractional-sample boundary offset

could produce distortions worse than just discarding IIo(vT).

6.1.1 Transition Zone Compensation Artifacts

In the following examples, the boundary is presumed to be rigidly attached to the fore-

ground surface, i.e., Ve = vf, even though this condition is not needed per se to perform

transition zone compensation. Once again, the "background" surface is the immediate goal

of reconstruction, and the "foreground" is an adjacent surface. A boundary offset leads

to distortions in two ways. First, either too much or too little of the foreground surface

contribution is subtracted out of the transition zone. Second, H will be a shifted version of

H, but because H is usually not shift-invariant within the transition zone, the inverse filter

designed for H will not properly deconvolve a signal blurred by H.

Figure 6.1a,c exhibits these effects clearly for offsets of E = 0.5 and velocities bT =

11, veT = -8. Ideal boundary estimation permits unique reconstruction via intraframe

transition zone compensation, and N(H) is not of concern. The sign of affects only the

polarity of all artifacts but not the apparent magnitude. The residual foreground signal

leads to vertical stripes because the mean foreground and background levels are unequal.

The vertically periodic component within the stripes comes from the foreground's periodic

structure, which is shown in Figure 5.7. Some features of the background surface are
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1 frame 2 frames

(a)
e = 0.5

(c)
e = -0.5

(b)

(d)

Figure 6.1: Transition zone compensation with segmentation error when
vb/v, < 0. vbT = 11, vT = -8. (left) using one frame; (right) using two
frames. SNR=50 dB, discrete observation with Az = 0.25.
(a,b) boundary skewed toward this surface, e = 0.5;
(c,d) boundary skewed away from this surface, e = -0.5.
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periodically replicated, including the small round objects in the upper left and center left,

but not the round object in the lower right. Only those details that enter the transition

zone by being covered or uncovered during the exposure time can possibly contribute to the

artifact. This property is unlike a signal in IIo(vT), which tends to collect details from the

entire surface.

Except for possible improved noise suppression, it is unnecessary to perform transition

zone compensation with two frames when vb/ve < 0. In fact, use of the additional frame of

information increases reconstruction error in the presence of boundary offset (Figure 6.lb,d).

Although the background-induced artifacts originally seen in intraframe transition zone

compensation diminish in amplitude, this improvement is more than offset by two effects.

First, the area of the background that undergoes occlusion increases, so that more surface

details can contribute to the artifact. For example, outlines of the backwards-"D" shaped

object are periodically replicated when two frames are used. Another effect is that the same

residual foreground signal is added in twice.

The preceding remarks cannot be generalized to all scene configurations. Transition zone

compensation with vbT = 11, vT = 8 behaves quite differently, and not just because signals

in N(H) n IIo(vbT) are not recovered. For the same boundary offsets as in the previous

example, the distortions are qualitatively different and are visibly stronger (Figure 6.2a,c).

Leakage from the foreground, plus large amplitude vertical bands induced by the bright

vertical stripe on the left edge of the background, are now the dominant distortions. Other

background features that enter the transition zone do not appear in the periodic artifact.

Reconstructions using two frames now show improvement over intraframe processing

(Figure 6.2b,d). The large reduction in background-induced vertical bands offsets the in-

crease in other distortion components.

Other combinations of velocity ratios have been tested, and the behavior of recon-

struction with boundary offset exhibits even more variation than shown by the foregoing

examples. A systematic explanation of all artifacts does not exist at this time.

6.1.2 Interregion Reconstruction Artifacts

As long as vb/Ve is not close to a ratio of small integers, interregion reconstruction using n + 1

frames has been shown to be comparable to transition zone compensation using n frames.

In the presence of boundary offset, in fact, the interregion approach is better. Implicit to
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1 frame 2 frames

(a)
e = 0.5

(c)
E = -0.5

(b)

(d)

Figure 6.2: Transition zone compensation with segmentation error when
vb/v, > 1. vbT = 11, vT = 8. (left) using one frame; (right) using two
frames. SNR=50 dB, discrete observation with fAz = 0.25.
(a,b) boundary skewed toward this surface, e = 0.5;
(c,d) boundary skewed away from this surface, = -0.5.
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2 frames 3 frames

(a)
e = 0.5

(v)

(d)(c)
e = -0.5

Figure 6.3: Interregion reconstruction with segmentation error e when vb/ve <

0. vbT = 11, vT = -8. (left) using two frames; (right) using three frames.

SNR=50 dB, discrete observation with Ax = 0.25.
(a,b) boundary skewed toward this surface, E = 0.5;

(c,d) boundary skewed away from this surface, e = -0.5.

the process of interregion reconstruction is cancellation of the foreground contribution by

subtracting displaced frames, which works without regard to the position of the boundary.

Therefore, the telltale vertically periodic structure of the foreground is totally absent in

the reconstruction when E > 0 (Figure 6.3a,b, Figure 6.4a,b), and is muted when E < 0

(Figure 6.3c,d, Figure 6.4c,d). The primary source of distortion is improper deconvolution,

creating replicas of background surface features.

6.1.3 Sensitivity

So far the consequences of boundary offset have been discussed qualitatively for a fixed value

of e and SNR. To give some idea of the sensitivity at 50 dB SNR, e is varied over the range

±1 for interregion reconstruction using two frames. The background velocity is VbT = 11.
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2 frames 3 frames

(a)
e = 0.5

(c)
e = -0.5

(b)

(d)

Figure 6.4: Interregion reconstruction with segmentation error e when vb/ve >
1. vbT = 11, vT = 8. (left) using two frames; (right) using three frames.
SNR=50 dB, discrete observation with Ax = 0.25.
(a,b) boundary skewed toward this surface, = 0.5;
(c,d) boundary skewed away from this surface, = -0.5.
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For veT = -8, an offset of ±0.5 yields a reconstruction subjectively comparable to that of

intraframe, intraregion processing (Figure 6.5). For veT = 8, an offset of just ±0.25 suffices

for the same level of impairment (Figure 6.6). At 30 dB SNR the sensitivity is lower,

for several reasons (Figure 6.7, Figure 6.8). The amplified observation noise and residual

unobservable modes tend to mask artifacts due to boundary offset. More importantly, the

reconstruction procedure does not attempt to produce the sharpest possible picture and is

therefore less sensitive.

The exact tolerance for boundary offset depends on SNR, surface velocities, and pic-

ture content, but an error of never more than one Nyquist sample spacing is permissible.

Otherwise, it will be counterproductive to utilize boundary conditions from the transition

zone.

Since the artifacts described in this section were computed by a Wiener reconstruction

procedure, a relevant question is whether they are intrinsic effects of boundary offset or

products of the specific reconstruction procedure. Like the pseudoinverse, the Wiener esti-

mator does not effectively recover any signal in N(H), so the artifacts must lie in N(H)L.

On the other hand, any low-bias estimator relying more on transition zone constraints than

on a priori signal information should compute nearly the same signal in N(H)', though

its estimate of the signal in N(H) could well be different. Adding a signal in N(H) might

create new distortions but cannot cancel out distortions in N(H)L. This argument sug-

gests that the high sensitivity to boundary position offset is intrinsic to reconstructions via

transition zone compensation or interregion processing.
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(a)
e = -0.25

(c)
-0.5

(b)
+0.25

(d)
+0.5

(f)
+1

(e)
-1

(g)
Intraregion

Figure 6.5: Artifacts of interregion reconstruction vs. when vb/ve < 0. Two
frames, vbT = 11, vT = -8, SNR=50 dB discrete observation with Ax = 0.25.
(a-f) Interregion reconstructions; (g) Intraframe, intraregion reconstruction for
comparison.
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(b)
+0.25

(d)
+0.5

(f)
+1

(a)
e = -0.25

(c)
-0.5

(e)
-1

(g)
Intraregion

Figure 6.6: Artifacts of interregion reconstruction vs. when Vb/Ve > 1. Two
frames, vbT = 11, vT = 8, SNR=50 dB, discrete observation with Ax = 0.25.
(a-f) Interregion reconstructions; (g) Intraframe, intraregion reconstruction for
comparison.
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(a)
e= -0.25

(b)
+0.25

(c)
-0.5

(d)
+0.5

(e)
-1 (f)

+1

(g)
Intraregion

Figure 6.7: Artifacts of interregion reconstruction vs. when vb/Ve < 0, moder-
ate noise. Two frames, vbT = 11, vT = -8, SNR=30 dB. discrete observation
with Ax = 0.25. (a-f) Interregion reconstructions; (g) Intraframe, intraregion
reconstruction for comparison.
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(a)
e = -0.25

(c)
-0.5

(e)
-1

(b)
+0.25

(d)
+0.5

(f)
+1

(g)
Intraregion

Figure 6.8: Artifacts of interregion reconstruction vs. when vb/v > 1, mod-
erate noise. Two frames, VbT = 11, veT = 8, SNR=30 dB. discrete observation
with Ax = 0.25. (a-f) Interregion reconstructions; (g) Intraframe, intraregion
reconstruction for comparison.
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6.2 Effect of Errors in Blur Impulse Response

This section briefly examines the distortions in intraregion reconstruction when an error is

made in estimating the amount of motion blur. An investigation of corresponding distortions

during transition zone compensation and interregion processing has not been carried out.

It is speculated that boundary conditions cannot mitigate problems of mis-deconvolution

since they mainly serve to fill in the unobservable subspace. Also, wrong information about

the foreground surface blur could cause incomplete removal of the foreground contribution

from the transition zone. These are subjects for further study.

A blur estimate is not tantamount to a displacement estimate. Both are functions of the

trajectory of surface points over time, but blur is the distance moved during the exposure

of one frame, and displacement, in conventional parlance, is the distance moved between

frames. During constant acceleration, for example, the blur of one frame is approximately

the average of the displacements to the previous and next frames. In addition, blur is pro-

portionally reduced when camera integration is less than 100% duty cycle. Both estimates

are needed to construct H, since blur gives the magnitude and extent of the impulse re-

sponse, while displacement establishes registration between images of one surface among a

set of frames.

In the Fourier transform domain it is easy to predict the basic structure of the distortion

caused by incorrect blur estimates. If the actual and estimated blurs, vT and T, are un-

equal then the zeros of H(w) are not aligned with those of H(w). The reconstruction system

will give excessively high amplification to frequencies near w = 2, 4,..; consequently,

unnatural components of period T will appear in the restored image [Wetta80].

Figure 6.9a,c,e illustrates the growth of this artifact for fixed vT = 11 as /v is increased

from unity in intraframe reconstruction. As seen previously, the only artifact in the /lv

restoration is due to absence of IIo(vT). When blur is overestimated, the periodic artifact

not only becomes larger in amplitude but also changes to a different repeating pattern.

These distortions are reduced by combining multiple frames of relatively prime velocities,

because the reconstruction filter is able to fully restore signals near w = T, 4,... using

less amplification [Ghiglia84]. Figure 6.9b,d,f shows the significant improvement using two

frames, provided that registration is perfect.

Perfect registration in the presence of skewed blur estimates implies that blur and dis-
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vlT = 11

viT = 11

v 2T = 

(a)
v/v = 1

(c)
1.06

(e)
1.13

Figure 6.9: Artifacts of intraregion reconstruction with blur
and ideal registration. SNR=50 dB, continuous observation.
frame, vlT = 11; (right) using two frames, v 1T = 11, v 2T = 8.

(b)

(d)

(f)

estimation error
(left) using one
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placement estimation are performed independently. Logically, however, both quantities

should be derived from a common estimate of the complete motion flow. When blur and

displacement estimates are multiplied by the same error factor, the reconstruction deterio-

rates (Figure 6.10). Fortunately, an experiment using the same amount of misregistration

along with ideal blur estimates suggests that the effects of blur and displacement errors

combine linearly without much interaction. Thus, the two effects may be studied sepa-

rately, if desired. There is no intention to present a full account of misregistration effects

here, but one important fact should be recognized: the problem with a shifted frame is not

loss of sharpness-the usual effect-but, rather, novel distortions.
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vlT = 11

v2 = 8

(a)
v/v = 1

(b)
1.06

(c)
1.13

Figure 6.10: Artifacts of intraregion reconstruction with both blur estimation
and registration errors. SNR=50 dB, continuous observation. Two frames,
vlT = 11, v2 T = 8.
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6.3 Model-based Boundary Estimation

It is unlikely that the exact boundary position within the original scene can be determined

to sufficient accuracy by conventional motion-based segmentation techniques, which are

not specifically designed to handle blurred transition zones. This section examines general

model-based system identification procedures which may be suitable for either boundary or

blur estimation. If uncertainty in the system is limited to a few unknown parameters, they

can be determined by minimizing a suitable cost function. When this approach is applied

to boundary estimation, the result is more than accurate enough to achieve artifact-free

image reconstruction.

6.3.1 General Approach

The blurred image sequence is a linear function of the unknown input signal f and a non-

linear function of the unknown scene configuration parameters , plus additive noise:

g = Hof + n.

f and might be jointly estimated from the data by minimizing a cost function of the form

JE(f, 0fg) = J(f) + :D(g, H0 f).

The "badness" of f is measured by J(f), examples of which were presented in §1.2 as criteria

for resolving underdeterminacy. (g, Hof) measures the discrepancy between actual data

and the predicted data. Another term J(9) could be added, but there is usually no a priori

basis to favor one scene configuration over another. Joint minimization with respect to f

and is equivalent to

min J ((glO), lg), f(gl) = argmin J(f, 0lg). (6.1)
e f

The best cost function for signal reconstruction, on the other hand, might not be the

best criterion for boundary estimation. An alternative approach could be the hybrid rule

minJz(f(gI9),9g), f(g ) = arg min J(f, g), (6.2)0 f

where J and J are not necessarily related. For example, subjective image quality is

maximized if Jr = Jh.umn. A human experimenter with access to a fixed signal reconstruc-

tion algorithm based on JrS could find a good reconstruction by manually adjusting to

maximize Jhuma,(f), producing as a by-product.
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To apply method (6.1) or (6.2), a straightforward procedure is to compute f(gl0) for

many values of and then keep the one with minimum cost as the best signal estimate.

Search strategies for multidimensional 0 include minimization with respect to one variable at

a time and gradient methods. One-dimensional techniques include variations of Newton's

method and Golden section search. A different and potentially useful approach is joint

optimization of Jr(f, 01g) by alternately minimizing with respect to the linear signal f and

with respect to the nonlinear parameters . Implementation issues, however, have been

de-emphasized in this research and will not be discussed further.

A natural candidate for Jr is the linear least squares cost function

J (f, 01g) = fTAf ' f + Ilg - Hofll2 . (6.3)

This is just (5.4) with the dependency of H on made explicit. (In this section it is

understood that norms and orthogonality of signals in the observation space are defined

with inner product xTA-ly.) By substituting the Wiener solution (5.2) for f(g9) into

(6.3), it is found that

min J(f, Jg) = ming T A (g _- Hof(gJ)) (6.4)
o,f e

= mingT (HoAfHeT + An)-lg (6.5)

As A -
1 l 0, that is, the a priori uncertainty in f approaches infinity, the cost function

(6.3) depends predominantly on the norm of the residual g - H 0f. The minimum cost

with respect to f is achieved by the pseudoinverse estimate, and the resulting residual.is

the projection of g onto R(He)', the orthogonal complement of the range space of He.

Therefore, (6.4) becomes

min J(f, 1ig) = min g/R(Ho)' ll (6.6)
O,f 

where / denotes projection onto a subspace. Ignoring noise for the moment, this estimation

criterion makes sense because g/R(He)' is guaranteed to be zero, irrespective of f, when

9 is set to the correct parameter value and is typically nonzero when is set incorrectly.

From (6.6) it appears that the scene configuration is estimated first, and afterwards the

signal f is reconstructed once using the best . However, g/R(Ho)' is usually no easier to

compute than the Wiener estimate, so this simpler looking method is not more efficient.
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If a Bayesian viewpoint is desired, the foregoing cost functions can be related to likeli-

hood functions. When f and n are independent zero-mean Gaussian random vectors and 

is a nonrandom parameter, the rule for joint MAP/ML estimation of f and is

maxp(glf, 9)p(f),
e,f

which leads directly to (6.3) and (6.4). ML estimation of 0 alone is given by

max p(gl )

mingTAlg + log det Aglo, Aglo = HoAfHoT + A,.

This is just (6.5) plus a bias term depending only on 8. Finally, if both f and 8 are considered

to be nonrandom, the joint ML estimate of f and is given by

max p(glf, ),
O,f

which leads directly to (6.6). As in Chapter 5, of course, it is not necessary to believe in

the Gaussian assumption in order to make use of these cost functions.

There are many alternatives to J(f) = fTAf for the signal model component of cost

function Jz. But minimization of J(f) + lfg - Hof 2 with respect to f is not straightforward

unless J(f) is quadratic in f. Therefore, a suggested hybrid method is to choose any

desired J(f) in (6.2), but to retain Wiener estimation for f(g18). There is no theoretical

justification for this approach, and only experimentation can assess its merits.

6.3.2 Experiments

The performance of boundary estimation by a wide assortment of cost functions is tested on

the scene configuration of interregion reconstruction in two frames. Assuming known surface

and boundary velocities, the only unknown aspect of H0 is the position of the boundary;

moreover, if the approximate position is already known via a conventional segmentation

method, only local accuracy of the cost function is important. Independent cost minimiza-

tions are performed on each row of a test image, but using both frames simultaneously.

Then, the RMS boundary offset (combining bias and variance) averaged over all lines is

taken as a figure of merit.

The following eleven cost functions for boundary estimation were tested, fixing f(gl)

as the Wiener reconstruction for known 8.

144



· J = gTA-l(g - Hef), the linear least squares criterion (6.4).

J2 = g - Hof112, the residual component of (6.3).

J3 = llg/R(He)'ll' . This is (6.6), which doesn't depend on f (neither do J4 or Js).

J4 = ]Jg/os' 2ll, where go is the space of signals constant along motion trajectories

under scene configuration . If both g(x + vT, t + T) and g(x, t) are interior points of

a region moving with velocity v then their difference is ideally zero. This projection

measures how much g deviates from the constant brightness assumption outside of

the hypothesized transition zone. In the absence of boundary offset, J4 contains

only noise, but when is incorrectly estimated, some transition zone samples will be

mistaken for interior points and J4 should increase.

* J5 = |Ig/R(He)l112 _ g/go'112 . A substantial fraction of R(Hs) l is occupied by eol,

so this quantity measures the norm of the projection onto the rest of R(Ho)l.

The remaining six cost functions depend only on f, and are integrated over only the back-

ground surface during the experiments.

* J6 = ||fI|| unweighted signal energy (1.5).

* J 7
= TAlf, spectrum-weighted energy (1.3), which is also a component of (6.3).

* J8 = | l dx, L 2-smoothness (1.4).dx

* 9 = d[ • dx, LI-smoothness (1.6).

* Jo = /jIIo(vbT) l 2, energy of the DC-free signal component of period vbT. This

is motivated by the fact that artifacts caused by boundary offset are periodically

replicated.

* Jl = [i(x)]255 dx, where [s]A is defined by (1.2). Artifacts are often of such

large amplitude that they exceed the normal dynamic range of the image. This cost

function was inspired by the method of blur estimation based on a positivity criterion

[Wetta80].
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The test image is Figure 5.7a blurred by displacements vbT = 11, vT = 8. The

observation g contains noise at 30 or 50 dB SNR and is discretized with Ax = 0.25, four

times the input signal Nyquist rate. The actual experimental procedure is to compute

Ji(f(gl#)) on each line while the boundary is perturbed in both directions from the true

position by 11 = , 1 1 3 1 1 taking the minimizing e as the estimation error. The

RMS error is shown in Figure 6.11. Because the step size becomes coarser at large , the

larger values of RMS error are less accurate. Values of RMS error much smaller than the

smallest nonzero e would also be suspect, but this potential problem did not present itself.

Many values are smaller than Ax, showing the possibility of boundary estimation with

sub-pixel accuracy. In this experiment J4 cannot provide sub-pixel accuracy because g is

discretized and g/!g± changes only when moves more than Ax.

The performance of boundary estimation by the last six cost functions is noticeably

better when vT = 8 than when veT = -8, especially at the higher SNR. Since J6 through

Jll are indirect attempts to measure the amount of reconstruction artifact, they become

better boundary estimators when, for the same e, artifacts are more severe. All boundary

estimators perform much better at 50 dB SNR, again when artifacts are more serious. In

general, lower tolerance to boundary offset is nicely matched by enhanced ability to do

boundary estimation.

Although some are more accurate than others, most of the cost functions work well

enough as boundary estimation criteria as far as image reconstruction is concerned. Ex-

cluding J4, J6, J 10 ,and J11, the subsequent interregion reconstructions of the test image

contained virtually no visible distortions beyond the inevitable effects of noise and unob-

servable modes. After all is said and done, though, the most reliable method is to use Jl-in

other words, jointly minimize the linear least squares cost function with respect to 9 and f.

This entire discussion has concerned only local accuracy, and the problem of coarse

boundary estimation still remains. Likelihood functions in nonlinear estimation problems-

FM detection, time-of-arrival estimation, boundary estimation, etc.-may possess multiple

local extrema or, worse, a global extremum far from the correct estimate. Thus an estimator

must be judged not only on local accuracy but also on probability of anomaly [VanTrees68].

Any cost function can be fooled by unfavorable combinations of foreground and background

signals, with or without noise, and such difficulties are not easily resolved when boundary

estimation is performed as a series of independent one-dimensional procedures. Consider-
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Figure 6.11: RMS errors of boundary position estimators for interregion recon-
struction using two frames
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ations like continuity of boundaries in two spatial dimensions and in time are essential to

robust segmentation of dynamic scenes but are beyond the scope of this research.
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6.4 Blur and Displacement Estimation

No experiments with blur or displacement estimation algorithms were conducted in the

course of this research, but it is interesting to comment upon the proper linkage between

two dissimilar but ultimately related problems. Blur estimation has been studied for the

purpose of blind restoration of individual frames, disregarding interframe motion. On the

other hand, all known displacement estimation techniques try to match together parts of

adjacent frames without regard to the blur present inside each frame. Since both blur

and displacement arise from the same continuous flow of motion, a joint approach to these

previous separate estimation problems should exist.

A few blur estimation techniques have been reported. If a blurred signal is generated

by passing an autoregressive input signal through an FIR blur, then blur estimation can

be viewed as a problem of ARMA model identification [Tekalp86]. This approach is more

general than necessary since the impulse response of uniform motion blur has a known form,

namely, a boxcar. Fourier-domain methods exploit the periodic zero crossings of H(w),

which give rise to a negative impulse in the cepstrum. The tendency of the input signal and

noise to obscure this impulse can be reduced by averaging the cepstra of many image blocks

[Cannon76], as long as the moving region is large enough. Fourier-domain methods can

be extended directly to two-dimensional problems, where linear motion is characterized by

speed and direction. Alternatively, when the image is projected horizontally and vertically

into two one-dimensional signals, independent one-dimensional blur estimates will give the

corresponding projections of the blur [Wetta80].

Most of the cost functions described in the preceding section are candidates for an

optimization approach to intraframe blur estimation. J3-Js are ruled out, though, since

R(He)-' and gol are empty for an intraframe, intraregion observation. The linear least

squares cost function, J 1, should be the first experiment to try.

Displacement estimation algorithms have been categorized as matching methods and

differential methods [Huang81], although the distinction is not absolute. Matching methods

compute the displacement between corresponding entities in a pair of frames. Feature

matching relies on distinctive patterns like edges, contours, or brightness corners. Gray-level

matching divides a frame into blocks and shifts each one around to get the best alignment

with another frame, as measured by a cost function combining all displaced frame differences
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DFD = g(x + vT, t + T) - g(x, t) in the block. Differential methods estimate velocity by

attempting to satisfy v + = , which is just the Taylor expansion of DFD around

v = O; in two dimensions additional constraints must be imposed to resolve ambiguity.

While matching methods prefer sharp images and differential methods prefer low-passed

ones, none of these algorithms cares that g(x, t) is specifically a motion-blurred image of

some surface.

The joint approach to blur, displacement, and signal estimation is almost too obvious

to state. If the continuous motion flow field in some spatio-temporal neighborhood is char-

acterized by a model with a small set of parameters (e.g., velocity and acceleration), then

the unknown signal and the motion should be jointly chosen to minimize a suitable cost

function. The linear transformation H depends only on 8 and the camera integration time

DT, presumably known. Parametric motion models have been advocated as a basis for

motion estimation in blur-free signals [Martinez86], and motion blur adds a new dimension

for further investigation.
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6.5 Summary

The crux of most signal reconstruction problems is identification of the distorting system.

In the restoration of motion-blurred image sequences, the system is linear once the scene

configuration is known through dynamic scene analysis, including boundary and blur esti-

mation.

A sub-pixel discrepancy between the actual and presumed positions of the boundary

can lead to highly visible distortions during transition zone compensation and interregion

reconstruction, in the form of periodic replications of foreground and background surface

features. A straightforward but sufficiently accurate model-based boundary estimation

technique has been established, with the proviso that surface velocities, boundary velocity,

and an approximate segmentation are all known. It is based on minimizing the same cost

function previously used for Wiener signal estimation for a fixed linear system.

A cursory examination of blur estimation issues-the consequences of incorrect blur and

techniques of joint blur and displacement estimation-was presented.

In closing, the existence of blind image restoration methods that do not require explicit

system identification should be mentioned. They are better suited for uncertainties in blur

rather than boundary position. The power spectrum method of image restoration can be

carried out using Sg(w), which is estimated from the observation, and Sf(w), which is known

or estimated from unblurred prototype signals of the same genre as the unknown image

[Pratt78]. Another idea is to model uncertainties in H statistically and apply the Wiener

estimator for f, which will involve only first and second moments of H. This approach

tends to reduce the sensitivity of reconstruction to perturbations in H by sacrificing a little

sharpness, and could even be employed for protection against errors after an estimate of H

is developed through scene analysis.
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Chapter 7

Conclusions

This thesis has investigated the problem of reconstructing the surface brightness patterns

in a scene of overlapping moving objects from a sequence of frames blurred by temporal

integration in the camera. The main contribution of this work is a systematic analysis and

simulation of reconstruction using interframe and interregion constraints. A summary of

the principal results follows, and problems for further study are indicated as well.

7.1 One-dimensional, 100% Duty Cycle Reconstruction

Three prototype reconstruction problems-intraregion, transition zone compensation, and

interregion-have been studied mathematically and experimentally for one-dimensional sig-

nals blurred by 100% camera integration.

The conventional formulation of motion blur deconvolution is an intraframe, intraregion

reconstruction problem-intraregion because information from transition zones is disre-

garded for lack of a suitable model of image formation. The component of the input signal

that is periodic with wavelength vT, minus a constant DC level, is completely nulled out

by the blurring system and thus cannot be recovered. When vT is more than a minor frac-

tion of the finite observation interval, loss of the unobservable component leaves a visible

periodic disturbance in the deblurred image.

Intraregion reconstruction can be improved by using multiple frames in which the

amount of motion blur is unequal. In theory, the period of the unobservable component

drops to the largest wavelength evenly dividing the respective blurs of each frame. Perfect

reconstruction should occur if and only if the velocity ratio vi/vj is irrational for some pair

153

L_-llll I��1I. -_·I-I-L..I�-LIIYI�.---IIIPPIII-I^·I*-- --I---



of frames. In practice, the finite bandwidth of most input signals means that vi/vj may be

regarded as "irrational" as long as it is not close to a ratio of small integers. Observation

noise also modifies the theoretical predictions, not only by precluding perfect reconstruction

for any combination of velocities but also by ensuring smooth changes in reconstruction be-

havior under continuous changes in velocity. Simulations show that interframe, intraregion

reconstruction yields the best results of all three prototype problems for a fixed number of

frames, provided that unfavorable velocity combinations are avoided. A further advantage

is that boundary position estimation is not required.

Transition zone compensation assumes constant boundary and surface velocities, with

prior knowledge of the contribution of one side to a transition zone so that it can be removed

at the outset. Suppose the unknown side is deemed the background surface. The theory

predicts that the compensated transition zone furnishes enough constraints for complete

recovery of the background if vb/ve < 1 (the background velocity does not surpass the edge

velocity) or if vb/ve $ 2 and two frames are observed; in short, this method almost always

succeeds. In practice, however, a high SNR in the camera is required to take advantage

of the constraints. Knowledge of the boundary position with sub-pixel accuracy is also

mandatory to avoid additional reconstruction artifacts.

Interregion reconstruction takes transition zone compensation one step further, replacing

prior knowledge of one side with the assumption of equal foreground and boundary veloc-

ities. By forming displaced-frame-difference images with respect to the boundary velocity,

interregion reconstruction using M frames can be related to transition zone compensation

using M - 1 frames. A periodic signal component whose wavelength evenly divides both

the background and foreground blurs is always unobservable. As long as three frames

are observed and vb/Ve $ 2, all other components can be completely recovered in princi-

ple. Experiments show that interregion reconstruction does indeed perform about as well

as transition zone compensation with one fewer frame, provided that unfavorable velocity

ratios are avoided. High SNR is required to take advantage of interregion constraints. Al-

though the reconstruction artifacts due to boundary offset are less severe than in the case

of transition zone compensation, good boundary estimation is still needed.

In conclusion, the strategy of exploiting interframe and interregion constraints can pro-

duce deblurred images of better quality than the conventional intraframe, intraregion ap-

proach. However, the constraints fail to achieve complete reconstruction when certain
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velocity ratios are unfavorable. Furthermore, observation noise and boundary offset may

degrade transition zone compensation or interregion reconstruction to the extent that the

image quality is no better than, or worse than, the conventional restoration. Therefore,

signal modeling approaches to recovering the unobservable component should not be aban-

doned after all; instead, they should be employed in conjunction with constraints from

multiple frames and overlapping surfaces.

7.2 Generalizations

Admittedly, the simplified image formation model used to obtain the foregoing results bears

little resemblance to the complexities of real-world scenes. Two efforts to generalize the

theoretical analysis were pursued with partial success-extensions to arbitrary duty cycle

and to certain motions in two dimensions.

Many results for duty cycle D < 1 are obvious generalizations of the results for D = 1,

where the only change involves scaling certain wavelengths by D. On the other hand,

there is a significant gap in the theory affecting interframe transition zone compensation

and interregion reconstruction. For certain values of D the equations constraining the

unobservable component also characterize the dynamics of a piecewise linear oscillator whose

behavior is not fully known. The study of this and other nonlinear dynamic systems is an

open area of research. The most direct resolution of this problem, however, would be

to repeat the experiments of Chapter 5 to calculate the MSE of Wiener filtering and to

reconstruct actual pictures while varying both vb/ve and D.

Extensions to two dimensions were limited to straight-line translation and straight

boundaries, in order to preserve mathematical tractability. Many results are obvious gen-

eralizations of the one-dimensional results, where the only change involves replacing scalar

quantities by vector ones. One major difference is fundamental to the increased dimen-

sionality: while a pair of incommensurate velocities achieves complete reconstruction in

one dimension, a pair of velocity vectors does not suffice in two dimensions because two-

dimensional signals can naturally support biperiodicity. Since no two-dimensional recon-

struction problems were simulated in the course of this research, the theory remains to be

verified. Restoration of more general two-dimensional scenes, including rotation and curved

boundaries, is difficult to analyze but could also be studied experimentally.
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Even with the realm of one-dimensional, 100% duty cycle problems, there are many

degrees of freedom that have not been explored. For instance, constant boundary and sur-

face velocities were assumed in transition zone compensation and interregion reconstruction

because the non-constant velocity case could not be analyzed. As a second example, in the

analysis of interframe, intraregion reconstruction the surface velocity was assumed to be

constant during each exposure yet different across frames: this behavior is unlike the mo-

tion of a smoothly accelerating surface. The point spread function of motion blur under

acceleration is no longer a rectangular boxcar. These and other perturbations on the ideal-

ized scene configuration most certainly will change the theory of unique reconstruction and

could affect performance in practice.

7.3 Scene Analysis

A requirement shared by conventional image restoration and the methods proposed in this

thesis is knowledge of the amount of blur within each region and frame. Interframe methods

also need to measure interframe displacements in order to align surfaces observed across

frames. This suggests that joint blur and displacement estimation could be a fruitful subject

for further study.

A special requirement of reconstruction techniques that utilize the transition zone is

knowledge of the boundary position and velocity. An experimental comparison of some

boundary position estimation techniques shows that minimization of the linear least squares

cost function with respect to both the unknown signal and unknown boundary position

yields reconstructions free of artifacts associated with boundary offset. However, this ap-

proach is just a one-dimensional local boundary estimator that needs to start from a valid

coarse estimate. Motion-based scene segmentation is a general problem that must be solved

before the results of this research can be applied to automatic image sequence deblurring.

It is fitting to end on this note, for it was the utility of scene analysis concepts in image

sequence coding, interpolation, and noise reduction that originally prompted this entire

investigation. Motivations work in reverse, too, and perhaps the prospect of performing

reconstruction from motion-blurred image sequences will spur new developments in dynamic

scene analysis.
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Appendix A

Derivations

A.1 Intersection of II(zi; S)

N.B. While these identities are almost self-evident when S = (-oo, oo), e.g. see [Kuczma68]

for M = 2, their validity within a finite interval is not obvious. The stated length of S is

sufficient, but not necessary.

Proof. Let A = gcd(zl,...,zM). It is trivial to check that f E (A; ) or f E i0o(A; S)

implies that f belongs to the left hand sides of (a) or (b), respectively, regardless of the

length of S.

To show the converse, let z = minlzil and suppose f(x) E nl I(zi; s), where S =

[O, L], L > z + max Izi. For every i,

f(x) E n(z; s) f(x) = f(x + z), Vx E [0, L - Izil]

E ak(e ii2k/ _ )ej2rkx/z = 0,
k=-oo

where f(x) has been represented by akej2 kx/ Z . Since {eJ2ffk/z} are orthogonal over

[0, z], which always lies within [0, L- Izill, it follows that

ak(e j 2 k z /z - 1) = 0 ak = 0 or kzi/z = integer, Vi, k.
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Lemma A.1. For real numbers z,..., M let S be an interval whose length is at least

min Izil + max zil.
s I

a) nl, Ii(zi; ) = II(gcd(zl,..., zM); S)

b) nIo(z, S)n (ni,2 In(z; )) = Io(gcd(z,..., M); S)
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When A = 0, kzi/z cannot equal an integer for all i unless k = 0; in this case only a is

nonzero and thus f(z) = a E II(0).

On the other hand, if A > 0 let mi = zi/A, m = z/A. Since the mi's are relatively prime,

kzi/z = kmi/m will equal an integer for all i if and only if k is a multiple of m. Therefore,

f() E alimeJ2'x/"l E II(A; S),

proving assertion (a).

Finally, if the condition f E II(z; S) is replaced by f E Io(z 1; S) then

f(x)dxzf)d= f()d= f Eo(A;S) if > 0;

aoz = Sol f(z) d = 0 = ao = 0 - f E o(0; S) if = 0,

thereby proving (b). I

A.2 Construction of Solution to (2.19)

In connection with interregion reconstruction from two frames when vb/Ve > 1, it is desired

to find functions satisfying

afb(z) E N(HL)

fb(x) E Ho(vbT)

without having Afb(x) identically zero. It is known how to generate all possible solutions

when vb/v, is rational, but the irrational case is unsolved.

If vb/v, is rational, let (vb/vc)- 1 = m/n in lowest terms. Choose any nonzero function

(x) = Zble-vet', X E [,V T]
I

for which brm = br(,-n), r. Extend the domain of this function via the antisymmetry

elationship

O(z) = (1- Vb/Ve)- 1 ((1 - b/iVe)- 2), E [(v - Vb)T, 0]

to produce an element of N(Hz). Now let the Fourier expansion of (x) on [(Ve - vb)T, veT]

be

Z cke d vbT. (A.1)
k
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It can be verified that the foregoing constraints force c,, = 0, Vr.

The formal series

fb~)=ZCk -e ,vbT
fb ) E e-j2irk(1-m/n)

satisfies fb(x) E IIo(vbT) as well as Afb(x) = k(zx) E N(HL). Since leI-j2k(l-m/n) _ 1 is

bounded between 2 and le- j2 I/n" - 11 as long as k A rn, the convergence of fb(x) is equivalent

to the convergence of (A.1). Therefore, this series gives a valid nontrivial solution to the

problem.

On the other hand, if vb/ve is irrational, the foregoing scheme breaks down. The de-

nominator le- j 2 k( 1-ve/Vb) - 11 can become arbitrarily small, and it is not known how to

choose +(z) E N(HL) to guarantee convergence of fb(x). This inability doesn't imply that

convergence is impossible, though.

A.3 Solution of Equations (2.13)

General references for the mathematical concepts needed in this section are [Devaney86,

Hockett87, Kuczma68]. Although more notation will be introduced here than absolutely

necessary to solve this particular problem, this material is background for the generalization

to arbitrary duty cycle in §A.4.

Defining F(x) = fobTz fb(u + (e - vb)T) du, a problem equivalent to (2.13) is the set of

simultaneous functional equations

F(az + - ) = F((a-1)z + 1 - a), z E [0,1]

F(az) = F((a - 1)z), z E [0, 1] (A.2)

F(z) = F(x + 1), 

F(O) = 0,

where a = (vb/ve)- ' E (0, 1). By periodicity, it suffices to solve for F(x), E [0, 1].

Necessary conditions on F can be found by considering the iteration structure of a

certain invertible point mapping Y: [0, 1] - [0, 1], designed so that F(x) = F(Yx). Call

the sequence {.. .,y-2x, y-x,x,Yx, Y, y2 . .} the orbit of x under Y, and let O(x) be the

orbit's closure, namely, the orbit together with its limit points. If O(x) n O(x') 0 and F

is assumed to be continuous at some point in the intersection, it follows that F(x) = F(x').

For example, in Lemma 2.3.2, Y was defined as Yx = (B/A)x; since every orbit converged
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0 i

Figure A.1: The circle map Y for a = 1/3

to 0, F(z) = F(O) for all x. In the problem being discussed here, one way to satisfy

F(z) = F(Yx) is to let

Y = GRi-,G.R_-(_-a)

where

Rz = x +z (mod 1) (A.3)

1 -l =---x if < a;
GCx = (A.4)

_,(1 - ), ifz > a.

This is because the first equation in (A.2) is the same as F(x) = F(RlG,~R_(l_)x) and

the second equation is the same s F(x) = F(G,x).

Sketched in Figure A.1, this Y is a nonlinear circular shift of [0, 1], i.e., an orientation-

preserving map (homeomorphism) of the unit circle. Its orbits can be completely described

(proofs omitted):

1. If a = 1/2, Y is just the identity mapping and every x is a fixed point. In short, the

second equation in (A.2) is redundant and the problem degenerates into intraframe
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transition zone compensation. According to the example in §2.3.2, nullvectors in

N(H) n Io(vbT) possess odd symmetry within each period.

2. If a $ 1/2, the graph of Y is tangent to the identity mapping at a single saddle-node

fixed point, located at 0. Since all orbits converge to this fixed point, regardless of

initial condition, F(x) = F(O) for all x. Therefore, N(H) = 0.

A.4 Solution of Equations (3.1)

A.4.1 Provable Results

Refer to §A.3 for preliminary notions necessary to follow this section. Defining F(x) =

f(bDTx fb (U + (ve - vb)T) du, a problem equivalent to (3.1) is the following generalization

of (A.2):

F(az + 6) = F((a-l)z + 6), z E [0, 1]

F(az) = F(( - 1)z), z E [0,11 (A.5)

F(x) = F(x + 1), VX

F(O) = 0,

where a = (Vb/ve)' E (0, 1) and 6 = (1 - a)/D (mod 1).

In order to satisfy F(x) = F(Yx), define Y: [0, 1] -- [0, 1] by

Y = G,RGR ,

where R, and Ga were defined in (A.3) and (A.4). For example, a typical Y is shown in

Figure A.2.

The orbits of Y can be described easily for some values of (a, 6):

1. If 6 = 0, Y is just the identity mapping and every is a fixed point.

2. If a = 1/2, Y is just the rigid rotation R-2. When 6 is irrational, Y has no periodic

poinlts and each orbit is dense in [0, 1]; hence, F(x) = 0 for all x. Otherwise, 26 = n/m

for some integers m, n. Every x is a fixed point of ym and each orbit under Y touches

points spaced 1/m apart; hence, F(x) E II(l/m).

3. If a $ 1/2 and 6 E [a, 1 - a], Y has two fixed points, a source-sink pair (indistinct if

6 is an endpoint of the interval), and all orbits converge to them; hence F(z) = 0 for

all x.
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x
0 1

Figure A.2: The circle map Y for a = 1/3, 6 = 1/6

These findings determine the nullvectors of interframe transition zone compensation.

First, 6 = 0 means that the second equation in (A.5) is redundant; i.e., the problem degen-

erates into intraframe reconstruction, for which the nullspace is N(H) n IIo(vbDT). This

condition is attained when 1 - (vb/v)' - l happens to be an integer multiple of D. Second,

when a = 1/2 the usual pathology of vb/ve = 2 appears: if D = m/n then the nullspace has

odd-symmetric signals in IIo(vbT/n), but if D is irrational then N(H) = {O}. Third, the

only nullvector is again 0 when the condition a $ 1/2, 6 E [a, 1- a] is attained. There are

many ways this can happen: for example, if vb/ve < 2 and D > vb/ve - 1, or if vb/ve > 2

and D = 1. Some of these statements were summarized in Theorem 3.1.

A.4.2 Conjectures

What about other combinations of (a, 6)? To begin to answer this question, consider the

rotation number of a circle map, which measures the average amount of circular shift per

iteration as the number of iterations tends to infinity. A fundamental theorem is that an

order-preserving circle map possesses fixed points if, and only if, its rotation number is

rational [Devaney86].
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The general relationship between (a, 6) and the rotation number of Y is presently un-

known. Some experiments have been performed, however, leading to the conjecture that

for every rational p/q E [0, 1) with odd q there is exactly one region in the (a, 6) plane on

which Y has rotation number p/q. For example, the region for rotation number 2k/(2k + 1)

is

(a,6)/ E k+ l-a' k+a ;

taking k = 0 yields the result in item (3), above. In such regions Yq has q source-sink

pairs of fixed points (pairs merge at the region boundary), and all orbits converge to them;

hence F(x) = 0 for all x. Consequently, it appears that N(H) might be {O} for a substantial

subset of the plane. The bifurcation diagrams in Figure A.3 show just a few of these regions.

Motivated by the known properties of the "canonical two-parameter family" of circle

maps Ux = + a + bsin2rx, one can speculate on some additional properties of Y. The

regions for valid p/q are non-empty and bounded by continuous curves. Taken together,

they densely fill the plane, yet they leave Cantor-like gaps whose total area is nonzero in the

Lebesgue measure [Arnold65, Herman77]. Despite the small area of the gaps, they should

not be ignored (for reasons cited in §5.3.4). The set of points for any fixed irrational rotation

number should be a continuous arc, positioned inside a gap. If Y only had continuous second

derivatives (as U does), it would follow that every irrational orbit is dense on [0, 1], implying

F(z) = 0 for all x [Boyland87]. However, Y is piecewise linear and no such general property

is known: it's conceivable that O(z) n O(z') = 0 for two initial conditions.

It would be nice to prove that F(z) = 0 is the only solution for all values of (a, 6) not

covered in §A.4.1, for then the complete solution to (A.5) could be stated very simply. The

proof of the preceding conjectures and characterization of irrational orbits is beyond the

means of this author and could be a basic open question in nonlinear dynamical systems.

Of course, perhaps there is an entirely independent approach to solving (A.5). Any such

result could have implications for Y and similar piecewise linear oscillators.
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Figure A.3: Bifurcation structure of the circle map Y: (top) in the (a, 6) plane;
(bottom) in the (vb/ve, D) plane. The coordinates are related by a = (vb/ve)- ',
6 = (1 - (vb/v)-')/D (mod 1). The rotation number p is rational in each
shaded region. An infinite nesting of smaller regions resides in each gap but is
omitted for clarity.
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