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Abstract 
Depth-From-Defocus (DFD) is a monocular computer vision technique for creating 

depth maps from two images taken on the same optical axis with different intrinsic camera 

parameters. A pre-processing stage for optimally converting colour images to mono

chrome using a linear combination of the colour planes has been shown to improve the 

accuracy of the depth map. It was found that the first component formed using Principal 

Component Analysis (PCA) and a technique to maximise the signal-to-noise ratio (SNR) 

performed better than using an equal weighting of the colour planes with an additive noise 

model. When the noise is non-isotropic the Mean Square Error (MSE) of the depth map 

by maximising the SNR was improved by 7.8 times compared to an equal weighting and 

1.9 compared to PCA. The fractal dimension (FD) of a monochrome image gives a mea

sure of its roughness and an algorithm was devised to maximise its FD through colour 

mixing. The formulation using a fractional Brownian motion (mm) model reduced the 

SNR and thus produced depth maps that were less accurate than using PCA or an equal 

weighting. An active DFD algorithm to reduce the image overlap problem has been 

developed, called Localisation through Colour Mixing (LCM), that uses a projected colour 

pattern. Simulation results showed that LCM produces a MSE 9.4 times lower than equal 

weighting and 2.2 times lower than PCA. 

The Point Spread Function (PSF) of a camera system models how a point source of 

light is imaged. For depth maps to be accurately created using DFD a high-precision PSF 

must be known. Improvements to a sub-sampled, knife-edge based technique are pre

sented that account for non-uniform illumination of the light box and this reduced the 

MSE by 25%. The Generalised Gaussian is presented as a model of the PSF and shown to 

be up to 16 times better than the conventional models of the Gaussian and pillbox. 
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Chapter 1 

Introduction 

1.1 Computer Vision 

Computer vision is a fascinating marriage of mathematics, physics, computer program

ming, engineering and to some extent biology. Physics describes how photons are emitted 

by light sources, are reflected and refracted by objects in a scene and the effect they have 

when they impinge on a photo-sensor, such as a CCD. Mathematics provides the universe 

in which to perform calculations. In particular, Fourier transform theory is highly used in 

engineering and computer vision is no exception. Computer programming provides an 

efficient way of performing the repetitive calculations. Creativity and inventiveness lies in 

the design of algorithms to best utilise the information obtained about a scene and biologi

cal counterparts can be the inspiration behind techniques. 

1.2 Optical Lenses 

1.2.1 Historical Perspective 

The leading theory of the creation of the Universe, as researched by cosmologists, 

suggests that space and time began around 13.7 billion years ago, and with it came the 

creation of photons. Around 4.6 billion years ago our solar system and the Earth were 

formed and 600 million years later the first primitive life appeared. It took about another 

50 million years for the first light sensitive cells to evolve. With the dinosaurs extinct, 

Homo sapiens were living in Africa about 100,000 years ago. The complex vision exhib

ited by humans enabled them to hunt, make tools, kindle fires, and more. Colour cave 

paintings in France and Spain during the early stone age of 13,000 BC show that man had 

developed artistic talents to pictorially represent their lives as well as the concept of 

numbers. 



Volcanoes form naturally occurring glass called obsidian that was used during the 

Stone Age to produce sharp blades or arrowheads and possibly early mirrors. It can be 

ground to produce blades much sharper than high quality steel and it is now used in car

diac surgery. 

Glass is thought to have been made during the Bronze Age around 3000 BC in Mesopota

mia, which was the same time that the first written alphabets were developed. The first 

written records of the use of glass to focus the sun's rays to ignite a material are recorded 

in Aristophanes' play The Clouds written around 400BC [1]: 

Strepsiades: Have you ever seen this stone in the chemist's 

shops, the beautiful and transparent one, from which 

they kindle fire? 

Socrates: Do you mean the burning-glass? 

Strepsiades: I do. 

In around 40 AD it is known that the Roman statesman and writer Seneca used a glass 

container filled with water to magnify text [2]. By 1000 AD the first reading stone was 

invented to magnify text solely using glass and then in 1200 AD in Italy the first eye

glasses were created. The ability of a carefully shaped piece of glass to magnify small 

objects, compress a large object into a small volume, focus the sun's rays and thus begin 

combustion in a material and allow a reader to see more clearly surely makes it an ancient 

marvel. 

1.2.2 Defocusing 

Light travels at 186,000 miles per second and its path is altered by refraction, diffrac

tion and reflection (and gravity). A convex (converging) lens produces a focused image 

using the laws of refraction and the relationship between the object and the image is given 

by the Gaussian lens law that states 

1 1 1 
-=-+
F u v 

(1.1) 

where F is the focal length of the lens and u and v are the distances of the object and the 

image plane from the lens respectively. If the image plane is not at the correct distance for 

a given object then the image produced by the lens is defocused. Each point on the object 

is imaged to a non-point-like shape that is determined by the shape of the aperture, diffrac

tion effects, the distance of the object and the wavelengths of light being reflected. For a 

circular aperture each point becomes a blur circle, assuming geometrical optics. It can be 

shown that the radius of the blur circle (J" for an object a distance D from the lens is given 

by 
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vD -F(v+D) 
(T=------

fD ( 1.2) 

where F is the focal length of the lens, f is the nominal f-number defined as f = L r is 
2r ' 

the radius of the aperture, v is the distance between the lens and image plane (e.g. CCD) 

[3]. A given blur circle radius can be produced by two points, one either side of the focus 

position of the lens. If the blur circle radius can be measured then the depth of the point 

can be found from re-arranging (1.2) to give 

Fv 
D=---

v-F-(T f 

assuming the object is further from the lens than the focus position. 

(1.3) 

The defocus effect acts as a spatial low-pass filter in 2D and for a non-light absorbing 

lens the volume of the PSF is unity [4]. There are two models of the PSF due to defocus 

that appear frequently in papers: one of them is the cylindrical or pillbox PSF given by 

h(x, y) = {1f~2 .y x2 + y2 ~ r 
o otherwise 

(1.4) 

where r is the radius of the pillbox; and the second is the 2D Gaussian given by 

1 {I (x2 y2 )} h(x, y) = 2 exp --2 -2 +-2 
1( (Tx (Ty (Tx (Ty 

(1.5) 

where (T x and (T yare the standard deviations of the Gaussian in the x and y directions 

respectively. Note that the blurring due to the Gaussian PSF leads to an exponential decay 

in the frequency domain [5]. Both PSFs are assumed to be centred on (0, 0) so that there 

is no phase shift due to defocusing, which is a valid assumption for a well-centred optical 

system. 

The pillbox model is the mathematically obtained PSF shape assuming geometrical 

optics (Le. neglecting the wave-nature of light) and a circular aperture. The Gaussian PSF 

has been proposed as a suitable practical model because it approximates the effects of 

diffraction, polychromatic light [6], sampling by a CCD and low-pass filtering by the 

camera electronics. 

Bove [7] noted that in order to model the image captured by a lens, the Huygens-Fresnel 

integral for Fraunhofer diffraction would have to be applied to each image point. This is 

inherently complex and a simpler approach is to consider a small region in which it is 

assumed that the depth is constant. This allows the space-variant blurring problem to be 

approximated as a space-invariant problem, thus allowing convolutions to be employed, 

which are much easier mathematically. This strategy suffers from the trade off of preci

sion though [8]. 
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The problem with changing the distance between the image plane (CCD) and the lens is 

that an undesirable change of magnification occurs, as shown in Figure 1.1. If the sensor 

plane is at position i F then the object is in focus . Moving the sensor to either I ) or h 

results in a blur circle with a centre that moves along the axis of the principal ray, which 

passes through the centre of the lens. The lack of registration can be improved by using a 

combination of zooming and focusing [9] , but this requires expensive computer-controlled 

lenses and calibration [lO]. Image registration and warping could be performed in soft

ware [11], but accurate interpolation is essential and this is an extra computational over

head. 

A 

F 2F 

Figure I. I: Conventional lens model with an aperture A and a focal length F 

The addition of an aperture A' at a distance of the focal length F in front of the lens on 

the object side, to form a telecentric lens, theoretically eliminates the problem [12] but 

practically it can be used to reduce the shifts to less than 0.1 pixels [10]. From geometri

cal optics it is known that a ray that passes through a point the distance of the focal length 

in front of the principal plane is refracted by the lens to be parallel to the optical axis, as 

shown in Figure 1.2, thus removing the registration problem. An alternative solution is to 

employ a convex lens in between the last lens element and the sensor plane to make the 

principal ray parallel to the optical axis, but this changes the properties of the lens [lOJ. 

Watanabe and Nayar [13] showed that ignoring the magnification problem can result in 

significant errors in the depth map using DFD. 
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Figure 1.2: Telecentric lens model with an external aperture A' 

1.3 Image Sensor Technology 

1.3.1 Introduction 

2F 

The first camera, the camera obscura, which is Latin for dark chamber, is believed to 

have been accidentally discovered by Alhazen in the 10th century. It did not employ a 

lens, but had a pinhole (a very small aperture) that produces an image of the scene that 

lacks depth information [14], but retains brightness information. The camera was essen

tially a dark room with a pinhole on one side and paper on the other and by about the 15th 

century it was being used by artists, who would trace the inverted image produced and 

thus produce images with very good perspective. 

The first permanent photograph was created by Joseph Nicephore Niepce (1765-1833) 

and the very long exposure time of between 8 and 20 hours restricted his work to 

architecture. 

In a conventional SLR camera, a lens, often composed of many elements, is used to 

bring the scene into focus and the image is projected through an aperture and onto a mirror 

that directs the light towards the viewfinder. To take a photo, the shutter button is pressed, 

which drops the mirror and allows the light to travel through the mechanical shutter and 

onto the film. The light causes a chemical reaction that results in a negative brightness 

image. After the set exposure time has elapsed the shutter closes and the mirror slides 

back into position. 
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For digital image processing purposes the two main competing technologies for the 

detection of light in the visible region of the electromagnetic spectrum are Charge-Cou

pled Devices (CCO) and Complementary Metal Oxide Semiconductor (CMOS) image 

sensors. CMOS circuits were invented in 1963 by Wanlass and Sah [15] and the produc

tion of CMOS ICs began in 1968 [16]. The early passive CMOS sensors were developed 

around this time. CCOs were proposed in 1970 by Boyle and Smith [17] and verified 

experimentally by Amelio et al. [18] the same year. 

1.3.2 CCD versus CMOS 

CCO and CMOS sensors consist of a pixelated metal oxide semiconductor (MOS) and 

function using the photoelectric effect, which is where an incident photon generates an 

electron-hole pair and the photoelectron is then stored. 

The two major pixel designs are photogates and photodiodes, schematics of which are 

shown in Figure l.3. A photogate is a MOS capacitor that stores photoelectrons in a 

voltage-induced potential well [19]. The polysilicon gate over the pixel reduces its sensitiv

ity, especially to wavelengths in the blue end of the visible spectrum, but all of the pixel is 

photosensitive. A photodiode is created by ion implantation and photoelectrons are stored 

in the depletion region around the p-n junction [19]. The photogate has a higher full well 

capacity and thus it possesses a higher dynamic range because it can handle a wider range 

of illumination intensities [19]. The fill factor of a photodiode can be improved using a 

microlens and the reduced sensitivity of photogates can be improved using thin polysilicon 

gates. 

Photodiode Photog ate 

photon 

n-5i depletion layer 

Figure 1.3: Schematic of photo diode and photogate technologies (from [19]) 

Quantum efficiency is the ratio of the collected electrons to the number of incident 

photons and ideally it is 100% for all wavelengths in the visible region between 440nm 

and 700nm. Losses due to absorption, reflection and transmission must be minimised by 

manufacturers to approximate the ideal behaviour. Absorption losses occur due to opti

cally dead regions [20] and they are greater in CMOS devices due to the presence of 
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readout transistors. Transmission losses occur when a photon passes straight through the 

photosensitive volume without generating a photoelectron and it is most pronounced at 

very short and very long wavelengths. The wavelength-dependent reflection of silicon 

causes reflection losses, but it can be reduced using anti-reflective coatings [20]. Better 

quantum efficiencies can be achieved by thinning the obstructing layers and using back

side illumination (for which the quantum efficiency can be about 90% for CCDs), instead 

of usual front-side illumination, however, this requires more complex manufacturing 

processes. 

The dynamic range of a sensor is the ratio of the device's output at saturation to its 

noise floor. If the light intensity is too high for a given exposure time, saturation occurs. 

Blooming is the effect where the excess charge spills over to other pixels. CMOS pixel 

sensors typically have a drain to absorb charge overflow and thus has natural anti-bloom

ing, unlike CCDs [19]. 

The Charge Collection Efficiency (CCE) measures the ability of a pixel to retain its 

photoelectrons and it is important because it affects the spatial resolution. CCD pixels 

have a higher electric field than CMOS pixels and so diffusion effects are almost elimi

nated compared to CMOS sensors [21]. The unwanted thermal diffusion effects make the 

resulting image look defocused. 

CMOS sensors allow random access as they are directly addressable, whereas the pixels 

of CCDs must be read out in a fixed sequence. Thus, windowing can be achieved on 

CMOS sensors leading to higher frame rates for a reduced image size, and this is not 

possible for CCDs. CMOS sensors have a charge-to-voltage conversion in each pixel 

whereas CCDs have one per array, thus the charge packets must travel a long way through 

the silicon to reach the output amplifier [21]. It is important in CCDs that the channel is 

devoid of electron traps caused by flaws in the design, manufacturing process or the 

silicon itself. The on-chip analogue processing circuitry means that CMOS detectors have 

higher noise levels. Variations in the open-loop amplifiers caused by wafer processing 

variations mean that the response of each pixel under uniform illumination is different. 

This non-uniformity is a disadvantage and it has been improved using feedback-based 

amplifiers. 

In conclusion, CCDs are still the technology of choice for scientific applications [22] as 

they have very good image quality, low dark current, high quantum efficiency and a high 

fill-factor [23]. The lack of random access, higher power consumption and larger clock 

driver voltages of CCDs [22] are generally not important in machine vision. 
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1.3.3 CCD Architectures 

Over the years different CCO architectures have been developed, some of which are 

illustrated in Figure 1.4. Photons impinge on the light-sensitive region and a fraction of 

those are converted to photoelectrons through the photoelectric effect. A progressive scan 

readout process is then used where the charge is shifted row by row into the serial readout 

register. Each packet of charge is then converted to a voltage. A problem with this archi

tecture is charge smearing caused by light falling on the sensor during the readout pro

cess. However, a mechanical shutter or stroboscopic light source can alleviate the prob

lem [24]. Mechanical shutters are relatively slow and also have limited lifetimes [25]. 

The full-frame CCO is the simplest to manufacture and operate and it gives the highest 

resolution for a given chip size of the architectures reviewed [24]. It is generally based on 

photogate technology [19]. 
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Figure 1.4: Full-frame (left), frame-transfer (middle) and interline-transfer (right) CCD schematics (from [25]) 

The frame-transfer CCO uses a two part sensor, one of which is photosensitive (and 

also usually based on photogates) and the other is protected by a light-tight mask and is 

known as the storage region [25]. The photoelectrons generated by the imaging region are 

transferred to the storage region at high speed and from the storage region, the charge 

packets are read out. This architecture was designed to help alleviate the charge smearing 

problem with full-frame CCOs and so a mechanical shutter or stroboscopic light source is 

not required [24]. Faster frame rates and continuous light collecting are achievable with 

frame-transfer CCOs, however, charge smearing is not completely removed and twice the 

amount of silicon is required due to the storage region, which increases the sensor size and 

cost [25]. 

Charge smear is virtually eliminated in interline-transfer CCOs that incorporate charge 

transfer channels called interline masks. The channels allow the charge to be rapidly 

shifted, but there is still some smear due to light-piping, which is where scattered and 

reflected photons move to the shift register. This problem has been further reduced using 

frame-interline-transfer CCDs that possess a storage region like a frame-transfer CCO 
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[24]. Interline-transfer CCDs are generally based on photodiodes instead of photo gates 

and electronic shuttering can be achieved by altering the voltages at the photo diode so that 

photoelectrons are injected into the substrate [25]. The interline mask reduces the light 

sensitive area of the sensor and thus reduces the fill-factor, however, this can be remedied 

to some extent using a microlens array. The advantage of using photo diodes compared to 

photo gates is better sensitivity to blue light, but they have a lower dynamic range than full

frame CCDs due to the lower fill-factor [19]. 

For scientific vision systems, CCDs are the best of the two alternative technologies. 

Both the frame-transfer and the interline-transfer architectures have their merits. The 

advantage of a frame-transfer approach is the higher fill factor, leading to an increased 

dynamic range; however, charge smearing and poor response to blue light remains a 

problem. In contrast, the interline-transfer design has a better response to blue light and 

charge smearing is virtually eliminated, but at the cost of a smaller dynamic range due to 

the interline mask taking up silicon. 

The research presented in this thesis is centred on a colour DFD system and it was 

important that the camera had a good response to all wavelengths. It was decided that an 

interline-transfer CCD would be used to give a better response to blue light, which is 

known to be poorer in full-frame and frame-transfer CCDs. The Basler A631fc colour 

camera with a Sony ICX267 AK interline-transfer CCD was employed. 

1.3.4 Noise Processes in Cameras 

Signals in an imaging system can be divided into wanted and unwanted, where the latter 

category is generally tenned noise. The CMOS and CCD sensors have sources of noise 

including: 

• Dark noise: The atoms in the sensor vibrate and occasionally release a free electron 

from the semiconductor, which is indistinguishable from a photoelectron. It is these 

vibrations that lead to dark noise. The dark noise accumulates over time and if the 

exposure time is doubled it is expected that the noise will double. Raising the tempera

ture of the imaging sensor results in an increase in the dark noise and so often the 

sensors used for astronomical imaging are cooled. 

• Readout noise: The charge in a photosite must be measured and converted to a digital 

value and this requires amplification, which adds noise due to thennal oscillations. 

Further, the amplifier before the ADC has a built-in offset or bias. Quantisation effects 

due to the finite number of digital levels adds noise too. 

• Fixed Pattern Noise (FPN): Electronic sources, such as clock signal breakthrough and 

crosstalk in the array, produce FPN. It is noticeable on CMOS sensors, but it is often 
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negligible for CCDs [24]. It is usually independent of the integration time and tempera

ture and it is different for each pixel. 

• Photon noise: Photons reflected from a surface or emitted from a source will not arrive 

at the sensor at the same time and it is the difference in arrival times that leads to 

photon noise. The noise will have a Poisson distribution. An ideal, evenly illuminated 

surface imaged in the presence of photon noise only will show fluctuations in intensity. 

The effect of photon noise is increased if a fast shutter speed is employed, a dimly lit 

subject is being imaged or high amplification gains are required. Thus, a long exposure 

time should be employed. If there are many photons the Poisson distribution approxi

mates a Gaussian distribution with a standard deviation that is dependent on the light 

intensity. 

• Random noise: Electromagnetic interference, fluctuations in the power supply to the 

camera and electronic noise will produce random noise. 

• Cosmic ray effects: High energy particles will leave a hot pixel or a spurious streak on 

an image, but these can be generally ignored, except for astronomical imaging. 

• Variations in photosite sensitivity: Pixels on an imaging sensor are designed to be 

identical, but manufacturing processes and variations in the materials lead to sensors 

with differing sensitivities (as shown by the PRF description in Section 3.2.1). Bad 

pixels produce an output that is independent of the number of photons that strike the 

active area of the sensor. Hot pixels are permanently high and cold pixels permanently 

low and both are a result of manufacturing problems . 

• Dust on the sensor: A dirty sensor that has accumulated dust will have systematic 

errors due to shadows, and naturally these effects can be reduced by cleaning with an 

appropriate solvent. 

Noise is a stochastic process from which information can be gleaned from bias frame 

and dark frame measurements. The sensor architecture for the camera used in the research 

is represented in Figure 1.5. If the shutter is not opened (i.e. the minimum exposure time 

is employed) then the output of the camera is called the bias frame and the noise is that of 

the readout electronics, shown as the ADC and Variable-Gain Control (VGC) in the 

figure. The dark frame is taken with the maximum exposure time and the lens cap on, so 

that the noise is predominantly due to thermal excitation of the photosites. 
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Figure 1.5: Sensor architecture (from the Basler A631 fc manual [26]) 

Colour Imaging 

Biological Colour Vision in Humans 

In low-level vision in humans, colour helps to segment the retinal image and in high

level vision it aids recognition of objects with shape information obtained from edges. 

Impressionist artists such as Monet painted images that deliberately lack accurate object 

shapes but the viewer quickly recognises the subjects due to the careful use of colour [27]. 

Light is focused by the cornea and lens to form an image on the retina [28]. The retina 

of the human eye is circular and approximately 42mm in diameter [29] and it is divided 

into two regions, namely the central and peripheral regions. The two types of photodetec

tors are rods and cones and the latter are subdivided into three types according to their 

spectral frequency response. The peak sensitivities of the detectors are 430nm, 530nm and 

560nm and as they do not exactly correspond to blue, green and red respectively the terms 

short, medium and long wavelengths are sometimes used [30]. The brain demosaics the 

responses of the cones to produce colour vision. The central region is dominated by cones 

and that of the peripheral region by rods. The foveal pit is a region with no rods and the 

cones are packed as tightly as possible in a hexagonal arrangement. The fovea is about 

0.5mm in diameter and of the 5 million cones in the eye about 10,000 are located in the 

fovea. A human who suffers from colour blindness has a deficiency in one or more types 

of cones and thus their eyes do not sample the visible region of the electromagnetic spec

trum sufficiently. 
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There are about 100 million rods in the human eye and their higher quantum efficiency 

compared to cones outweighs their disadvantage of a lower spatial resolution as they 

enable humans to see in low light levels [31]. 

Retinal sensing is based on trichromatic principles owing to the three types of cones 

and the opponent colour encoding is used by the neural pathways to the brain. The oppo

nent colours are red-green and yellow-blue, which is supported by studies that humans do 

not see a yellow-blue or reddish-green colours [28]. 

Electronic Colour Imaging 

Colour images can be captured using a monochrome camera with a spinning red, green 

and blue colour filter in front [30]. Alternatively the colour filters could be fixed and a 

Colour Filter Array (CFA) employed, with the Bayer filter being one of the most common. 

Each set of 2 x 2 pixels has two green, one red and one blue filter and interpolation is used 

to fill in the missing values. Some cameras use the secondary colours cyan, yellow and 

magenta as they are better in darker conditions because less light is attenuated [32]. A 

more expensive approach is to employ a 3-CCD camera that uses two beamsplitters and 

three colour filters to capture three images in different spectral bands on the three separate 

CCDs. 

The spectral response of the Sony ICX267 AK interline-transfer CCD employed in the 

Basler A631 fc colour camera used in the research is presented in Figure 1.6. Note in 

particular the reduced sensitivity to blue light, which is because the shorter wavelengths 

are particularly well absorbed by the polysilicon gate structures. 
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Figure 1.6: Spectral response of the Sony ICX267AK CCD (from [33]) 
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Colour Spaces 

The images are often captured in RGB format and they can be transformed to other 

colour spaces. Due to the subtractive nature of inks, the CMY colour space is useful for 

printers and it is formed from the RGB components using 

(~)=(:)-(~l (1.6) 

A camera system such as a video camera captures an image and the output is propor

tional to the light radiated by the objects being filmed. A Cathode Ray Tube (CRT) has an 

output intensity that is not a linear function of the voltage and so the camera is gamma 

corrected to compensate. The R' G' B' components are the gamma corrected RGB values. 

The YIQ colour space used in NTSC television represents the luminance (Y), hue (I) 

and saturation (Q) information and it is formed from the non-linear RGB components 

using [34] 

( 
~ ) = (~:~:: ~~~;;4 
Q 0.211 -0.523 

0.114 ) ( R' ) 
-0.322 G'. 
0.312 B' 

(1.7) 

The CMYK and RGB colour spaces are non-uniform in that the Euclidean distance 

between two points does not correspond to the perceptual difference between the colours. 

Examples of a perceptually uniform colour spaces are CIE L *a*b* (CIE LAB) and CIE 

L *u*v* (CIE LUV), where the former is mainly used in displays and the latter in colour 

imaging and printing [28]. They are formed from non-linear combinations of the RGB 

components. The CIE LAB space incorporates opponent colour encoding so that a* and 

b* correspond to the opponent hues red-green and yellow-blue respectively and L * corre

sponds to the lightness. 

Colour information is useful in many image processing tasks including object recogni

tion, content-based image retrieval, image compression [30], forensic image processing 

[35] and the detection of cancer cells [36]. 

13 



1.3.6 The Representation of Digital Images 

A monochrome digital image with M rows and N columns may be expressed in matrix 

form as 

f(O,O) f(O, 1) f(0,2) f(O,N-l) 

f(1,O) f(1, 1) f(1,2) f(1, N-1) 

f= f(2,0) f(2, 1) f(2,2) f(2, N - 1) (1.8) 

f(M -1,0) f(M -1,1) f(M - 1, 2) f(M -1, N-1) 

where f(x, y) represents the pixel value, and thus brightness, at spatial location (x, y). 

Usually 0:::;; f(x, y) :::;; G - 1 where G is the number of grey levels and it is often a power 

of two. Many image processing tasks are performed on a small window of the image. If a 

3 x 3 window is applied to image f that is centred on the pixel f( 1, 1) then the resulting 

windowed image fw is given by 

( 

f(O, 0) 

fw = f(1,O) 

f(2,0) 

f(O, 1) f(O, 2) ) 
f(1, 1) f(1,2) . 

f(2, 1) f(2, 2) 

(1.9) 

It is convenient to represent the original image f as a column-stacked vector fs in the 

form 

fs = 

f(O,O) 

f(1,O) 

f(M -1,0) 

f(O, 1) 

f(1, 1) 

f(M -1,1) 

f(O, N-1) 

f(1, N-1) 

f(M -1, N-1) 

(1.10) 

An RGB colour image will be composed of three brightness matrices with one for each 

colour plane. 
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1.4 Methods of Capturing 3D Images 

1.4.1 Introduction 

Humans use a variety of vision-based depth cues including [37]: 

• Texture 

• Edges 

• Size perspective 

• Binocular disparity 

• Motion parallax 

• Occlusion effects 

• Variations in shading 

• Defocus effects 

It is these cues that have provided computer vision researchers with ideas as to how to 

imbue computers connected to cameras with the ability to measure depth. Often the goal 

of 3D computer vision systems is to create a depth map, which is essentially a representa

tion of the distance between the camera and points in the scene. One way to show it is as a 

greyscale image where brightness is directly proportional to depth. 

The techniques can be divided into monocular methods and multiple view methods, 

which correspond to whether the intrinsic or extrinsic camera parameters are changed 

respectively. The intrinsic camera parameters are focal length, f-number and the distance 

between the image plane (CCD) and the lens. The extrinsic camera parameters are the 

location and orientation of the camera. 

Leonardo da Vinci realised that any illuminated body reflects an infinite number of 

images of itself where each image is from a slightly different viewpoint and this is the 

basis of the multiple view methods [38]. Reconstruction of 3D scenes using stereo dispar

ity, multiple view points and structure-from-motion approaches are multiple view meth

ods. The monocular approaches include texture gradient analysis, occlusion cues and 

depth-from-focus and defocus, the latter being the centre of this research. Two images 

captured with different shutter speeds of the same moving scene provides depth informa

tion and algorithms that are based on this principle are called depth-from-motion blur [39]. 
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Owls improve their depth perception, and thus locate their prey better, even though 

sitting otherwise still by moving their heads from side-to-side, and so employing motion 

parallax [31]. A moving observer obtains a lot of 3D information by traversing through a 

scene. However, the notion that the brain progressively builds up an image of the world 

with each fixation is challenged by visual tests that show a phenomenon known as change 

blindness [40] where an observer can fail to notice large changes in two images when a 

grey image is presented in between the images of interest. The brain appears to create a 

limited description of the scene and then simply ignores the rest of the information pre

sented by the eyes. 

1.4.2 Depth maps 

Stereopsis is the process of combining a pair of 2D brightness images in order to 

recover depth information using triangulation and it is exhibited naturally by humans. 

Occlusions, limited fields-of-view and parts of the image with uniform colour or intensity 

make determining the required correspondences in the image difficult [41]. 

Depth-from-focus camera system change the camera parameters to maximise the focus 

of a scene, usually measured by maximising the energy [42] or sharpness (such as the 

Tenengrad, variance or sum-modified-Laplacian [43]) or in the frequency domain, using 

high frequency measures [11]. From the known camera parameters, the depth can be 

calculated using the Gaussian lens law and interpolation can be used to increase the depth 

resolution [43]. The problem with this approach is that usually many images are required, 

for example between eight and thirty [14], and this places strict requirements on the static 

nature of the scene. Changing the focal length or the distance between the lens and image 

plane produces magnification effects that must be removed using either image warping in 

software following a calibration phase [44] or using a telecentric lens. Although the 

technique requires only one camera, it can produce absolute depth maps and does not 

suffer from occlusion problems [41]. 

The depth-of-field specifies the range of distances from the camera for which an object 

placed in the range appears in focus on the image. Essentially, the blur circle radius is too 

small to be detected by the sensor and thus it produces a sharp image. The limited depth

of-field may sound problematic, but in fact depth-from-defocus (DFD) systems rely on this 

property of a lens to infer the depth of objects. Two images taken with different, known 

focus settings can be analysed to examine the relative blurring between the images, from 

which the depth of the object can be calculated. As the Literature Review in Chapter 2 

shows, the mean depth range of the algorithms examined is l.lm to l.8m and so it is 

generally restricts the applications it can be applied to. A frequent assumption in the 
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algorithms is that the depth is constant and thus to ensure the depth returned is accurate, a 

small window is required, but for reliability in the presence of noise, a large window is 

required. 

Surface orientation can be extracted from a single image using shape-from-shading 

techniques, but the task is cumbersome and requires very controlled environments [45]. 

Further, the technique cannot recover absolute depth information and thus must be com

bined with stereo approaches, for example, to recover absolute depth. 

The relative motion between the observer and stationary objects provides important 

information about the shape and depth of the scene [45]. The parallax effect observed by 

motion of the camera (observer) or objects can be used to determine the depth by using 

image point correspondences [41]. Multiple cameras are required to produce absolute 

depth information. 

One of the depth cues presented in the list above is size perspective, which is where 

humans use their knowledge of the size of familiar objects. Torralba and Oliva [46] 

developed an algorithm for estimating the mean depth of a scene based on the structure of 

the scene, which can be broken down into the global configuration, the size of the sur

faces, and the textures present. 

1.4.3 Volumetric Imaging 

In contrast to producing depth maps, volumetric imaging allows the interior of objects 

to be analysed, a couple of techniques being Computerised Tomography (CT) and Mag

netic Resonance Imaging (MRI). CT uses X-rays to produce volumetric information about 

a patient for the purposes of medical diagnostics. The different attenuation properties of 

the tissues allows doctors to see tumours, for example, and surgeons can visually prepare 

the operation. MRI is a technique that does not employ harmful ionising radiation, but 

instead uses a magnetic field and radio wave pulses. 

1.4.4 The Applications of 3D Imaging Systems 

Three-dimensional shape information is useful in a wide range of fields and examples 

of which are presented below. As the technology for 3D capture becomes faster and 

cheaper there is no doubt it will be used in an increasing number of applications. 
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Virtual Production 

Computer Generated Imagery (CGn has been common-place in the film industry for 

many years, but due to its high cost and labour intensive process it has remained out of the 

realm of television programme production until recently. Coupled with the fact that 

consumers desire more choice of programmes and channels, the use of virtual elements 

including scenes, actors (known as avatars) dressed in highly realistic clothing models, 

and props is under research. Virtual production is concerned with integrating virtual 

elements and real footage. In order to create a realistic looking scene with optical interac

tions (such as occlusions, shadows and reflections), the correct camera perspective and 

depth perception, 3D models are required of both the real and virtual elements [47]. 

Virtual elements can be created in a Computed Aided Design (CAD) package, but this 

process is time-consuming and expensive. For real-world objects an alternative is to 

employ a 3D acquisition system to create a virtual representation that can then be manipu

lated in software. 

Due to its small working range, DFD would only suitable in this application for the 

capture and creation of small, virtual elements. However, DFD has been used for scene 

segmentation [48], and thus over large distances, where depth accuracy is less important. 

3D TV 

Britain was the first country in the world to have public television transmissions on a 

large scale, but the cost was very prohibitive. The technology drive during the Second 

World War helped to reduce the cost and it was estimated that over 20 million people 

watched the Coronation of Queen Elizabeth II on 2nd June 1953. About the same time 

colour televisions started to become a common feature in North American homes. Follow

ing the introduction of High-Definition TV (HDTV) the next big step is likely to be 3D

TV. Passive DFD has not been shown to work effectively over the large ranges required 

for 3D-TV, thus making stereo the obvious choice for the moment. 

The increasing power of computer chips in digital television sets, the availability of 3D 

rendering hardware and developments in 3D display technology have led the BBC to 

speculate that 3D TV sets could be available in 2010 [49]. Different types of glasses have 

been designed for viewing 3D pictures, but each of them inconvenience the wearer and 

can cause discomfort when worn with existing corrective lenses. The concept of red-green 

(anaglyph) glasses was demonstrated by the Frenchman Joseph d' Almeida in 1858 [50]. 

The experience relies on the viewer being able to tolerate different colour images reaching 

each eye and only grey-scale or pseudo-colour images can be seen. In contrast, full-colour 
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3D images can be seen by a viewer wearing polarised glasses where two projectors (one 

for each eye) are employed with orthogonal polarises in front. LCD shutter glasses also 

produce colour 3D images and can be comfortably worn for long periods of time and they 

are becoming relatively cheap due to consumer games market for PCs [50]. 

Autostereoscopic display systems refers to technology that does not the require the 

viewer to wear specialist glasses. Most autostereoscopic displays are based on lenticular 

lenses. One of the main problems associated with integral imaging is the narrow viewing 

angle and this has been addressed [51]. 

Face Recognition 

Anti-terrorism technology requires accurate ways of detecting known suspects who may 

have their information stored by the FBI, CIA or Interpol. Three-dimensional face recogni

tion technology could help detect criminals at airports and other security check points 

[52]. As human heads could comfortably fall in the mean depth range used for DFD, it is 

possible that the technique could be used for this application. 

Art Conservation 

The conservation of sculptures is important in the arts world and whereas a painting can 

be photographed or scanned, a sculpture requires a 3D scanner; and for small sculptures, 

DFD could be employed to build the model. Once the 3D representation has been created 

it can be preserved indefinitely in electronic form and can be viewed easily from anywhere 

in world over the Internet. 

Surgery 

The visual inspection of the abdominal cavity using an endoscope, known as laparos

copy, was first performed in 1901 and during the 1970s the work of Kurt Semm in Ger

many showed that surgery was possible [53]. Advances in fibre-optics and video allowed 

the surgeon, and now their support team, to see clearer images inside the human body. 

Minimal invasive surgery leads to shorter recovery times for the patient, less scaring, less 

blood loss and a shorter hospital stay. The small movements of the surgeon have to be 

transferred through the specially designed instruments inserted through the small openings 

that may only be 1 or 2cm wide. 

Robots have increased dexterity and steadiness over a human and at the control of a 

surgeon they have aided operations. At present the surgeon is likely to be in the next 

room, but remote surgery, known as telesurgery, has been investigated. The world's first 
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transatlantic telesurgical operation was carried out in September 2001 by doctors in New 

York on a patient in Strasbourg, France requiring the removal of a gall bladder [54]. The 

Da Vinci Surgical System is one of the very few robotic-assisted surgery tools on the 

market and it offers 3D visualisation to aid the surgeon. Surgery performed entirely by 

robots is a long way in the future, but clearly accurate 3D vision is going to be a major 

aspect of the research. 

DFD is certainly a feasible method of obtaining 3-D images in laparoscopy as the 

working range is small. Further, the fact that it does not require two cameras separated by 

a sufficient baseline means that the opening in the patient may be smaller. 

Planetary Exploration 

In 1996 NASA launched the Mars Pathfinder mISSIOn with the first rover called 

Sojourner to explore the red planet. Viking I and II had been sent in 1975 and each had an 

orbiter and lander, the latter being incapable of motion after landing, but provided valu

able biological, chemical, meteorological and geological data. The twenty minutes it takes 

the communications from Earth to reach Mars meant that a rover had to be autonomous to 

some extent. Sojourner had six wheels with which to roam the surface, it performed 

scientific experiments and benefited from nearly twenty years of innovations in image 

processmg. In 2004, two rovers named Spirit and Opportunity returned with more 

advanced stereo imaging technology that enabled the rovers to plan routes, navigate 

autonomously and avoid obstacles. 

As with virtual production, the problem of requiring depth estimates over long distances 

for producing large maps for terrain navigation may preclude the use of DFD, but for 

analysing smaller objects, such as rock samples, it may be a possible solution. 

Disaster Exploration 

Chernobyl Nuclear Power Plant was the site of the world's worst nuclear disaster in 

1986 and a concrete and steel sarcophagus was hurriedly built over the Unit 4 reactor 

building to contain the radiation. The high radiation fields and structural instability 

precluded human examination when it appeared that it was starting to degrade, the fear 

being that contaminated dust would be released. A robot named Pioneer was used in 1999 

to provide a 3D reconstruction of the interior using stereo videography that was based on 

Sojourner's software. 

DFD may be able to provide 3D information of small components that must be 

inspected, but again, for producing models for large distances it is not suitable. 
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1.5 Research Objectives and Thesis Structure 

1.5.1 Research Objectives 

The aim of the research was to add knowledge to the field of depth-from-defocus 

concerning the improvement of depth accuracy. As DFD is based on defocus measure

ments, it is clear that accurate PSF measurements are required. The first part of the 

research was centred on obtaining accurate PSF measurements of a defocused camera 

system using the knife-edge based technique developed by Reichenbach et al. [55], 

Tzannes and Mooney [56] and Staunton [57]. 

As the Literature Review of Chapter 2 will show, no previous work on the use of colour 

images in DFD could be identified, where all three planes of two defocused images were 

used. The second section is concerned with the development of a depth-from-defocus 

algorithm that uses colour information, akin to acquisition of multispectral images using 

cones in the eye. Previous work was based on monochrome images, which is analogous to 

using the rods only. 

The reason for investigating the use of colour images was firstly because it had not be 

looked at before. Secondly, it is known that colour images possess more information than 

monochrome images and the objective of the research became to see if the extra spectral 

information could be used effectively to achieve better depth accuracy with a DFD algo

rithm. The colour images were converted to monochrome in the pre-processing stage and 

then applied to an implementation of Ens and Lawrence's [58] [59] DFD algorithm, as 

shown diagrammatically in Figure 1.7. 

Ens and Lawrence's elegant, matrix-based DFD algorithm was selected out of the 

alternatives presented in Chapter 2 and compared in Section 2.6. This was because it 

readily accepts experimental PSF data (which was the aim of the first part of the research), 

Ens and Lawrence showed that the spatial domain offered better depth localisation than 

the frequency domain for a given window size and their experimental results showed a 

good depth accuracy that put it 4th out of the 21 algorithms compared. Also, the relative 

simplicity of the algorithm was helpful in making the errors in the depth map easier to 

analyse and the implementation details were clearly available. 
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1.5.2 

Image I Image 2 
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Figure 1.7: Flow diagram of the colour DFD algorithm 

Thesis Structure 

This thesis, entitled "Colour Depth-From-Defocus Incorporating Experimental Point 

Spread Function Measurements", is divided into two related sections, as discussed in the 

previous section. 

A detailed and structured literature review of previous work on depth-from-defocus is 

presented in Chapter 2 from its generally agreed birth by Pentland [60] in 1982. Single 

and multiple image DFD algorithms are examined and the main problems with the concept 

are highlighted. 

Theoretical models of the PSF have been derived ranging from the very simple pillbox 

model to the mathematically convenient 2D Gaussian. The accuracy of most depth-from

defocus algorithms is highly dependent on the precision to which the PSF is modelled and 

so the problem of accurately determining the PSF experimentally was considered. Chapter 

3 begins with a survey of previous work to measure the PSF and presents derivations of 

the theoretical shape assuming geometrical and physical optics. Staunton's [57] method of 

determining a 2D PSF from a lightbox with a knife edge is discussed along with improve

ments that were made in different stages of the modelling. 

Chapter 4 begins with results of the important linearity and noise experiments per

formed on the Basler A631 fc colour camera. The experimental aspects of measuring the 

PSF are introduced and then results given for a 16mm video lens and a 24mm Sigma 

photographic lens over a range of distances. 
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A pre-processing stage that converts a colour image to monochrome is introduced in 

Chapter 5 with the purpose being to produce more accurate depth maps than just using a 

black-and-white camera. The different algorithms presented were designed to alleviate 

some of the problems with DFD discussed in the literature review. 

Ens and Lawrence's algorithm [58] [59] based on a look-up table derived from experi

mentally determined PSFs was employed to test the pre-processing stage. Chapter 6 

begins with a discussion of the implementation and then each of the different colour-to

monochrome pre-processing algorithms are presented and compared in turn. 

In the final stages of the research it was discovered that the image normalisation, which 

was required when images with two different apertures were used, was SUb-optimum. 

Chapter 7 presents solutions to the normalisation problem from theoretical and experimen

tal perspectives. 

Finally, Chapter 8 summarises the findings of the two parts of the research. Due to the 

limited time available it is inevitable that not all the possible research has been completed 

and the second section of Chapter 8 discusses future work. 
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Chapter 2 

Literature Review on Depth-From-

Defocus 

2.1 Introduction 

This chapter presents a comprehensive literature review of the work done on the 2 t D 

computer vision technique depth-from-defocus (DFD) using active and passive illumina

tion. The active DFD algorithms require the use of a projector to ensure the scene has the 

required properties whereas passive systems use standard lighting techniques. The limited 

depth-of-field produced using a camera with a lens is presented in Section 2.2. DFD can 

be performed on a single image if strong assumptions can be made about the scene that the 

camera is imaging and Section 2.3 presents a review of the passive DFD algorithms using 

a single image. The brightness contribution of an image due to the scene can be separated 

from that due to defocus using two images. Section 2.4 examines the many passive DFD 

algorithms that have been designed to measure the defocus, and consequently the depth of 

the points in the scene, from two images. Active DFD methods are reviewed in Section 

2.5 and finally a summary is presented in Section 2.6. 

2.2 The Basic Premise of Depth-From-Defocus 

Two monochrome images of a chessboard are presented in Figure 2.1 and Figure 2.2 

and the only difference in the images is that the f-number of the camera was changed, 

resulting in different depths of fields. The exposure time was altered to compensate for 

brightness variations caused by the change of apertures. We can readily see the 3D nature 

of the chess pieces from the 2D image, firstly, because we hold the general assumption 

that the pawns are identical and since those on the left hand side are smaller then they 

must be further away (hence employing size perspective); secondly, defocus effects are 

acting as a depth cue. 
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Visual tests by Pentland [3] showed that scenes with greater amounts of defocus give 

the impression of a stronger sense of 3D structure. The reader may compare the images to 

see if they agree with Pentland's findings that Figure 2.2 gives a greater sense of three

dimensionality in the 2D images. Photographers frequently direct the viewer's attention to 

the subject of the image by defocus blurring the background [61]. 

Figure 2.1: Image of a chessboard taken with a small aperture (flS) 

Figure 2.2: Image of a chessboard taken with a large aperture (fl2.S) 

Pentland noted that biological visual systems, such as the human eye, employ an optical 

system that produces defocused images, except for a small region in the centre of the 

retina, called the fovea. Importantly, it would be possible for the eye to have a smaller 

aperture (iris) and thus produce a much sharper image without incurring a significant loss 

in brightness [3]. It appears as though defocus effects improve the three-dimensional 

awareness of a biological system and provide more infonnation than a pinhole image. 

Images taken with a small aperture have a large depth-of-field with the consequence being 

low depth discrimination [4]. 
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Chromatic aberration of the lens in the human eye means that the focus posItIon 

changes according to the wavelength of light and subsequently the eye produces images 

with different depth-of-fields in different spectral bands. Accommodation of the human 

eye was impaired when the chromatic aberration was reduced using an achromatising lens 

and monochromatic light, suggesting that the human brain uses chromatic aberration as a 

directional cue [62] [63]. Further, a sinusoidal change of the focal length of the lens with 

a frequency of approximately 2 Hz about the fixation point supplies the brain with extra 

focus information [64]. 

It is often stated in papers on DFD that the method eliminates the correspondence 

(matching) problem of stereo (e.g. [42] ) and avoids occlusion problems. Schechner and 

Kiryati [65] have argued that it is not the case when considering geometrical optics and an 

analysis involving DFD, DFF, stereo and DFMB. Their analysis revealed that the chance 

of occlusion is higher with DFD and DFF compared to stereo and DFMB, however, the 

continuum of points caused by defocus blurring yields more information than disparity 

caused by a stereo system. Thus, DFD and DFF are more stable in the presence of 

occlusions. 

The correspondence problem in stereo manifests itself as the existence of an ambiguity 

in the matching process and thus the triangulation, with the effect that there are multiple 

depth estimates for a given point. A spatial frequency analysis by Schechner and Kiryati 

[65] revealed that image regions could exist where the depth estimate using DFD is not 

unique, and thus it does not avoid the correspondence problem. The edge effect further 

highlights the fact that the matching problem exists. This is where the regions outside of 

the window blur sufficiently to contribute intensities inside the window, as shown in 

Figure 2.3, and the greater the defocus, the larger the effect. 

D" , , . 
, . . 

Pinhole image 

00000 
00000 
00000 
00000 
00000 

Least defocused image Most defocused image 

Figure 2.3: An illustration of the image overlap problem 

As Ens and Lawrence [59] note, the concept of inferring distance of objects from 

defocus was reported by Helmholtz [66], but the first experimental work was performed 

by Pentland [60]. Twenty-four years have passed since Pentland's idea of depth-from

defocus was presented and in that time many different researchers have considered the 

problem and the next sections examine the progress that has been made to date. DFD 
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produces depth maps and thus the technique produces 2 ~ D images whereas volumetric 

techniques, such as CT and MRI, produce 3D images. 

2.3 Depth-From-Defocus using a Single Image 

Sharp intensity discontinuities in the scene, known as edges, provide useful information 

about depth because the brightness transition is primarily due to defocus. Pentland's first 

algorithm used a single defocused image of a scene and linear regression was employed to 

relate the Laplacian of the scene to a mathematical defocused step edge, from which the 

standard deviation (T of the Gaussian could be obtained [3]. As noted in Chapter I, for a 

given lens there are two possible object distances that give the same (T, and the ambiguity 

is removed through knowledge of the set-up. The approach was implemented and shown 

to produce a depth map where edges were categorised according their distance: large; 

medium; or small depth values [3]. Although the approach is very simple and depth 

resolution poor, it could be employed for segmenting a scene. Lai et al. [67] used least

squares fitting to fit a linear step edge in depth convolved with a Gaussian PSF, which was 

a generalisation of Pentland's method and does not require differentiation. 

Subbarao and Gurumoorthy [68] considered the problem of a defocused step edge in 

intensity and instead of using the standard deviation of the Gaussian, the square root of the 

second central moment of the PSF was employed. This approach essentially removes the 

restriction on the form of the PSF. The results showed that the spread parameter was 

linear with respect to inverse depth except near the focus position, where the difference 

was attributed to lens aberrations and the spatial and grey level sampling. The approach 

was limited to isolated step edges as surrounding structure adversely affects the results and 

further it only worked for vertical edges due to the derivation. 

Saadat and Fahimi [69] used the second derivative at the origin in the frequency domain 

as a measure of the bandwidth of the low-pass filter that defocused the scene and related it 

to depth. The algorithm was rewritten to use spatial domain integrations to reduce the 

effect of noise and it was assumed that the texture of the scene remains constant, allowing 

the single image approach to work. 

Simon et al. [70] presented an algorithm to recover the depth of step edges using two 

images by relating the gradient of the edges to the standard deviation of a Gaussian PSF. 

The simulation results were good and fairly robust in the presence of noise, but the algo

rithm only worked for edges of multiples of 90 degrees due to the derivation, which is a 

serious deficiency. A more advanced approach to handle any angles was later derived and 

simulated on synthetic images [71]. 
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The use of a defocus measurement based on a Sobel edge detector combined with 

motion detection information was used to yield foreground and background segmentation 

in a video sequence by Swain and Chen [48]. The motion detection meant that the back

ground did not have to be static for correct segmentation. 

Tsai and Lin [72] proposed a method where a Sobel edge detector is applied to the 

defocused image (so that the sharper the image, the greater the magnitude), the edge points 

are located and then a moment-preserving method is applied to give a binary image (with 

pixels representing high and low gradients) and then the proportion of the edge region in a 

small neighbourhood is found. From the neighbourhood measure and knowledge of the 

camera parameters the depth can be recovered, but the authors employ an Artificial Neural 

Network (ANN) to reduce the estimation error due to the effects of optical aberrations, 

vignetting and a PSF shape that differs from the assumed pillbox. The approach required 

a circular window with a radius of 35 pixels, which will clearly limit the spatial resolution 

of the depth map. 

This review has shown that limited depth information can be obtained from a single 

defocused image, however, the problem with using a single image is that there is insuffi

cient information to recover the defocus operator accurately. Image regions that have a 

smooth transition in brightness can be due to a defocused sharp edge or a focused soft 

edge [58], which could be the result of a gradient in the illumination for example. 

2.4 Passive Depth-From-Defocus using Multiple Images 

2.4.1 Introduction 

Exploiting known properties of the scene, such as sharp transitions in depth, allows 3D 

information to be recovered as shown in the previous section. However, generally the 

scene is unknown and the contributions of the brightness as imaged with a pinhole camera 

cannot easily be separated from those due to defocus. Two images of the same scene 

taken with different camera parameters frequently allows the contribution of the scene to 

be factored out (assuming the scene is static), thus leaving the important defocus informa

tion. The exception occurs for textureless objects that appear identical in both images. 

Many passive depth estimation algorithms, including stereo and depth-from-focus, would 

also suffer from this problem, hence the use of active lighting, which is discussed in 

Section 2.5. 
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The accuracy of the estimates of the depth are dependent on the camera parameters 

chosen. Rajagopalan and Chaudhuri [73] analysed the error using the Cramer-Rao bound 

of the variance of the error assuming the images can be modelled using a 2D auto-regres

sive (AR) process and the blur was recovered using a maximum likelihood (ML) estimate. 

Interestingly, if the depth of the scene is not constant no single set of camera parameters 

may be optimum. Even assuming the depth of the scene is constant, in order to estimate 

the optimum camera parameters for the second image given the equation derived, an 

estimate of the blur in the first image, the AR parameters of the scene and the variance of 

the noise are required. If the required parameters were known, the authors showed in an 

example that the difference between choosing the best and worst camera settings resulted 

in a difference of 13% in depth error. As the accuracy is dependent on good estimates 

coupled with the other problems, it seems more reasonable to use a trial-and-error 

approach. 

Two images taken with different f-numbers have the significant advantage that there is 

no magnification or image-to-image matching problem, unlike when changing the focal 

length or the distance between the image plane and the lens, although this can be remedied 

using a telecentric lens or image warping. As Watanabe and Nayar [74] point out, the two 

apertures must be very different in size, resulting in a darker image with the smaller 

aperture and having a lower signal-to-noise ratio (SNR). Further, the depth sensitivity is 

lower compared to changing the focal settings. 

Many depth-from-defocus algorithms are highly mathematical, but it is important to 

keep sight of the problems encountered practically, with noise especially, as shown by 

Hwang et al. [75]. Their algorithm appeared correct mathematically but noise swamped 

the depth map to the extent that the results were showed as being either closer or further 

away than a given distance. 

2.4.2 Pentland's Approaches to DFD 

Pentland's second algorithm was formulated in the Fourier frequency domain, as it 

possesses the useful property that the spatial domain convolutions due to defocus become 

frequency domain multiplications. The PSF was assumed to be a 2D Gaussian with a 

standard deviation (T. The Fourier transform of a circular portion of the more focused 

image was divided by that of the more defocused image and then linear regression was 

used to estimate (T [3]. The images were multiplied by a Gaussian window to reduce the 

edge effect. 

The main problem with Pentland's algorithms was that there is an assumption that one 

of the images is taken using a pinhole camera, which is generally unrealistic as it requires 
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a longer exposure time due to the tiny aperture and furthermore the effects of diffraction 

become more pronounced as the width of the aperture is decreased. 

Pentland suggested that using more than two images allows for mUltiple estimates of the 

depth, thus affording the opportunity for error checking and possible averaging [3]. 

The problem with taking the Fourier transforms of both images is that it is expensive in 

terms of time and hardware and so the implementation used Parseval's Theorem. The 

images were convolved with a Laplacian band-pass filter to restrict the band of frequen

cies employed, the resulting pixel values were squared and then averaged using a Gaussian 

filter to give an estimate of the power in those frequencies. A look-up table was then 

employed to produce an estimate of the depth from the power images, which was found to 

have an error of 6% at 8 frames per second (fps). Instead of using a single band of frequen

cies a Laplacian pyramid could be used with linear regression to give a more accurate 

estimate, which was found to be 2.5% over a 1m3 workspace [14]. The range estimates 

could not be considered dense though because only 64 x 64 measurements were taken. 

Pentland et al. [76] showed that post-processing the depth maps using regularisation (in 

this case using wavelets) could improve the final result. 

Bove [7] modified Pentland's approach to use the pillbox PSF instead of the Gaussian 

and used a higher-order regression. A relaxation method was incorporated to deal with 

those image regions with insufficient high frequency texture so that the depth was consis

tent with neighbouring regions, as it was reported that those regions appear closer than is 

actually the case. 

Taking the ratio of the Fourier transform of the images would lead to a single depth 

estimate and so the Short-Time Fourier Transform (STFT) was employed to ensure the 

depth was calculated for a local region. This requires a window to be used, which pro

duces errors as the resolution is reduced in the frequency domain and the image overlap 

problem increases as the size of the window is reduced. 

Xiong and Shafer [77] proposed an iterative method that seeks to blur one image using 

a Gaussian PSF to be the same as the other in the Fourier frequency domain, an approach 

they call maximal resemblance estimation that they claim eliminates the window effect. 

Although no quantitative results were given, smoother depth maps were produced using 

the iterative method compared to the direct method. 
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2.4.3 Subbarao's Approaches to DFD 

Subbarao [6] generalised Pentland's work so that a pinhole image was no longer 

required and instead two images were taken with small changes in either the aperture size, 

focal length (which is achieved by changing the relative distances between lenses in a 

mUltiple component system) or the distance between the lens and image plane. The 

problem with employing small changes was that the images change very little and subse

quently the depth map was less robust in the presence of noise, which is unavoidable in 

practice. 

The algorithm was modified to allow for large changes simultaneously in any of the 

three variables using an average of the ratio of the power spectrum of the images in the 

Fourier frequency domain [4]. As described in Section 2.3 the measure of defocus pro

posed by Subbarao was the square-root of the second central moment of the PSF, thus 

allowing for any shape, as the Gaussian and pillbox models were not found to be an 

adequate [4]. 

Autofocus methods in cameras involve a search for the lens position that maximises a 

focus measure, but Subbarao and Wei [78] presented a technique that requires only two or 

three images to be taken. Furthermore, the image segment to be processed was summed 

along the rows giving an average that reduces noise as well as computational require

ments. The Fourier transform was employed with a look-up table to produce the best 

focus position for the object and a RMS error of 6% was reported in terms of lens posi

tion. Instead of measuring the depth using the camera system, the corresponding focus 

position step was reported, which was linearly related to inverse distance. 

Subbarao and Surya's Spatial Domain Convolution / Deconvolution transform (S

transform) was used to measure the defocus in two images taken with two different aper

tures, where the transform links the derivatives of a cubic polynomial approximation of a 

smoothed image to the moments of the PSF [79]. Each pixel in the region gives rise to a 

depth estimate and the mode depth was used [80]. A look-up table of the standard devia

tion of the PSF G" was generated as a function of depth in the calibration stage. Dense 

depth maps are produced by virtue of the local operations required and the RMS was 2.25 

focus position steps out of97. 

In their review, Watanabe and Nayar [81] report that Subbarao and Surya's algorithm is 

suitable for large planar surfaces, but not for scenes where the depth variations are signifi

cant. The reason that Subbarao and Surya were able to quote a good depth accuracy was 

because their tests consisted of planar objects perpendicular to the optical axis and they 

did not report any results with step discontinuities. Surya and Subbarao state that DFD 
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could be used as a pre-processing stage for improving stereo vision [79] or depth-from

focus [82]. Yuan and Subbarao [83] presented a method that uses depth-from-focus and 

defocus techniques to generate a coarse depth map that is refined using colour stereo 

matching. Monochrome images were used for the depth-from-focus and defocus as the 

improvement was expected to be marginal using colour where the band with the highest 

contrast was employed. 

An image with a larger depth-of-field than either of the images taken for DFD can be 

created by performing deconvolution using the known PSF shape following depth measure

ments. Subbarao et al. [84] showed that the S-transform and inverse Abel transform 

successfully performed this task. 

The S-transform created by Subbarao and Surya [79] was a specific case of a more 

general algorithm developed by Ziou and Deschenes [85] [86] that employed a local image 

decomposition technique based on Hermite polynomials. The best fit polynomial represen

tation of the most blurred image was a function of the partial derivatives of the less blurred 

image and the difference in the standard deviations of the Gaussian PSF that defocused the 

images. The difference in the standard deviations was linked to the camera parameters to 

find the depth of a point in the scene. Ziou and Deschenes claimed that their approach 

yielded a smoother, denser and more accurate depth map. For a planar object between 115 

and 125cm away the RMS error was reported to be 2.21%. 

An interesting point that was not made by Subbarao, but also applies to Ziou's work 

too, is that their algorithms cannot determine the depth when a step edge is present or 

constant intensity junctions, such as L, T, V, X and Y shapes, as the Laplacian of the 

Gaussian is zero [86]. 

The concept of modelling the images using a polynomial was continued by Rayala et al. 

[87] who formulated the DFD problem as that of identifying the parameters in a system 

model with the least defocused images forming the input and most de focused image 

forming the output. By approximating the images, the second derivatives could be easily 

found, from which the spread of the PSF could be recovered. 

Deschenes, Ziou and Fuchs [88] modified their algorithm based on Hermite polynomi

als to allow for spatial shifts between the defocused images with the motivation being that 

it is very difficult to perfectly align the cameras and ensure no vibration. The RMS error 

for the plane decreased from 2.21 % to 1.68% with the modified algorithm. 

As discussed above, Subbarao [6] considered DFD by changing the camera parameters 

by infinitesimal amounts and found that the errors were significant. Farid and Simoncelli 

[89] proposed a similar, derivative-based approach, but added attenuation filters with 

variable-opacity in the optical path to take two images from the same camera position. 
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The PSF then becomes a scaled and dilated version of the mask (created using a program

mable liquid crystal spatial light modulator). The depth was assumed to be constant 

within a window and it was linked mathematically to the images created with the masks. 

The standard deviation of the error was 0.06cm and 0.16cm for planes llcm and 17cm 

from the camera respectively. 

2.4.4 Ens and Lawrence's Approach 

Spatial domain convolution becomes multiplication in the Fourier frequency domain 

and this has the effect of simplifying the extraction of the defocus operator as shown by 

Pentland [3] and this approach is called inverse filtering. Ens and Lawrence [58] showed 

that the cost of the simplification is that in order to drive the error in the shape of the PSF 

down to 1 %, the window had to be an order of magnitude larger than the spatial extent of 

the PSF. This is an undesirable consequence of using the frequency domain because for 

good depth map resolution the windowed region needs to be as small as possible. In order 

to remedy this problem, Ens and Lawrence reformulated the DFD problem in the spatial 

domain using matrices. In the noise-free case, the window size needs to be no larger than 

the extent of the widest PSF. 

Ens and Lawrence [58] [59] presented three spatial domain approaches of varying 

complexity. In the first and simplest case where there was no noise present, which can 

only occur in simulation, direct deconvolution using matrices was employed. In the 

second case a matrix-based regularised form was found where the PSFs were constrained 

to have a particular shape, for example a Gaussian. The third approach used an iterative 

approach that searches for the optimum function, known as the convolution ratio, from a 

pre-computed look-up table from which the depth can be derived. 

The iterative matrix approach using the look-up table was tested on an inclined plane 

between 0.8 and 0.95m from the camera and the RMS error was reported to be 1.3% over 

that range, whereas the regularised form had an error of 6.8% [58]. As Horii [5] noted, the 

matrix-based approach had a high computational cost, which he did not think was worth 

paying because the accuracy was very dependent on the signal-to-noise ratio (SNR). 
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2.4.5 Watanabe and Nayar's Approach 

Depth-from-defocus requires accurate measurement of the defocus between images and 

this generally requires a large filter bank to sample the Fourier frequency space suffi

ciently. Watanabe and Nayar [81] proposed the use of a set of broadband filters (the 

rational operators based on the equifocal assumption) with a support of 7 x 7 to produce 

accurate and dense depth maps that are invariant the scene texture. A single broadband 

filter (as used by Pentland for example) cannot produce accurate results because there are 

two unknowns: the response of the defocusing low-pass filter; and the texture of the scene. 

The defocused images are pre-processed to remove the DC and very high frequency 

components. The pillbox PSF model was employed to model the relative blur in the 

frequency domain. The confidence in the depth is derived from the operators, which in 

turn allows for refinement at a post-processing stage. The reported depth accuracy was 

between 0.5 and 1.2% of the distance from the object to the camera. Although a real-time 

implementation was not presented the algorithm is clearly efficient and could be built on 

standard hardware. 

2.4.6 Xiong and Shafer's Approach 

The spatially-varying nature of the PSF is more easily analysed by windowing the 

image to obtain a small region for processing and then assuming that the depth is constant 

within the window. Taking a small region of the image introduces windowing effects and 

further, it cannot necessarily be assumed that the depth is constant. Xiong and Shafer [90] 

introduced two new sets of filters, called moment and hypergeometric filters, that possess 

recursive properties that help to eliminate the windowing problem and not just remove 

foreshortening (which was the term they used for the non-stationary nature) effects, but 

also measure the degree. In addition to the properties mentioned, hypergeometric filters 

produce a complete and non-redundant decomposition of the signal (or image). 

The moment filters were applied to the problem of depth-from-defocus and for a slop

ing plane the RMS error was found to be 27 times better using the moment filters incorpo

rating the space-variant PSF compared to Subbarao's algorithm proposed in [4]. The 

hypergeometric filters were not tested in DFD, but improvements would be expected with 

those too. The main drawback with the approach is that a lot of computational time and 

memory was required and Xiong and Shafer state that parallel computers are necessary 

really. Essentially it is not amenable to a hardware implementation as it requires many 

filters [91] and the accuracy is determined by how well the optical system was modelled. 
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2.4.7 Rajagopalan and Chaudhuri's Approach 

Many of the DFD algorithms are based on the assumption that the depth is constant in a 

small window, thus assuming a space-invariant blurring function. In fact this is an approxi

mation of the real (general) case where the depth is changing and the blurring is space

varying. Two space-variant approaches were proposed by Rajagopalan and Chaudhuri 

[92]. The first algorithm, known as Block Shift-Variant (BSV) is based on the assumption 

that the blur is constant within a subimage, but variant over adjacent subimages. This is 

essentially the same assumption as Pentland [3], Subbarao [68] and Ens and Lawrence 

[59] except that the interaction between blocks was considered. 

The second set of algorithms were based on space-frequency representations using the 

Wigner distribution and the complex spectrogram [92]. The results were better than the 

BSV approach, but all three algorithms produced poorer results at depth discontinuities. 

Rajagopalan and Chaudhuri [93] modelled both the images and the depth map using 

Markov Random Fields (MRFs) and used simulated annealing to find the Maximum A 

Posteriori (MAP) estimates. A focused image and a depth map were produced by the 

algorithm. Subbarao's algorithm [4] was used as a benchmark in a real scene and found to 

produce an error of 6%. Their algorithm performed better, giving a depth error of 4%, but 

with some more information about the scene or the depth field the authors believe the 

results could be improved further. As Favaro and Soatto [94] note, the use of MRFS is 

effective, but suffers from a high computational cost. 

The sampling of the image capturing device, such as a CCD, imposes a restriction on 

the spatial resolution of the defocused images and consequently the depth map recovered 

using DFD. Rajan et al. [95] proposed a super-resolution approach where multiple images 

are taken with sub-pixel camera movements between each image. The depth map and the 

brightness images were modelled using MRFS and a cost function was minimised to 

calculate the parameters. 
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2.4.8 Favaro and Soatto's Approach 

Favaro and Soatto [96] developed an iterative DFD algorithm that estimates both the 

shape of the scene (i.e. the scene's geometry) and its reflectance properties simulta

neously. The formulation is based on creating a model of the scene and then a measure of 

the error between the actual image and the model is minimised. Commonly employed 

measures are the squared-distance (corresponding to a least-squares problem) and total 

variation, which is based on the integral of the absolute value of the error. Based on the 

work of Csiszar [97] the measure chosen was the information-divergence. 

Jin and Favaro [8] improved the original algorithm to allow for a space-variant kernel 

(PSF) and the scene radiance and geometry was obtained through solving partial differen

tial equations (PDEs). An iterative procedure generates the global image step-by-step and 

the regularisation process ensures scene smoothness. Although no quantitative results 

were presented, a scene consisting of figurines with a continually changing depth was 

recovered very well. 

Favaro and Soatto [98] proposed a matrix-based formulation of DFD where the process 

of defocus was learnt, as opposed to being modelled by the interactions of a PSF and a 

representation of the scene. A training set of images of a defocused plane at a particular 

depth was created where the radiance of the plane was changed. Singular Value Decompo

sition (SVD) was then employed to find similarities between the training images and an 

orthogonal projector operator was created so that images generated by the same shape with 

any radiance belong to the null space. The operators for planes of different depths are also 

found. With the lookup table of operators complete, unknown scenes can be processed. 

The depth of a point in the scene was estimated by searching for the operator that lead to 

the minimum residual. Interpolation can be applied to increase the number of different 

depths. A plane was moved from O.52m to O.82m in 51 increments and the depth com

puted giving an RMS of3.78mm. 

If the form of the PSF was known then the learning process was not required and 

functional SVD was employed to compute the required orthogonal projectors [94]. The 

advantages of the approaches are that a small window is required (7 x 7 or 9 x 9), the 

algorithm is robust to noise and a real-time implementation is feasible. Further, the shape 

of the PSF is not required for the learning approach. 
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2.4.9 Voxel Approach 

A voxel is a 3D counterpart to a pixel (picture element) and Prasad and Mammone [99] 

formulated the DFD problem as turning voxels on and off to create a depth map where 

simulated annealing was employed to solve the constrained optimisation problem posed. 

2.4.10 Entropy-Loss Formulation 

The effect of defocusing is to reduce the high frequency content of an image, a property 

that is exploited in depth-from-focus algorithms, but from an information-theoretic point 

of view, defocusing decreases entropy, which corresponds to an increase in the statistical 

correlation of neighbouring image points. Bove [100] used the entropy loss as a measure 

of defocus and related it to depth. A wallpapered plane was used to test the accuracy of 

the algorithm and it was moved between 1.3 and 2.0m from the camera. The RMS error 

was 2.2% in terms of measured distance from the camera and 5.2% when the expected 

range was considered and in comparison Bove' s higher order regression approach [7] 

discussed in Section 2.5.1 produced RMS errors of2.5% and 5.8%. 

2.4.11 Dynamic-Referencing Approach 

Horii [5] used division in the Fourier frequency domain and designed an implementa

tion based on using Parseval' s theorem and a Laplacian filter to extract the power in a 

restricted range of frequencies, like Pentland, but proposed a solution to remove the 

texture dependency. One of the images is dummy blurred with a Gaussian filter to deter

mine a required constant in a method called dynamic-referencing. 

2.4.12 Artificial Intelligence Approaches to DFD 

Fuzzy logic is an artificial intelligence method that seeks to use qualitative, instead of 

quantitative, data. Swain et al. [101] argued that fuzzy logic can be successfully applied to 

reduce the problems of noise, lens aberrations, varying lighting conditions, computational 

error and imprecise data due to lower resolution. Two variables were employed that begin 

as quantitative measures and then fuzzified using experimentally determined fuzzy member

ship functions. The first measure is focus quality based on the Tenengrad operator and the 

second is the focal error, which is measured using the Laplacian operator on each of the 

two images. The output of the fuzzy logic is a correction factor to apply to the depth map. 

The error was reported to be 1.5% over a rang.flrom 7 to 11 feet. 



2.4.13 Wavelet-Based Approaches to DFD 

All of the frequency domain approaches to DFD employ the Short-Time Fourier Trans

form (STFT) in an attempt to localise both the spatial and frequency information. The 

spectrum of the image segment is convolved with the spectrum of the window due to the 

truncation, thus increasing the uncertainty. Wavelet analysis seeks to optimise the win

dow size so that large window sizes are employed to find precise low frequency informa

tion and similarly small windows for high frequencies. Kim et al. [102] related the spread 

of the Gaussian PSF to the wavelet coefficients and demonstrated better results than using 

either a frequency domain or a spatial domain approach. In particular, the very difficult 

shape of a cone with its centre lying along the optical axis was recovered fairly well using 

the wavelet approach and badly using the other algorithms implemented. Hor et al. [103] 

also showed that wavelet approaches perform particularly well on space-variant problems. 

2.4.14 Depth-From-Defocus Using Colour Cameras 

Garcia et al. [62] used the inherent chromatic aberration of a lens and a colour CCD to 

capture the image to produce an RGB image where each colour plane has a different focal 

length. A measure of the spread of an edge was found for each colour plane from which it 

can be determined if the object is in front or behind the focal point of the camera and 

secondly, depth can be calculated through a mathematical relationship. 

The PSF is determined by the shape of the aperture and Farid and Simoncelli [89] 

employed attenuation masks to allow the range to be recovered through differentiation. In 

a similar approach, Riura and Matsuyama [104] modified the aperture to create a coded 

aperture that contained multiple holes, as they state that the blurring should be designed to 

yield accurate and reliable depth maps, as opposed to accurately modelling the given 

blurring. The coded apertures ensured that the important high frequency information was 

retained and they are placed to form a telecentric system to eliminate magnification 

effects. They also used a 3 CCD colour camera to capture three images with different 

focal lengths (a system they called the multi-focus camera). Two holes (instead of the 

usual single aperture) are employed and the depth is recovered through division in the 

Fourier frequency domain, but a look-up table is employed to determine the object dis

tance. The RMS error was reported to be about 5% using the multi focus camera alone and 

no quantitative results were given incorporating the coded aperture. The redundant infor

mation from the three colour planes was then used to find the focused image of the scene. 
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Particle Image Velocimetry (PIV) is important for research in studying unsteady flows 

and the depth of particles has been found using stereoscopic systems, but the correspon

dence problem is particularly troublesome. Murata and Kawamura [105] proposed a DFD

based system to overcome the problem with the unusual addition of a colour CCD where 

the focal lengths are different for the red and green planes using colour filters and movable 

mirrors. The captured images were low-pass filtered to reduce the effect of noise and the 

relative defocus between the two colour planes was used a measure of the depth of a 

particle. 

2.5 Active DFD Methods 

2.5.1 Introduction 

The passive methods discussed in the previous section are reliant on the scene possess

ing sufficient texture for DFD to work and where the requirement is not met the depth 

measurements are likely to be highly erroneous. The problem can be overcome using a 

structured light source to impose a texture on the scene using a data or slide projector, for 

example. The depth measurement results are affected by the choice of the specific form of 

the structured lighting and is thus subject to research. 

The image overlap problem can be eliminated by projecting a pattern onto the scene 

that has bright areas that are examined for defocus surrounded by dark guard bands that 

ensure there is no contribution due to those area [4]. This will reduce the depth map 

spatial resolution, so a few such projections could be employed where the pattern is 

shifted each time and the resulting scene imaged at each step. 

2.5.2 Pentland's Approach 

The first active DFD algorithm was presented by Pentland et af. [76] and it employed a 

slide projector to produce parallel vertical lines on a scene focused at a set distance. The 

camera had a small aperture so that the pattern de focused with depth and is not compli

cated by defocus by the camera too. The moment of inertia of a small region centred on a 

defocused line imaged by the camera was related to the standard deviation (J" of the Gauss

ian PSF that was assumed and hence depth could be extracted. An RMS error of 0.5% 

was reported and the use of a stroboscopic light source was discussed for capturing images 

of a rolling sphere. 

39 



2.5.3 Watanabe and Nayar's Approach 

Nayar et al. [12] [91] argued that a precise model of the optical system was required for 

accurate DFD work and that it was necessary to provide active illumination with high 

spatial frequencies. The projection pattern was designed using a model of the system, 

which took into account sampling, diffraction, defocus and the focus measure employed 

(with a 3 x 3 kernel). Two optimum patterns were returned: one of which was composed 

of black-and-white squares (a checkerboard pattern) that are the same size as the pixels 

and with no phase shift; the second was composed of squares twice as large with a phase 

shift of half the sensor spacing. A look-up table relates the ratio of the convolution of the 

defocused images with the 3 x 3 kernel to depth. Real-time depth maps (30Hz) of a 

512 x480 pixel image were generated using hardware with an RMS error of 0.3% and the 

use of a telecentric aperture avoided magnification effects 

2.5.4 Ghita and Whelan's Approach 

The optimum patterns proposed by Nayar et al. [12] are difficult to make and Ghita and 

Whelan found that using image interpolation reduced some of the problems caused by a 

non-optimum pattern [106] [107]. The range sensor they constructed produces 256 x 256 

depth maps at 10 frames per second using a Laplacian-based approach as proposed by 

Subbarao et al. [82], with a normalisation proposed by Nayar et al. [12] and with a pro

jected pattern consisting of horizontal lines, like Pentland et al. [76]. Ghita and Whelan 

investigated the depth estimation performance using 4- and 8-neighbourhood Laplacian 

and 3 x 3 and 7 x 7 kernel rational operators [106]. They report that the 7 x 7 rational 

operator performed the best, but lacked linearity. Discontinuities in the depth were not 

well recovered using the 4-neighbourhood Laplacian and 3 x 3 rational operator, but the 

depth was more linear. The reported error was 3.4% in terms of the distance between the 

sensor and the scene. 
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2.5.5 Ma and Staunton's Approach 

Ma and Staunton [lOS] developed an Artificial Neural Network (ANN) based approach 

that combined image segmentation and depth estimation. Multiresolution image segmenta

tion was used to isolate object regions from the background. Lower resolution informa

tion, which was found to be strongly correlated to depth, was fed into a three-layer ANN 

as feature vectors and then processed to give a depth estimate. Although the approach 

required active illumination, it was simulated by gluing printed texture to the objects. 

2.6 Conclusion 

This literature review has shown that absolute depth information can be obtained using 

the various different formulations of DFD. The single image approach is very simple and 

it has been successfully used to aid segmentation of video sequences. However, out of six 

papers reviewed, only one had quantitative results and that was only from simulation 

results. 

The passive and active DFD algorithms using two images allow for dense depth maps 

and their accuracies are presented in Tables 2.1 and 2.2 for comparison. The errors have 

been expressed as the RMS error divided by the range employed as this allows for a more 

direct comparison that the MSE alone. Where the closest and furthest points from the 

camera have been reported, it is reproduced in the table below. However, if only the range 

is given then it is given as a single number. 

Of the passive techniques reviewed, the algorithms developed by Watanabe and Nayar, 

Xiong and Shafer, and Kim et af. have the same accuracy of O.S%. Two of the three active 

methods with quantitative error results have identical accuracy to the best passive results, 

but Nayar et af. [12] have produced the only real-time range sensor (running at 30 frames 

per second) based on DFD that has a dense depth map. Pentland's simpler technique using 

projected lines claims the same accuracy, however, the depth map is not as dense and it 

was not implemented for real-time operation. 

The mean working range of the passive algorithms reviewed was found to be l.lm to 

I.Sm. The largest distance an algorithm was quantitatively tested on was Surya and 

Subbarao's STMAP algorithm [79] at Sm, but the accuracy was poor at 20%. 

41 



Table 2.1. Accuracy for passive DFD techniques 

Author Algorithm Name 
Working range Accuracy 

1m 1% 

Watanabe & Nayar Rational filters for 
0.540 - 0.840 

[81 ] passive DFD 
0.5 - 1.2 

Xiong & Shafer [77] 
Maximal resemblance 

2.5 
estimation 

0.5 

Kim et al. [102] 
Wavelet analysis 

1.50 - 1.80 0.5 
approach 

Ens & Lawrence [59] 
Iterative matrix 

0.80 - 0.95 1.3 
approach 

Swain et al. [101] Fuzzy logic-based 2.1 - 3.4 1.5 

Surya & Subbarao [79] STMAP 0.6 - 5.0 1.6 - 20 

Deschenes et al. [88] 
Incorporation of 
spatial shifts 

1.15 - 1.25 1.68 

Rajan et al. [95] SR from defocus blur 0.73 - 0.97 2 

Bove [100] Entropy-based 1.3 - 2.0 2.2 

Farid & Simoncelli Optical differentiation 0.11 - 0.17 2.2 - 2.4 
[89] 

Ziou & Deschenes [86] 
Hermite polynomial-
based 

1.15 - 1.25 2.21 

Pentland et al. [14] 
[76] 

Multi-scale 1.40 - 2.70 2.5 

Bove [7] [100] 
Higher-order regres· 
sion (multi-scale) 

1.3 - 2.0 2.5 

Rajagopalan & MRF with MAP 0.70 - 1.25 4 
Chaudhuri [93] 

Rajagopalan & Complex Spectrogram 0.70 - 1.25 4.7 - 8.8 
Chaudhuri [92] method 

Rajagopalan & Pseudo-Wigner 0.70 - 1.25 4.9 - 9.2 
Chaudhuri [92] Distribution 

Hiura et al. [104] Multi-focus camera 1.50 - 4.10 5 

Rajagopalan & Block-Shift Variant 0.70 - 1.25 5.4-10.6 
Chaudhuri method 

Horii [5] Dynamic referencing 1.5 - 2.5 5.8 - 8.4 

Pentland et al. [14] Single-scale 1.00 6 

Ens & Lawrence [59] 
Constrained inverse 0.80 - 0.95 6.8 
filtering 
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Table 2.2. Active DFD techniques comparison 

Technique 
Working Depth map 

Author(s) 
Accuracy 

range fps size 
name 1% 

1m I pixels 

Nayar et al. 
Real-time 

[12] [91] 
focus range 0.30 30 512x480 0.5 
sensor 

Pentland et al. 
Projected lines 1.40 - 2.70 

[76] 
64x64 0.5 

Ghita & Real-time 
Whelan [106] depth sensor 

0.09 10 256x256 3.4 

The algorithms can be catagorised into those that use the spatial, Fourier frequency and 

wavelet domains. A primary difference between the algorithms is that some assume a 

space-invariant PSF within a window (known as the equifocal approximation) and others 

assume a space-variant blurring kernel, which removes the depth restriction. The image 

overlap problem can be reduced by windowing with a centre-weighted mask (e.g. a Gauss

ian) to reduce the effect of the pixels at the edge [42]. When a space-variant PSF is 

employed, the radiance of the scene and its geometry (i.e. depth) must be computed, 

whereas in the equifocal case the geometry alone can be recovered [94]. Watanabe and 

Nayar [81] state that the reason passive DFD methods are computationally expensive is 

that the frequency characteristics of the scene are largely unpredictable. By virtue of the 

projected image, the frequency content of the scene with an active DFD system is known 

very well. 

The advantages of DFD are that the accuracy is comparable to that using methods based 

on stereo disparity and motion parallax; and DFD is more stable in the presence of occlu

sions than stereo. As with stereo, matching (or correspondence) problems exist in DFD 

and in this case it is due to edge bleeding caused by the spread resulting from defocus 

effects. 

The main disadvantages of DFD are that the shape of the PSF must be accurately 

known, windowing effects due to a space-variant PSF lead to inaccuracies and further 

sufficient texture is required on the scene, although this can be alleviated using structured 

lighting. The sensitivity to error is also dependent on the camera parameters used, aberra

tions present in the optical system and the spatial and grey-level resolution of the cameras 

[4]. 

Subbarao suggested a robot vision system that employs cameras with short focal length 

lenses for objects that are close and longer focal lengths for those objects further away [6] 

as the usable and accurate depth range is highly dependent on the camera parameters. For 
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example, a scene with a large depth of field will have low defocus discrimination [42]. 

Research involving the integration of different three-dimensional techniques is showing 

improvements, for example depth-from-defocus, focus and stereo [83] and focus, vergence 

and stereo [109]. 

In 1992 Horri [5] stated that the main purpose of DFD was to be to create a rough depth 

map for use in vergence, auto-focusing or stereopsis range finding algorithms, but he did 

not foresee the improvements that would be made in the field. 
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Chapter 3 

The Theory of the Measurement of 

the Point Spread Function of a 

Defocused Imaging System 

3.1 Introduction 

Depth-from-defocus (DFD) algorithms rely on the limited depth-of-field produced using 

a real imaging system. The limited depth-of-field is caused by defocus blurring that is the 

result of space-varying convolution with a low-pass filter, known as the Point Spread 

Function (PSF). The PSF is dependent on the camera parameters and the depth of the 

point in the scene. Hence, knowledge of the PSF allows depth-from-defocus algorithms to 

determine the depth of a point in an image. Accurate measurement of the PSF is required 

for precise depth estimates [81] and these must be determined experimentally as no theoreti

cal model can adequately take into account all the factors present in an optical system. 

This chapter focuses on the determination of the PSF for the Basler A631 fc colour camera 

with a 16mm video and a 24mm Sigma photographic lens that was used in the subsequent 

DFD experiments. However, the methods also apply to any imaging system composed of 

a focusing optics (e.g. a lens) and a sensing array (such as a CCD). 

An overview of measurement techniques for the PSF and its Fourier transform counter

part, the Optical Transfer Function (OTF), are described in Section 3.2 and then the 

theoretical PSFs assuming both geometrical optics and diffraction-limited optics are 

developed in Section 3.3. The measurement of the PSF can be achieved from differentiat

ing a step response, known as the Edge Spread Function (ESF), and Section 3.4 presents 

models of the ESF for a given PSF. Finally, Section 3.5 summarises the findings and in 

Chapter 4 the results of applying the theory are shown. 
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3.2 Literature Review 

3.2.1 Introduction 

Pixel arrays, such as CCDs, are devices composed of many photosites (active areas) and 

their associated transfer electronics for readout of the charge and timing. The solid-state 

active area of a CCD that converts incident photons to electron-hole pairs are typically 

square, rectangular or L-shaped. The ratio of the active area to the total area is referred to 

as the fill-factor and front illuminated arrays have fill-factors less than 100 percent [110] 

as communications and other sub-systems take up a finite area. 

A photon is emitted by a source, for example an incandescent bulb or a distant star, and 

it is reflected and refracted by objects before impinging on a CCD having been refracted 

by a lens usually. If the photon strikes the active-area of the CCD it generates an electron

hole pair and the resulting free electron is known as a photoelectron. The accumulated 

photoelectrons are stored in a potential well. The charge packets are moved from site-to

site during read out and in modem CCDs the Charge Transfer Efficiency (CTE) is very 

close to one hundred percent [111]. Each packet is amplified and then an analogue-to

digital converter (ADC) produces a digital output signal that is a function of the number of 

photons that struck a given site. 

The Pixel Response Function (PRF) is defined as the output of a pixel as a function of 

the spatial position of a point source of light and thus it gives a measure of the sensitivity 

of a pixel as well as the crosstalk between neighbouring pixels. An ideal PRF has a 

uniform sensitivity within the boundaries of the pixel and zero outside so that there is no 

crosstalk, however, it has been shown that the sensitivity is a function of position within a 

single pixel and further it is a function of wavelength too. Figure 3.1 shows an example of 

an experimentally determined PRF for a 9 X 91lm pixel by Kavaldjiev and Ninkov [112] 

where the sensitivity is shown in standardised units in the range [0, 1]. 

The variations between pixels are primarily due to transmittance non-uniformity, 

variations in the quantum efficiency and diffusion spreading of the photogenerated minor

ity carriers [112]. Due to the non-uniformity in the PRF the response due to a point source 

is space-varying and it can be quantified using a shift-error, but the effect is reduced in a 

defocused system [112]. 
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Figure 3.1: The experimentally derived PRF for a 9 x 9 flmpixel in the Kodak KAF 4200 CCD at ,\ = 633 nm 

(from [112]) 

Measurement of the PRF is time consuming as potentially each pixel must be character

ised individually due to non-uniformities of materials and the manufacturing processes. 

The measurement must be done for many wavelengths and requires high precision equip

ment as a point source must be moved at the sub-micron level. 

The Point Spread Function (PSF) of an image acquisition system takes into account the 

response of the pixels as well as the optical and electronic elements in the system. 

Although the PSF can be found by convolving a model of the PRF with the PSF of the 

optics [113] and factoring in the response of the electronic systems, often the average PSF 

is measured using techniques discussed in the next section. The Fourier transform of the 

PSF is called the Optical Transfer Function (OTF), which is generally a complex function. 

The magnitude of the OTF is called the Modulation Transfer Function (MTF) and the 

phase component is called the Phase Transfer Function (PTF), but for a centred optical 

system the phase is often assumed to be zero. 

The MTF gives a measure of the quality of the imaging system as it is a measure of the 

spatial resolution. It can determined for a complete system composed of a Focal Plane 

Array (FPA), such as a CCD, and the optics using techniques outlined below, but some of 

the techniques can be used to measure the MTF of the FPA alone, i.e. without any optics. 

3.2.2 PSF and MTF Measurement Techniques 

An image of a sinusoidal grating is a classic MTF measurement technique where the 

input illumination I(x) as a function of spatial displacement x is given by 

1 + cos(x) 
I(x) = 2 (3.1 ) 
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and the MTF for a given spatial frequency ( is given by 

MTF«() = Imax - Imin 

Imax + [min 
(3.2) 

where Imax and Imin are the minimum and maximum pixel intensities. A focal plane array 

collects incident light over a given area and the sampling aperture effect of a discrete 

sensor means that the FPA must be moved relative to the target to give minimum and 

maximum MTF curves [114]. A square-wave target, as opposed to a sinusoidal grating, 

can be employed and the measured quantity is the Contrast Transfer Function (CTF) [24]. 

A problem with using printed test patterns is that the spatial frequency is fixed and so 

multiple patterns must be produced to span the required range. Sinusoidal interference 

patterns resulting from the interaction of two laser beams can be generated and were 

previously used for film cameras before being migrated over to CCD-based systems by 

Marchywka and Socker [115]. The creation of a continuously-varying sinusoidal interfer

ence pattern for measuring the MTF of an FPA alone has been demonstrated [116]. The 

main problem with using lasers to create the image is that the MTF is only determined for 

essentially one wavelength of light and it is known that the MTF is wavelength-dependent. 

The spatial domain image I(x, y) formed on a FPA is given by the convolution of the 

scene intensity sex, y) and the PSF of the optical system hex, y), thus 

I(x, y) = sex, y) * hex, y) (3.3) 

where * denotes linear convolution and transforming to the Fourier frequency domain 

glves 

F(w, v) = Sew, v)H(w, v) (3.4) 

FT FT FT 
where I(x, y)+---+F(w, v), sex, y)+---+S(w, v) and hex, y)+---+H(w, v) and H(w, v) is the 

OTF of the system. If the spectrum of the scene is known then the OTF can be recovered 

and further if the scene is white noise then Sew, v) = 1 and the Fourier transform of the 

output I(x, y) is the OTF. The laser speckle effect can be used to provide the required 

spectrum of the scene and the measurement technique was developed by Boreman and 

Dereniak [117] where the speckle is a result of interference of the coherent, monochro

matic laser beam. The MTF produced is an average for the entire FP A and no optics are 

required. An integrating sphere and an aperture are used to control the frequency content 

[118]. The output port of the integrating sphere has uniform irradiance and the phase is 

randomly distributed [119], thus producing an average of the MTF for a space-varying 

system. The problem with the technique is that lasers with a power of around 200m Ware 

required. Ducharme and Boreman [120] reported that speckle patterns can be created on a 

hologram and then a low power laser can be used to illuminate the hologram for MTF 
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measurements, where the reduced power requirements means that a wider range of wave

lengths can be tested. 

The use of lasers for speckle-based MTF measurements means only one wavelength is 

tested in a single trial. Daniels et al. [121] created random patterns on a computer and 

printed the random transparency targets that can be illuminated using any suitable, spa

tially uniform light source to measure the MTF of an FP A and optical system, allowing an 

average PSF to be measured for many wavelengths. 

An ideal test for the measurement of the PSF is a point source that has infinite intensity 

and infinitesimal spread, often denoted a delta function 8(x) , which is given by 

{o x * ° 8(x) = 
00 x=O 

and it is physically unrealisable. The running integral of a delta function denoted 

u(x) = 1: 8(x) d x 

is a Heaviside step function given by 

{
o x< ° 

u(x) = 1 x ~ 0 

(3.5) 

(3.6) 

(3.7) 

and this function is a step in intensity, which can be produced experimentally, using a 

lightbox for example. The response of the system to a step function is known as the Edge 

Spread Function (ESF) and differentiating the response gives the PSF. A sharp transition 

is necessary and so PSF measurement methods based on using this step function are often 

referred to as knife-edge techniques. Under-sampling effects cause errors in the OTF 

estimate due to the space-varying response and aliasing. Reichenbach et al. [55] solved 

the problem by using many ESF profiles to create a super-resolution image of aiD edge. 

Tzannes and Mooney fitted a sum of three Fermi-Dirac functions to the edge to reduce the 

noise during differentiation [56]. Staunton extended the technique to measure the ESF for 

many different angles to produce a 2D MTF [57]. 

The concept of producing super-resolution ESFs by nearest neighbour interpolation is 

illustrated in Figure 3.2. In the diagram four ESFs are shown as lines with equally spaced 

data points. The data points do not correspond to those of the sampling grid and so the 

intensities of each data point are determined using the nearest sampling point, thus imple

menting nearest neighbour interpolation. The over-sampling means that a super-resolution 

ESF can be produced. 

One of the problems with using the knife-edge techniques is that the two-dimensional 

PSF or MTF must be built up in a single ID profile at a time. Reimann et at. [122] 

showed that the 2D MTF could be recovered in one step by imaging a precise circle and 
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using Wiener filtering to recover the MTF. The main problem with their technique is that 

the space-varying nature of the MTF is neglected. 

Figure 3.2: ESFs created from sampled data using nearest neighbour interpolation 

Subbarao [68] used the square root of the second central moment of the line spread 

function, denoted (J", imaged by a camera viewing a black-and-white cardboard step to 

determine a spread parameter. Only nine different focus positions were used, but the 

results clearly showed that (J" was directly proportional to the inverse depth. 

3.3 Theoretical Point Spread Functions 

3.3.1 Introduction 

Photons have a wave-particle duality and if the particle nature only is considered then 

the geometrical optics results. In the next two sections the theoretical PSFs assuming 

geometrical optics and diffraction-limited optics are obtained for comparison with experi

mental results. 

3.3.2 Geometrical Optics Approach 

Pentland [3] showed that for the simple optical system shown in Figure 3.3 and assum

ing geometrical optics the PSF is a pillbox with a blur circle radius given by 

r= 
Vo D -F(vo + D) 

fD 
(3.8) 

where Vo is the distance between the lens and the CCD, D is the depth of the object 

(denoted u in the figure), F is the focal length of the lens and f is the f-number, which is 

defined as f = 2;. The distance Uo is the distance at which an object would appear in 

focus on the image plane. 
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Figure 3.3: A simple model of the optical system with the image plane on the left-hand side 

Figure 3.4 shows a plot of the blur circle radius where F = 16 mm and Vo = 16.57 mm 

for three different aperture sizes. Under geometrical optics the PSF is the same shape as 

the aperture and for a circular aperture the PSF is a pillbox (or cylindrical) function. 

Geometrical optics neglect the wave-nature of electromagnetic radiation and thus the 

results are independent of the wavelength. 
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Figure 3.4: Blur circle radius r as a function of depth D for three f-numbers 

Note from Figure 3.4 that for a given blur circle radius r and aperture f there are two 

corresponding depths and the ambiguity can be resolved by setting the object to be either 

in front or behind the point of focus. 

The maximum blur circle radius assuming geometrical optics is found from 

. Vo D - F( Vo + D) Vo - F 
hm = ---

D-+oo fD f 
(3.9) 

and clearly for a given focus position Vo and fixed focal length F as the f-number is 

increased (i.e. smaller aperture) the maximum blur circle radius decreases. 1n reality the f-
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number cannot be increased indefinitely to give a smaller blur circle radius because the 

wave nature of light causes spreading due to diffraction. 

3.3.3 Diffraction Approach 

The PSF hex) of a focused lens that is subject only to diffraction effects, i.e. neglecting 

defocus, aberrations and sampling due to the FP A, is given by [123] 

hex) = IfA(~)e-j#f.xd~f (3.10) 

where x is a position vector, A(~) is the aperture function, A is the wavelength of light and 

F is the focal length of the lens. With optical aberrations as a function (}(x) the PSF 

becomes 

(3.11 ) 

Out-of-focus blurring can be modelled as a quadratic aberration of the fonn [123] 

1[(1 1 1) 2 B(x) = - - + - - - Ixl 
A U v F 

(3.12) 

where u is the distance between the object and the lens, and v is distance between the 

screen (or FP A) and the lens. The Gaussian lens law states that 

1 1 1 
-=-+
F u v 

(3.13) 

and so it can be seen that when the object is in focus the aberration (}(x) reduces to zero. 

Substituting in the defocus blurring gives 

(3.14) 

Equation (3.14) is for monochromatic light and for a more realistic analysis for OFO it 

is assumed that the PSF is due to polychromatic light that is white, i.e. it is of constant 

intensity, between the wavelengths of A\ and A2. The PSF is then given by 

(3.15) 

and if the PSF is assumed to be a 10 function then the vector x becomes the scalar x and 

the vector ~ becomes g and so 

(3.16) 

If the aperture function A(g) is assumed to be a circle then in 10 it fonns a slit with 
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and so the PSF becomes 

A(§) = { 0
1 ~ $, r 
~>r 

hex) = L:' If e- j Hf, ,x-(f+~-*)I~') d~r dA. 

(3.17) 

(3.18) 

Figure 3.5 shows the PSF expected for a focused scene where only diffraction is present. 

The ideal monochromatic light is taken as 700 nm, corresponding to red light and the 

polychromatic light is taken as an ideal white light source with equal intensity components 

in the range 400 to 700 nm. Note the similarity between the PSF due to diffraction effects 

and the Gaussian function. 

1 

o. 

---.....,....,..=:..-...,I-----'~"'-" ....... --- x/~m 
-4 -2 2 4 -4 -2 2 4 

x/~m 

Figure 3.5: PSFs for focused monochromatic (solid) and polychromatic (dashed) light for f-numbers of 1.4 (left) 

and 4 (right) 

Figures 3.6 and 3.7 shows the theoretical PSF for a defocused 16mm lens where the 

camera is focused at 0.464m and the point source is at 0.8m and 0.6m. The effect of the 

polychromatic light is to smooth out the PSF and make it look more like a pillbox func

tion. Note that the ringing is not caused by noise in the processing, but instead the ripple 

effect due to diffraction of light, where its wave nature has been taken into account. 
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Figure 3.6: PSFs for de focused monochromatic (left) and polychromatic (right) light for a defocused system with 

a depth ofO.6m 
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Figure 3.7: PSFs for defocused monochromatic (left) and polychromatic (right) light for a defocused system with 

a depth ofO.8m 

A Gaussian was fitted to the PSFs and the standard deviation was plotted as a function 

of distance in Figure 3.8. Note that a consequence of the diffraction is that near the focus 

position the wider aperture (f/1.4) has a narrower PSF and thus a smaller standard devia

tion as shown in the right hand plot of Figure 3.8. 
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Figure 3.8: (Left) Standard deviation (T of a fitted Gaussian as a function of depth; (Right) Zoomed in version 

around the focus position at 0.464m 

3.3.4 Conclusion 

This section has examined theoretical PSFs assummg geometrical and diffraction

limited optics. Under geometrical optics the PSF due to defocus blurring takes the shape 

of the aperture, which is a pillbox for a circular aperture. When the lens is focused the 

PSF becomes a delta function, having infinite intensity and infinitesimal spatial extent. 

Diffraction optics takes into account the wave-nature of light and the shape changes with 

increasing defocus from a function that approximates a Gaussian to one that resembles a 

pillbox. 
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3.4 Theoretical Edge Spread Functions 

3.4.1 Introduction 

The Point Spread Function can be slowly built up from the PRF or instead using any of 

the average PSF producing techniques described in Section 3.2.2. In this research the 

knife-edge technique was employed and this section firstly considers an improvement to 

Staunton's [57] algorithm that incorporates the effect of non-uniform illumination of the 

lightbox. Without noise the ESF could be differentiated to yield the PSF, but differentiat

ing a noisy function amplifies the noise. Models of the ESF were developed assuming 

particular shapes of the PSF and a regularised numerical differentiation process was 

proposed. 

3.4.2 Non-Uniform Illumination Considerations 

An ideal brightness step would consist of two regions of different brightnesses sepa

rated by an abrupt transition and within each region the brightness would be constant, as 

shown by the dashed line in Figure 3.9. Experimentally a light box can be employed with 

a knife-edge to approximate a step edge, however it is not necessarily the case that the 

brightnesses of the regions are uniform. If this non-uniformity is not taken into account 

the resultant PSFs will be erroneous and so its effect must be eliminated as much as 

possible for accurate measurements. Instead of assuming a constant brightness, the model 

was changed to consist of the abrupt transition as before, but each region can have a linear 

change in intensity as a function of spatial position. As the bulbs are near the edge of the 

lightbox the intensity could drop towards the centre, hence the positive gradient of the 

upper region. The intensity of the lower region is due to the ambient light reflecting off 

the darker area of the lightbox, which will be dimmer than that due to the bulbs. 

55 



s(x) 

200 

150 

100 

50 

~------~----~------~----~ x 
-20 -10 10 20 

Figure 3.9: A model of the ideal step without (dashed line) and with (solid line) non-uniform illumination 

An ideal step sex) incorporating the non-uniform illumination improvement with an 

abrupt transition at x = Xo is given by 

sex) = (m) x + c)) u(x + xo) + (m2 x + C2) u(x - xo) 

where u(x) is a unit step function given by 

{
o x < 0 

u(x) = 1 x ~ 0 

(3.19) 

(3.20) 

and c) and C2 are the brightnesses of the upper and lower intensity regions and m) and m2 

are the gradients of the brightnesses. In the original case assuming uniform illumination 

m) = m2 = O. 

If there was no noise, sampling, diffraction or defocus effects then the camera would 

return a profile like that in Figure 3.9 with the solid line, however, those effects are 

present in a real system. The deviation of the ESF from the ideal model shown can be 

used to determine the PSF of the complete camera system. The next sections consider 

different models of the PSF and their subsequent ESFs. 

3.4.3 Pillbox PSF 

Under geometrical optics assumptions the PSF due to defocus is a pillbox, which is 

given by 

1 
hp(x) = 2 (J" [u(x + (J") - u(x - (J")] (3.21 ) 

where (J" is the radius of the pillbox, and hence the blur circle. An example of the pillbox 

is shown in Figure 3.10 for (J" = 5 pixels. 
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Figure 3.10: The pillbox PSF with a radius (T = 5 

The ESF assuming a pillbox PSF and an ideal step incorporating non-uniform illumina

tion is derived in Appendix A and the result is 

[P(x) = 

ml x + Cl 

41(J' [-(2 Cl + ml (x + Xo - a'» (x - Xo - (]') + 

(x - Xo + (]') (2 C2 + m2(x + Xo + (]'»] 

m2 x + C2 

x - Xo < -(]' 

-(]' ::5: X - Xo ~ (]' 
(3.22) 

(]' < x - Xo 

where Xo is the location of the abrupt transition and ml , m2, Cl and C2 are the parameters 

of the linear segments. An example of the ESF for a PSF with a blur circle radius (]' = 5 is 

shown in Figure 3.11 where the original step is shown with a dotted line for comparison. 

x 
-20 -10 10 20 

Figure 3.11: ESF with a pillbox PSF where (T = 5 (solid line) and the ideal step edge (dashed line) 

Note that there are two very sharp transitions in the ESF. A pillbox PSF would result if 

the lens passed every spatial frequency, however, due to diffraction effects it is known that 

this is not possible. Although the pillbox PSF does not appear to be physically realisable 

it has been kept for comparison purposes. 

3.4.4 ESF Modelled as a Sum of Fermi-Dirac Functions 

The Fenni-Dirac distribution is important in quantum physics for giving the probability 

that an electron occupies a particular energy state E and it is given by 
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1 
PFD(E) = -----

1 + exp { E;:F } (3.23) 

where EF is the Fermi-level, k is Boltzmann's constant and T is the temperature [124]. 

The shape of the PDF resembles that of a defocused step edge, but in order to allow a 

better fit, Tzannes and Mooney [56] fitted a sum of three Fermi-Dirac functions to the 

ESF. At the Fermi-level E = EF the probability PFO(E) = t and thus EF is the centre 

point of the ESF. The sum of N Fermi-Dirac functions for modelling the ESF can be in a 

general form as 

IN (a. ) I(x) = I + e; 
;=1 b; + exp { X~IC; } 

(3.24) 

where the constants a; have been added to ensure the intensity can exceed unity and the e; 

terms account for the non-zero brightness of the lowest level. An example of the ESF 

produced assuming a Fermi-Dirac function is shown in Figure 3.12. 
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Figure 3.12: ESF with a Fermi-Dirac PSF 

20 

In order to recover the PSF the ESF must be differentiated, which is given by 

a I(x) IN ( a; exp { T } ) 
hFD(x) = - = - 2 

ax ;=1 d;(b; + exp { x~;; }) 
and an example PSF is shown in Figure 3.13. 

(3.25) 

The main problem with the Fermi-Dirac function is that it does not take into account the 

non-uniform illumination in a way that allows the step and the PSF to be separated. To 

achieve this a new mathematical formulation would be required, but it would no longer be 

simply a sum of Fermi-Dirac functions as used by Tzannes and Mooney [56], which has 

been employed for comparison purposes with earlier work. 
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Figure 3.13: Fermi-Dirac PSF 

3.4.5 Gaussian PSF 

The Gaussian PSF is the most frequently assumed model found in literature on depth

from-defocus and this is partly due to its simplicity. A one-dimensional Gaussian with a 

standard deviation (J" and centred at x = Xo is given by 

(3.26) 

and an example of the Gaussian is shown in Figure 3.14. 

-20 -10 10 20 

Figure 3.14: Gaussian PSF with (]" = 5 and Xo = 0 

As shown in Appendix A, the ESF assuming a Gaussian PSF and a step edge with non

uniform illumination is given by 

(3.27) 

where erf( . ) is the error function, defined as 
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erf(x) = -- e-t2 d t. 2 LX 
{;o (3.28) 

If the ideal step with non-uniform illumination as shown in Figure 3.9 is defocused with 

the Gaussian shown in Figure 3.14 then the ESF is as shown in Figure 3.15. 

------
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k(x) 
250- --
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Figure 3.15: ESF when the PSF is a Gaussian with (T = 5 (solid line) and the ideal step edge (dashed line) 

3.4.6 Generalised Gaussian PSF 

The Generalised Gaussian function is a novel model being proposed for the PSF of a 

defocused lens. Along with the mean x and the standard deviation (J", the power p of the 

function is required. The function can take the form of a Gaussian when the power p = 2 

and a pillbox when p = 00, and thus encompasses both of the frequently used models of 

defocus. The Generalised Gaussian is given by 

I 

pl-p {I Ix-xt} 
hG(x) = ( I ) exp --

2 (J" r Ii p (J"P 

(3.29) 

where f(.) is the Gamma function and I· I represents the modulus. The term before the 

exponential ensures the function has unit area. Two Generalised Gaussian functions are 

presented in Figure 3.16 for (p = 1, (J" = 5) and (p = 4, (J" = 5). 

hG{x) 

0.1 

--=--~--+-~-=-~x 
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~---~~--+-~-----~ x 
-30 -20 -10 10 20 30 

Figure 3.16: Generalised Gaussian PSFs where (left) (p = 1, (T = 5) and (right) (p = 4, (T = 5) 
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The ESF assuming a step edge with non-unifonn illumination and a Generalised Gauss

ian PSF is given by the convolution of the fonner function with the latter. A closed fonn, 

algebraic solution could not be obtained with Mathematica or Maple packages and so the 

convolution integral must be evaluated numerically. The ESF is given by 

pl-* 1:00 {I I~Y} fG(x) = (1) exp -- - [ml(x-g)+cddq+ 
2 0" r - X-Xo P O"P 

P 

(3.30) 

as shown in Appendix A. Using the PSFs shown in Figure 3.16 and the ideal step with 

non-unifonn illumination the resulting ESFs are shown in Figure 3.17. 
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Figure 3.17: The ideal steps (dashed lines) and the ESFs (solid lines) assuming Generalised Gaussian PSFs with 

(left) p = I and a- = 5; (right) p = 4 and a- = 5 

Note that the higher the power of the Generalised Gaussian the sharper the transition 

points until in the limit the PSF is a pillbox and then an ESF like that shown in Figure 3.11 

is produced. 

3.4.7 Regularised Numerical Differentiation 

In order to recover the PSF from the super-resolution Edge Spread Function (ESF) the 

response must be differentiated and as the data is discrete finite-difference approximations 

must be employed. Consider the problem of finding the derivative of a function f(x) 

where x is a discrete variable taking integer values. A simple approximation to the deriva

tive is given by the forward difference formula 

f'ex;) = f(X;+l) - f(x;) 
X;+l -x; 

(3.31 ) 

where the spacing between the samples X;+l - x; is sufficiently small and the function I(x) 

is smooth. If the same data has been corrupted by additive white Gaussian noise (A WGN) 

so that each observation is given by g(x;) = f(x;) + 8; then the derivative of the observed 

data g(x) is now given by 
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(3.32) 

It is assumed that the underlying function f(x) is smooth thus ensuring that the gradient of 

the noise is significant due to its lack of correlation. 

The five-point numerical differentiation formula is given by [125] 

f'ex;) = f(X;-2) - 8 f(x;-d + 8 f(x;+I) - f(X;+2) 

12 (3.33) 

and although it only uses four points, it is derived from the Lagrange polynomials for five 

points. It is more accurate than the two-point formula and helps to reduce the noise more, 

however, experimentally the results were very poor, as shown in Section 4.5.4. 

Chartrand considered the problem of finding the derivative of a function when the 

underlying function is noisy and has a discontinuity in the derivative. The solution pro

posed uses total-variation regularisation where the derivative of a function I(x) defined on 

the closed interval [0, L] is the minimiser of the function [126] 

F(u) = a f.L1U'(X)ldX+ ~ f.lfU(Y)dY)- f(X)r dx (3.34) 

where u(x) is the first derivative of the function I(x) and a is a regularisation term that 

weights the penalty term 

(3.35) 

against the data fidelity term 

(3.36) 

The total variation suppresses the noise without removing discontinuities in the derivative 

[126]. The appeal of this approach is that a pillbox PSF has a two finite discontinuities 

and this method ensures that they can be recovered and additionally noise suppression is 

achievable. Gradient descent could be used to find the optimum u but convergence is 

slow, thus Chartrand used lagged-diffusivity [126] and implemented the algorithm in 

MATLAB. The main problem is that the choice of the regularisation parameter a affects 

the derivative produced. 
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3.4.8 Conclusion 

In this section the step in intensity incorporating non-uniform illumination has been 

proposed as a better model of the ideal knife-edge. Further, different ESF models have 

been proposed with their associated PSFs. In particular the Generalised Gaussian, a novel 

model for the PSF of a defocused lens system, was proposed. The regularised numerical 

differentiation eliminates the requirement of a model of the PSF, however, a regularisation 

term a must be chosen, which affects the subsequent shape of the PSF. 

3.5 Conclusion 

In this chapter a variety of PSF and OTF measurement techniques have been presented 

ranging from PRF methods that use a sub-micron precision source to sinusoidal targets and 

knife-edge methods. The theoretical PSFs assuming geometrical and diffraction-limited 

optics have been examined and in particular the PSF appears to change from an approxi

mately Gaussian shape to that of a pillbox with increasing defocus. 

One of the PSF measurement methods presented employs a lightbox and a knife-edge 

from which the ESF can be measured. The effect of non-uniform illumination has been 

discussed as an important improvement and ESFs assuming pillbox, Gaussian and Genera

lised Gaussian PSF models have been developed, the latter being a novel solution. The 

regularised numerical differentiation has been suggested as another technique, but the 

problem then becomes finding the required regularisation parameter. 

In the next chapter the results of performing experiments on a real camera system are 

presented and the techniques discussed in this chapter are applied. 
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Chapter 4 

The Results from the Measure-

ment of the Point Spread Function 

of a Defocused Imaging System 

4.1 Introduction 

The literature review of PSF and MTF measurement techniques illustrated that there are 

many different ways of characterising an optical system. The most accurate way of deter

mining a PSF is undoubtedly using a point source that can be moved at the sub-micron 

level to build up a PRF, but it would be an extremely time-consuming method. For DFD 

work it is important that an average PSF is produced for polychromatic light, which rules 

out the laser-based techniques, such as interference gratings. The knife-edge technique 

developed by Reichenbach et at. [55] and improved by Tzannes and Mooney [56] and 

Staunton [57] showed good results and was the basis for the experimental work. 

The PSF is a function of the camera parameters and the depth of the object and it is 

important to measure the PSF for different camera settings and depths. Either the lightbox 

or the camera could be moved and a computer-controlled x-stage was built to move the 

camera in the required small increments. 

Uniform lightbox illumination is required for existing techniques and the increased 

spatial extent of the PSF due to defocusing caused experimental difficulties as the assump

tion did not hold. To solve the problem, the ESF fitting algorithm was improved to incorpo

rate non-uniform illumination, the parameters of which were found automatically. 

A Gaussian has long been used as a model of the PSF of a lens system and the Genera

lised Gaussian function is proposed as a better model as it can encompass both the Gauss

ian and pillbox shapes and mixtures of the two, with a cost of increased complexity. The 

super-resolution ESF must be differentiated to recover the PSF and this chapter shows the 
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application of a regularised numerical differentiation method developed by Chartrand 

[ 126]. 

The linearity and noise experiments are presented in Sections 4.2 and 4.3. The hard

ware built to move the camera in small increments is described in Section 4.4 followed by 

the PSF recovery algorithm that processes the images produced by the camera in Section 

4.5. One-dimensional PSF results are presented in Section 4.5.4 to illustrate the advan

tages and disadvantages of the different PSF models. Results for a 16mm video and a 

24mm Sigma photographic lens are presented in Sections 4.6 and 4.7 respectively and in 

particular, 2D PSFs for the Sigma lens are given in Section 4.7.5. Finally, the findings are 

summarised in Section 4.8. 

4.2 Linearity Experiments 

4.2.1 Introduction 

It is important in DFD and PSF measurement work that the camera produces a linear 

response to light intensity and Section 4.2.2 outlines some methods for measuring the 

linearity. A circuit was devised to measure the intensity of an LED using a photodiode 

and the response of the camera measured, as shown in Section 4.2.3. The results in Sec

tion 4.2.4 show the output of the camera as the brightness of the LED is changed in small 

steps. 

4.2.2 Methods of Measurement 

A common assumption in DFD and PSF measurement algorithms is that the camera is a 

linear system with the property that 

(4.1) 

where T( .) is the transfer function, CI and C2 are constants and II and h are overlapping 

image regions. It was important to test this linearity assumption and if it fails to produce a 

look-up table to compensate. 

The operation of a CCD was discussed in Section 3.2 and in particular note how a 

single photon produces a single photoelectron, thus suggesting linearity. However, the 

non-linearity in the charge accumulation occurs as the potential well develops a negative 

charge, which repels further electrons. The charge can leak into adjacent pixels leading to 

a process called blooming or bleeding. Further, the output amplifier and ADC cannot 
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accurately count the charge above the saturation level, leading to another cause of non

linearity. The non-linear properties of CRTs means that gamma correction [127] is often 

applied in cameras using dedicated hardware and this needs to be turned off. 

There are various methods for measuring the linearity of the camera including: 

• A pulsed LED can be used where the mark-to-space ratio can be changed, but the main 

problem is that the camera must be synchronised with the LED [24] 

• The integration time of the camera can be varied. The number of electrons in a photo

site is given by [111] 

1= T lllB(X, y, ,l)S,(x, y) q(,l) dxdyd,l (4.2) 

where T is the integration time (seconds), B(x, y, .:\.) is the incident spectral irradiance 

(W m-2) at position (x, y), q(.:\.) is an efficiency term (electrons J-l) as a function of 

wavelength and Sr(x, y) is the spatial response of the photosite. Thus it can be seen 

that the number of electrons is directly proportional to the integration time . 

• Neutral density filters or liquid absorption standards can be employed [24] or two 

polarising filters could be set up where the relative angle is used to vary the intensity . 

• The current through the LED can be changed to alter its brightness, however, the 

response is not linear with applied current. By measuring the brightness of the LED 

and cross-referencing it with the output of the camera the linearity can be measured. 

It was decided that the final proposal would be employed because this solution removes 

the problem with the pulsed LED approach concerning the synchronisation and it does not 

require expensive neutral density filters. The linearity of the integration time setting on 

the camera could not be assumed and thus it seemed that more precise experiments could 

be performed by changing the LED's brightness. 

4.2.3 The Linearity Measurement Circuit Devised 

It was decided that three LEDs (red, green and blue to span the spectral range) would be 

used in tum and the current through the LED was varied to give the required brightness. A 

transimpedance amplifier converted the current through the photodiode to a voltage and 

then a low-pass filter stage was used to reduce the shot and thermal noise. A photodiode 

was employed because it is known that a photodiode's current is linearly related to light 

intensity and thus the output voltage was linearly related to the light intensity of the LED. 
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4.2.4 
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Figure 4.1: The emitter and detector circuit devised for the linearity measurement 

Results 

The Basler A631 fc colour camera was focused on the LED and ten images were taken 

per voltage reading, so that an average could be taken to reduce noise. A MATLAB script 

read in the images and the maximum pixel intensity in the required colour plane was 

plotted against voltage. The red, green and blue LEDs had peak wavelengths of 700nm, 

565nm and 488nm respectively. An infra-red (lR) LED with a peak wavelength of 

1000nm was imaged, but the camera could not detect the light until too much current was 

applied and diode combustion was viewed; thus indicating that the IR cut-off filter that 

only transmits light in the range 400-720nm [26] was working effectively. 

Figures 4.2 to 4.4 show the results for the red, green and blue colour planes respec

tively. The camera was saturated when the intensity reached the level of 255 as it has an 8-

bit analogue-to-digital converter (ADC). The minimum pixel intensity does not go to zero 

due to the noise processes discussed in the next section. Note that the change of the x-axis 

scales is due to differences in the LEDs and the quantum efficiency of the photodiode as a 

function of wavelength. 
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Figure 4.2: Red LED linearity experiment (r = 0.9997 and MSE = 1.4129) 
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Figure 4.3: Green LED linearity experiment (r = 0.9997 and MSE = 1.6757) 
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Figure 4.4: Blue LED linearity experiment (r = 0.9996 and MSE = 1.7930) 
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The left-hand image for a given colour plane shows the pixel intensity as a function of 

the photodiode circuit voltage, which is proportional to brightness of the LED. The right

hand image shows the residuals, defined as the difference between the actual data and the 

fitted line, so that the structure can be ascertained. The correlation coefficient r gives a 

measure of the fit of the experimental data to a straight line and it is given by [128] 

Cov(X, Y) 
r = -V-;=Y=a=r(=X)=-v-;="=a=r(=Y=) (4.3) 

where it is always the case that -1 =:; r =:; 1. The covariance of X and Y is denoted 

Cov(X, Y) and is given by 

1 N 
Cov(X, Y) = N L: (Xi - X)(Yi - y) 

i=l 

(4.4) 

where variables X and Y have N elements, the ith elements are denoted Xi and Yi respec

tively and x and yare the mean values of X and Y given by 

and 

The variance Yar(X) is given by 

1 N 

x= N L:Xi 
i=l 

1 N 
Yar(X) = N L: (Xi - x)2. 

i=l 

(4.5) 

(4.6) 

(4.7) 

and similarly for Yare Y). For a perfect fit the correlation coefficient r = 1 and the values 

for each of the colour planes in Figures 4.2 to 4.4 are very close to a perfect fit. Only the 

data in the linear region was used to fit the line and calculate the correlation coefficient. 

The results clearly show that the camera has an output that is a linear function of bright

ness except near the saturation region close to intensities of 255 and the lowest brightness 

is not zero due to noise offsets, as discussed in Section 4.3. Thus, the experiments con

firmed that gamma correction was not applied by the camera. 
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4.2.5 Conclusion 

The circuit designed produces a voltage that is linearly related to the intensity of an 

LED under test from which the linearity of the camera can be measured. The results 

presented above for each of the colour planes of the Basler A631 fc colour camera show 

that the linearity of the camera was very good in the working range with a correlation 

coefficient that is essentially unity. 

4.3 Noise Experiments 

4.3.1 Introduction 

Noise is an inescapable property of an imaging system and the different processes were 

discussed in Section 1.3.4. In the next section the bias and dark frame measurements are 

presented for each of the colour planes. 

4.3.2 Bias and Dark Frame Measurements 

The dark noise can be ascertained from a dark frame, which is an image with the lens 

cap on essentially and taken using the maximum shutter time, which was 8.19 ms for the 

Basler A631 fc colour camera employed. One thousand images were taken with the cam

era and the mean and variance of each pixel was calculated. 

The readout noise can be measured from a bias frame, which should be taken with a 

zero duration exposure time, but that is generally not possible unless access to the circuitry 

can be obtained. In order to approximate this setting the shortest exposure of 20l1s was 

used. The mean intensities of the two measurements for each colour plane are presented 

in Table 4.1. 

Colour Plane 

Red 

Green 

Blue 

Table 4.1. Mean pixel intensity of the colour planes for two noise tests 

Bias frame 

31.68 

15.93 

31.86 
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Dark frame 

31.70 

15.94 

31.86 



4.3.3 Analysis of the Measurements 

Considering there is a factor of 4095 between the exposure time for the bias and dark 

frames the results are very similar, suggesting that the integration time has very little effect 

on the noise level. When the CCD is not exposed to any light the only electrons in the 

photosite are thermally generated, i.e. not by incident photons creating electron-hole pairs. 

As the integration time increases the number of thermally generated electrons also 

increases and if the thermal noise dominated then a longer shutter time would produce a 

higher mean noise level. Thus, the main contribution to the noise was due to the read-out 

electronics. 

4.3.4 Offset Subtraction 

The ADC and VGC frequently employ an offset brightness for electronic design rea

sons and it is very important that this offset is subtracted. Assume that the linear region of 

the response is used and the radiance of a point, denoted x, is related to the quanti sed 

brightness level of the camera y by 

y=mx+c (4.8) 

where m is the gain and c is the offset, which cannot be assumed to be zero. Now con

sider the ratio of the brightness of two colour planes Yl and Y2 given by 

Yl ml x + Cl 
= (4.9) 

Y2 m2 x + c2 

The ratio changes with the actual brightness x, which is an unwanted effect. If the offset 

of each colour plane is subtracted then the ratio becomes 

=--=- (4.10) 

and thus ensuring that the ratio remains constant. 
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4.4 The Automation Hardware 

The accuracy of depth-from-defocus algorithms is dependent on how well the PSF is 

modelled and it was desirable to find the PSFs for distances over a reasonable range with 

sufficient resolution. It was assumed that the test objects would be placed in the range 0 to 

300mm from the camera's focus position. As described in Section 3.2.2, the objects must 

be either all in front or all behind the plane of focus to ensure there is no ambiguity in the 

depth measurement when only the f-number is changed between images. 

Manually moving a camera at small increments and taking duplicate images for averag

ing purposes due to the significant noise level would be a tedious task. It was decided that 

an automated approach would allow the tests to be done more quickly with less human 

error and so a computer-controlled camera moving stage was created. The x-stage was 

built from an old flatbed scanner. The original electronics were stripped out and a new 

circuit built that took signals from the computer's parallel port and created the required 

signals to drive the stepper motor to move the scanning head. An opto-sensor was added 

to the moving head to detect the starting position. The camera was screwed onto a raised 

gantry on the old scanner head with an adjustable optical bench post to allow the height 

and position to be set as required. A Visual Basic program was created that moved the 

camera at the required increments and interfaced the FireWire camera software to automati

cally take the images. 

The camera travelled over a distance of 312mm in 14,750 steps of the stepper motor 

and thus had a resolution of 21.2 J.1m / step. The positional accuracy was tested by reset

ting the x-stage to its starting position, moving it forward 14,750 steps and then taking an 

image. The x-stage was reset, the process repeated and another image taken. The two 

images taken at the first position on the x-stage were then subtracted to produce a differ

ence image, which was then examined for image structure. The difference image only 

showed noise and thus it was assumed that the positional accuracy was sufficient. 

The lightbox was made out of an ABS plastic box with a 25mm wide rectangle removed 

from the centre of the lid and a thin metal strip was glued to one of the edges to ensure a 

sharp, straight transition between the light and dark regions. The box was sprayed with 

grey paint to be a partial scatterer and mounted on a vertical wooden stand with holes so it 

could be screwed to an optical breadboard and angles marked on for manual orientation of 

the box. Twenty incandescent bulbs were mounted either side of the slit in order to give 

an approximately even illumination. The images were taken in a blackened out room to 

ensure the light levels remained constant over the lengthy image acquisition time. The 
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bulbs were allowed to settle during a warm-up period before the equipment was used and 

the brightness fluctuations of the bulbs was not observable as the camera noise dominated. 

The lightbox was a piece of legacy equipment originally used by Staunton [57] and it 

was later found that incandescent bulbs with their low colour temperature were not opti

mum for colour image processing purposes. This is discussed in Section 8.2.3 . 

A high frequency strip light that gave a good white colour was employed with a photo

graphic diffuser in front to illuminate the light box cover to ensure that the dark regions 

were imaged with intensities above the dark level of the camera. Figure 4.5 shows the 

vertically mounted, rotatable lightbox, the strip lights with a circular diffuser in front and 

the camera mounted on the gantry on the converted flatbed scanner. 

The camera was correctly focused before the focusing mechanism was locked into 

position and the f-number set. Test images were taken to determine the optimum exposure 

time to ensure that none of the colour planes were saturating or below their dark level, 

both of which would contribute undesired non-linear effects. It took 13 hours to collect all 

of the images for two f-numbers with 18 different angles for distances in 1 mm increments 

with no duplicates. 

Figure 4.5: The PSF measurement hardware setup 
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4.5 The PSF Recovery Algorithm 

4.5.1 Introduction 

Once all of the images had been collected the next stage was to recover the PSF from 

the ESF for a given image. Section 4.5.2 discusses the demosaicing algorithm used before 

moving onto the details of the recovery algorithm. Results assuming a Fermi-Dirac fit and 

pillbox, Gaussian and Generalised Gaussian models are shown in Section 4.5.4. Regu

larised numerical differentiation was proposed for overcoming the problem with differenti

ating a noisy signal to find the PSF. Once the all important regularisation term had been 

determined through simulations the algorithm could then be applied to real data, the 

results of which are presented in 4.5.5. 

4.5.2 The Demosaicing Algorithm 

The quantum efficiency of a pixel is dependent on the wavelength of the impinging 

photons and the properties of the semiconductor in the active area. A 3-CCD camera uses 

beam splitters and colour filters to produce three versions of the image entering the lens 

each occupying different spectral bands that then fall on three separate CCDs. The advan

tage with this approach is high spatial resolution, but at high cost. Another solution for 

colour imaging is to use one CCD where a colour filter is overlaid during manufacture and 

the pattern used is called a Colour Filter Array (CFA). One type of CFA uses red, green 

and blue filters in a mosaic in the ratio 1 : 2 : 1 to mimic the response of the human visual 

system and another type uses cyan, yellow, green and magenta [24]. 

In order to produce a colour image a demosaicing algorithm is required, which is a 

similar process to that required in the human visual system [129] where the colour informa

tion comes from three types of cones. The algorithms range from simple one-step proce

dures to combinations of reconstructions and enhancements [130]. There are many demosa

icing algorithms including nearest neighbour replication and interpolation algorithms 

based on bilinear, bicubic, spline, Laplacian, hue and log hue interpolation methods. It is 

usually assumed that the pattern of the Colour Filter Array (CFA) does not change through

out the sensor area [131]. Super-resolution can be achieved using a sequence of images 

where the resolution of the final image is beyond that of the sensor's resolution [131] 

[130]. 

74 



A Basler A631 fc colour camera with a Bayer filter over its square pixels was used in 

the research that produces images of size 1388(W)x 1038(H) and Basler have a hardware 

demosaicing algorithm in the camera to produce colour images. Details of the algorithm 

could not be obtained and since the image was very large to process it was decided to use a 

simple, known demosaicing algorithm on the raw image and subtract the colour plane 

offsets to ensure linearity using an algorithm written in MATLAB. The pattern returned 

by the camera was the repeated form (~ ~) and a single colour pixel was generated that 

used the mean of the two green pixels whilst the red and blue components remain 

unchanged. Each colour image was converted to a greyscale image len, m) using the 

formula 

l( ) = R(n, m) + G(n, m) + B(n, m) 
n, m 3 (4.11) 

where R, G and B are the red, green and blue colour planes respectively and (n, m) 

denoted the discrete spatial location. Thus, the spatial resolution of the image was halved 

in both directions compared to that of the sensor. 

In reality the PSF is dependent on the wavelength of light. A well-corrected compound 

lens uses positive and negative lens elements to reduce chromatic aberration, although it 

will not be completely eliminated. The higher the spatial resolution of the CCD, the more 

prominent the effect of chromatic aberration and so down-sampling the colour image by a 

factor of two in both directions reduces the effect. 

4.5.3 The PSF Recovery Algorithm 

The colour images are demosaiced and converted to monochrome images as described 

in the previous section and Figure 4.6 shows an example image from the Sigma 24mm lens 

with an f-number off12.8 when the distance between the lens and the lightbox was O.725m. 

Figure 4.6: An example of an image used to recover the I D PSF 

Staunton [57] used a 7 x 7 Integrated Directional Derivative (IDD) edge detector to 

locate the edges in a light box image, i.e. the transition from the light to dark, but it was 

found that for defocused edges the detector failed. A Canny edge detector was employed 
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to solve the problem as it worked well for both focused and defocused edges and impor

tantly it accurately located the centre of the edge even with significant blurring. The 

parameters of the Canny edge detector were tuned empherically so that no false edges 

were found and the optimum standard deviation of the Gaussian filter was (J" = 3 and the 

low and high thresholds were T) = 0.3 and T2 = 0.7 respectively. 

For a range of distances at the furthest extent from the light box both edges of the slit 

were visible, only one of which was the knife edge. An algorithm was written to leave 

only the required edge in the edge detected image. The detected edge was then used as the 

centre of a rectangular window that was applied to the greyscale lightbox image. The 

width of the rectangle perpendicular to the edge was 51 pixels so that an ESF has 51 

samples, where an ESF is defined as the intensities perpendicular to the edge, which 

correspond to a column in the windowed image. If the angle of the edge was not a multi

pIe of 90 degrees then the required pixel positions did not line up with the sampling grid 

and so nearest neighbour interpolation was employed. It was important that the edge was 

not a multiple of 90 degrees so that over-sampling occurred. 

Figure 4.7: An example of the windowed image 

A single Edge Spread Function (ESF) was formed from samples perpendicular to the 

edge and the windowing algorithm was improved to extract the maximum number of 

complete ESFs. Experimentally it was found that the image was brightest near the centre 

of the lightbox and the ESFs were normalised to remove non-uniform illumination effects 

along the direction of the edge. The edge detection only approximately located the centre 

of the brightness transition and so the 50% brightness points had to be aligned. Staunton's 

[57] original algorithm used a linear fit of the central intensity values in the ESF, but it 

was found inadequate for defocused edges and a cubic fit was employed instead. The 

effect of aligning the centres of the edges meant that the sample points were displaced 

relative to each other. The super-resolution edge was created by averaging the pixel 

intensities within pixel bins to give a ten times resolution improvement. 

Having obtained the mean ESF for a given distance, f-number and lightbox angle it was 

necessary to find the PSF and the different methods that were examined are: 

• Five-point numerical differentiation 

• Regularised numerical differentiation using Chartrand's algorithm 

• Regularised numerical differentiation using Chartrand's algorithm followed by a fit of 

the resulting PSF to a Generalised Gaussian function 
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• Fitting the ESF to a sum of Fermi-Dirac functions as described by Tzannes et af. [56] 

• Fitting the ESF to a defocused step assuming even illumination and a Gaussian PSF 

• Fitting the ESF to a defocused step where the illumination is assumed to have a linear 

dependence on position and a Gaussian PSF 

• Fitting the ESF to a defocused step assuming even illumination and a Generalised 

Gaussian PSF 

• Fitting the ESF to a defocused step where the illumination is assumed to have a linear 

dependence on position and a Generalised Gaussian PSF 

The mean ESF was fitted to a sum of Fermi-Dirac functions and ESFs assuming pill

box, Gaussian and Generalised Gaussian PSFs, examples of which are presented in the 

next section. A regularised numerical differentiation algorithm was discussed in Section 

3.4.7 and the results are shown in Section 4.5.5. 

4.5.4 Specific ID Results 

In this section results for the Sigma 24mm lens fitted to the Basler A631 fc colour 

camera are presented when the lightbox was 0.725m from the camera and the lightbox 

angle was approximately 0 degrees, but not exactly to ensure super-resolution could be 

achieved. The PSFs have been normalised to be in the range [0, 1] to highlight the differ

ences in the shape. 

The results from the five-point numerical differentiation in Figure 4.8 show that 

although the ESF looks fairly smooth, the noise is swamping the underlying PSF, thus 

making this approach unusable without further processing. 
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Figure 4.8: Five-point numerical differentiation results for fl2.8, z=O.72Sm, angle=O degrees with ESF shown on 

the left and the PSF on the right 
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It was believed that the noise on the ESF was due to camera noise and not fluctuations 

in the intensities of the bulbs. The analysis in Section 3.4.7 showed that for a smooth 

signal and uncorrelated additive noise that the gradient of the noise is greater than that due 

to the signal. Thus, the derivative of the noise swamped the derivative of the ESF, the 

latter of which was the required PSF. 

Tanzes et al. [56] fitted their ESF to a sum of Fermi-Dirac functions and Figure 4.9 

shows the result. The ESF has a very good fit, however the PSF neither has symmetry or a 

single peak, two properties expected of a physical PSF. 
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Figure 4.9: The actual ESF (dashed line) and Fermi-Dirac fitted ESF (solid line) results for fl2.8, z=0.725m, 

angle=O degrees (MSE = 4.00 x 10-5 
) 

The results of using the novel PSF shape of the Generalised Gaussian are shown in 

Figure 4.10 and Figure 4.11. The shape of the Generalised Gaussian is naturally depen

dent on whether the non-uniform illumination is taken into account. The MSE assuming a 

Generalised Gaussian and the non-uniform illumination is the lowest and the PSF is of an 

acceptable shape. Thus, better results have been achieved by using an improved illumina

tion model. 
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Figure 4.10: Actual ESF (dashed line) and Generalised Gaussian without illumination correction fitted ESF (solid 

line) results for fl2.8, z=0.725m, angle=O degrees (MSE = 5.67 x 10-5 ) 
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Figure 4.11: Actual ESF (dashed line) and Generalised Gaussian with illumination correction fitted ESF (solid 

line) results for fl2.8, z=0.725m, angle=O degrees (MSE = 3.63 x 10-5
) 

The Gaussian PSF without taking the illumination into account has a good fit (see 

Figure 4.12), but it is clear that the gradient in the illumination has resulted in a smaller (J' 

than that obtained when taking into account the non-uniform brightness, shown in Figure 

4.13. Assuming uniform illumination, the only parameters in the fit of the actual ESF to a 

model ESF are the standard deviation (J', the mean Xo and the upper and lower intensities 

of the step ml and m2. With non-uniform illumination taken into account two more 

parameters are optimised, which are the gradients of the step, CI and C2. Thus, with 

uniform illumination CI = C2 = 0 and with a non-uniform illumination model they are 

optimised. The fitting algorithm blindly finds the optimum parameters to reduce the error 

between the actual ESF and the fitted ESF, therefore it cannot be expected that the stan

dard deviations of the Gaussians will be identical regardless of how the illumination is 
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taken into account. The MSE between the fitted ESF and the actual ESF reduced from 

1.08 X 10-
4 

to 8.78 X 10-5 by taking into account the non-unifonn illumination, which is a 

reduction of 19%. 
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Figure 4.12: Gaussian without illumination correction results for fl2.8, z=0.125m, angle=O degrees 

(MSE = 1.08 x 10-4
) 
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Figure 4.13: Gaussian with illumination correction results for fl2.8, z=O.125m, angle=O degrees 

(MSE = 8.78 x 10-5
) 

In the results presented here the camera is very defocused and a good fit assuming a 

pillbox PSF is shown in Figure 4.14 and Figure 4.15, however, the MSE is greater than all 

the other methods. 
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Figure 4.14: Pillbox without illumination correction results for fI2.S, z = 0.725 m, angle = 0 degrees 

(MSE = 2.IS x 10-4
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4.5.5 Regularised Numerical Differentiation 

0 10 20 
x I pixels 

z=0.725m, angle=O degrees 

In order to detennine the optimum regularisation parameter a for PSF measurement a 

series of simulations were perfonned. Pillbox and Gaussian PSFs were used to defocus 

blur an ideal step, noise was added and then the ESF differentiated using Chartrand's 

algorithm [126]. The mean square error (MSE) was employed as a distance measure 

between the actual PSF and the result of the numerical differentiation. The figures below 

show plots of the MSE as a function of a for pillbox and Gaussian PSFs with a signal-to

noise ratio (SNR) of 30 dB . From the experiment it was detennined that the value 

a = 100 served both PSFs well for the range of SNRs and thus it was employed in tests on 

real ESFs. 
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Figure 4.17: The MSE between the recovered PSF and the actual Pillbox PSF for blur circle radii of I to 5 pixels 

The ESF shown in 4.5.4 was differentiated using Chartrand's regularised numerical 

differentiation (RND) algorithm [126] and Figure 4.18 shows the PSFs when 

a = 10, 100, 1000 and it can be seen that the function gets smoother as a increases, as 

expected. Note that the linear brightness change on the upper step level has produced a 

constant value in the derivative. 
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Figure 4.18: ESF (left) and regularised numerical differentation results (right) for a= 10 (dashed), a= 100 

(dash-dot) and a = 1000 (solid) 

A Generalised Gaussian was fitted to the resultant PSFs when four different depth 

positions were tested using a = 1000, the results of which are displayed in Figure 4.19 and 

Figure 4.20. 
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Figure 4.19: The regularised numerical differentiation PSF (dashed) and the fitted Generalised Gaussian (solid) 

for depths ofO.725m (left) and 0.647m (right) 
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Figure 4.20: The regularised numerical differentiation PSF (dashed) and the fitted Generalised Gaussian (solid) 

for depths ofO.569m (left) and 0.414m (right) 

The results of the fit are summarised in Table 4.2 and it will shown in Section 4.7.4 that 

the parameters of the Generalised Gaussian fitted to the result of the regularised numerical 

differentiation result do not appear favourable compared to using a Generalised Gaussian

based ESF fit from the beginning. 

Table 4.2. Results from fitting a Generalised Gaussian to the RND PSF 

Depth / m MSE Power, p Standard deviation, (7' 

0.414 0.209 1.84 4.37 

0.569 0.283 2.09 6.43 

0.647 0.185 2.23 7.52 

0.725 0.148 2.40 8.29 

As discussed in Section 3.4.6 the standard deviation of the Generalised Gaussian is a 

measure of the spatial spread and the power specifies its shape. As p decreases from 2 

towards 0 the Generalised Gaussian becomes more pointed. At p = 2 it simplifies to a 

Gaussian and as p increases towards infinity the function approximates a pillbox with 

decreasing error. 
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4.6 Results for the 16mm Video Lens 

A 16mm Basler video lens was tested for three different apertures (fll.4, f/2 and f/4) 

and the resulting standard deviation (J" of the PSFs recovered assuming a Gaussian PSF are 

shown in Figure 4.21. The focus position of the camera was not altered during the experi

ments, but clearly the point of best focus shown by a minimum in (J" changes with f

number. The focus distances of f/1.4, f/2 and fl4 apertures are 0.464m, 0.503m and 

0.568m respectively and this effect can be attributed to the presence of spherical aberra

tion. Spherical aberration is caused by a lens that focuses the marginal rays closer to the 

lens than the paraxial rays [132] and thus the focal length is dependent on the aperture for 

non-paraxial rays [2]. 
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Figure 4.21: Gaussian PSF results for the video lens for the horizontal (left) and vertical (right) directions 

For a circular aperture with square pixels it is expected that the PSF would possess 

circular symmetry, especially with a lot of defocus. The fact that the circular symmetry is 

not present for wider apertures suggests that other aberrations could be present and in 

particular coma and astigmatism would cause a non-circularly symmetric PSF [100]. A 

further problem was that the edges of the image were appreciably defocused while the 

centre region was in focus, thus clearly the PSF is not space-invariant. 
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4.7 Results from the 24mm Sigma Photographic Lens 

4.7.1 Introduction 

Due to the problems with the video lens, a high element count, good quality 24mm 

photographic lens was used in the subsequent tests. A mount was sourced to allow an 

SLR lens to fit into the C-mount of the Basler camera. The distance between the back of 

the lens and the CCD was found to be the same as would be used in an SLR camera 

between the lens and film plane. Thus, no aberrations were expected as a result of the C

mount. The next section shows the MSE of fitting the actual ESF to the theoretical mod

els and then Section 4.7.3 and 4.7.4 show complete results for the Gaussian and Genera

lised Gaussian PSF models respectively. Finally, some 2D results are shown to illustrate 

the complete form of the PSF. 

4.7.2 Edge Spread Function Fitting Experiments 

Depth-from-defocus requires accurate knowledge of the PSF of the lens for given 

settings. The ESFs from the lightbox images were fitted to various different functions for 

a range of distances. The results below in Tables 4.3 to 4.5 show the mean square error of 

the fit as an average for all angles tested, which were -80 to +90 degrees in 10 degree 

intervals. 

The results in Tables 4.3 to 4.5 show that the error assuming a pillbox PSF decreases 

for increasing defocusing, which was expected from the theoretical diffraction-based 

optics approach in Section 3.3 .2. The mean square errors of the fits using Generalised 

Gaussian, Gaussian and pillbox models are lower when taking into account the non

uniform illumination compared to assuming uniform illumination. In particular, for the 

Generalised Gaussian fit at a depth of 0.414m with an aperture of f/5.6, the MSE was 

halved by incorporating the improved illumination model. 
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Table 4.3. MSE results for fl2.8 as a function of the depth of the light box (to 3 s.f.) 

Mean Square Error (MSE) 110-3 

Method 0.414m 0.491m 0.569m 0.647m 0.125m 

Fermi-Dirac 25.2 29.2 34.3 28.3 26.1 

Generalised 
Gaussian 10.3 7.37 9.03 5.58 6.45 
without I.e. 
Generalised 
Gaussian with 7.91 5.92 7.95 4.99 6.01 
I.e. 
Gaussian 

64.6 51.1 
without I.e. 

64.9 68.2 70.2 

Gaussian with 
I.e. 

47.6 43.4 55.0 51.1 48.5 

Pillbox 
130 90.9 

without I.e. 
90.7 86.0 85.5 

Pillbox with 
102 70.3 12.4 70.8 68.3 

I.e. 

Table 4.4. MSE results for f/4 as a function of the depth of the light box (to 3 s.f.) 

Mean Square Error (MSE) 110-3 

Method 0.414m 0.491m 0.569m 0.647m 0.125m 

Fermi-Dirac 25.5 26.6 23.3 24.4 30.7 

Generalised 
Gaussian 7.60 6.81 5.65 5.34 4.91 

without I.e. 
Generalised 
Gaussian with 5.31 5.06 4.25 4.58 4.18 

I.e. 
Gaussian 63.3 39.3 44.4 49.6 58.4 
without I.e. 
Gaussian with 44.2 30.9 36.7 39.9 44.4 
I.e. 
Pillbox 

138 94.1 92.1 91.8 96.8 
without I.e. 
Pillbox with 107 69.8 67.2 68.5 86.2 
I.e. 
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Table 4.5. MSE results for f/5.6 as a function of the depth of the light box (to 3 s.f.) 

Mean Square Error (MSE) / 10-3 

Method 0.414m 0.491m 0.569m 0.647m 

Fermi-Dirac 15.8 25.3 27.6 29.5 

Generalised 
Gaussian 7.17 7.89 5.99 7.03 
without I.C. 

Generalised 
Gaussian with 3.08 4.67 3.20 4.12 
I.C. 

Gaussian 
73.7 

without I.e. 
45.6 43.5 54.9 

Gaussian with 
42.9 

I.C. 
29.7 31.8 43.3 

Pillbox 
132 

without I.C. 
87.7 78.6 85.0 

Pillbox with 
91.2 

I.C. 
55.7 47.4 51.1 

Table 4.6. Mean MSE results for all three apertures from best to worst 

Method 

Generalised Gaussian with Illumination 
Correction 

Generalised Gaussian without Illumination 
Correction 

Sum of three Fermi-Dirac functions 

Gaussian with Illumination Correction 

Gaussian without Illumination Correction 

Pillbox with Illumination Correction 

Pillbox without Illumination Correction 

Average MSE / 10-3 

5.04 

6.93 

26.7 

42.5 

56.7 

12.0 

97.6 

0.125m 

28.4 

6.84 

4.39 

59.3 

48.8 

84.5 

52.8 

The summarised results in Table 4.6 show that the Generalised Gaussian with illumina

tion correction has resulted in the lowest MSE, thus giving the best fit to the data. The 

geometrical optics derived pillbox model produced the worst results with a MSE about 14 

times greater than that of the Generalised Gaussian. The MSE of the Gaussian fell almost 

half way between the Generalised Gaussian and the pillbox and the MSE is 8 times worse 

than that due to the Generalised Gaussian. 

The incorporation of the non-uniform illumination into the model has decreased the 

MSE using the Generalised Gaussian, Gaussian and pillbox models by 27.3%, 25.0% and 

26.2% respectively. Thus it can be concluded that the non-uniform illumination consider

ation is very important when recovering the PSF of a defocused lens. 
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4.7.3 Results assuming a Gaussian PSF 

Images of the lightbox were obtained in 1 mm increments over a 30cm range for angles 

of -80 to +90 degrees in 10 degree increments. Each image gives a single mean ESF and 

that ESF was fitted assuming a Gaussian PSF, as derived in Section 3.4.5. The PSF was 

found to be very nearly circularly symmetric and so Figure 4.22 shows the standard devia

tion of the Gaussian as a function of distance for three different f-numbers under test. The 

data appears to be very smooth, except close to the maximum distance tested. The x and 

y-direction data has been shown in separate figures as the data overlaps almost exactly. 
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Figure 4.22: Results from fitting a Gaussian PSF in the (left) x-direction and (right) y-direction 

The results presented in Section 4.6 for the video lens showed that it suffered from 

spherical aberration, which caused the focus position to change with f-number, and the 

PSF was definitely not circularly symmetric. The results in Figure 4.22 do not show any 

spherical aberration problems in contrast and the PSF is circularly symmetric. 

In order to show how the defocusing affects the PSF Figure 4.23 shows the PSFs for 

depths of0.414m, 0.491m, 0.569m, 0.647m and 0.725m. 
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Figure 4.23: PSFs for the Gaussian fit when the lens was progressively defocused for f12.8 (left) and f15.6 (right) 

The diffraction model was presented in Section 3.3.3, a Gaussian was fitted to the 

model and the parameters used for the diffraction model were the same as set for the 

camera. The actual results and the diffraction model are presented in Figure 4.24 and it 

can be seen that the shapes of the expected curves are similar to that recovered in practice, 

but the alignment is not very good. The diffraction model neglects aberrations and sam

pling and the camera parameters are only known approximately. 
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Figure 4.24: Actual (points) and diffraction-based model (lines) for the Sigma 24mrn lens 
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4.7.4 Results assuming a Generalised Gaussian PSF 

The Generalised Gaussian PSF has two parameters: the standard deviation cr; and the 

power p. In Figures 4.25 to 4.27 the standard deviations and powers of the Generalised 

Gaussians for three different f-numbers are shown. The standard deviation are very 

smooth, as with the Gaussian fit, however the powers as a function of depth appear much 

more nOlsy. 
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Figure 4.25: The standard deviation of the Generalised Gaussian for x- (left) and y-directions (right) 
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Figure 4.26: The power of the Generalised Gaussian for x- (left) and y-directions (right) 

In Figure 4.27 the shape of the power of the Generalised Gaussian versus depth is 

shown accurately using lines and the symbols are purely for identification purposes as 

there was so much data. Each set of data was fitted to a 6th order polynomial for smooth

mg purposes. 
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data is presented 

In order to show how the defocusing affects the PSF, the PSFs for depths of 0.414m, 

0.491m, 0.569m, O.647m and O.725m are shown in Figure 4.28. 
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Figure 4.28: Generalised Gaussian fit for fl2.8 (left) and fl5.6 (right) for a progressively defocused lens 
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4.7.5 Two-dimensional PSFs 

The results thus far have focused on ID PSFs, which are sections through the complete 

2D PSF. Now the complete PSFs are presented assuming a pillbox, Gaussian and Genera

lised Gaussian PSF models for two depths, namely O.725m and 0.414m, corresponding to 

the furthest and closest positions tested. The non-uniform illumination improvement was 

used. Figures 4.29 to 4.34 show the PSFs for a particular distance between the camera and 

the lightbox (denoted z in the figure labels) for an aperture off/2.8. 

Figure 4.29: 2D PSF assuming a Gaussian model for z = 0.725m and fl2.8 where x and yare in pixels 
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Figure 4.30: 2D PSF assuming a Generalised Gaussian model for z = 0.725 m and fl2.8 where x and yare in 

pixels 
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Figure 4.31: 2D PSF assuming a Pillbox model for z = 0.725 m and fl2.8 where x and yare in pixels 

The Gaussian PSF model shown in Figure 4.29 is for the maximum distance tested, i.e. 

0.725m, with an aperture of fl2.8 (the widest in the tests) and it is clearly very circularly 

symmetric and the fit has resulted in a smooth contour plot. The Generalised Gaussian 

PSF model shown in Figure 4.30 appears to be a cross between the Gaussian and a pillbox. 

The fit has resulted in a contour plot that is less smooth than for the Gaussian, which is 

probably due to noise in the ESFs and increased complexity of the function due to having 

more parameters than all the other models. 
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Figure 4.32: 2D PSF assuming a Gaussian model for z = 0.414m and fl2.8 where x and yare in pixels 
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Figure 4.33: 2D PSF assuming a Generalised Gaussian model for z = 0.414m and fl2.8 where x and yare in 

pixels 
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Figure 4.34: 2D PSF assuming a Pillbox model for z = 0.414m and fl2.8 where x and yare in pixels 

Note the change of x and y axis scale in Figures 4.32 to 4.34 compared to those in 

Figure 4.29 to 4.31. All three models have less circularly symmetry for the closest depth 

of 0.414m and have a maximum spread at approximately 45 degrees to the x axis. The 

power of the Generalised Gaussian is less than two, and so the function is more pointed 

than a Gaussian. From the results of Figure 4.27 it can be seen that as the radius of the 

aperture is decreased (i.e a larger f-number) that the PSF becomes more pointed in shape. 
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4.7.6 Conclusion 

The goodness-of-fit of the Generalised Gaussian PSF is exemplified by the results of 

Table 4.7 where the non-uniform illumination model was employed. The fit was between 

9 and 16 times better than using a Gaussian PSF and on average the Generalised Gaussian 

model had a MSE that was 12 times better than the Gaussian model. 

Method, direction 

Gaussian, 
x-direction 

Gaussian, 
y-direction 

Generalised Gaussian, 
x-direction 

Generalised Gaussian, 
y-direction 

Table 4.7. The average MSE for each method 

Average Mean Square Error (MSE) /10-3 

fl2.8 fl4 fl5.6 

31.7 21.9 23.3 

46.1 27.3 23.7 

2.20 1.67 1.42 

4.99 2.44 1.87 

The Gaussian PSF has a faster roll-off when the camera is very defocused compared to 

that using the Generalised Gaussian because the power of the Generalised Gaussian 

increases with defocus, thus making it more pillbox in shape, as highlighted in Figure 4.36. 
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Figure 4.35: Comparison of the Gaussian (dashed line) and Generalised Gaussian (solid line) 
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Figure 4.36: Comparison of the Gaussian (dashed line) and Generalised Gaussian (solid line) 

4.8 Conclusion 

The linearity of the camera is important for DFD and PSF recovery work and it was 

found, using the circuit designed, that the output of the camera is very linear with bright

ness. The bias and dark frame noise experiments showed that most of the noise was due to 

the readout electronics, which manifested itself as an offset brightness. The mean bright

nesses can be simply subtracted from each colour plane to ensure linearity. 

An automated x-stage was constructed that efficiently allows for the collection of many 

images for processing to find the PSF at various distances. Once the images had been 

demosaiced they could be used to determine an average PSF of the lens for a given light

box angle. The form of the step was improved from Staunton's [57] original work to 

include non-uniform illumination. Various theoretical PSF and ESF models were pro

posed including Fermi-Dirac, Gaussian, Generalised Gaussian and pillbox models. 

The results from the 24mm Sigma photographic lens showed that the Generalised 

Gaussian, Gaussian and pillbox MSEs were reduced by 27.3%, 25.0% and 26.2% respec

tively by incorporating the non-uniform illumination, which is clearly a significant 

improvement. 

Pillbox and Gaussian models are often assumed in DFD work and this research has 

shown that both are sub-optimum. The results from the 24mm lens showed that the MSE 

of the fit using the Generalised Gaussian performed best across the range of distances and 

f-numbers tested and it was 8 times better than the Gaussian model and 14 times better 

than the pillbox model. 
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Chapter 5 

The Theory of Colour Depth-From-

Defocus 

5.1 Introduction 

Depth-from-defocus (DFD) algorithms have previously been developed for mono

chrome images and this chapter discusses different pre-processing algorithms that can be 

applied to colour images to convert them to monochrome with the aim to produce improve

ments in the depth maps. 

Ens and Lawrence's [58] [59] algorithm was used as the basis of the research because it 

allows experimentally determined PSFs to be employed (which should lead to more 

accurate depth maps compared to resorting to a theoretical model), it is easily imple

mented and the results they reported were good compared to other methods developed (see 

the comparison in Section 2.6). As a pre-processing method, it is hoped that the results are 

not dependent on the particular DFD algorithm chosen and thus improvements would be 

obtained with other DFD algorithms too. 

The errors in a generic DFD system are from: 

• Noise 

• Windowing and the image overlap effects 

• Lack of texture 

• Sub-optimum knowledge of the Point Spread Functions (PSFs) 

• Software implementation 

The last of the errors was reduced through the work on measuring the PSF presented in 

Chapters 3 and 4. The software was written in MATLAB and each function had an associ

ated test harness in an attempt to reduce problems with the implementation. The hypothe

sis of the research presented here was that a colour imaging system can help to alleviate 

the remaining three problems. The multichannel DFD problem was tackled using an 
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implicit approach where the colour channels were compressed to a single channel using a 

linear combination of the colour planes, which has been called colour mixing. 

A textureless surface does not show any change in texture with defocus and so texture 

is clearly an important aspect of DFD. The texture cannot be changed using a mono

chrome image but a black-and-white image formed from a linear combination colour 

planes allows for limited changes in the texture. Yuan and Subbarao [83] suggested using 

the band with the highest contrast, but this is not optimum. This chapter introduces the 

use of Principal Component Analysis (peA) for determining the optimum scaling parame

ters based on a statistical analysis of the texture. The fractal dimension (FD) can be 

employed as a measure of the roughness of the brightness variation of a texture and a 

method of maximising the FD is discussed that uses spectral analysis. 

Noise is an inevitable consequence of a real imaging system and a measure of the image 

quality is given by the signal-to-noise ratio (SNR). Maximising the SNRs of the images 

used in DFD was expected to result in more accurate depth maps and a method is pre

sented that produces a monochrome image with the maximum SNR using colour mixing 

and an additive noise model. 

Although it appears to be a paradox, in order to calculate the depth of a point in the 

scene a window must be applied that could have 1024 pixels in it, for a 32 x 32 window, 

or maybe even more. The finite region is required to accurately determine how the point 

has been blurred, but consequently the surrounding regions overlap and alter the depth 

estimate. A colour mixing algorithm that works on a specially designed texture is pre

sented that aims to reduce the windowing and image overlap problem. 

In Section 5.2 Ens and Lawrence's original DFD algorithm is discussed along with 

possible modifications to the error measurement and how multiple images could be incorpo

rated. The concept of colour mixing as a pre-processing stage is discussed in Section 5.3 

and then the different colour mixing algorithms are described in Sections 5.4 to 5.8. 

Finally, the chapter is summarised in Section 5.9. 
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5.2 Ens and Lawrence's DFD Algorithm 

5.2.1 Introduction 

Many different DFD algorithms have been developed, as shown by the literature review 

of Chapter 2. Of all the possible algorithms to build on Ens and Lawrence's look-up table 

based algorithm was chosen because it can readily accept experimentally determined PSFs 

that were found and reported in Chapter 4. It is an elegant, spatial-domain approach and 

the simplicity of the lookup table is attractive from an implementation point-of-view, 

although it is certainly not trivial. 

The theoretical background to Ens and Lawrence's DFD algorithm is presented in 

Section 5.2.2. It was noted that they did not discuss the error measure they employed in 

their papers and Section 5.2.3 presents two different error measures that could be used. 

Section 5.2.4 presents a normalisation procedure to compensate for the exposure changes. 

5.2.2 Algorithm Description 

Introduction 

Consider the image f(x, y) that would be formed on the image plane of an ideal pinhole 

camera, i.e. where there are no diffraction effects, and (x, y) are the orthogonal spatial 

coordinates of a point on that plane. This image is often called the focused image in DFD 

because every point is in focus and although it is not physically realisable, it aids in devel

oping algorithms. Now consider a camera with parameter set k where k is an integer and 

specifies the particular combination of settings, namely the focal length, aperture and 

focus position. If the camera is used to image the same scene f(x, y) instead of a pinhole 

then the resultant image is given by 

(5.1) 

and this represents an image defocused by the space-varying kernel hk(x, y, ~, 1]), which 

corresponds to the blurring at position (x, y) as a result of the brightness at (~, 1]). The 

infinite limits in the integral have been left for generality, but clearly an image will have a 

finite spatial extent. If the depth is constant then the integral reduces to the convolution 

integral, given by 
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(5.2) 

and this can be written simply as 

(5.3) 

where * denotes the operation of linear convolution and hk(x, y) is the space-invariant 

blurring kernel known as the Point Spread Function (PSF). Thus (5.3) represents the 

equation for blurred image k based on the pinhole image I(x, y) and the PSF hk(x, y). 

One defocused image (i.e. k = I) is sufficient to determine the depth of objects as long 

as strong assumptions can be made about the scene, such as a known sharp intensity 

change in the region of interest or a projected pattern is present, as discussed in Section 

2.3 in the literature review. When the content of the scene is unknown a more advanced 

approach is to take two images of the same scene with different camera parameters so that 

the contribution due to the scene can be factored out. The camera parameters that can be 

changed between images are the aperture size (f-number), focal length or the distance 

between the lens and image plane. Often just one parameter is modified, but Subbarao 

showed that all three could be changed simultaneously [4]. With two images k = 1, 2 and 

the equations of the two defocused images are given by 

il (x, y) = I(x, y) * hI (x, y) 

i2(x, y) = I(x, y) * h2(x, y) 

(5.4) 

(5.5) 

where the assumption of space-in variance has again been assumed and changing the 

camera parameters has resulted in two PSFs, hI (x, y) and h2(x, y). Further, the scene is 

assumed to remain unchanged between the images, there is no movement in the objects, 

the cameras share the same optical axis and there are no magnification changes between 

the images. 

Ens and Lawrence's Algorithm 

Ens and Lawrence [58] [59] formulated the DFD problem as that of determining the 

optimum convolution ratio h3(x, y) from the set of convolution ratios stored in the lookup 

table such that the least blurred image il (x, y) convolved with h3(x, y) is the same as the 

most defocused image i2(X, y), i.e. 

(5.6) 

The PSFs hI (x, y) and h2(x, y) are a function of the camera parameters and the depth of 

the object. For a given object depth, Ens and Lawrence showed that the convolution ratio 

is directly related to the depth and it is important that the function is monotonic and one-to

one for the depth range considered. For example, when changing the aperture only it is 
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important that the objects are either all in front or all behind the point of focus. Expanding 

(5.6) using (5.3) and (5.4) gives 

[/(x, y) * hI (x, y)] * h3(x, y) = I(x, y) * h2(x, y) (5.7) 

and so rearranging yields 

I(x, y) * [hI (x, y) * h3(x, y) - h2(x, y)] = o. (5.8) 

The trivial solution of (5.8) is I(x, y) = c where c is a constant and the scene has no 

intensity information and is thus useless for DFD. Of all the convolution ratios in the 

lookup table the particular h3(x, y) where 

(5.9) 

determines the object's depth. The reason for the name convolution ratio can be seen by 

transforming (5.9) to the Fourier frequency domain where spatial domain convolution 

becomes frequency domain multiplication, thus 

HI (u, v) H3(U, v) = H2(u, v) (5.10) 

FT 
where hk(X, y) ~ Hk(U, v) for k = 1, 2, 3, and so 

H ( ) 
_ H2(u, v) 

3 U, V - • 
Hl(u, v) 

(5.11) 

Hence h3(x, y) is the inverse Fourier transform of the ratio of the Fourier transforms of the 

PSFs. 

Due to the unavoidable presence of noise no pre-computed convolution ratio will allow 

the equality to exist and so an error measure must be employed. The distance measure Ens 

and Lawrence used was the sum of the L2 -norms (squared error) and so the problem 

becomes that of finding the convolution ratio h3(x, y) to minimise 

min L (il (x, y) * h3(x, y) - i2(X, y»2 (5.12) 
X,Y 

Ens and Lawrence's algorithm tests every pre-computed convolution ratio for a given 

image window and measures the error in the fit. The depth resolution is determined by the 

choice of convolution ratios in the lookup table and if, for example, the lookup table was 

populated with functions with centimetre spacing then the depth map would have a mini

mum error of z ± 0.5 cm. By adding more entries to the lookup table the potential depth 

resolution would increase, but the processing time would also increase. 
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The Causes of Under- and Over-Estimating the Depth 

If the DFD system is only limited by the depth quantisation levels of the lookup table 

then it is working very well indeed. In practice, the DFD algorithm can produce an incor

rect depth estimate and this is due to selecting the wrong convolution ratio. If the depth 

estimate is not correct then the only two possibilities are that the depth has been over

estimated or under-estimated. 

If the depth has been over-estimated then the convolution ratio has a spatial extent that 

is too large. Let the erroneous convolution returned by the DFD be denoted h3(x, y) and 

the actual convolution ratio be denoted by h3(x, y). They can be linked through 

(5.13) 

where (x, y) is a Gaussian function with a spread 0"( that is essentially the error in the 

convolution ratio. If the standard deviations of the Gaussians of h3(x, y) and h3(x, y) are 

denoted 0"3 and 0-3 then it can be shown that (Appendix D) 

(5.14) 

and for the particular image region that produced an over-estimate of the depth 

(5.15) 

This can be written as 

[f(x, y) * hI (x, y)] * h3(x, y) = [/(x, y) * h2(X, y)] (5.16) 

and substituting (5.13) into (5.16) gives 

[f(x, y) * hI (x, y)] * h3(x, y) * (x, y) = [f(x, y) * h2(x, y)]. (5.l7) 

Equation (5.17) can be rearranged to give 

[f(x, y) * hI (x, y) * (x, y)] * h3(x, y) = [f(x, y) * h2(x, y)]. (5.18) 

Therefore, the depth will be over-estimated if the spread of the PSF of camera I was under

estimated in the camera calibration stage. This is due to the fact that the PSF hI (x, y) 

must be convolved with (x, y) in order to give the correct depth so that 

[/(x, y) * hI (x, y)] * h3(x, y) = [f(x, y) * h2(X, y)] 

where hI(x, y) is the correct PSF, given by hI(x, y) = hI(x, y)*(x, y). 

(5.19) 

Alternatively, consider perfect camera calibration, so that (5.17) can be simplified to 

(5.20) 

using il (x, y) = I(x, y) * hI (x, y) and i2(x, y) = I(x, y) * h2(x, y). Rearranging (5.20) gives 

[il (x, y) * (x, y)] * h3(x, y) = i2(X, y). (5.21) 
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Thus, another cause of over-estimating the depth occurs when the image il (x, y) must be 

smoothed to make il (x, y) * h3(x, y) = i2(X, y). This would be the case if image I is too 

noisy, i.e. the high frequency content must be reduced to ensure a perfect depth estimate. 

Alternatively, image 2 must be too smooth, i.e. its high frequency content is too low. 

Now consider the other case where the depth has been under-estimated, thus the spatial 

extent of the optimum convolution ratio is too small. The modification (5.13) cannot be 

used because convolution of the actual h3(x, y) with (x, y) cannot reduce the spread, as 

can be seen from (5.14). Therefore, (5.16) must be changed to 

[f(x, y) * hI (x, y)] * h3(x, y) = [f(x, y) * h2(x, y)] * (x, y) (5.22) 

and this can be rearranged to give 

[f(x, y) * hI (x, y)] * h3(x, y) = f(x, y) * [h2(x, y) * (x, y)] (5.23) 

and so it can be seen that the depth is under-estimated if the spread of the PSF of camera 2 

is under-estimated and it must be corrected by convolution with (x, y). If there is no 

error in the camera calibration then (5.22) reduces to 

il (x, y) * h3(x, y) = i2(X, y) * (x, y) (5.24) 

and thus in order to produce the correct depth, i2(x, y) must be smoothed, thus reducing its 

high frequency content. Hence, too much noise in i2(X, y) will cause the depth to be under

estimated. Alternatively, image 1 is too smooth. A further cause of the depth being under

estimated is if there are two objects in the window at different distances and the closer 

object is giving an undesired contribution to the intensity, i.e. the depth of the further 

object is required. 

In summary, the depth is over-estimated if: 

• The spread of the PSF of camera 1 is under-estimated; 

• Image 1 has too much high frequency content (due to noise for example); 

• Image 2 is too smooth (i.e. too little high frequency content) 

The depth is under-estimated if 

• The spread of the PSF of camera 1 is under-estimated; 

• Image 2 has too much high frequency content (due to noise or an object in the window 

contributing too much high frequency information, for example); 

• Image I is too smooth. 

The depth error is also dependent on the error measure employed and this is the subject 

of the next section. 
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5.2.3 The Error Measurement 

The less defocused image il (x, y) blurred with the convolution ratio h3(x, y), denoted 

by lz(x, y) = il(X, y)*h3(x, y), is an approximation of the more blurred image i2(x, y). 

Ens and Lawrence chose to use the sum of the L2 -norms so that the convolution ratio that 

results in the minimum sum of squared differences determines the depth. Other measures 

that could have been employed include the sum of the Ll -norms (total variation), given by 

e = I 112(X, y) - i2(X, y)1 
x,y 

(5.25) 

and the information-divergence (I-divergence) proposed by Csiszar [97] and based on 

work by Kullbach [133], which is given by 

(5.26) 

The I-divergence is a error measure between two non-negative functions from an infonna

tion-theoretic point of view. It was used by Favaro and Soatto [96] in their work on DFD. 

As a theoretical analysis could not be undertaken, an empirical approach was employed 

and the results are presented in the next chapter. The sum of the L2 -norms emphasises the 

large errors, where the difference is greater than 1, and de-emphasises errors in the range 

[0, 1]. In contrast the sum of the Ll -norms does not emphasise the large variations, but 

penalises small errors [134]. 

5.2.4 Normalisation of the Image Segments 

Ens and Lawrence's formulation in (5.12) is based on the irradiance of the scene being 

identical between images and the change in f-number being compensated for. By using 

two widely different f-numbers the exposure time must be changed to ensure that the less 

defocused image taken with the smallest aperture is not buried in noise while the image 

taken with the widest aperture is not saturated. To simplify the work the most defocused 

image segment i2(X, y) and its approximation 12(x, y) = il (x, y) * h3(x, y) were nonnalised 

to be in the range [0, 1] using 

(5.27) 

(5.28) 
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where min[X] and max [X] are the minimum and maximum intensities of image X. There

fore, the intensities of i2N and t2N all lie in the range [0,1]. 

5.2.5 Conclusion 

The accuracy of Ens and Lawrence's DFD algorithm based on a look-up table is depen

dent on how well the PSFs were modelled, as with so many of the DFD algorithms 

reviewed in Chapter 2. The algorithm was based on the assumption that the depth is 

constant within a window and that there is sufficient texture from which to measure the 

change in defocus between the two images used. This section has presented a logical 

development of Ens and Lawrence's DFD algorithm and has shown that the particular 

error measure must be evaluated in practice. A simple normalisation of the image seg

ments has been presented that accounts for the differences in brightnesses due to the two 

apertures. 

5.3 Colour Mixing as a Pre-Processing Stage 

5.3.1 Introduction 

The emission spectra of the illumination source and the effects of wavelength-depen

dent absorption, refraction, diffraction and scattering of objects in the scene coupled with 

the response of the human visual system leads to the appearance of colour [135]. A 

monochrome camera produces an output signal that is dependent on the number of photons 

arriving at a given photosite. No colour filter is employed, such as a CF A, and thus the 

response is a function of the spectral content of the light, the quantum efficiency of the 

detector for a given wavelength (and thus colour) and the attenuation due to the lens 

elements and any coatings applied. An RGB colour camera captures three intensity 

images in three different bands of the visible spectrum that are generally overlapping. 

A monochrome image Mk(X, y) can be formed from the three colour planes through a 

linear operation and it is expressed as 

(5.29) 

where Rk(X, y), Gk(X, y) and Bk(x, y) are the red, green and blue planes respectively of 

image k, (x, y) are the orthogonal spatial coordinates and (ak, 13k, 'Yk) are real scaling 

constants. A standard measure of intensity of an image is given setting ak = 13k = 'Yk = t 
in (5.29). 
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Depth-from-defocus requires two images so that the content due to the scene can be 

factored out and generally there will be two sets of scaling coefficients, Cal, /31, YI) and 

(a2, /32, '}'2)· It is shown in Appendix B that it is important that the colour planes of both 

images are scaled identically, i.e. al = a2, /31 = /32, and YI = Y2. 

The dimension reduction using (5.29) was the basis of the research with the question 

being whether more accurate depth maps could be produced by choosing Ca, /3, y) to meet 

some criteria instead of using (~ , +, +). This approach to colour image processing is not 

new and it has been used in forensic and the processing of satellite imagery. 

Berger et al. [35] devised a colour mixing algorithm to enhance the required colours of 

a document to ascertain whether additions had been made to handwriting and also unmask

ing text that had been covered with ink for example. 

Multichannel satellite images are processed to reveal information about the Earth's 

surface. In particular, NASA's Landsat images are used for discriminating crop types, 

mapping geological structures and monitoring coral reefs and volcanic activity. A com

mon problem is to produce a single channel image with the most information from a linear 

combination of six or maybe more satellite image channels such as RGB and near-, mid

and far-infrared. 

The layout of this Section is as flows. In Section 5.3.2 the use of colour filters in black

and-white photography is first explored before examining how colour mixing is an approxi

mation to applying physical colour filters in the optical path of the camera in Section 

5.3.3. Hue, saturation and intensity are important for describing colours and Section 5.3.4 

examines when colour mixing can be done by considering the HSI space. 

5.3.2 The Use of Colour Filters in Black-and-White Photography 

Colour and polarising filters have been employed by black-and-white photographers for 

decades and nowadays, artistic effects can be applied in digital photography software. 

Polarising filters are used universally by digital and film photographers as they have the 

effect of dramatising sky and clouds in a scene because light coming from a clear sky is 

polarised, with the greatest effect at ninety degrees to the sun [136]. 

Ultra-violet (UVa) filters were originally employed to cut out UVa in the atmosphere so 

that clearer photographs could be captured [136], but now they are usually employed to 

protect lenses as they are relatively inexpensive and many lenses now have built-in UV 

filters. 

Neutral density (ND) filters are designed for the purpose of equally attenuating the light 

entering the camera over all wavelengths of visible light and thus they possess a grey 
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colour. The colourless tone ensures that they do not affect the colour balance [136] and 

the densities are specified by a factor, e.g. 2, 4, etc. ND filters are particularly useful for 

blurring motion (such as flowing rivers) in daylight where the filter allows an increase in 

the shutter time. They allow a wider aperture for a given scene (such a flower) which 

reduces the depth-of-field, the effect being to just keep the subject in focus with a blurred 

background. 

Colour filters are equally useful in black-and-white and colour photography, their 

purpose being to attenuate desired frequencies of light; and note that they do not add 

colour to an image. A colour filter passes their own colour well and attenuates (darkens) 

the complementary colour, which can be found from a colour wheel. 

There are many different colour filters employed in photography. For example, a blue 

filter is used in medical imaging to produce good contrast between blood vessels and scars 

[136]. Filters used in photography either have a constant colour or possess a gradient so 

that the colour effect changes smoothly. Physical colour filters can be used in the optical 

path or a similar effect can be achieved in software, but the effect is not the same, as 

shown in the theoretical analysis below. 

5.3.3 Why Physical Filters are Superior to Digital Colour Mixing 

Consider a device, for example a CCD or cones on the human retina, that have an 

absorption spectra SiCA) where the integer i denotes the specific colour response and A is 

the wavelength of light. For the human retina i will be in the range [1,3] as there are 

three different types of cones. The response Ri( C) of sensor i to the light with a spectral 

distribution of C(A) is given by [34] 

Ri( C) = J.oo SiCA) C(A) d A (5.30) 

where an infinite limit has been used for generality, but SiCA) and C(A) will be bandlim

ited. Suppose now a semi-transparent colour filter with a spectral transmittance distribu

tion F(A) is placed in front of the sensor. The response of the sensor will now be 

Ri( C) = J.oo F(A) SiCA) C(A) d A. (5.31) 

This research considered the colour mixing of images that were taken by a camera that 

did not have a filter applied, as firstly it is unlikely that the optimum colour is known 

beforehand and secondly, it is likely to require a colour that is a function of spatial coordi

nates. As 

f F(A) S,(A) C(A) d A * J.~ F(A) d A J.oo S,(A) C(A) d A 
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then the integrated response of the filter F()") multiplied by response of sensor i to C()") is 

not the same as the response of the sensor with the filter in front (the left hand side of the 

equation). Thus, the exact spectral response of the sensor cannot be reproduced by scaling 

the colour planes. 

It is impossible to recover the spectrum of the light C()") from the samples Ri ( C) by 

virtue of the loss of information due to the integration. Consider that any two colours 

C)()") and C2()..) where C.()..):f:. C2()..) such that Rj(Cd = Rj(C2 ) for all i. The colours will 

be perceived to be identical and the colours are termed metamers, even though they are 

spectrally dissimilar [34]. 

A three-colour camera either employs two beam splitters, three colour filters and three 

CCDs or uses a single CCD and a Colour Filter Array (CF A), such as a Bayer filter where 

each pixel is covered by either a red, green or blue filter. Both camera systems suffer from 

a severe reduction in the spectral information as knowledge of C()") cannot be regained. If 

many colour filters could be used each with a narrow pass-band then less information 

would be lost. 

Even though only an approximation to physical colour filters can be achieved through 

adjusting the quantities of the red, green and blue components returned using a 3-colour 

camera there is limited scope for change. A more complete spectral representation would 

facilitate a greater adjustment. 

5.3.4 Colour Spaces and Colour Mixing 

A few different colour spaces were discussed in Chapter 1. One particularly useful 

colour space for describing colours is Hue-Saturation-Intensity (HSn. In order to under

stand the link between the HSI space and colour mixing an analysis was performed. 

Appendix C gives a derivation of the fact that if an image has a change in intensity but 

constant hue and saturation then colour mixing using (a, p, y) is no different from using 

( +, +, +). In contrast an image with hue and saturation variations allows for limited 

colour mixing. 

5.3.5 Colour Mixing and Depth-From-Defocus 

The literature survey revealed that many monochrome DFD algorithms had been devel

oped, but there was not one algorithm that specifically used colour images. It is known 

that colour image of a scene possess more information than a corresponding monochrome 

image owing the increased number of bands and so the aim of the research was to investi

gate if there were benefits in terms of increased depth accuracy using colour images. 
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The specific problems of a generic DFD system listed in the Introduction were investi

gated through the framework of colour mixing. In the initial stages of the research, a 

genetic algorithm was employed to evolve the optimum scaling coefficients (a, {3, y) to 

reduce the depth error of a known scene with a known depth map. This showed that there 

was merit in using colour mixing and so deterministic algorithms were then sought to 

solve the problems listed. 

In Section 5.4 to 5.8, the theory behind the different approaches to colour mixing that 

were investigated are presented. 

5.3.6 Conclusion 

This section has introduced the concept of employing a linear combination of colour 

planes to produce a monochrome image with the problem being to determine the optimum 

combination, and this is left to the next sections. Physical colour filters are superior to 

using colour mixing, however, this approach is not practical unless the environment is 

very carefully controlled. The HSI analysis has showed that changes in the hue and 

saturation of a colour texture are required. 

5.4 Initial Genetic Algorithm Research 

5.4.1 Colour Mixing with a Known Depth Map 

The basis for the research into a colour depth-from-defocus algorithm began with the 

realisation that a scene could theoretically appear textureless to a monochrome camera, 

but in fact could be composed of many colours, and thus possess texture in the spectral 

dimension. Consider for example the very simple scene composed of a 4 x 4 grid of pixels 

where the red, green and blue components are given by 

1 0 1 0 o 101 0 0 0 0 

o 0 0 0 1 0 1 0 0 1 0 1 
R= ,G= B= 

1010 0101' 0000 
(5.33) 

o 0 0 0 1010 0101 

and using equal contributions due to all three colour planes results in the monochrome 

Image 
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using (5.29) with a = {3 = y = ~ . Image M is clearly textureless as each pixel has the 

same intensity and is thus useless for DFD. In contrast each individual colour plane shows 

intensity variations and would perform better. If the surface was grey in colour then each 

colour plane will have a very limited variation in brightness and so it is less useful than a 

colour surface for DFD. 

An optimisation algorithm was used to find the best (a, {3, y) to minimise the depth 

error using DFD and the results are presented in Section 6.3 of the next chapter. The 

optimisation was performed using a Genetic Algorithm that evolves the solution to the 

problem in analogy to biological evolution using the principle of Survival of the Fittest 

[137]. A population of individuals are randomly generated at the start and each individual 

is represented in the computer as a long binary number, which ultimately maps to a particu

lar (a, {3, y). Each individual is tested by scaling the colour planes and then running the 

resulting monochrome image through the DFD algorithm. The depth error is calculated 

and the individual is then assigned a fitness value based on how close the depth is to the 

actual, where a smaller depth error results in a higher fitness value. Of the population a 

given proportion of them are allowed to 'mate' and their probability of mating increases as 

their fitness value increases. As with the biological counterpart, offspring are created that 

have genes from both parents (formed using cross-over and mutation) and they represent 

new (a, {3, y) values. A certain proportion of the parent generation die off and the process 

continues for a set number of generations. When the final generation is reached the 

individual with the highest fitness is used to give the optimum (a, {3, y). 

5.4.2 Colour Mixing with an Unknown Depth Map 

The approach discussed in the previous section is applicable only for scenes with a 

known depth map and therefore it was only useful as an initial research tool. The results 

presented in the next chapter show that colour mixing has the potential to perform better 

than using a simple equal weighting of the colour planes. Deterministic approaches that 

optimise a given property of the image were then explored based on the problems of a 

generic DFD system listed in the Introduction. 

Large non-uniform intensity regions are useless for DFD and thus there must exist 

brightness variations. In Section 5.5, peA is discussed and it is a standard technique for 

producing decorrelated colour planes, one of which possesses the maximum variance. 
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Whereas PCA is based on the variance of the texture, the fractal dimension is a measure of 

its roughness. The concept of FD is discussed in Section 5.7 along with an evolutionary 

method to increase the roughness of a monochrome image through colour mixing. 

Noise in a DFD system will clearly adversely affect the depth map accuracy and so a 

method of increasing the SNR was sought. In Section 5.6 a method for maximising the 

SNR using colour mixing is presented. 

The problem with windowing effects was discussed in Section 2.2 in relation to the 

matching or correspondence problem. In Section 5.8 a theoretical analysis of an active 

DFD method to improve localisation and thus decrease the windowing problem is 

discussed. 

5.5 Principal Component Analysis 

5.5.1 Introduction 

Colour images have two spatial dimensions (height and width) and a spectral dimen

sion, which is an aggregate response of the wavelength-dependent photodetectors. One 

approach to performing DFD on colour images is to compress the images down to possess 

just one spectral dimension and this can be achieved using mixtures of the red, green and 

blue colour planes, for example equal weightings. This section examines an efficient 

technique that performs a linear transformation on the colour planes to yield a lower 

dimension image with maximal variance using Principal Component Analysis (PCA). 

Principal Component Analysis was developed independently by Pearson [138] and 

Hotelling [139] and it goes by several names including the Karhunen-Loeve transform and 

the Hotelling transform. Whereas the Fourier transform and discrete cosine transform 

decompose a signal into fixed bases, PCA has basis vectors that depend on the data set 

employed. 

Consider the image shown on the left in Figure 5.1. Each pixel has an associated red, 

green and blue component and these can be plotted in the RGB space as shown on the 

right hand side of Figure 5.1. PCA transforms the RGB axes to give new orthogonal axes 

(bases) such that the data is uncorrelated between bases. In the figure the red, green and 

blue lines show the first, second and third principal axes respectively. 
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Figure 5.1: The image of a yacht (left) and the cloud ofRGB points with the principal axes (right) 

5.5.2 Mathematical Outline of peA 

Consider the ith colour plane of an M x N image denoted Xi. The image is row-stacked 

to produce an M N x 1 vector. A single colour plane i with M N pixels has a mean 

brightness associated with it, given by 

(5.35) 

where Xi(j) is the /11 pixel of plane i. A measure of the spread of the pixel intensities is 

given by the variance (TT, which can be calculated using 

1 MN 

(TT = N2 I (Xi(j) - Xi)2. 
j=l 

A measure of the similarity between two colour planes is given by the covariance, 

1 MN 

(Tj,j = N2 I (Xj(k) - Xi) (x/k) - Xj) 
k=l 

(5.36) 

(5.37) 

and note that the covariance where i = j is the simply the variance. The covariances can 

be placed into a matrix and for an image composed of RGB colour planes the matrix takes 

the form 

(5.38) 

The order of the terms in the covariance equation does not matter and so the matrix C i 

symmetric. The goal of Principal Component Analysis is to diagonalise the covariance 
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matrix so that the off-diagonal (i.e. covariance terms) are zero, leaving only variance terms 

on the leading diagonal. A diagonalised covariance matrix would be produced by an 

image where the planes are uncorrelated. 

This is the procedure for performing PCA: the mean intensity of the band must be 

subtracted from the pixel values for that band to leave a zero-mean intensity; the covari

ance matrix C of the zero-mean bands is found and then the eigenvectors and eigenvalues 

Ai of the matrix are calculated from 

IC - Aill = 0 (5.39) 

where I is the 3 x 3 identity matrix. There are three eigenvalues, the largest of which has 

an associated eigenvector that corresponds to the direction of maximal spread. 

Geometrically, if the RGB components of an image are plotted in three-dimensional 

space then a cloud of points will take the shape of a hyperellipsoid and the eigenvectors 

give the principal axes of the hyperellipsoid [140]. The eigenvectors are placed into a 

matrix A as rows and then the RGB components of a single pixel are transformed using 

P = A x, which can be expanded to give 

(

PI) (all al2 al3 )(R) 
P2 = a21 a22 a23 G 

P3 a31 a32 a33 B 

(5.40) 

where R, G and B are the intensities of a given pixel in each zero-mean colour plane. The 

resulting components PI , P2 and P3 are orthogonal and formed from linear combinations 

of the colour planes. By using only the first principal component PI - that corresponding 

to the largest eigenvalue - a monochrome image is produced that has the most information 

[141]. The resulting space formed by the vector P is often termed the feature space 

because PCA finds statistical patterns in the data. The original data can be obtained from 

the transformed data using x = A -I P and then adding on the means that were subtracted 

initially. 

Figure 5.2: The first (left). second (middle) and third (right) principal planes of the yacht image 

Thus, Principal Component Analysis finds a new orthogonal basis in which to represent 

the original data such that the transformed planes are uncorrelated. The choice of the 
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matrix that is diagonalised makes a difference to the resulting orthogonal bases and the 

three main possibilities are [142]: 

• Covariance matrix (as used above) 

• Correlation matrix 

• Weighted 

Weighting the colour planes could be used if there was a reason to give them ranked 

priority. 

5.5.3 Monochrome from the Perspective of PCA 

The monochrome or equal weighting algorithm uses a = f3 = y = ~ and it can be 

analysed from the perspective of the PCA approach. Suppose the eigenvector correspond

ing to the largest eigenvalue, i.e. PI, is given by (1, 1, 1) then PCA has produced the 

monochrome case. This means that the principal axis of the hyperellipsoid is in the 

direction (1, 1, 1). In the case where the spreads in the other two orthogonal components 

are zero, i.e. the data points lie on the line, the colour planes are maximally correlated. 

The image that produced this result need not be grey because the means of the colour 

planes are subtracted. 

5.5.4 Conclusion 

Principal Component Analysis is a well-established method to produce decorrelated 

colour planes. The principal plane with the largest variance is likely to be the optimum 

plane to use for DFD since the presence of texture is important. The range of the scaling 

parameters for PCA is - 1 :5 a, /3, y :5 1 . 
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5.6 Signal-to-Noise Ratio Maximisation 

5.6.1 Introduction 

Noise is an inevitable problem in a real camera system and it will clearly degrade the 

accuracy of a depth map created using DFD. Horii [5] criticised Ens and Lawrence's 

matrix-based approach because he believed that the technique is very dependent on the 

signal-to-noise ratio (SNR). One of the ways to reduce noise is to smooth the images, 

using a Gaussian kernel for example, but the extra smoothing increases the effective 

defocus, reduces the depth localisation and further reduces the crucial brightness varia

tions that allow defocus measurements. 

In this section, an additive model of the complete DFD system noise is proposed and 

then a solution is found to the problem of maximising the SNR through colour mixing 

based on finding the variance of the texture and the noise. The formulation is in keeping 

with the other algorithms developed and thus allows a more direct comparison. Further, 

the widely understood measure of the SNR using the ratio of the signal to noise variance is 

simple to compute. 

5.6.2 Theory 

The signal-to-noise ratio (SNR) is defined as [134] 

( 
Var[signal] ) 

SNR = 1010g1o V [ . ] dB ar nOIse 
(5.41) 

where Var[X] denotes the variance of a signal X. The noise-free monochrome image 

M(x, y) is formed from scaled versions of the RGB colour planes so that 

M(x, y) = a R(x, y) + f3 G(x, y) + y B(x, y) (5.42) 

and assuming additive noise then the colour mixed image is given by 

M(x, y) = a [R(x, y) + NR(x, y)] + ,B[ G(x, y) + NG(x, y)] + y[ B(x, y) + NB(x, y)] (5.43) 

where NR(x, y), NG(x, y) and NB(x, y) are the noise components for the red, green and 

blue planes respectively. The signal and noise terms can be split up to give 

M(x, y) = [a R(x, y) + ,B G(x, y) + y B(x, y)] + [a NR(x, y) + ,B NG(x, y) + y NB(x, y)] (5.44) 

and so the signal-to-noise ratio is given by 
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SNR = 1010g
10

( Var[a R(x, y) + f3 G(x, y) + y B(x, y)] ) dB 
Var[a NR(x, y) + f3 NG(x, y) + y NB(x, y)] . 

(5.45) 

If XI, ... , XN are random variables such that Var[X;] < 00 for all i = 1, ... , N and OJ are 

constants then 

var[t a, x,] = i if, V,r[X,] + 2 1::.z= a, ajCov[X" X j ] 

I-I 1=1 I<j 
(5.46) 

where Cov[X;, Xj] is the covariance of Xj and Xj [143]. 

Returning to the specific case of the colour mixing, the variance terms can be expanded 

to give 

Var[a R(x, y) + f3 G(x, y) + y B(x, y)] = ~ Var[R] + f32 Var[G] + 
r Var[B] + 2 (a f3 Cov[R, G] + a y Cov[R, B] + f3 y Cov[ G, BD. 

(5.47) 

Note that if a single monochrome image I is present with noise IN that scaling the 

image, using a constant a, cannot produce an improvement in the SNR as the scaling 

constants cancel, 

( 
Var[a I] ) ( a2 

Var[I] ) ( Var[1] ) 
SNR= 1Oiogio Var[aIN] = 1Oiogio a 2 Var[1N] = 10Iogio Var[1N] . (5.48) 

However, for an image composed of two or more colour planes it is possible to change the 

SNR by altering the proportions of each plane. 

5.6.3 Maximisation of the SNR 

The SNR assuming an additive noise model is given by (5.45) and closed-form solu

tions to the problem were sought, however, to no avail. One solution to the problem is to 

use a Genetic Algorithm to evolve the scaling coefficients (a, f3, y) to maximise the SNR, 

l.e. 

( 
Yarra R(x, y) + f3 G(x, y) + y B(x, y)] ) 

max 10 loglO --....:......-.....;,..,;=---.:....--..:....-~=---..:....---:-
(a.f3.y) Yarra NR(x, y) + f3 NG(x, y) + y NB(x, y)] 

subject to -I ::; a, {3, y::; I. 

(5.49) 

The optimum (a, f3, y) are scene-dependent, as can be seen by considering the case 

where the camera is imaging a surface that only produces a response in one colour plane, 

for example the red plane. In that case, the other two planes will only consist of noise, and 

in the example these will be the green and blue planes. The optimum (a, f3, y) = (1, 0, 0) 

in the example because using either the green or blue plane adds noise to the resulting 

monochrome image. Clearly, changing the surface colour such that it appears in a differ

ent colour plane will require a new set of (a, f3, y) 
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5.6.4 Conclusion 

The SNRs of the images are clearly an important factor for the accuracy of depth maps 

generated by a DFD algorithm. Averaging images taken by the camera will increase the 

SNR, but at the cost that the scene must remain constant, which is not a problem for static, 

experimental scenes. By using knowledge of the additive noise the SNR can be boosted 

through colour mixing. 

5.7 Fractal Dimension Maximisation 

5.7.1 Introduction 

In this section, the presence of texture will be shown to be vitally important for DFD. 

In Section 5.7.2, different methods of texture analysis are reviewed and then in Section 

5.7.3, the concept of fractal dimension is explored. The problem of measuring the fractal 

dimension is discussed in Section 5.7.4 before the colour mixing algorithm based on the 

fractal dimension is described in Section 5.7.5. 

Consider a surface I(x, y) perpendicular to the optical axis of a camera with a PSF 

hk(x, y). The defocused image ik(X, y) is given by 

h(x, y) = I(x, y) * hk(x, y) (5.50) 

and this can be written as 

(5.51) 

where infinite limits have been employed so that boundary effects can be ignored. 

Suppose the surface has a uniform radiance, i.e. no brightness variation, then 

I(x, y) = a where a is a real constant. The defocused image becomes 

(5.52) 

and for a non-light absorbing lens, the PSF has unit volume, thus 

[I: hk(X -~, y -1]) d~ d1] = 1. (5.53) 

Substituting (5.53) into (5.52) gives 

h(x, y) = a. (5.54) 
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As discussed in Section 5.2, Ens and Lawrence's algorithm searches for the convolution 

ratio h3(x, y) such that 

(5.55) 

For the uniform irradiance scene (5.55) becomes 

a*h3(x, y) = a (5.56) 

as ik(X, y) = a for k = 1, 2 from (5.54). Equation (5.56) can be written as 

a l:I.: h3(x -~, y -1]) d~ d1] = a (5.57) 

and since all convolution ratios h3(x, y) have a unit volume, then all convolution ratios 

satisfy (5.57), thus showing that the depth cannot be recovered when the surface being 

imaged has a uniform radiance. 

The presence of brightness variations is vitally important for the DFD algorithm to 

operate, and this is in fact true of all DFD algorithms. The brightness variation is called 

visual texture [144] and the next section examines different ways of analysing textures. 

5.7.2 Texture Analysis 

Introduction 

Texture is easily recognised by humans, but it is very difficult to define, as illustrated 

by the fact that there are many different definitions within literature [144]. Properties that 

have been used to describe textures include uniformity, density, coarseness, roughness, 

regularity, linearity, directionality, direction, frequency and phase [145]. The intensity 

variations in a scene are frequently due to the underlying physical process [144]. The 

rules and features that characterise a texture and local intensity variations of the associated 

pixels are known as texture features [146]. 

For any textured surface there is a scale at which the surface appears smooth and 

texture less and as the resolution increases it appears to have a fine texture and with a 

further increase of resolution it appears coarse [147]. Thus, the appearance of the texture 

depends on the scale of reference. 

The techniques of analysing textures can be divided into statistical, geometrical, model

based and signal processing methods [144] and a very brief review of each is presented 

below. 
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Statistical Methods 

A simple statistical approach to texture analysis describes regions using moments of the 

intensity histogram [148]. lulesz et al. [149] showed that the texture of a region cannot be 

characterised solely by first-order statistics. The spatial greylevel co-occurrence matrix 

(GLCM) analyses the texture based on the second-order statistics and it has become one of 

the most well-known and widely used measures [144]. The (i, j)th entry in the matrix Pd 

is number of times a pair of pixels in an image with grey levels of i and j appear that are 

separated by a distance d. It reveals information about the spatial distribution of the grey 

levels. For coarse textures the distribution changes by small amounts with distance, 

whereas fine textures produce larger changes with distance [147]. It must be evaluated for 

many different vectors d for a complete description, thus producing a lot of data. This 

problem has been addressed by Tou and Chang, who used an eigenvector approach to 

reduce the feature space [150]. From the GLCM various measures can be found, including 

entropy, contrast, correlation and homogeneity [147]. 

The autocorrelation function of an image reveals information about the regularity of the 

texture and its fineness or coarseness [144]. The autocorrelation function will decrease 

slowly for a coarse texture and quickly for a fine texture. If the texture primitives are 

spatially periodic then the autocorrelation function will show oscillations [147]. 

The spectral power density function assumes the texture primitives are sine and cosine 

waves. If the 2-D power spectrum is transformed to polar coordinates (r, ¢) then a peak in 

the angle ¢ indicates the direction of the texture and a peak in the radius r reveals that the 

texture has a blob-like constituency [147]. 

Edgeness per unit area was devised as a measure of the fineness or coarseness of a 

texture, depending on whether the texture has many or a few edges in a given area [147]. 

Geometrical Methods 

A texture can be considered to be composed of texture elements, or texels as they are 

sometimes known, which are a fundamental micro-structure component. Once the texture 

element has been identified then either the statistical properties of the placement or deter

ministic placement rules can be used for analysis [144]. 
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Model-Based Methods 

A model can be constructed of a homogeneous texture and then the parameters found 

for a given image and if the model of a texture is known, then it can be synthesised too. 

The autoregressive moving averager (ARMA) model seeks to filter noise with an infinite 

impulse response (UR) filter to match the texture. The optimum filter coefficients pro

duced are then used for texture analysis. A fine texture produces coefficients that vary 

widely, whereas the coefficients in a coarse texture are similar [147]. 

Markov random fields (MRFs) are based on the assumption that the intensity of a pixel 

is based on that of the surrounding pixels and they have been used extensively for model

ling textures [144]. Time series [151] and mosaic models [152] have also been explored. 

Many natural objects have a statistical self-similarity at different scales, where an 

object is composed of smaller copies of itself and a fern is a frequently quoted example. 

The fractal dimension (FD) gives a measure of the roughness of a surface and the larger 

the FD, the rougher the surface [144]. For image processing, it is not necessarily the 

surface roughness that is important, but instead the brightness variations that can be 

considered on a scale ranging from smooth to rough. Pentland [153] showed that most 

natural surfaces can be modelled as spatially isotropic fractals. Aerial photographs have 

been segmented successfully by thresholding the fractal dimension of regions [154]. 

Signal-Processing Methods 

It has been shown that the human visual system transforms the retinal image into a 

localised space-frequency representation [155]. The same analysis can be performed using 

the Gabor transform (which is a STFT with a Gaussian window) and wavelet transform 

techniques [144]. The feature vectors are computed by applying the desired transform and 

processing the resulting output. In a similar approach, Laws [156] convolved an image 

region with various kernels and then applied a non-linear operator to determine the tex

tural energy for a given mask. 
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Conclusion 

Having reviewed each of the texture measures, it was decided that the fractal dimension 

approach would be pursued for the colour mixing research. It was envisaged that natural 

textures would be used for testing the DFD algorithm, such as wood and rock, for which 

the fractal dimension is known to be a useful measure. Plastic and metal man-made 

objects have very little texture, especially if spray-painted, and thus natural textures appear 

to be more useful for DFD. The FD is also a simple measure in the sense of producing a 

single parameter, unlike the GLCM, ARMA and MRF approaches. 

5.7.3 Introduction to Fractals 

Euclid's monumental work Elements composed of 13 books and written about 300BC 

describes the geometry of simple objects through 465 propositions concerning geometry 

and number theory [157]. Three-dimensional Euclidean geometry is concerned with 

geometric shapes such as cubes, cones, cylinders and spheres. Observations of the real 

world reveal shapes that do not approximate these simple primitives as they possess much 

greater complexity. 

Mandelbrot coined the name/ractal in 1975 [158] and developed a branch ofmathemat

ics called/ractal geometry that is a non-Euclidean type of geometry. The central theme of 

fractal geometry is that nature exhibits the property of self-similarity. Fractals differ from 

Euclidean geometrical shapes in that they have a fractional dimension and they are self

similar. Deterministic fractals, such as the Koch snowflake, are generated using well

defined and non-random production rules and random fractals are described statistically 

[159]. The frond of the fern is a self-similar copy of the whole fern. For surfaces the 

fractal dimension Fs lies in the range 2 =:;; Fs =:;; 3 where Fs = 2 implies a smooth surface 

and Fs = 3 means that the surface is very rough. For a volume 3 =:;; Fv =:;; 4 and for a 

Euclidean shape F v = 3. Signals with different fractal dimensions, and thus different 

roughnesses, are illustrated in Figure 5.3. They were generated using the synthetic power 

spectrum generation technique. 
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Figure 5.3: Signals with FDs of 1 (top), 1.5 (middle) and 2 (bottom) 

Mandelbrot revealed the paradox that the length of a curve depends on the length of the 

measuring stick and thus the coastline of Britain is infinite in length in the limit [160]. 

Mandelbrot showed that mountains, clouds and turbulent water have a fractal form [161], 

but they exhibit self-similarity only [162]. The surfaces of solids are fractals at molecular 

level and the fractal dimension has been shown to be a way of differentiating and charac

terising metallic particles in electron microscope images [163]. Fractals have also been 

used to model rain fall fields [164], interpolate rough curves [165], characterise sea-floor 

topography [166] and model asteroid surfaces [167] to name just a few. 

One of the models of fractals is fractional Brownian motion (iBm). An ideal iBm 

signal has a power spectrum of the form 

P(kj ) = c Ik;l-P (5.58) 

where c is a constant, k j is the frequency component and f3 is the spectral exponent that is 

directly proportional to the Fourier fractal dimension DF given by 

5-f3 
DF = -2-' (5.59) 

In image processing fractals have found uses in lossy encoding of images and denoising 

[168] and further the diffraction properties of fractal apertures are currently being investi

gated [169]. 
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Whether nature can generally be modelled as a fractal possessing self-similarity to 

many orders of magnitude is in question, but the power law relationship is clearly useful 

[ 170]. 

5.7.4 Measurement of the Fractal Dimension 

There are a multitude of ways to measure the fractal dimension of an image and due to 

space only a couple can be elucidated here. The box-counting method requires a binary 

image, which is often the result of thresholding a monochrome image, with a grid layed 

over the top. The number of squares covered by the black parts of the image are counted. 

The grid size is then reduced and the process starts again [171]. 

In order to approximate an image as a mm model the two spatial coordinates (x, y) are 

collapsed to a radial component. Assuming the mm model using Equation (5.58) and an 

image with a power spectrum P(ki ) the constants f3 and c can be found using a least

squares fit given by 

and 

f3 = N i~ (In Pi) (In IkiD - (,~ In Ikil ) (i~ In Pi ) 

C~ In Ikil)' - N i~ (In IkiD' 

1 N f3 N 

C = N IlnPi + N Ilnlk;1 
;=1 i=1 

(5.60) 

(5.61) 

where it is assumed that Pi > 0 V i and k; > 0 V i and N is the number of elements in Pi 

[161]. The Fourier fractal dimension is then given by substituting the result of (5.60) into 

(5.59). 

Unfortunately, it was not discovered until the end of the research that the least squares 

fitting method is unstable in the presence of noise. Power and Tullis [172] reported that 

the higher frequency components are over-represented relative to the lower frequencies in 

the log-log plots [173]. Noise is more prominent than texture at the higher spatial features, 

especially with de focused images, thus exasperating the problem of over-representation. 

Dubuc et al. [174] stated that log-log plots rarely produce straight lines, thus increasing 

the instability in the least-squares fitting, and further the finite number of points makes it 

difficult to achieve a good fit. 
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5.7.5 Maximisation of the Fractal Dimension 

A textureless surface will have a constant intensity and thus a fractal dimension of 

Fs = 2 and with increasing roughness, the fractal dimension will increase towards Fs = 3. 

Depth-from-defocus algorithms require images that possess texture or appear 'rough' in 

terms of intensity variations. With a monochrome image the fractal dimension is fixed, 

but with an ROB colour image the fractal dimension can be changed by scaling the colour 

planes before addition. Thus, the problem becomes that of finding (a, /3, y) to maximise 

the fractal dimension, i.e. 

max FD[a R(x, y) + /3 G(x, y) + y B(x, y)] 
(a,{3,y) 

where FD[ .] is a function to measure the fractal dimension of an image. 

(5.62) 

There are more advanced techniques for measuring the fractal dimension assuming a 2-

D mm model [175], or using a fractal interpolation function [176], but the simple model is 

sufficient for giving a measure of the surface roughness. 

5.7.6 Conclusion 

The Fourier fractal dimension based on fractional Brownian motion is proposed as a 

measure of the roughness of the brightness variations of a texture. DFD algorithms rely on 

the presence of sufficient brightness variations from which to infer the level of defocus. A 

monochrome image has a fixed texture, but altering the colour planes allows the texture to 

be changed. It was hypothesised that maximising the fractal dimension through colour 

mixing would lead to improvements in the depth map. 

5.8 Localisation Through Colour Mixing 

5.S.1 Introduction 

Depth-from-defocus is an ill-posed problem due to noise, undersampling and degrada

tions in the optics of a camera. This section examines a measure of the ill-posedness 

through a measure known as the condition number of a matrix. The preliminary mathemat

ics are discussed before showing how the condition number relates to the error in determin

ing the convolution ratio in Ens and Lawrence's algorithm. The analysis then proceeds to 

show a particularly interesting feature of the optimum monochrome image. 
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A passive depth-from-defocus system relies on the scene possessing sufficient texture to 

accurately calculate the depth map and further the texture is unlikely to be known a priori 

unless the scene is tightly controlled. A data or slide projector can be used to paint the 

required texture onto a scene using photons. The use of a projected pattern has been 

employed for DFD before as Pentland et al. [76] and Ghita and Whelan [106] [107] 

projected alternating white and black stripes and Watanabe and Nayar [12] used a checker

board. Thus, monochrome patterns have been developed and this section examines 

whether there is an advantage to projecting a colour pattern. 

5.8.2 Preliminary Mathematics 

The definition of a norm II· II is a function that maps a complex vector space X to a real 

number, i.e. 11·11 : X ~ IR, and it has the properties [177] 

1. Positivity: 1Ief>11 ~ 0 

2. Definiteness: 1Ief>1I = 0 iff ef> = 0 

3. Homogeneity: lIa ef>1I = lalllef>1I where a is a constant and 1·1 denotes modulus 

4. Triangle inequality: lief> + 1/111 ::s; 1Ief>1I + 111/111 

The condition number of a matrix A is given by 

C(A) = IIAIIIIA -III (5.63) 

where A -I denotes the inverse of matrix A and the Holder matrix norm of matrix A is 

given by 

I 

IIAlip = (~ layY)P, 1::s; p ::s; 2 
I,) 

(5.64) 

where aij is the element of matrix A in the ith row and /h column. The Euclidean norm is 

equivalent to the Holder norm with a value p = 2, i.e. 

I 

IIAIi2 = (~ laijl2)T 
I,) 

(5.65) 

and it can be written as 

(5.66) 

where At denotes the conjugate transpose of A and Tr( .) is the trace of a matrix (i.e. the 

sum of the leading diagonal entries). 
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5.S.3 Condition Number Related to Depth-From-Defocus 

Introduction 

In the description of Ens and Lawrence's algorithm [58] [59] in Section 5.2 the best 

convolution ratio was determined using a lookup table of convolution ratios and an error 

measure. A different formulation was also given in their work using matrices where the 

convolution il (x, y) * h3(x, y) = i2(x, y) is written as 

(5.67) 

where II BT is the block-Toeplitz form of image I, h3S is the row-stacked version of 

h3(x, y) and izs is the row-stacked version of i2(x, y). A Toeplitz matrix is a diagonal 

constant matrix and a block-Toeplitz matrix is a matrix composed of Toeplitz sub-matri

ces. In the noise-free case h3 S can be obtained using 

h I-I. 3S = IBT I2S· (5.68) 

Therefore, using (5.68) the convolution ratio h3(x, y) is expressed as a stacked vector h3 S, 

but a matrix inverse of the block-Toeplitz version of image I is required. 

III-Posed Problem 

The requirement of a matrix inverse in (5.68) makes the problem ill-posed as small 

changes in the pixel intensities can lead to large changes in the inverse, and thus the 

resulting convolution ratio, and hence the calculated depth. 

Now consider the effect of perturbations in images I and 2, denoted c5I I BT and oi2 S, so 

that 

(5.69) 

It can be shown that the relative error in the convolution ratio is given by 

(5.70) 

and thus it can be seen that the condition number of the block-Toeplitz matrix form of 

image 1 C(II BT) is related to an upper bound on the relative error in the convolution ratio. 

The condition number of a matrix is a measure of its sensitivity or stability in the presence 

of small fluctuations. If C(II BT) ~ 1 then the system is well-conditioned, but if 

C(I I BT) » 1 then it is ill-conditioned [178]. 

If a monochrome image II BT is captured and then scaled by a constant A it will yield 

the image A I I BT and the condition number of the image is 
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C(A 1\ BT) = IIA 1\ BTIIII(A II BT )-111 (5.71) 

and as 

(5.72) 

then 

(5.73) 

The homogeneity property of the norm given in Section 5.8.2 means that 

(5.74) 

and thus shows that scaling a monochrome image will not lead to an improvement in the 

condition number. 

Suppose instead an ROB colour image is captured then the block-Toeplitz forms of the 

colour planes are denoted 1\ BTR , 1\ BTG and 1\ BT8 for the red, green and blue planes respec

tively. A monochrome image is formed from a weighted combination of the colour planes 

to give 

(5.75) 

then it is expected that changing the weights (a, [3, y) affects the condition number of the 

colour image. The analysis on scaling a monochrome image by A shows that the condition 

number is not dependent on the absolute values of (a, [3, y) but on their relative values. 

The problems encountered with the ill-posedness will not be significantly reduced by 

finding (a, {3, y) to 

min C(II BT) 
(a.fJ.y) 

(5.76) 

because the formulation does not account for the noise in the system and windowing 

effects, as shown by the following analysis. 

Analysis of the Effect of Noise on the Condition Number 

It was found through simulations that choosing (a, [3, y) to minimise the condition 

number produced worse results than using an equal weighting of the colour planes. The 

reason for this can be shown theoretically by considering a colour image where one plane 

is a noise-free signal (e.g. the red plane) and the other is composed only of noise (e.g. the 

blue plane). The remaining plane is unnecessary for the analysis. 

The condition number of a random matrix whose elements are independent and identi

cally distributed normal distribution random variables has been explored by Demmel 

[179], Edelman [180] and Chen and Dongarra [l81]. However, no literature could be 
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found on the condition number of a block-Toeplitz matrix that is formed from a random 

matrix. Further, the elements of the matrix must be rounded to simulate quantisation 

caused by the ADC in the camera, thus introducing non-linear effects. 

A numerical approach was sought and for a given mean and standard deviation of 

Gaussian noise, denoted N(/1, cr), the condition number of the resulting block-Toeplitz 

matrix was calculated. The condition number of a 5 x 5 image matrix was tested 15,000 

times with a specific realisation of noise N(/1, cr) and the mean condition number of the 

matrix is plotted in Figure 5.4. The reason a small image matrix was used is that for an 

n x n matrix the corresponding block-Toeplitz matrix is n2 x n2 and this matrix must be 

inverted in order to calculate the condition number. Thus, the time taken to perform the 

simulation increases rapidly with n. 

Where the condition number is not defined in Figure 5.4 it is because at least one of the 

condition numbers in the test was infinite, i.e. the matrix was singular to working precision. 
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Figure 5.4: The mean condition number as a function of N{j1, 0-) for a 5 x 5 image matrix 

Now consider the resulting monochrome image formed from scaling the red and blue 

colour planes Rand Busing 

M=aR+yB (5.77) 
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where matrix notation has been used for the image and a and yare the real scaling con

stants. The mean and variance of monochrome image matrix M are given by 

E[M] = a E[R] + y E[B] 

Var[M] = a2 Var[R] + YVar[B] + 2 a yCov[R, B] 

(5.78) 

(5.79) 

where E[X] and Var[X] denote the expectation and variance of the elements in matix X. 

The image texture (red plane) will be assumed to have a Gaussian brightness distribution 

and the noise (blue plane) will be assumed to be A WGN with a mean of zero, i.e. 

E[B] = O. Further, it is assumed that the image and noise are independent so that 

Cov[R, B] = O. Therefore, (5.78) and (5.79) reduce to 

E[M] = aE[R] 

Var[M] = a2 Var[R] + YVar[B]. 

(5.80) 

(5.81) 

It will also be assumed that Var[B] < Var[R] so that the SNR is greater than OdB, as can 

be seen from (5.41). 

From the numerical analysis shown in Figure 5.4 it can be seen that the condition 

number decreases (i.e. the problem becomes more well-posed) as the mean brightness of 

M increases and the standard deviation ""Var[M] decreases. Therefore, a high mean and 

a low variance are required. However, there is a conflict because if (a = 1, f3 = 0) then 

the mean and variance are both high and if (a = 0, f3 = 1) then the mean and variance are 

both low. 

The ideal case is (a = 1, f3 = 0) so that M is composed solely of signal, but if f3 *- 0 

then the signal will be corrupted with noise. The presence of noise will degrade the depth 

estimate and as minimising the condition number through colour mixing cannot guarantee 

a reduction in noise (due to the conflict) it is not suitable. 

Conclusion 

The matrix version of Ens and Lawrence's algorithm has been discussed and a measure 

of the stability of the result has been shown through the use of the condition number of the 

block-Toeplitz form of image 1. It was assumed that minimising the condition number of 

the block-Toeplitz form of image 1, thus making the problem more well-posed, would 

decrease the depth error. However, the analysis has shown that minimising the condition 

number can lead to a reduction in the SNR and thus an increase in the depth error. 

The theoretical analysis has revealed why colour mixing to minimise the condition 

number is not suitable for DFD as it can have the effect of increasing the noise in the 

system. However, it was instructive to examine the form of the monochrome image 1\ BT 

that gives the minimum condition number and this is the subject of the next section. 
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5.8.4 Monochrome Image with Minimum Condition Number 

A Genetic Algorithm was used to evolve the pixel intensities of a monochrome image 

such that the image in block-Toeplitz form possessed the lowest possible condition num-

ber. With sufficient generations it was found that the image was of the form 

1 0 0 0 

0 0 0 0 

1= 0 0 0 0 (5.82) 

0 0 0 0 

The particularly interesting feature of the image I is that it has good localisation, i.e. only 

one pixel has a non-zero value and so the PSF h3 s that results will only be due to that 

particular pixel. For that pixel the image overlap problem does not exist as it is not being 

affected by the intensity content due to surrounding pixels. This analysis lead to the idea 

of a projected colour pattern where the colours are carefully chosen to maximise the 

Localisation through Colour Mixing (LCM). In the look-up table approach it is not the 

first pixel that is most important, but instead the centre pixel. Thus, as an example the 

optimum 5 x 5 image region would be 

00000 

o 0 000 

1= 0 0 1 0 0 

00000 

o 0 000 

(5.83) 

This corresponds to the simplest and slowest method where a white dot or square is pro

jected onto the scene. The scene is imaged and then the depth is calculated using a DFD 

algorithm. In order to generate a complete depth map the white dot must be moved to the 

next pixel position and the process repeated. There is essentially no problem with localisa

tion with this method, but it is time consuming. Ideally, a colour pattern needs to be 

projected onto the scene and then colour mixing used to recover the required components 

due to the central pixel in a window. 
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5.8.5 The Pattern Development 

The purpose of a projected pattern is firstly to overcome a lack of texture, but also 

provide a texture that has the required properties. A bright pattern is likely to have a better 

signal-to-noise ratio than a dark pattern for given camera parameters and so reduce the 

effect of noise, but this is primarily a practical issue. One of the main problems with Ens 

and Lawrence's algorithm is that the equifocal assumption was applied in the derivation, 

where the depth is assumed to be constant within a window. This section considers the 

development of a projected pattern so that the contribution due to the centre pixel is 

maximised in relation to the other pixels in the window, thus producing better localisation. 

Consider the simple case of three colour pixels where the aim is to find the optimum 

scaling parameters (a, fl, y) such that the contribution in intensity due one of the pixels 

can be separated from the other two. For example, suppose one pixel is cyan, one is 

magenta and the other yellow, i.e. the three secondary colours. The three pixel, RGB 

image can be expressed in a matrix form as 

(5.84) 

where R;, G; and B; are the red, green and blue components of the jth pixel respectively. 

The matrix 'I' for the example using the secondary colours is given by 

(
0 1 1] 

'1'= 1 0 1 

1 1 0 

(5.85) 

as cyan is composed of green and blue, magenta is composed of red and blue and yellow is 

a combination of red and green. It has been assumed that equal weightings of the prima

ries occurred, although this is not necessary. 

Let the vector m denote the required monochrome brightness pattern. If the problem is 

to extract the content due to the middle pixel (i.e. j = 2) then the vector takes the form 

m=U} (5.86) 

The problem then becomes that of finding the optimum scaling vector s = Ca, {3, y)T such 

that 

(5.87) 
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and so a solution to 

'l's=m (5.88) 

must be found for s. If 'I' is square (Le. it represents exactly three colour pixels) then the 

optimum scaling constants (a, f3, y) are found simply from 

(5.89) 

For the example, 

(
a) (0 1 1)-1(0) f3=101 1 

y 1 1 0 0 
(5.90) 

and it can be shown that a = i ' f3 = - i ' y = t as 

(5.91) 

The inverse of the square matrix 'I' exists if and only if the determinant is not zero. The 

determinant is zero if two or more rows (and thus columns) are linearly dependent and this 

occurs if two pixels have the same colour (Le. hue and saturation) but possibly different 

brightnesses. 

When there are more than three pixels the pseudo-inverse must be employed as the 

matrix 'I' is not square. The Moore-Penrose matrix inverse '1'+ of a matrix 'I' has the 

desirable property that s = '1'+ m is the shortest length least squares solution to the prob

lem 'l's = m. The Moore-Penrose pseudo-inverse is given by [182] 

(5.92) 

where 'l'T represents the transpose of 'I' . 

Consider the problem of finding the optimum scaling constants (a, f3, y) to extract the 

;th pixel from the colour image with N ROB pixels in a least squares sense. It can be 

written explicitly as 

RI GI BI 0 
R2 G2 B2 0 

R;_I G;_I B;_I (~); 0 
R; G; B; 1 (5.93) 

R;+I G;+I B;+I 0 

RN GN BN 0 
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where R;, B; and G; are the red, green and blue intensities of the jth pixel respectively. 

This approach has been named Localisation through Colour Mixing (LCM) as it is a 

method of localising the content of an image segment using colour mixtures. 

Nayar et al. [91] [12] showed that were two optimum projected patterns for their formu

lation of DFD: a checkerboard pattern composed of black-and-white squares that were the 

same size as the pixels and exactly aligned to the CCD; the other being a checkerboard 

with squares twice as big as the sensor's pixels, but with a phase shift of half a pixel. In 

order to use the pattern for DFD it must be projected onto a scene such that one pixel of 

the pattern corresponds to one pixel on the CCD. This can be achieved using a telecentric 

projector [10] [12] [13]. 

As a theoretical analysis could not be performed, it was assumed that the coloured 

pattern would consist of squares that occupy one pixel and an optimisation was used to 

choose the colours of the squares. The choice of the colour pattern determines how well a 

particular pixel can be extracted from the others and the next section considers an evolu

tionary algorithm approach to finding the pattern. 

Appendix F highlights the importance of taking depth discontinuities into consideration. 

When an image window straddles two objects at different depths, the depth returned was 

found experimentally be that due to the closer object. If the centre of the window is on the 

closer object then it is not a problem, however, if the situation is reversed, the depth error 

can be significant. Depth discontinuities in the form of occluding steps were analysed by 

Asada et al. [183] assuming geometrical optics and constant intensity regions. Despite 

simple assumptions, their work showed that the brightness transition of a blurred occlud

ing edge is the same as would be produced by a surface edge (i.e. a brightness edge) on the 

occluding object, provided the brightness of the occluding surface is uniform. Thus, the 

edge appears to be due to the occluding surface and not the occluded surface. Since the 

step closer to the camera is the occluding step, the depth returned (which is found by 

examining the brightness transition) is due to that and not the occluded step, i.e. the one 

further from the camera. 

LCM should help to reduce the depth error around step discontinuities by removing 

some of the intensity contribution due to the occluding or occluded region as required. 

5.8.6 The Genetic Algorithm to Optimise the Projected Pattern 

Consider the colour image in matrix form and denoted 'I' and composed of N RGB 

pixels. Suppose the required monochrome image is denoted m and so the scaling con

stants (a, /3, y) are given by 

135 



s = '1'+ rn (5.94) 

and the actual monochrome image rna fonned using scaling s is given by 

rna = 'I' s = 'I' '1'+ rn (5.95) 

and generally rna "* rn. The mean squared error for the particular pattern is given by 

1 T 
e = N (rn - rna) (m - rna) . (5.96) 

Now suppose the vector rni is composed of all zeros except for an entry of value one. For 

test i the unit entry would appear at index i. For example, if the image is composed of six 

pixels and i = 2 then 

rn2 = (0, 1,0,0,0,0). 

The overall mean squared error E for testing all N combinations is given by 

1 N 
E = - ~ (rn· - rn· ) (rn· - rn. )T N L...J 1 la 1 la 

i=1 

where rnia is the actual monochrome image. 

(5.97) 

(5.98) 

The resolution of a typical image employed for DFD is 640 x 480 giving a total of 

307,200 colour pixels and clearly it would be quite a task to ensure the MSE is approxi

mately the same for all pixels. The implementation of Ens and Lawrence's algorithm 

employs a 32 x 32 window that is moved in the required increments in the x and y direc

tions. By tiling the pattern as shown in Figure 5.5 it can be seen that the same colour 

pixels are presented to the window, but not necessarily in the same order. Thus, the 

problem reduces to finding a total of 1024 colour pixels for a 32 x 32 window. In the 

example presented in Figure 5.5 with an image size of 6 x 6 and a window size of 3 x 3 

only 9 different colours are required. 

,-----.----- .. ----r --- .. ----..,-----, 
: 1 : 2 : 3 : 1 : 2 : 3 : 
I I I I I I , 

r·4T·5··r-~-T ~--r-~-T6'1 . . . Io. ___ ,j ___ -' _____ "- ___ L. ___ " _._ .. 

: 7 : 8 : 9 : 7 : 8 : 9 : I I , , • , I 

~----t--- ~----~- ---:-----~ ---~ 

:1:2:3:1:2:3: 
~----~--- ~-----:-----~----~ ---~ :4:5:6:4:5 :6: 
, t I I I I I .. ---- •. _- ... ---..,-----.. ---- .. _we, 
:7:8:9:7:8:9: 
~ - - - - ~ - - - -; - - - - ~- - - - -~ - - - - ~ - - - - ! 

Figure 5.5: The 3 x 3 tiled pattern where each number represents a distinct colour 

A Genetic Algorithm was written to find an optimum pattern composed of 1024 pixels 

such that each pixel could be extracted from the others by applying colour mixing using 

the pseudo-inverse in a least squares sense. It was noticeable that the objective value 

changed little from one generation to the next, suggesting that the random pattern at the 

start of the evolution was near optimum. 
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Figure 5.6: Objective value (the MSE) as a function of the generation number 

The reason that there was only a limited improvements in the optimisation was believed 

to be due to the fact that once the matrix 'I' reached full-rank, which in this case is 3, the 

last N - 3 rows are linearly dependent on the first 3 rows. Thus, the optimum pattern is a 

randomly coloured checkerboard pattern. 

Watanabe and Nayar [81] used a 7 x 7 window and Favaro and Soatto [94] used 7 x 7 

and 9 x 9 and with fewer colour pixels to choose the MSE is lower. 

5.8.7 Conclusion 

The optimum monochrome image from the perspective of analysis based on the condi

tion number showed that the image has very good localisation properties. Localisation 

reduces the edge effect and the image overlap problem and thus should help to produce 

more accurate depth maps. The projected pattern evolved using the GA ensures that there 

is sufficient texture present and the colours in the texture were chosen to maximise the 

localisation properties. Note that the assumption was that the colour pattern would be 

projected onto white (or grey) surfaces. Coloured surfaces would pose a problem because 

they only reflect their own colour. 
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5.9 Conclusion 

A derivation of Ens and Lawrence's algorithm based on searching for the depth using a 

look-up table of convolution ratios has been discussed. Only in noise-free simulations will 

an entry in the look-up table give i) (x, y)*h3(x, y) = i2(x, y) and so an error measure must 

be employed. Ens and Lawrence chose to use the sum of the L2 -norms and Chapter 6 

presents results using the total-variation and the I-divergence measures. 

The concept of forming linear combinations of the red, green and blue colour planes 

captured by a colour camera was presented and shown to be an approximation to using a 

physical colour filter, but with the advantage that the filter does not need to be known a 

priori. The basis of the research from the initial Genetic Algorithm idea was discussed 

and an example to show the merit of colour mixing given. 

The use of the GA with a known depth is not a practical solution, but merely a research 

tool. Deterministic algorithms were presented where each was designed with a particular 

DFD problem in mind. PCA is a standard technique to use on colour images and it has the 

desired property of producing decorrelated image planes with decreasing levels of vari

ance. The maximisation of the fractal dimension was designed to ensure sufficient texture. 

The maximisation of the SNR was designed to reduce the effect of noise and it was based 

on an additive noise model. 

The minimisation of the condition number of the block-Toeplitz matrix form of image 1 

was presented for academic interest, but clearly the approach is not expedient for practical 

colour mixing for DFD. However, it seeded the idea of colour mixing with a projected 

pattern. The Localisation through Colour Mixing (LCM) algorithm was designed to 

reduce the windowing effect and thus should perform better than the monochrome case 

when the object is very de focused or there is a depth discontinuity. 

Texture 

PCA 

Maximisation of Fractal 
Dimension 

Table 5.1. Summary of algorithms developed 

Signal-to-Noise Ratio 

Maximisation of SNR 

138 

Windowing effect 

Localisation through Colour 
Mixing 



Chapter 6 

The Results of Colour Depth-From-

Defocus 

6.1 Introduction 

The main goal of most non-volumetric 3D imaging systems is to produce depth maps 

that give an estimate of the depth of points in the scene from the camera. The more accu

rate and reliable the depth map, the more useful the system is for its intended application. 

Previous work on DFD was based on monochrome images and Chapter 5 presented possi

ble ways to improve the depth maps by using a colour camera and a linear combination of 

colour planes to give an optimum monochrome image. This chapter examines their effec

tiveness as a pre-processing stage for Ens and Lawrence's [58] [59] depth-from-defocus 

algorithm. There are many variables in a DFD system including: 

• Camera parameters used (e.g. the two different f-numbers employed) 

• Distance between the camera and the object 

• Orientation of the object relative to the optical axis 

• Textural and colour properties of the object 

• Noise properties of the camera 

One of the problems of empirically testing the algorithms is that it is very difficult to 

conclusively show their effectiveness as it depends on all of the factors listed above and so 

simulations were perfonned to ensure tightly controlled experiments. Ens and Lawrence's 

algorithm was based on the assumption that the depth is constant within a window and so 

one of the first tests of the algorithms was with planes perpendicular to the camera. 

In Section 6.2 the MATLAB implementation of the DFD algorithm and the pre-process

ing stage are discussed. The image window size and the size of the convolution ratio are 

examined through experiments using a checkerboard. The initial results of the research 

using a Genetic Algorithm that evolves the optimum scaling constants (a, {3, y) for a 
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known depth map are presented in Section 6.3 along with an analysis in the presence of 

noise. The next sections each consider a pre-processing algorithm developed in tum. 

Principal Component Analysis (peA) was employed and the results are given in Section 

6.4. The presence of noise is clearly inevitable in any real imaging system and Section 6.5 

presents results of using colour mixing to maximise the signal-to-noise ratio (SNR). The 

fractal dimension (FD) of a texture gives a measure of its roughness and an optimisation 

algorithm was written to maximise the FD using colour mixing, before the resultant 

monochrome image was applied to the DFD algorithm. The results are given in Section 

6.6. The Localisation through Colour Mixing (LeM) was designed to alleviate some of 

the problems caused by windowing and the image overlap problem and the simulation 

results are examined in Section 6.7. Finally in Section 6.8 the results are summarised and 

conclusions drawn. 

6.2 Implementation and Initialisation 

6.2.1 Introduction 

This section discusses the implementation of the DFD algorithm and the tests that were 

performed before the colour mixing aspect could be examined. 

6.2.2 Software Implementation 

The DFD algorithm was implemented in MATLAB as it provides many useful digital 

image processing functions and although it ran slower than an implementation would in e, 

it made debugging and prototyping faster and easier. A lot of the optimisation algorithms 

were based on a Genetic Algorithm using the Genetic Algorithm Toolbox for MATLAB 

written at the University of Sheffield. 

6.2.3 Simulation of Defocused Images 

The point spread function data for the 24mm Sigma photographic lens was vital for the 

generation of the required convolution ratios, but it also meant that simulated defocused 

images could be created. The impetus for doing simulations was that the experiments 

could be very carefully controlled and the depth maps known exactly. A focused scene 

I(x, y) can be defocus blurred using a spatially-varying kernel hex, y, ~,7]) to give a 

defocused image ik(X, y) using 
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(6.1) 

where hex, y,~, 17) represents the blurring at position (x, y) as a result of the point (~, 17). 

The discrete approximation is given by 

M-l N-l 

ik(X, y) = I I f(~, 17) hex, y, ~, 17) (6.2) 
{=o '1=0 

where the image is of size M x N. Equation (6.2) was implemented in MA TLAB to 

produce simulated de focused images with only quantisation noise present. 

6.2.4 Error Measurements and Optimum Window Size 

In order to calculate the depth of a point in the scene two images are taken and then a 

window applied centred on the point of interest. The size of the window is important 

because if it is too small there is insufficient information and if it is too large the depth 

returned will be dependent on the surrounding areas too (and this is discussed in Section 

6.2.11). A similar consideration concerns the convolution ratio lookup table that consists 

of pre-computed Gaussian functions with the required standard deviations. Near the focus 

position the Gaussian PSFs have a small spread and consequently so does the convolution 

ratio as shown in Figure 6.1. As the distance increases the relative spread of the PSFs 

increases and so does the support of the convolution ratio. If the support remains the same 

then the measure 

(6.3) 
X,Y X,Y 

can be used, which is that used by Ens and Lawrence. If the support of the Gaussian 

convolution ratio kernel changes with size then the error measure must be normalised to 

glve 

e = ~ I (i;(x, y) - iz(x, y»)Z (6.4) 
X,Y 

where N is the number of elements in iz(x, y) and thus fz(x, y) too. 
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6.2.5 Generation of the Convolution Ratios 

The accuracy of the depth maps are highly dependent on the precision of the PSFs. 

Chapters 3 presented improvements in finding the PSFs and results of using the 16mrn 

video lens and the 24mm Sigma lens were given. Due to the presence of aberrations in the 

video lens, it was decided that the 24mm lens would be used for the DFD experiments. 

Out of all the PSF shapes tested, the step in intensity with non-uniform illumination and a 

Generalised Gaussian model of the PSF fitted the ESFs better, but the problem then came 

to accurately determine the convolution ratios. 

No closed form solution could be found that linked the Generalised Gaussian PSFs of 

cameras 1 and 2, denoted hI (x, y) and h2(x, y), to the convolution ratio h3(x, y) such that 

(6.5) 

and so a GA was written to evolve the convolution ratio. Unfortunately, the results were 

not consistent and coupled with the obvious lack of precision in determining the power of 

the Generalised Gaussian it was decided that the simpler Gaussian model would be used. 

The relation between the standard deviations of the PSFs for cameras 1 and 2 and the 

convolution ratio h3(x, y) is discussed in Appendix D. Thus, in all the DFD results pre

sented in this and the following chapter, Gaussian PSFs have been assumed and not the 

Generalised Gaussian PSFs. 

The two defocused images required for DFD must be captured with different intrinsic 

camera parameters, which are the f-number, focal length and the focus position (i.e. the 

lens to CCD distance), as discussed in Section 1.1.2. DFD algorithms are reported to be 

less sensitive to depth variations when changing the aperture alone compared to changing 

the focus position, however, it avoids magnification effects [74]. Further, the lens was 

moved manually and it was easier to consistently set the f-number compared to changing 

the focus position. 

The standard deviation of the Gaussian convolution ratio for the 24mrn Sigma photo

graphic lens for three aperture combinations are shown in Figure 6.1. The DFD system 

required two images to be taken with two different apertures and they are referred to as fi 
and h respectively. The smaller the aperture (and thus the larger the f-number) the more 

focused the image. The algorithm developed by Ens and Lawrence requires fi > h and if 

fi = h then there is no relative defocus and so no depth information. 
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Figure 6.1: The convolution ratios for the 24mm Sigma photographic lens 

The standard deviations of the Gaussian convolution ratios are fairly linear with depth, 

but the maximum object range must be limited to about O.7m due to the non-monotonic 

nature using aperture combinations of (ji = 4, h = 2.8). The aperture combination 

(fi = 5.6, h = 2.8) has the largest standard deviation because it has the biggest difference 

in aperture sizes. 

There are slight differences in the x and y directions as indicated by Figure 6.1, but the 

effect is much less pronounced than if the video lens was used. The fact that the standard 

deviations are smooth and that for all aperture combinations the spread is consistently 

larger in the y direction than the x direction suggests that the effect cannot be attributed to 

camera noise. The pixels of the CCD in the Basler A631 fc colour camera were square and 

so it was expected that the PSF would be circularly symmetric. Lens imperfections were 

believed to cause the slight deviations from circular symmetry. 

Ens and Lawrence [58] [59] used the sum of the L2 -norm as a measure of the error 

between the actual defocused image i2(X, y) and the approximation iz(x, y) formed by 

blurring the first defocused image using a possible convolution ratio h3 (x, y), given by 

12(x, y) = il (x, y) * h3(x, y). As discussed in Section 5.2.2 this is not the only error mea

sure and it was decided that two others would be tested, namely the sum of the LI -norm, 

known as total variation and given by 
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G = I li;(x, y) - i2(X, y)1 
X,Y 

(6.6) 

and the Kullbach's information-divergence [133], given by 

(6.7) 

Various combinations of the image and convolution ratio window sizes had to be tested 

as it could not be assumed that they are independent. 

6.2.6 Speed Improvement 

In Ens and Lawrence's implementation of the lookup table approach every convolution 

ratio had to be tested to find the one that produces the minimum error. A plot of the error 

G versus depth is fairly smooth, as shown in Figure 6.2, but no derivative could be found. 

In order to improve the speed of the algorithm, 19 equally spaced positions of the possible 

314 were tested and then every position within the region between the three that gave the 

lowest error were tested. This crude improvement reduced the time taken to calculate the 

depth by a third. 
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Figure 6.2: The squared error versus depth 
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Although the execution time was not an issue - as the primary interest of the research 

was not developing a real-time DFD algorithm, but instead a colour DFD algorithm - the 

speed improvement meant that three times the number of simulations could be performed 

in a given time. 

6.2.7 Post-Processing Algorithm 

The block shift-variant algorithm devised by Rajagopalan and Chaudhuri [92] imposed 

restrictions on the depth map to ensure smoothness whereas Pentland's [76] algorithm 

used wavelet regularisation as a post-processing step. The formulation of Ens and 

Lawrence's [59] algorithm requires a post-processing step to reduce noise in the depth 

map and so a moving 3 x 3 median filter window was employed. The small kernel ensures 

the depth map is not excessively smoothed. 

6.2.8 Depth Map Error Measures 

In comparing the depth maps it is instructive to have some statistics that can be used for 

analysis. The error e(x, y) in the depth map is defined as 

e(x, y) = z(x, y) - z(x, y) (6.8) 

where z(x, y) is the depth map produced by the DFD algorithm and z(x, y) is the actual 

depth map, both of which are of size M x N. The mean depth error"& is then given by 

M-l N-l 

"&= ~ N I Ie(x, y) 
x=o y=o 

(6.9) 

and if, for example, the mean depth is positive then the DFD algorithm has over-estimated 

the depth on average. The variance of the error is given by 

M-IN-l 

cr- = ~ N I I (e(x, y) - "&)2 
x=o y=o 

(6.10) 

and it gives a measure of the spread of the error. Often in DFD papers the Mean Square 

Error (MSE) is quoted and it is a measure of the goodness of fit of the depth map z(x, y) 

produced using DFD to the actual, known depth map z(x, y). It is defined as 

M-IN-l 

MSE = MIN I I~(x, y). 
x=o y=o 

(6.11 ) 
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6.2.9 Number of images required for averaging 

A random coloured texture was pasted to a slope that had a minimum distance of 

0.440m and a maximum distance of O.524m from the camera. One hundred and twenty

eight images were taken of the scene for a given aperture setting and then the depth error 

using the PCA and monochrome algorithms was calculated where 1, 2,4, 8, 16,32,64 and 

128 images were averaged. The MSE followed the YN / N model fairly well as 

expected, as shown in Figure 6.3 where the apertures employed were fl5.6 and f/2.8. 
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Figure 6.3: MSE as a function of the number of images averaged using fl5.6 and fl2.8 

The law of diminishing returns is clearly active in the averaging and so only about 8 

images need to averaged in practice. The median filtering has clearly reduced the MSE for 

the monochrome and PCA algorithms and this is discussed in more details in the later 

sections. 
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6.2.10 Checkerboard Results 

Images of a checkerboard pattern perpendicular to the camera's optical aXIS were 

obtained using the Basler A631 fc colour camera and the 24mm Sigma photographic lens 

for a range of depths with three different apertures: f/2.8; f/4; and f/5.6. The images were 

processed using the MATLAB-based implementation developed and results presented in 

Appendix D show the mean and standard deviation of the recovered depth as a function of 

the width of the image window and the width of the convolution ratio window for the 

three different error measures discussed, namely the sum of the L\ - and L2 -norms and the 

Information-Divergence. It was found that the L2 -norm, as used by Ens and Lawrence 

[58] [59], performed better than both the L\ -norm and the I-Divergence, where the latter 

was particularly sensitive to the relative scaling between the images and noise. 

It was found that a 64 x 64 image window produced depth maps that were smoother, i.e. 

had a lower variance of depth error, but with the consequence of poorer localisation and 

longer processing times. For a 32 x 32 image window, a fixed convolution ratio window 

size of 21 x 21 produced much better results than allowing the convolution ratio to vary. 

Of the three different possible aperture combinations, using (ji = 4, h = 2.8) produced 

much worse results. This was believed to be due to the significant blurring in both images 

causing a severe reduction in the information content and increasing the image overlap 

problem. 

6.2.11 Localisation Analysis 

Introduction 

If the de focused images are not windowed, i.e. the entire of each image is used, then the 

DFD algorithm will return a single depth estimate. If the image is windowed to give four 

non-overlapping regions then four depth estimates will be found, thus increasing the depth 

localisation. A single pixel of the image in contrast does not give any defocus informa

tion. Thus, there is an optimum window size somewhere between the two extremes. This 

section examines the effect of window size on the depth localisation. 

Watanabe and Nayar [81] designed their algorithm to have as small a window size as 

possible for their algorithm because they knew a small kernel size leads to a depth map 

with a high spatial resolution. However, they recognised that the uncertainty principle 

meant that the frequency resolution decreases proportional to the inverse kernel size used. 
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Experiments 

A randomly coloured checkerboard pattern with 5 x 5 pixel squares was texture mapped 

onto a steps scene with 10 steps equally spanning the depth range 0.42m to O.62m. The 

actual depth map is shown in Figure 6.4. The scene was then defocus blurred to simulate 

being taken by a colour camera with apertures offl5.6 and f/2.8. 
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Figure 6.4: Actual depth map of the steps ranging from 0.42m to O.62m 

The resulting defocused images were corrupted with AWGN to give the required SNR 

and then they were converted to monochrome using an equal weighting of the colour 

planes. The noisy images were subsequently processed by the implementation of Ens and 

Lawrence's DFD algorithm incorporating the experimental PSF measurements. The MSE, 

mean and variance of the depth map were then calculated. For each SNR, five tests were 

performed with different realisations of the noise process and then the mean of the mea

sures were recorded. The results of the analysis are presented in Table 6.1. 

Table 6.1. Localisation results without and with (in brackets) median filtering 

Window Size 

I pixels 

32x32 

SNR 

IdB 

40 

30 

20 

40 

30 

20 

MSE 

110-4 m2 

4.49 (2.03) 

4.69 (2.13) 

6.14 (2.83) 

0.996 (0.940) 

0.996 (0.939) 

1.02 (0.957) 
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Mean Variance 

110-4 m 110-4 m2 

4.77 (5.84) 4.49 (2.03) 

4.85 (5.38) 4.69 (2.12) 

4.85 (2.57) 6.14 (2.83) 

-9.60 (-10.2) 0.987 (0.929) 

-9.68 (-10.3) 0.986 (0.929) 

-9.57 (-0.102) 1.01 (0.946) 



The ratio of the MSEs for SNRs of 20dB to 40dB is 1.37 and 1.02 for window sizes of 

32 x 32 and 64 x 64 respectively, thus showing that a larger window is less sensitive to 

noise. It is instructive to compare the depth maps shown in Figure 6.5. Although the MSE 

is lower for a 64 x 64 window compared to a 32 x 32 window (for all SNRs tested), the 

shape of the scene has clearly been lost. 
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Figure 6.5: Depth maps produced by a 32 x 32 window (left) and a 64 x 64 window (right) for an SNR of 40dB 

A step discontinuity is known to be the worst case depth profile and so a square wave 

depth map was set up with alternating strips of width 6 = 48 pixels and the actual depth 

map is shown in Figure 6.6. The MSE is a function of the depth of each side of the step, 

but for the purposes of simulation, depths of 0.42m and 0.50m were used. The result 

produced using a 32 x 32 window has a much lower MSE of 0.770 compared to 2.72 for a 

64 x 64 window, shown in Figure 6.7. 
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Figure 6.6: Actual depth map (left) and the result produced using a 32 x 32 window (right) 
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Figure 6.7: Depth map produced using a 64 x 64 window 

In this experiment, no noise was added and the result using the 64 x 64 window was 

much worse than that produced using a 32 x 32 window. It was attributed to the fact that 

the 64 X 64 window was larger than the width of the constant depth region, thus the win

dow straddles at least one, if not two, depth discontinuities. 

In a further test, a square wave depth map was used where the depth alternated with 

strips of width 6 pixels where 6 = 2n and n = 0, 1, 2, ... , 8. The depth maps were pro

cessed using a 32 x 32 window and Figures 6.8 and 6.9 show the MSE, mean and variance 

of the depth map as a function of 6. A total of 10,980 depth estimates using a pair of 

defocused images were calculated for a given 6 to ensure a good estimate and only quanti

sation noise was present. 

3.5 

3 

N 2.5 
E 
u:; 2 
rJ) 

~ 
1.5 

0.5 

0 
0 

---
50 100 150 

5 \ pixels 

...... ,. 

- -
200 250 

-0.01 

E -g -0.02 
Q) 

.J::. 
0. 
Q) 

~ -0.03 
IV 
Q) 

~ 

.................. . . 

-0.04 ...................... . 

-0.05 0L.._-
S 

..... 
0
--

1 
0 ..... 0-.-15'-0--2-'0-0---:2~50 

5 \ pixels 

Figure 6.8: The MSE (left) and mean depth error (right) as a function of 6 with (solid) and without (dashed) 

median filtering 
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Figure 6.9: The variance of the depth error as a function of c5 with (solid) and without (dashed) median filtering 

As 6 increases, there are less step discontinuities in the image and the image approxi

mates a plane better. Ens and Lawrence's algorithm was based on the assumption that the 

depth in a window is constant and thus it was expected that the MSE would decrease with 

increasing 6 as there are larger constant depth regions. 

Generally the mean depth error approached zero as the scene became more like a plane 

with increasing 6. As discussed in Section 5.2.1, the depth is under-estimated if there is 

texture content due to closer objects in a window that is occluding the further depth object 

(which is required). As 6 increases, this happens less often, thus reducing the mean error 

as expected. 

Conclusion 

A complete analysis of the trade-off between localisation and window size would need 

to take into account the depth discontinuities or depth profile, the texture of the surfaces, 

the camera parameters, the window size and the SNR. The analysis presented here has 

shown that if there are few depth discontinuities that a large window can be used to give 

robustness to noise. However, if there are lots of depth discontinuities then a small win

dow could be used to recover the fine depth structure, but at the cost of poor SNR. Thus, 

the optimum window size will depend on the particular application that the DFD system is 

being used for, the likely range required and the type of objects in the scene. 
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6.2.12 Conclusion 

The MA TLAB implementation has been discussed along with the equation used to 

create simulated defocused images. A simple speed improvement has been shown. A verag

ing images captured by the camera reduces additive noise and for the conditions used 

about 8 images are required. Median filtering the depth maps produced by the DFD 

algorithm has been discussed and shown to decrease the noise in the output of the system. 

The results show that the optimum aperture combination is either (ji = 5.6, fz = 2.8) or 

(It = 5.6, fz = 4). The optimum error measure was found to be that used by Ens and 

Lawrence, namely the L2 -norm. To ensure good localisation and reasonable execution 

times the 32 x 32 image window was chosen and the fixed convolution ratio window of 

21 x 21 pixels was found to perform better than a variable window. With the DFD algo

rithm set up the next sections examine each of the colour mixing algorithms. 

6.3 Colour Mixing using a Genetic Algorithm with a 

Known Depth 

6.3.1 Introduction 

The research on colour DFD has examined whether there is an optimum combination of 

colour plane weightings (a, /3, y) such that the resulting monochrome image produces 

better depth estimates than simply using ( ~, ~, +). The research began with experiments 

using a GA with a known depth map to discover if there are optimum weights (a, /3, y) 

that could be evolved to reduce the depth map error produced by the DFD algorithm. 

6.3.2 Practical Results 

The colour checkerboard was pasted to a slope and imaged with the Basler A631 fc 

colour camera using the 24mm Sigma photographic lens and apertures of f/5.6 and f/2.8. 

The slope had a depth that ranged from 0.440m to O.520m and the statistics of the results 

are presented in Table 6.2. The depth maps after smoothing using a median filtering are 

presented in Figures 6.10 and 6.11. 
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Table 6.2. Results for GA with a known depth 

Without Median Filtering With Median Filtering 

Algorithm 
MSE Mean Variance MSE Mean Variance 
/10-3 m2 /1O-3m /10-3 m2 /10-3 m2 /1O-3m /10-3 m2 

Mono 0.528 -3.98 0.512 0.208 -4.92 0.183 

peA 0.327 -0.168 0.327 0.112 -0.645 0.112 

GA 0.0159 -0.634 0.0155 0.00372 -0.275 0.00364 
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Figure 6.10: The actual depth map (left) and the result using the monochrome algorithm (right) 
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Figure 6.11 : The depth map using peA (left) and the GA with a known depth (right) 

It can be readily seen that the GA has successfully managed to find the optimum scaling 

parameters (a, /3, y) to reduce the depth error and the MSE is 33 times lower than that 

using the monochrome case, i.e. where a = /3 = y = t, and 21 times lower than using 

PCA. The results of the monochrome and PCA algorithms have been given for compari-
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son purposes and will be discussed in the following sections. In order to understand how 

the GA has produced such good results simulations were performed. 

6.3.3 Simulated Results 

An experiment was designed to illustrate the effect of the image noise and in particular 

how the GA can use the noise to improve the depth maps. A colour checkerboard pattern 

with randomly coloured 5 x 5 pixel squares was defocused using Equation (6.2) to simu

late the texture being pasted to a plane at a depth of 0.520m. The GA requires the actual 

depth and in the first experiments the GA was given the depth of 0.520m. Each plane of 

the defocused images was independently corrupted with Additive White Gaussian Noise 

(A WGN) to give SNRs of 20, 30 and 40dB. The MSE of the recovered depth maps using 

the GA and the monochrome algorithm are given in Figure 6.12 and the mean depth errors 

are given in Figure 6.13. At a depth of 0.520m and an SNR of 20dB it is particularly 

noticeable that the MSE was better using the GA compared to the equal weighting case 

(mono). It could be argued that the GA has managed to reduce the noise level. 

The experiment was re-run except that the depth given to the GA was incorrect. Depths 

of 0.470m, 0.495m, 0.545m and 0.570m were tested. It is very noticeable from the left 

hand side of Figure 6.12 that the increasing noise level has resulted in a reduction of the 

MSE for a given false depth. The mean depth error exhibited by the monochrome algo

rithm and shown in the right hand side of Figure 6.13 is what would be expected of the 

GA if it could not use the noise to give a lower mean error. The experiment showed that 

the GA is capable of using the noise present in the image to reduce the depth error without 

necessarily improving some property of the texture. 

N 

E -
~ 
~ 

X 10-3 

3.5 

3 

2.5 

. . 
2 . . .. ',' ..... '.' .... 

1.5 

0.5 

OL---~~~~~~~--~--J 

0.46 0.48 0.5 0.52 0.54 0.56 0.58 
Depth I m 

N 

E 

w en 
~ 

X 10-3 

3.5 

3 

2.5 

2 

1.5 

0.5 

OL---~--~~~--~~~~ 
0.46 0.48 0.5 0.52 0.54 0.56 0.58 

Depth I m 

Figure 6.12: MSE results for the GA (left) and the monochrome case (right) with SNRs of 40dB (circle), 30dB 

(diamond) and 20dB (square) 
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Figure 6.13: Mean error results for the GA (left) and the monochrome case (right) with SNRs of 40dB (circle), 

30dB (diamond) and 20dB (square) 

6.3.4 Conclusion 

The results have shown that there are in fact optimum weights to reduce the depth error, 

but the workings of the GA are such that it cannot differentiate between signal and noise. 

The noise has been shown to help to produce depth maps with a lower MSE, even if the 

depth given to the GA is incorrect. The approach is not practical since if the depth was 

known then there would be no need to perform DFD. In the next four sections different 

algorithms are examined that produce colour plane weightings based on deterministic 

criteria that do not require the depth map to be known a priori. 

6.4 Principal Component Analysis 

6.4.1 Introduction 

Principal Component Analysis (PCA) is a procedure for producing a 3 x 3 matrix of 

scaling constants to give three uncorrelated colour planes that are a linear combination of 

the original RGB colour planes. The planes are generally ordered in decreasing levels of 

variance and it is expected that the plane with the maximum variance is most useful for 

DFD work. 
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6.4.2 Simulation Results 

A colour checkerboard with squares 5 x 5 pixels was defocus blurred to simulate a 

pattern pasted to a slope that had a depth that changes smoothly from 0.440m to 0.520m 

(left to right) . The images that were used are shown in Figure 6.14. 

Figure 6.14: The simulated defocused slope images for f/5 .6 (left) and f/2 .8 (right) 

The images were corrupted with AWGN and the three sets of scaling constants gener

ated using peA were used in turn to produce monochrome images that were then applied 

to DFD algorithm. The results of the experiment are presented in Table 6.3 for SNRs of 

40dS (only quantisation noise present), 30dB and 20dB and where the first (PI), second 

(P2) and third (P3) principal planes were used. 

Table 6.3 . PCA results using a simulated, defocused colour checkerboard slope 

Mean Square Error I 10-3 m2 

SNRI dB Mono PCAP1 PCAP2 PCAP3 

40 0.00119 0.000937 0.00109 0.00153 

30 0.0200 0.0137 0.0190 0.0280 

20 0.250 0.162 0.229 0.358 

The results show that at all noise levels the peA algorithm using component 1 outper

forms the monochrome case, and thus there appears to be some advantage to using a 

colour image for finding the accurate depth maps. As expected, the remaining two compo

nent planes (P2 and P3) formed using peA have performed worse than the first component 

(P 1), which can be attributed to their reduced variance. The first component ha the 

largest variance of all three and the maximum signal-to-noise ratio [184]. 

At 40, 30 and 20dS the first principal component produces depth maps that are 1.3, 1.5 

and l.5 times better respectively than using the equal weighting algorithm denoted the 

monochrome algorithm, where (a, {3, y) = ( t, t, t). Using the second principal compo-
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nent reduces the improvement to 1.1 times for all SNR levels tested. The third principal 

component performed worse than the monochrome algorithm. 

6.4.3 Experimental Results 

In order to test the PCA algorithm practically a slope was set up that has a depth that 

changes smoothly from 0.440m to O.520m. Different textures photographed using a 5 

megapixel digital still camera were printed on a colour laser printer and pasted to the slope 

to provide a colour texture and the results are presented in Table 6.4. 

Texture 

Carpet 

(carpet_Ol 
) 

Colour 
C.B. 

Grass 

Red stone 

Stone 

(stone_08) 

Table 6.4. PCA results using the slope on five different textures 

Without Median Filtering With Median Filtering 

MSE Mean Variance MSE Mean Variance 

/1O-3m /10-3 m2 /10-3m2 /1O-3m /10-3 m2 

Mono 0.202 -1.73 0.199 0.0755 -2.37 0.0699 

PCA 0.239 1.89 0.236 0.0832 1.19 0.0818 

Mono 0.456 -3.17 0.446 0.210 -3.88 0.195 

PCA 0.320 1.16 0.318 0.141 0.623 0.140 

Mono 0.261 -0.668 0.261 0.0958 -1.37 0.0939 

PCA 0.286 1.90 0.282 0.104 1.22 0.102 

Mono 1.02 0.117 1.02 0.295 -2.20 0.290 

PCA 1.08 3.31 1.07 0.322 0.778 0.321 

Mono 0.253 -8.38 0.183 0.150 -8.88 0.0715 

PCA 0.230 -6.18 0.191 0.122 -6.74 0.0768 

Of the five tests, only the colour checkerboard (CB) and the red stone texture enabled 

the PCA method to produce depth maps with a lower MSE than the monochrome case. 

For the cases of the checkerboard and red stone, PCA produced MSEs that were 1.4 and 

1.1 times lower than using monochrome. For the remaining textures, the monochrome 

algorithm outperformed PCA by between 1.1 and 1.2 times. Thus, the practical results are 

in direct conflict with the simulation results where the PCA algorithm performed better 

than the monochrome case, even in fairly high noise levels. The monochrome algorithm 

generally under-estimated the depth and as the PCA over-estimates the depth it appears 

that it is boosting the noise (as discussed in Section 5.2.2). 

Cameras are essentially photon counting devices and the underlying distribution is 

usually assumed to be the Poisson model. Consider a single photo site on the CCD where 
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a photons are collected. Then the probability that k photos are counted at the photosite is 

given by 

e-A lk 
P(a=k) =-

k! 
(6.12) 

where k = 0, 1, 2, ... [185]. The variance of the Poisson distribution is equal to its 

expected value or mean and so as the brightness increases, so does the noise level. 

Comer et al. [184] analysed the effect of additive and multiplicative noise on Landsat 

images that were processed using PCA. They showed experimentally that PCA can 

separate additive, normally distributed, uncorrelated noise from the signal and the ability 

is degraded if the noise is correlated between the channels. Rosipal et al. [186] explained 

that adding white noise is equivalent to adding a diagonal matrix to the covariance matrix, 

with the noise variances of each channel appearing along the diagonal. For isotropic noise 

this will lead to the same increase of all eigenvalues and if the SNR is sufficiently high 

then only the principal components corresponding to the smaller eigenvalues will be 

strongly affected. 

Comer et al. [184] modelled the multiplicative noise as a unit mean, normally distrib

uted random process with a probability density function (PDF) of 

1 {I (x - 1)2 } 
I(x) = -f2; (j exp -"2 (j2 (6.13) 

and if the noise-free signal is denoted sex, y) then the degraded, noisy signal d(x, y) is 

given by 

d(x, y) = sex, y) n(x, y) (6.14) 

where n(x, y) is multiplicative noise. They found that for (j = 1.0 nearly all of the signal 

and noise were contained in the first component. For (j > 1.0 the performance of PCA 

decreases rapidly. 

Green et al. [187] found that PCA does not always produce images with decreasing 

image quality with increasing component number. One solution suggested was to rescale 

the data so that the bands have equal noise variance and then perform PC A, but this 

requires the noise variances to be known. This approach will be known as Noise Variance 

Adjusted PCA (NV A-PCA). If the noise variances are equal then PCA can be perfonned 

without any scaling. 

One thousand images were taken of the colour checkerboard pattern and then for a 

given pixel (x, y) in all of the images the mean and variance of the brightness of each 

colour plane was calculated. The results for all of the pixel positions were collected and 

the results are illustrated in Figure 6.15. Experiments performed on the camera suggested 

that multiplicative noise was dominant over the additive noise, as the variance is a func-
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tion of brightness. Withagen et al. [188] showed in their experiments that multiplicative 

noise exceeded additive noise at around 10 to 30% of the intensity range for their cameras 

using a similar technique. Further, from the results here 0" > 1 and thus by the work of 

Comer et al. [184] it may be concluded that the poor results are due to peA's inability to 

work well in high levels of multiplicative noise. 
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Figure 6.15: The noise variance and mean as a function of brightness (mean and 3 standard deviations shown) 

The relative variances of the colour planes were determined by fitting a straight line to 

the data presented in Figure 6.15 and the relative variances are shown in Table 6.5. 

Channel 

Red 

Green 

Blue 

Table 6.5. Relative variances of the noise for each colour plane 

Relative Variance 

0.54 

0.28 

It can be seen from Table 6.4 that generally the depth map produced using the equal 

weighting algorithm (Mono) under-estimates the depth, whereas PCA over-estimates the 

depth. The scaling parameters (a, /3, y) were calculated from the more focused image (i.e. 

that taken with f/5.6). As discussed above, PCA emphasises multiplicative noise and so it 

appears that the noise in image 1 was been boosted relative the second image, thus over-
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estimating the depth (as discussed in Section 5.2.2). The depth map returned using the 

monochrome algorithm has been under-estimated, which is consistent with image 2 having 

a lower SNR than image 1 and this is caused by the reduction of the variance of the texture 

due to increased defocusing, compared to image 1. 

The same images used to create the depth statistics in Table 6.4 were used and the 

results using the monochrome, PCA and NV A-PCA algorithms are presented in Table 6.6. 

The results of using only one of the colour planes, i.e. red (R), green (G) or blue (B), are 

also presented for comparison as it clearly highlights the effects of the noise. 

Table 6.6. Results using the slope with pasted textures 

Mean Square Error (without median filtering) / 10-3m2 

Texture Mono PCA NVA-PCA R G B 

Carpet 0.202 0.239 0.395 0.612 0.624 1.36 

Colour C.B. 0.456 0.320 0.282 0.253 0.321 1.90 

Grass 0.261 0.286 0.357 0.479 0.464 1.02 

Red stone 1.02 1.08 1.14 1.32 1.25 1.91 

Stone 0.253 0.230 0.259 0.396 0.390 1.61 

The results of the monochrome and PCA algorithms are the same as in Table 6.4, but 

they have been reproduced here for ease of comparison. The NV A-PCA algorithm pro-

duced better results than PCA on the colour checkerboard only, which was disappointing. 

Processing the blue colour plane only has resulted in MSEs that are always worse than 

using either the red or green planes. This can be attributed to the much higher noise level 

and the texture in the blue plane had the lowest variance, as shown in Table 6.7. 

Table 6.7. Variances ofthe RGB colour planes of the more focused image 

Image Var[R] /10-3 Var[G] /10-3 Var[B] / 10-3 

Carpet 4.64 3.81 2.14 

Colour checkerboard 8.81 6.05 3.19 

Grass 5.93 8.94 3.05 

Red stone 10.6 9.37 4.52 

Stone 5.66 6.27 4.07 

The plane with the highest variance correlates with the lowest MSE in all of the tex

tures tested, except for the red stone where the variance of the red plane is greater than 

that of the green plane, but the MSE using the green plane is lower. The effect can be 

attributed to the fact that the variance of the green plane is only slightly lower than that of 

the red, but the noise variance is lowest for the green. Thus, the maximum SNR occurs 
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with the green plane. Yuan and Subbarao [83] suggested using the plane with the maxi

mum variance and the results suggest this would not be optimum. A simpler and more 

accurate solution is to use an equal weighting of the colour planes, as shown by comparing 

the single colour plane results with the monochrome results in Table 6.6. 

6.4.4 Conclusion 

The first principal component produced using peA was found to be better than the 

remaining two and the equal weighting algorithm in simulations on a colour checkerboard 

pattern with AWGN. peA generally produced worse results than the monochrome algo

rithm in practical experiments and this was found to be due to the strong multiplicative 

noise component. The colour planes were weighted based on their noise variance in an 

algorithm denoted NV A-peA, but this adjustment did not help. The MSE using a single 

colour plane (i.e. either red, green or blue) tallies well with the plane with the maximum 

variance, as would be expected as it has the maximum SNR. Overall the results suggest 

that a new formulation of peA is required that accounts for the multiplicative noise that 

occurs in practice. 

6.5 SNR Maximisation Algorithm 

6.5.1 Introduction 

The signal-to-noise ratio (SNR) maximisation algorithm assumes an additive nOIse 

model and requires the variance of the image segment being processed as well as that due 

to the noise. The statistics of the noise are not simple to find and approximations have to 

be made. The trivial solution is to assume that there is no noise present and thus any set of 

(a, {3, y) is optimum as long as the resulting image possesses some texture. The first 

approximation is to assume quantisation noise only exists, which is additive and has the 

same variance in each plane. 

The SNR maximisation algorithm was designed before the actual camera (the Basler 

A631 fc colour camera) was obtained, and as it has a strong multiplicative noise compo

nent only simulations could be performed to evaluate the theory. Unfortunately, the noise 

model of the algorithm was incorrect for the hardware. If the actual noise had been addi

tive then experimental results could have been reported. 
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6.5.2 Simulated Experimental Results 

The formulation of the measure of the SNR assumes an additive model and so in the 

initial experiments noise with a constant variance was added to a simulated defocused 

image. It was assumed that the noise process occurs after the lens. Each image has an 

associated SNR and as defocus decreases the variance of the texture then it follows that 

the most defocused image has the lowest SNR. Tests were performed where the SNR used 

as the objective value in the GA was either the SNR due to the first image or the second 

image or the mean SNR of both images. The colour checkerboard with randomly coloured 

5x5 pixel squares was used as a texture for the example and the SNR set to 40dB, 30dB 

and 20dB. The results are presented in Tables 6.8 to 6.10 where the mean SNR of the 

monochrome image resulting from colour mixing is given along with the depth perfor

mance parameters. 

Table 6.8. Checkerboard results with an SNR of 40dB (same noise variances in each colour plane) 

Mean SNRI dB Without Median Filtering 

MSE Mean Variance 
Algorithm Image 1 Image 2 

110-3m2 11O-3m 11O-3m2 

Mono 44.20 40.84 0.00119 0.103 0.00118 

PCA 45.39 42.31 0.000937 0.0903 0.000929 

Max SNR (1) 45.15 42.05 0.000979 0.0739 0.000974 

Max SNR(2) 45.05 42.20 0.00107 0.0914 0.00106 

Max SNR 
45.13 42.14 

(Ave) 
0.000937 0.0903 0.000929 

Table 6.9. Checkerboard results with an SNR of 30dB (same noise variances in each colour plane) 

Mean SNRI dB Without Median Filtering 

MSE Mean Variance 
Algorithm Image I Image 2 

11O-3m2 110-3m 11O-3m2 

Mono 29.60 26.25 0.0200 -0.331 0.0199 

PCA 30.80 27.71 0.0137 -0.257 0.0136 

Max SNR (I) 30.80 27.71 0.0137 -0.258 0.0136 

Max SNR(2) 30.67 27.89 0.0160 -0.220 0.0159 

Max SNR 
30.78 27.83 0.0148 -0.230 0.0147 

(Ave) 
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Table 6.10. Checkerboard results with an SNR of20dB (same noise variances in each colour plane) 

Mean SNRI dB Without Median Filtering 

Algorithm 
MSE Mean Variance 

Image 1 Image 2 
/1O-3 m2 llO-3 m /1O-3 m2 

Mono 19.60 16.25 0.250 -2.67 0.243 
PCA 20.80 17.71 0.162 -1.78 0.159 
Max SNR (1) 20.80 17.71 0.162 -1.77 0.159 
Max SNR(2) 20.67 17.89 0.162 -1.75 0.186 

Max SNR 
20.78 17.83 (Ave) 0.166 -1.55 0.164 

Although only one set of results are presented for each SNR, the results are indicative 

of the efficacy of the algorithms and this was because each depth map was composed of a 

large number of points (in this case 2,745 individual depth measurements). 

When the noise variance in each colour plane is the same there is no improvement in 

maximising the SNR over using the first principal component created using peA. Except 

for the case of only quantisation noise present (40dB), maximisation of the SNR using 

image 1 performed better than the other two alternatives, namely using 2 Of the mean SNR. 

The noise variances of each colour plane are not identical in practice. Due to averaging 

of the green pixels on the Bayer filter the green plane has the lowest variance and the 

efficiency of the semiconductor to blue light means that the blue must be amplified the 

most, leading to the largest variance. From a practical experiment it was found that the 

relative variance of the red plane was about 0.54 of that due to the blue and 0.28 for the 

green plane. In the simulation experiments reported in Tables 6.11 to 6.13 A WON COf

rupted each image and the variance was different in each plane and dictated by the practi

cally obtained ratios. 

Table 6.11. Checkerboard results with an SNR of 30dB (different noise variances in each colour plane) 

Mean SNRI dB Without Median Filtering 

MSE Mean Variance 
Algorithm Image 1 Image 2 

llO-3 m2 llO-3m /10-3 m2 

Mono 31.78 28.43 0.0361 -0.640 0.0357 

PCA 33.18 30.10 0.00967 -0.0962 0.00966 

Max SNR (1) 35.23 31.96 0.00562 -0.00477 0.00562 

Max SNR (2) 35.14 32.06 0.00703 -0.0423 0.00703 

Max SNR 
35.22 32.01 0.00656 0.0342 0.00656 

(Ave) 
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Table 6.12. Checkerboard results with an SNR of20dB (different noise variances in each colour plane) 

Mean SNRI dB Without Median Filtering 

MSE Mean Variance 
Algorithm Image 1 Image 2 

llO-3 m2 llO-3m llO-3 m2 

Mono 21.83 18.54 0.486 -4.86 0.462 

PCA 23.16 20.08 0.110 -1.20 0.109 

Max SNR (1) 25.23 21.97 0.0627 -0.423 0.0625 

Max SNR (2) 25.14 22.06 0.0751 -0.665 0.0746 

Max SNR 
25.22 

(Ave) 
22.02 0.0657 -0.368 0.0656 

Table 6.13. Checkerboard results with an SNR of lOdB (different noise variances in each colour plane) 

Mean SNRI dB Without Median Filtering 

MSE Mean Variance 
Algorithm Image 1 Image 2 

110-3m2 110-3m 110-3m2 

Mono 12.29 9.499 3.65 -27.7 2.88 

PCA 12.92 9.976 2.04 -15.0 1.81 

Max SNR(I) 15.25 12.03 1.06 -5.38 1.03 

Max SNR(2) 15.14 12.14 1.47 -7.97 1.40 

Max SNR 
(Ave) 

15.23 12.09 1.16 -5.95 1.13 

At SNRs of 30dB, 20dB and 10dB the maximisation of the SNR has improved the SNR 

by 3.5dB, 3.4dB and 3.0dB respectively compared to the monochrome case. PCA has an 

inherent ability to improve the SNR, but the algorithm incorporating the GA has managed 

to improve the SNR by between 2.1 dB and 2.3dB compared to using PCA. The mean 

error has been under-estimated in all cases except one, which was expected due to the 

analysis presented in Section 5.2.2. 

When the noise variance is not identical in each plane, PCA (using the component with 

the largest eigenvalue) has consistently produced better MSEs than the monochrome 

algorithm. In the tests, the maximisation of the SNR using a GA to evolve the solution has 

produced better results than either the monochrome or PCA. Improvements of 6.4, 7.8 and 

3.4 times were found using SNRs of 30dB, 20dB and 10dB respectively compared to using 

the equal weighting (mono) algorithm. Maximising the SNR produced improvements of 

1.7, 1.8 and 1.9 times compared to using PCA with SNRs of 30dB, 20dB and 10dB respec

tively. Thus, the results have shown that with increasing noise variance (i.e. decreasing 

SNR), maximisation of the SNR produces increasingly better results compared to PCA. 
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Figures 6.16 and 6.17 show the depths map produced when the SNR was 20dB and the 

noise variance of each plane was different. 
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Figure 6.16: Actual depth map (left) and that produced using equal weighting (right) when the SNR was 20dB 
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Figure 6.17: Depth maps produced using peA (left) and maximisation of the SNR (right) 

A particularly notable feature of the depth maps is that the errors increase as the depth 

increases and this can be attributed to the fact that the SNR decreases with distance due to 

the decreased signal variance caused by increased defocusing. 
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6.5.3 Conclusion 

The simulation results showed that maximising the SNR can lead to reductions in the 

error of the depth map and especially so if the noise variance is not the same in each 

colour plane (i.e. it is non-isotropic), as expected in practice. Improvements of between 

3.4 and 7.8 times were found using the algorithm compared to the (~, ~, +) case and 

between 1.7 and 1.9 times compared to the first principal component produced using peA. 

The real camera system used had a strong multiplicative noise component, which meant 

that the algorithm could not be tested on real data. The SNR maximisation algorithm 

requires the variance of the noise of each colour plane to be known and it was shown in 

Section 6.4.3 that the variance is a function of brightness. Therefore, no single variance 

value exists for a given colour plane, thus making the approach unusable in practice. 

6.6 Fractal Dimension Maximisation 

6.6.1 Introduction 

The fractal dimension (FD) of a surface is a measure of its roughness and thus for an 

image it is a measure of the brightness variation and hence texture. It is known that a 

textureless surface is useless for DFD work and so if the roughness of the surface can be 

increased then maybe the depth estimate should be better. In the next section simulation 

results are presented. 

6.6.2 Simulated Experimental Results 

In the first two experiments presented here, shown in Table 6.14 and Table 6.15, the 

colour checkerboard and grass texture were defocused in software to simulate being at 

O.50m. No noise was added so that the only noise was quantisation noise, thus giving an 

SNR of around 40dB. 
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Table 6.14. Colour checkerboard simulated to be at 0.50m 

SNRI dB Without Median Filtering 

Algorithm 
MSE Mean Variance 

Image 1 Image 2 
110-3m2 11O-3m 110-3m2 

Mono 42.20 38.81 0.00645 0.318 0.00635 

PCA 43.62 40.61 0.00510 0.578 0.00477 

MaxFD 41.96 38.33 0.00739 -0.0156 0.00739 

Table 6.15. Grass texture simulated to be at 0.50m 

SNRI dB Without Median Filtering 

MSE Mean Variance 
Algorithm Image 1 Image 2 

110-3m2 110-3 m 11O-3m2 

Mono 40.64 37.85 0.0136 0.901 0.0128 

PCA 40.90 38.16 0.0140 0.953 0.0131 

MaxFD 35.57 32.61 0.0312 0.760 0.0306 

The results show that the maximisation of the fractal dimension (Max FD) algorithm 

produced worse MSEs and the reason can be traced to the reduction in the SNR for images 

1 and 2 through the colour mixing. Just over 5dBs were lost by maximising the FD com

pared to using the monochrome or PCA algorithms. To further show the effect of noise 

the carpet texture was defocused to simulate being placed O.50m from the camera and the 

resulting images were corrupted with A WGN to give an SNR of 30dB and the results are 

shown in Table 6.16. 

Table 6.16. Carpet texture simulated to be a 0.50m with a nominal SNR of 30dB 

SNR/dB Without Median Filtering 

MSE Mean Variance 
Algorithm Image 1 Image 2 

110-3m2 11O-3m 110-3m2 

Mono 32.25 29.09 0.0746 0.500 0.0744 

PCA 32.33 29.22 0.0817 0.526 0.0814 

MaxFD 27.61 24.32 0.284 -0.474 0.283 

In the results of Table 6.16 the noise variance was set to be the same for each plane, but 

the results showed the same pattern even when noise of differing variances was used. An 

SNR of 30dB would be considered good for an image processing system and yet maximis

ing the FD has clearly resulted in a poor noise performance as the SNR has been reduced 

compared to the other algorithms. Clearly the maximisation of the fractal dimension 
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algorithm is not suitable for use in colour mixing for DFD due to the inherent noise reduc-

tion as shown by the results in Table 6.17 for SNRs of 40, 30 and 20dB. 

Table 6.17. Random checkerboard pattern pasted on a slope 

SNRI dB Without Median Filtering 

MSE Mean Variance 
Algorithm Image I Image 2 

llO-3 m2 llO-3 m /10-3 m2 

Mono 44.20 40.84 0.00119 0.103 0.00118 

peA 45.39 42.31 0.000937 0.0903 0.000929 

MaxFD 44.02 40.59 0.00117 0.0688 0.00117 

Mono 29.60 26.25 0.0200 -0.331 0.0199 

peA 30.80 27.71 0.0137 -0.257 0.0136 

MaxFD 29.27 25.81 0.0210 -0.497 0.0207 

Mono 19.60 16.25 0.250 -2.67 0.243 

peA 20.80 17.71 0.162 -1.78 0.159 

MaxFD 19.18 15.72 0.294 -3.68 0.280 

6.6.3 Conclusion 

The fractal dimension of a surface gives a measure of its roughness and changing 

(a, /3, y) has resulted in worse depth estimates, even with a very low noise level, com

pared to the monochrome case or using PCA. It was later found that the formulation of 

measuring the FD using a least squares fit to the fBm model was too sensitive to noise 

[172] [173] [174] and consequently it was not suitable for DFD. 

6.7 Localisation through Colour Mixing 

6.7.1 Introduction 

The Localisation through Colour Mixing CLCM) algorithm seeks to find the optimum 

(a, /3, y) to extract the blurring contribution due to the central pixel only. The experi

ments could only be performed in simulation due to the lack of availability of a projector 

with a telecentric aperture. The specially modified projector is to ensure that the size of 

the squares, as seen by the camera, do not change with distance. 
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6.7.2 Simulation Experiments 

A Genetic Algorithm was used to evolve the optimum colour pattern and it was tiled to 

create a 640 x 480 image. Each pixel in a 32 x 32 window had a different colour. The 

pinhole image created was then defocus blurred to simulate being placed on 10 steps that 

equally spanned the range 0.42m to 0.62m. In the first experiment presented in Table 6.18 

the LCM algorithm was tested when the less defocused image was used to find (a, {3, y), 

denoted LCM (1), the most defocused image, denoted LCM (2), and the pinhole image, 

denoted LCM (P). The pinhole image was in fact the proj ected image. 

Table 6. I 8. Ten steps in the range [0.42, 0.62] with only quantisation noise present 

Without Median Filtering With Median Filtering 

MSE Mean Variance MSE Mean Variance 
Algorithm 

/1O-3 m2 /1O-3 m /10-3 m2 /10-3 m2 /1O-3 m /10-3 m2 

Mono 2.45 -5.39 2.42 0.980 -3.23 0.969 

PCA 0.582 4.49 0.561 0.254 2.56 0.247 

LCM (I) 0.335 -0.356 0.334 0.145 -0.684 0.144 

LCM (2) 0.261 -2.16 0.256 0.131 -2.05 0.126 

LCM (P) 0.861 0.925 0.861 0.278 0.360 0.278 

The results show that the LCM using image 2 possesses a lower MSE than that of the 

monochrome and PCA algorithms with and without median filtering. LCM using images 

1 and 2 were 7.3 and 9.4 times better than Mono and 1.7 and 2.2 times better than PCA 

respectively. It is interesting to examine the SNRs, which are shown in Table 6.19. It is 

clear that maximising the localisation has resulted in a drop in the average SNR compared 

to PCA and monochrome and thus there appears to be a trade-off in action. The SNRs 

using the LCM algorithms are all less than both the monochrome and PCA cases, but the 

MSEs of the depth maps are lower. 

Table 6.19. SNRs following colour mixing 

Algorithm Image 1 / dB Image 2 / dB 

Mono 31.32 28.16 

PCA 33.59 29.78 

LCM (I) 31.87 26.69 

LCM (2) 31.68 26.26 

LCM (P) 32.08 27.26 

One of the problems with the evolved texture is that the SNR is only about 30dB when 

quantisation noise is present, which is quite low. Experiments were performed where the 
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pinhole image was set to be randomly coloured squares that were set to different sizes. It 

was found that squares of 5 x 5 pixels worked well and thus a randomly coloured pattern 

was used for the remainder of the LCM experiments. A GA was not required to evolve the 

pattern because the optimum texture was found to be a random pattern. 

To illustrate the effect of the trade-off in the next experiment presented, 10 steps were 

simulated that equally span the depth range [0.42, 0.62]. The noise-free images are shown 

in Figure 6.18 and the results are given in Table 6.20. 

Figure 6.18: The simulated defocused steps for f/5.6 (\ell) and f/2.8 (right) 

By using larger squares, the SNR with only quantisation noise increased from 30dB to 

40dB compared to using the random coloured pattern with 1 x 1 pixel squares. With only 

quantisation noise present and 5 x 5 pixel squares the LCM algorithm using image 1 has a 

MSE that is 4.8 times lower than monochrome and 2.7 times lower than using PCA. 

However, with an SNR of 30dB the improvement has dropped to just 1.1 times lower and 

at 20dB LCM is performing the worst. PCA's ability to improve the SNR in these experi

ments is clearly giving it an advantage that outweighs that due to localisation. 

170 



Table 6.20. Step results for depth range [0.42, 0.62] 

Nominal SNRI dB Without Median Filtering 

Algorithm Image 1 
MSE Mean Variance 

Image 2 
110-3m2 110-3m 110-3m2 

SNRI dB 

40 Mono 41.73 38.16 0.552 0.877 0.552 

PCA 43.08 39.87 0.310 0.905 0.309 

LCM (1) 41.36 37.51 0.l14 -0.l58 0.114 

LCM (2) 41.29 37.27 0.0993 -0.480 0.0991 

30 Mono 28.91 25.35 0.734 0.334 0.734 

PCA 30.27 27.06 0.454 0.407 0.454 

LCM (1) 28.55 24.70 0.404 -0.873 0.403 

LCM (2) 28.47 24.46 0.360 -l.83 0.357 

20 Mono 18.91 15.35 2.24 -3.34 2.23 

PCA 20.27 17.06 l.63 -l.23 l.62 

LCM (1) 18.54 14.70 2.45 -6.60 2.41 

LCM (2) 18.47 14.48 2.46 -9.07 2.37 

Using the 5 x 5 pixel pattern LCM (2) has produced MSEs that are 5.6 and 2.0 times 

better than Mono and 3.1 and 1.3 times better than PCA at SNRs of 40 and 30dB respec

tively. At 20dB all algorithms performed badly and PCA produced the best results. 

The interesting aspect of the results is that although the 5 x 5 pixel squares ensured the 

image has a better SNR compared to using the evolved pattern where every square has a 

different colour, LCM produced much better results compared to PCA and Mono. At 

40dB the improvement was 9.4 times better than monochrome using the evolved pattern, 

whereas the 5 x 5 pattern decreased the improvement to 5.6 times. Thus, clearly the 1 x 1 

pixel squares is better for LCM, but worse for Mono and PCA. 

In Figure 6.19 and Figure 6.20 the depth map results without median filtering are 

presented for the 40dB case. 
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Figure 6.19: Monochrome and PCA results 
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Figure 6.20: Depth maps using LCM (I) and LCM (2) algorithms 

LCM has produced lower error at larger depths, which can be attributed to the reduction 

in the image overlap problem, which was discussed in Section 2.4.1. The images shown in 

Figure 6.21 show a particular 32 x 32 segment that was processed using equal weighting, 

PCA and LCM. It is very noticeable that the LCM algorithm has localised the blurring 

effect of the central pixel very well compared to that produced using the monochrome and 

PCA algorithms. 
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(a) (c) (e) (g) 

(b) (d) (f) (h) 

Figure 6.21: (a),(b) A 32x32 colour image segment of image 1 and 2 respectively; (c) (d) mono resul t; (e) (t) 

PCA; (g) (h) LCM (2) 

For the particular segment shown in Figure 6.21 the monochrome and PCA algorithms 

under-estimated the depth by 8mm and 14 mm respectively. The depth produced using 

LCM was exact. 

Further simulation experiments were performed using real textures instead of the tiled 

pattern created using the Genetic Algorithm. The results in Table 6.21 were formed using 

real textures and the only noise present in the simulations was quantisation noise. The 

MSEs are shown with and without the post-processing step of median filtering. The 

simulated scene had 10 steps with depths ranging from 0.42m to O.62m. The spread in the 

HSI components are also shown. 
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Texture 

Carpet 

(carpet_ 01 ) 

Grass 

(grass_Ol) 

Stone 

(stone_03) 

Stone 

(stone_09) 

Wood 

(wood_03) 

Table 6.21. Results for sub-optimum textures for LCM 

Hue 

0.793 

1.49 

0.748 

18.5 

0.0650 

Variance I 10-3 

Saturation 

8.55 

32.9 

3.31 

10.4 

0.702 

Intensity 

1.37 

24.1 

14.6 

16.1 

0.862 

Algorithm 

Mono 

PCA 

LCM (l) 

LCM (2) 

Mono 

PCA 

LCM (1) 

LCM (2) 

Mono 

PCA 

LCM (1) 

LCM (2) 

Mono 

PCA 

LCM (1) 

LCM (2) 

Mono 

PCA 

LCM (1) 

LCM (2) 

MSE/mm2 

Without 

l.35 

l.36 

1.64 

1.50 

0.675 

0.658 

0.378 

0.409 

l.68 

1.67 

2.52 

2.17 

1.34 

1.32 

1.47 

1.45 

3.92 

3.83 

5.16 

5.03 

With 

0.460 

0.467 

0.657 

0.568 

0.250 

0.252 

0.187 

0.207 

0.571 

0.553 

0.885 

0.797 

0.462 

0.442 

0.466 

0.472 

1.56 

1.49 

2.21 

2.19 

As discussed in Section 5.3.4 it is essentially the hue and saturation components that are 

important in colour mixing. The wood texture employed has very little variation in the 

HSI components and consequently there is very little texture, hence the poor results using 

the monochrome and PCA algorithms in comparison with the other four textures. Both 

versions of the LCM algorithms produced much worse results for all textures except the 

grass and this is believed to be due to the lack of the colour variation and the fact that 

natural textures do not possess the correct colour pertaining to aid localisation. The stone 

texture (stone_03) produced one of the worst results and the median filtered depth maps 

are shown in Figure 6.22 and Figure 6.23. 
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Figure 6.22: Depth map using the stone (stone_03) texture and the monochrome and PCA algorithms 
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Figure 6.23: Depth map using the stone (stone_ 03) texture and algorithms LCM (I) and LCM (2) 

The only experiment where the LCM algorithm out-performed the monochrome and 

PCA algorithms occurred using the grass texture, which possessed the most variation in 

the HSI components. The depth maps are plotted in Figure 6.24 and Figure 6.25 for 

comparison, where median filtering has been applied. 
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Figure 6.24: Depth map using the grass texture and the monochrome and PCA algorithms 
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Figure 6.25: Depth map using the grass texture and algorithms LCM (I) and LCM (2) 

The errors at larger depths are worse using the grass texture compared to using the 

optimised texture, as can be seen by comparing Figure 6.20 and Figure 6.25. However, 

note that the depth map at the edges of the image have been improved using LCM, even 

though the texture was sUb-optimum. 
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6.7.3 Conclusion 

The results showed that the best image to use to determine the optimum weightings 

(a, /3, y) is either image 1 or 2, depending on the scene. There is clearly a trade-off 

between localisation and SNR and in the experiments at around 30dB LCM and PCA 

performed about the same. Another formulation of LCM may lead to better results in the 

presence of noise, but it seems likely that the trade-off between localisation and SNR is 

inevitable. 

6.8 Conclusion 

This chapter has examined the different colour mixing algorithms that were discussed in 

the previous chapter and firstly the results showed that using a ( +, ~, ~) combination of 

the colour planes was not optimum. Each of the pre-processing algorithms were tested 

individually on a pair of defocused images where 2,745 depth estimates were measured. 

The mean processing time for each algorithm is summarised in Table 6.22. 

Table 6.22. Comparison of the processing times 

Algorithm 

Monochrome 

GA (with a known depth) 

Principal Component Analysis 

Maximisation of the Signal-to-Noise Ratio 

Maximisation of the Fractal Dimension 

Localisation through Colour Mixing 

Mean processing time for a single 32x32 

window / seconds 

0.14 

13 

0.23 

2.1 

3.4 

0.16 

The monochrome algorithm where (a, /3, y) = ( ~, ~, ~) is the fastest because of the 

simple pre-processing just requires an average of the colour planes. The GA with a known 

depth is the slowest because the GA requires 10 individuals that are evolved for 10 genera

tions, thus for a given window 100 times more convolutions are required. 

To maximise the SNR, 100 individuals were evolved for 50 generations, but the objec

tive function is the calculation of the SNR, thus making it much quicker than requiring 

convolutions. It was found that 50 individuals evolved for 50 generations was sufficient to 

maximise the FD. The least squares fitting of the FD is computationally more intensive 

than the SNR, as shown by the values in Table 6.22. 
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The LCM algorithm used a deterministic linear algebra approach to calculate (a, /3, y) 

and it requires the calculation of large matrix multiplications and inverses of size 

32
2 

X 322
. However, MAT LAB is efficient at performing the required matrix calculations 

and the LCM algorithm is only 0.02s slower than the monochrome, whereas the peA 

algorithm is 0.09s slower; which can be attributed to the calculation of the covariance 

matrix and eigenvalues and eigenvectors. 

The GA that finds the optimum (a, /3, y) for a known depth was found to perfonn noise 

reduction, but also it could, on occasion, use the noise present in an image to ensure the 

DFD algorithm gave the wrong depth. It was purely of academic interest, but it clearly 

showed that the DFD algorithm was sensitive to the scaling constants used. 

Principal Component Analysis was explored and it was found that the first component 

formed from the eigenvector of the major axis of a hyperellipsoid gave depth maps with 

lower errors than using equal weighting. In the presence of AWGN, peA was found to be 

between 1.3 and 1.5 times better than using the monochrome image. The experiments in 

which the real camera imaged slopes with textures printed on them showed that peA 

worked worse than the monochrome approach three fifths of the time. An analysis of the 

camera noise was performed and it was discovered that the camera had a strong multiplica

tive component. PCA worked well in the presence of additive noise, but was found to be 

adversely affected by multiplicative noise. A weighted peA was used, called NY A-peA, 

but this was not found to be a successful solution. The RGB colour plane with the largest 

variance generally gave the minimum depth error as would be expected, but clearly a new 

formulation of PCA is required that is robust in the presence of multiplicative noise. 

An algorithm was developed that maximised the SNR of an image, assuming an addi

tive noise model, by colour mixing. Due to the results of the noise experiments on the 

actual camera it was shown that the algorithm could not be tested practically. In simula

tion it was found that PCA and maximising the SNR gave essentially the same results 

when the noise variance of each colour plane was the same, and this was explained by the 

theoretical work of Rosipal et al. [186]. When the noise is uncorrelated and has a differ

ent variance in each plane (i.e. it is non-isotropic), it was found that the algorithm to 

maximise the SNR increased the SNR by between 2.1dB and 2.3dB compared to mono

chrome and by 3.0dB to 3.5dB compared to using PCA. The resulting MSEs showed 

improvements of between 3.4 and 7.8 times compared to using monochrome and between 

1.7 to 1.9 using PCA. 

The fractal dimension of a monochrome image gives a measure of the texture variation 

and it was found that maximising the FD using colour mixing based on modelling the 

image using mm reduced the SNR. The consequence of reducing the SNR was that the 

depth maps were worse than both the monochrome and PCA algorithms. A solution to 
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this problem may be to use a multi-objective optimisation algorithm to boost the texture 

and reduce the noise of image I, for example using 

max (AI FD[I] + A2 SNR[I]) 
(a,/3;y) (6.l5) 

where Al and A2 are adjusted to give the appropriate weighting. However, as PCA essen

tially performs this task there may be little merit in the approach. 

The LCM algorithm was designed to reduce the image overlap and windowing prob

lems and it is an active DFD technique that would require a data or slide projector. The 

optimum projected pattern was evolved using a GA and it was found to be a random 

coloured pattern. For a given image region, the scaling constants Ca, {3, y) were deter

mined using the Moore-Penrose pseudo-inverse. With an image composed of 10 steps 

spanning a depth range of 0.42m to O.62m it was found that the MSE of the depth map 

using LCM was between 1.7 and 2.2 times better than PCA and between 7.3 and 9.4 times 

better than monochrome. The trade-off between SNR and localisation was found, but in 

practice it did not hinder the results. In its current formulation, LCM requires SNRs of 

30dB or greater to achieve a significant improvement, but a multi-objective approach 

could again be considered that accounts for the localisation and the SNR to ensure a 

usable trade-off. 

179 



Chapter 7 

Image Normalisation for Depth-

From-Defocus 

7.1 Introduction 

In this, the penultimate chapter, the improvement to the image normalisation that was 

discovered during the final stages of the research is presented. Ens and Lawrence's [58] 

[59] DFD algorithm required two images to be taken with different camera parameters. 

The aperture size (f-number) was changed between images to ensure no image spatial 

registration problems, but with the consequence that for a given exposure time, the relative 

image brightnesses were different. The problem of the normalisation of the images taken 

with different apertures was examined from theoretical and experimental perspectives. 

In Section 7.2 image formation is considered and the effect of the f-number is analysed. 

Experimental results of changing the f-number are presented in Section 7.3 for the 24mm 

Sigma photographic lens. The peA algorithm from the previous chapter was tested 

against the monochrome algorithm to show whether the normalisation problems resulted in 

poorer depth maps using colour mixing. An analysis of the effect of colour on depth 

accuracy is presented in Section 7.4. The DFD results of using more complex scenes than 

were employed in the previous experiments are shown in Section 7.5 and then the conclu

sions drawn in Section 7.6. 

7.2 Theoretical Analysis 

7.2.1 Introduction 

Ens and Lawrence's [58] [59] DFD algorithm searches for the optimum convolution 

ratio h3(X, y) such that 
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(7.1 ) 
X,Y 

where i l (x, y) and i2(X, y) are the images taken with the first and second set of camera 

parameters respectively. In this research, the f-number was changed between images to 

ensure no image registration problems. The mechanical construction of the 24mm Sigma 

lens meant that the f-number snaps into position, and thus it was safely assumed that the 

same parameters existed each time. 

Image 1 was taken with a smaller aperture than image 2 resulting in a sharper image 

(i.e. less defocused), but also a lower brightness for a given exposure time. It was impor

tant that the images were scaled to compensate for the change in brightness and the prob

lem becomes searching for h3(x, y) using 

min I (iIN(X, y) * h3(x, y) - i2N(X, y»2 (7.2) 
X,Y 

where iIN(X, y) and i2N(X, y) are the brightness normalised versions of images 1 and 2 

respectively. For convenience the result of the convolution iIN(X, y) * h3(x, y) is denoted 

f2N (X, y). 

7.2.2 Statistical Normalisation Approach 

Ens and Lawrence's DFD algorithm was described in Section 5.2 and the problem of 

normalising the more defocused image i2(x, y) and the less de focused image i1 (x, y) 

convolved with the convolution ratio f2(X, y) = i l (x, y) * h3(x, y) was discussed. The 

initial solution was to normalise such that the image segments had intensity values that lie 

in the closed interval [0, 1] using 

i2N(X, y) = max[i2(x, y)] - min[i2(x, y)] 
(7.3) 

~ hex, y) - min[i2(x, y)] 
12N (X,y) = [" ] [" ]. max i2(X, y) - min i2(X, y) 

(7.4) 

The problem with the idea is that it is solely dependent on the outliers, i.e. the minimum 

and maximum values in the image segments, and thus it is very sensitive to noise. 

A different solution was proposed that uses the statistics of the image segments that are 

based on all of the pixels and not just on the two outliers. The image segments i2(X, y) 

and f2(X, y) were normalised using 

(7.5) 
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(7.6) 

where E[X] and Var[X] denote the expected value and variance of X respectively and so 

i2N and i2N have zero mean and unit variance. 

7.2.3 Radiance Analysis 

Consider a point on an object S that has a radiance of L (W m-2 srad- 1) and is being 

imaged by a lens system, as shown in Figure 7.1. The lens has a focal length of F and a 

transmittance T. The distance between the image plane (i.e. the CCD) and the lens is 

denoted v (m) and the principal ray makes an angle 8 (rads) with the optical axis. The 

aperture is assumed to be circular with a diameter d (m). If the lens is focused then an 

image of S, denoted S' , will be produced on the screen at IF. 

I .. 

d 

I~~ ________________________ ~S 

F 

v u 

Image Space Object Space 

Figure 7.1: Diagram of a focused lens system 
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It can be shown that the irradiance on the screen or CCD due to point S is given by 

[132] 

( 
7f d2 

) cos
4 

8 
E = TL -4- v2 · 

(7.7) 

Suppose the diametcr of the lens is reduced by ,ff then the irradiance becomes ; 

using (7.7), i.e. the image is half as bright. Changing the aperture by one f-stop corre 

ponds to a halving or doubling of the image intensity depending on direction. The 24mm 

Sigma photographic lcns can be set to half f-stops , and thus the diameter reduce by 

JT and the irradiancc changes by k . 
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Equation 7.7 is for a focused lens system and for a defocused system the energy is 

spread out. For example, if the image plane is at II or lz then point S is no longer imaged 

to the conjugate point S'. Due to the conservation of energy, the radiance of the point 

decreases. The shape is determined by the PSF and as described in Chapter 3, assuming 

geometrical optics the shape is a pillbox. For convenience in finding the convolution 

ratio, the Gaussian shape was assumed. 

7.2.4 Actual Radiance Analysis 

If the aperture is reduced by one or two stops then the image intensity should decrease 

to a half or a quarter respectively. It is unlikely that an optical system with an aperture 

will exactly give a halving of intensity with each f-stop, and further the ratios may be 

different for each colour plane. An average of the ratios is given by 

1 (E[i2R] E[i2G] E[i2B] ) ¢=- + +-..:....-
3 E[il R] E[il G] E[;I B] 

(7.8) 

where E[i l R] and E[i2R] are the mean intensities of the red plane for images 1 and 2, 

respectively. The normalised images are then given by 

(7.9) 

(7.10) 

where the first image formed with the smaller aperture is scaled by ¢ and the second 

image remains unchanged. Both normalised images then have the same mean, i.e. that due 

to image 2. 

It was later discovered that Subbarao corrected for the differences in exposure by 

dividing each image by the mean brightness [4] [79]. Thus, using the notation above the 

correction is written as 

. il(x, y) 
lIN (x, y) = E[il (x, y)] 

i2(X, y) 
i2N (X, y) = E[i2(X, y)] . 

(7.11) 

(7.12) 

This is essentially the same normalisation as proposed using (7.8), (7.9) and (7.10), except 

the mean of the images is unity, instead of having the mean brightness of image 2. 
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7.2.5 Conclusion 

This section has discussed four possible normalisation methods. The original approach 

using the minimum and maximum intensities is dependent on outliers and it was expected 

that the statistical approach then ensures i1N(x, y) and i2N (X, y) have unit variance and zero 

mean would perform better. Theoretically, changing the f-number by one or two stops 

will change the intensity by a factor of 2 or 4, but it was important to test this assumption 

and so the next section presents experimental results. 

7.3 Experimental Results 

7.3.1 Introduction 

In the next subsections the mean intensities of each colour plane were examined as a 

function of the aperture for a given exposure time and then in Section 7.3.3, DFD results 

are shown using each of the four normalisation approaches described previously. 

7.3.2 Intensity Dependence on Aperture Results 

The Basler A631 fc colour camera with the 24mm Sigma photographic lens was used to 

image a slope with a colour checkerboard pattern pasted on to it. The plane had a distance 

that changed smoothly from 0.440m to O.S20m from the camera. The aperture was fully 

opened with an f-number of f/2.8 and then the shutter time set to the maximum value that 

did not incur image saturation. Twenty images for the particular aperture setting were 

taken and the images averaged to reduce the noise. The mean brightness of the red, green 

and blue planes were then calculated. Apertures up to fl16 were tested using the same 

procedure. Importantly, the exposure time was fixed for all images. The results of the 

experiment are presented in Table 7.1. 
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Table 7.1. Mean intensity of each colour for a set exposure time 

Mean Intensity 

Aperture Red Green Blue 

fl2.8 118.3 114.7 106.l 

fl3.4 118.3 114.7 106.1 

fl4 105.5 lO2.6 94.2 

fl4.8 74.1 72.5 65.6 

fl5.6 54.8 53.7 48.4 

fl6.7 38.3 37.6 33.6 

fl8 26.4 26.1 23.0 

fl9.5 18.9 18.8 16.5 

fill 13.0 12.8 11.3 

f/13.5 9.5 9.2 8.3 

fl16 6.7 6.5 5.8 

A particularly noticeable feature of the results is that there was no change in the mean 

intensities using apertures of f/2.8 and f/3.4 for all three colour planes. The ratio of the 

intensities between two apertures half an f-stop apart should be ~ and Figure 7.2 shows 

the actual ratios and the expected ratio (horizontal solid line). For apertures of (f/2.8, 

f/3.4) and (f/3.4, f/4) the ratio is much less than ~. The experiments were repeated a 

few times in an attempt to eliminate experimental error, however, it was later learnt that it 

is not uncommon for lens manufacturers to 'misquote' the fastest lens speed. Often, the 

maximum f-number is calculated using 

F 
/=

D 
(7.13) 

where F is the focal length and D is the diameter of the front of the lens, but the equation 

does not take into account the effect of the diameters of the lens elements. The experi

ments appear to show that the 24mm Sigma lens is not a true f/2.8 in terms of light gather

ing capability. 
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Figure 7.2: Relative brightness as a function of the aperture 

The remaining eight half-stop aperture combinations performed as expected with 

intensity ratios of approximately Y2. The results show that it is important to experimen

tally test the light gathering capability of the lens. 

Due to the age of the lens, Sigma were unable to provide a datasheet from which infor

mation about the light gathering capability could be found and thus compared to the 

experimental results. However, due to the simplicity of the test and the fact that it was run 

a couple of times to check the result, experimental error could be safely be ruled out. 

7.3.3 Depth-From-Defocus Results 

The PSF of the lens was found for apertures of fl2.8, fl4 and fl5.6 and thus DFD can 

only be performed using those apertures. The four image normalisation ideas were tested 

on the images of the slope that were used in the previous section and the MSE results 

without median filtering are presented in Table 7.2. The colour images were converted to 

monochrome using an equal weighting of the colour planes, i.e. a = {3 = y = +. The sum 

of the L2 -norms was used as the error measure and each depth map was composed of 2745 

points and took around 16 minutes to process. 
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Table 7.2. MSE results for the normalisation algorithms 

MSE for a given Aperture Combination 1 mm2 

Normalisation (f/5.6, f/4) (fl5.6, f/2.8) (f/4, fl2.8) 

mm-max 0.783 0.838 3.56 

Statistical approach 0.474 0.652 3.67 

Theoretical scaling 12.1 62.2 57.1 

Actual scaling 0.404 0.767 3.68 

For the aperture combinations of (f/5.6, f/4) , (fl5.6, fl2.8) and (f/4, fl2.8) the actual 

scaling values were found to be 1.93,2.16 and 1.12 and theoretically they should be 2,4 

and 2 respectively. The aperture combination (f/4, f/2.8) was left in for completeness, 

even though the MSE results were poor on the checkerboard images discussed in Section 

6.2.10. Theoretically, the mean intensity of the image taken with f/2.8 should be twice of 

that taken with f/4, but in fact the ratio was only 1.12, and consequently the MSE results 

using the theoretical value are much worse than the other methods. 

For the two usable aperture combinations, (f/5.6, fl4) and (fl5.6, fl2.8), the statistical 

approach to normalisation reduced the MSE by 1.7 and 1.3 times respectively. The results 

using the theoretical scaling were the worst of the set. Using the actual scaling resulted in 

the best MSE of the possible algorithms for (f/5.6, f/4), but with (f/5.6, f/2.8) it was outper

formed by the statistical approach. The depth maps using the statistical normalisation 

approach and scaling by the actual values are shown in Figure 7.3 and Figure 7.4. 
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Figure 7.3: Depth maps using fl5.6 and fl4 using the statistical-based normalisation (left) and the experimentally 

determined scaling (right) 
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Figure 7.4: Depth maps using fl5.6 and fl2.8 using the statistical-based normalisation (left) and the experimen

tally determined scaling (right) 

When the slope is close to the camera, i.e. a depth of around 0.44m, the depth is mas

sively over-estimated by the DFD algorithm when the image normalisation was performed 

using the experimentally-derived scaling constant. Unfortunately, a reason for this was 

unknown. 

7.3.4 Statistical Normalisation Results 

To illustrate the new normalisation, the images captured using the colour camera and 

the 24mm Sigma lens that were used to test the peA algorithm were re-tested. The results 

are given in Table 7.3 and for ease of comparison only the MSE results are presented. 
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Table 7.3. Results using the different normalisation algorithms 

Statistical Normalisation Min-Max Normalisation 

MSEw/oMF MSEwMF MSEw/oMF MSEwMF 
Texture Algorithm 

/1O-3 m2 /10-3 m2 /10-3 m2 /10-3 m2 

Carpet Mono 0.0978 0.0463 0.202 0.0755 

(carpet_ ° 1 ) PCA 0.122 0.0631 0.239 0.0832 

Colour Mono 0.259 0.127 0.456 0.210 

Checkerboard PCA 0.160 0.0717 0.320 0.141 

Grass Mono 0.108 0.0480 0.261 0.0958 

(grass_02) PCA 0.118 0.0519 0.286 0.104 

Stone Mono 0.657 0.200 1.02 0.295 

(stone_03) PCA 0.682 0.209 1.08 0.322 

Stone Mono 0.127 0.0888 0.253 0.150 

(stone_08) PCA 0.108 0.0647 0.230 0.122 

The results in Table 7.3 show that by using the new normalisation based on the image 

statistics that the MSE has been nearly halved in comparison to the old method. The 

results using PCA are only better than the monochrome case using the colour checker

board and the stone (stone_08) texture, as with the original normalisation. Thus, it 

appears as though the relative accuracy compared to monochrome algorithm was not 

dependent on the poor normaliation used in the results of the previous chapter. 
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7.4 The Effect of Colour on Depth Accuracy 

7.4.1 Introduction 

This section considers whether the performance of the DFD algorithm is influenced by 

the colour of the objects in the scene, even though the images are converted to mono

chrome using an equal weighting of the colour planes. It was shown in Section 6.4.3 that 

the noise is predominantly multiplicative and further the green plane has the lowest noise 

variance due to being sampled twice as much as the red and blue planes because of the 

Bayer filter employed. The blue colour plane has the largest noise variance and this was 

attributed to decreasing sensitivity of the semiconductor-based CCD as the wavelengths 

extend beyond the peak sensitivity in the infrared region. The reduced sensitivity to blue 

light means that a higher gain is required, thus resulting in a higher noise level. 

7.4.2 Theoretical Analysis 

Consider a colour camera imaging a scene that has a brightness variation where the 

underlying probability density function of the texture is a Gaussian with a mean J1 and a 

standard deviation (J". For DFD work it is important that the camera's output is not satu

rated and simultaneously that it is above the clamping level. This ensures that the output 

of the camera is a linear function of the scene brightness. 

Consider a camera with an 8-bit ADC (thus giving intensity values in the range 0 to 

255) imaging a texture with a mean J1 = 180 and a standard deviation (J" = 35. The quanti

sation of the number of photoelectrons in each pixel means that intensities fall in discrete 

bins. If the camera saturates then the discrete PDF will take the form shown in Figure 7.5. 

Note how the saturation has caused the bin corresponding to an intensity of 255 to have a 

higher probability than it should when compared to the limiting distribution. 
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Figure 7.5: The limiting distribution of the brightness of the scene (solid line) and a histogram of intensities as 

produced by the camera (bars) 

The inequality describing the allowable region of the means and variances of the texture 

for the response to be linear is given by 

(ir :5 J.l - TJ cr) /\ (iu ~ J.l + TJ cr) /\ (TJ cr ~ 0) (7.14) 

where ir and iu are the lower and upper intensities of the camera and TJ is the number of 

standard deviations that the texture is assumed to cover. The Gaussian was taken to have 

an extent of J.l ± 3 cr, and so TJ = 3, as the probability of an intensity occurring outside this 

range is very small at only 0.26%. The upper level was taken as 255 because the camera 

had an 8-bit ADC and the lower level was taken as 31 as this was the mode offset of the 

three colour planes for the Basler camera. Figure 7.6 shows the allowable region given the 

parameters. It should be noted that the use of the Gaussian PDF was for convenience and 

because it is realistic, however, the same analysis could be performed for any underlying 

PDF. 
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Figure 7.6: Allowable mean and standard deviations exist inside the shaded region 

From the graph it can be seen that the maximum texture variance of (T = 37.3 can exist 

when the mean brightness is half way between the lowest and highest bounds, which in the 

example is 31 + (255 - 31)/2 = 143. 

The statistical normalisation performed on the images used for DFD and discussed in 

Section 7.2 removes the brightness variation between images and sets the mean to zero. 

Clearly, a textureless scene is useless for DFD as there is no defocus information, regard

less of whether the scene is bright or dark. Thus, it is brightness variation that is impor

tant. However, as just discussed, the mean brightness dictates the range of allowable 

variance (or standard deviation) of the texture such that the camera's response remains 

linear. 

This theoretical analysis shows that the depth accuracy will be a function of the bright

ness of the texture to an extent as it in turns dictates the allowable variance. The mUltiplica

tive noise variance was different for each colour plane suggesting a dependence on colour. 

7.4.3 Experimental Results 

In order to test how the colour, mean and variance of the texture affects the depth map 

accuracy, patches of texture with intensities governed by the Gaussian distribution were 

created with the required mean and standard deviation. In the initial tests the textures 

were printed on a colour laser printer, as used in the previous Chapter's experiments, but it 

was soon discovered that many tests would need to be performed to ascertain the correct 

mean and standard deviation of the texture. Also, the available colour printer's response 

to a blue-only texture was poor and so a TFT laptop screen was employed to provide 

texture. The image on the screen could then be changed quickly and the experiments 

performed with ease. Tests with constant intensity patches (see Figure 7.7) showed that 

the screen is gamma corrected, but this could not be turned off. The effect was to stretch 

the input intensity towards the brighter end of the response. The textures generated in 

MA TLAB were not gamma corrected for the TFT screen, as the actual distribution of 

intensities was not important. 
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Figure 7.7: Response of the camera to the input brightness on the TFT screen 

Red-only, green-only and blue-only textures were displayed on the TFT screen 0.460m 

from the camera. Each pattern was composed of nine squares, each with a specific mean 

brightness and standard deviation, an example of which is shown in Figure 7.8. Eight 

images for a given aperture (fl5.6 and f/2.8) were averaged to reduce noise. The colour 

images were then converted to monochrome using equal weightings and then processed by 

the implementation of Ens and Lawrence's DFD algorithm using experimentally deter

mined PSF measurements. 
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Figure 7.8: An example of the texture used in the experiments 

Once all of the test images had been processed, the mean MSE of the depth for a patch 

was plotted as a function of the brightness and variance of the patch. The results from the 

red, green and blue patches are shown in Figures 7.9 to 7.11 along with histograms of the 

intensities for each colour plane. 
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Figure 7.9: MSE results for red patches as a function of the mean and standard deviation of the texture (len) and 

a histogram for each colour plane (right) 
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Figure 7.10: MSE results for green patches as a function of the mean and standard deviation of the texture (left) 

and a histogram for each colour plane (right) 
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Figure 7.11: MSE results for blue patches as a function of the mean and standard deviation of the texture (left) 

and a histogram for each colour plane (right) 

The results for the red and green textures show that the MSE decreases with increasing 

standard deviation. The blue texture shows very little change of MSE as a function of the 

variance. The mean MSEs for each colour texture are shown in Table 7.4 and note that the 

mean MSE of the blue texture is 28 times as large as for the green texture. 
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Table 7.4. Mean MSEs for each colour texture tested 

Colour of Texture 

Red 

Green 

Blue 

0.115 

0.0563 

1.60 

The tests were perfonned by carefully controlling the exposure times, lighting condi

tions and the brightness of the textures so that saturation did not occur. The distribution of 

tests in (J1, 0") space deviated from the theoretical triangular shape because patches did not 

have a Gaussian distribution, as shown by the histograms, and further it was experimen

tally difficult to adjust the variances and means of the texture to obtain the extreme 

positions. 

7.4.4 Conclusion 

The theoretical and experimental analysis presented in this section has shown that depth 

accuracy does depend on the colour of the texture in the scene. The accuracy is also a 

function of the variance of the texture and to some extent the mean brightness, as this 

dictates the allowable variance range assuming a linear response is required of the camera. 

For good depth accuracy, a predominantly green texture should be employed with bright

ness variations giving a high variance, thus suggesting that the exposure setting should be 

chosen so that the mean brightness is half way in the available range (to ensure no non-

linearity effects are present). 

7.5 Complex Depth Maps 

7.5.1 Introduction 

Three real scenes with a variety of objects, colours and textures were imaged with a 

colour camera. Eight images were taken for a given f-number and then averaged to reduce 

the additive noise component. The images were processed using the implementation of 

Ens and Lawrence's DFD algorithm with real PSF data assuming a Gaussian model that 

was collected using the knife-edge based technique incorporating the non-unifonn illumina

tion model discussed in Chapters 3 and 4. The statistical-based nonnalisation algorithm 

was employed as it perfonned better than the alternatives summarised in Section 7.3.3. 
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The images captured with the colour camera were converted to monochrome using an 

equal weighting of the colour planes, i.e. Ca, {3, y) = (+, +, +). The colour pre-process

ing algorithms, such as peA, were not employed because they were adversely affected by 

the multiplicative noise present in the camera, as shown in the previous chapter. The more 

focused image (i.e. that taken with f/S.6) was textured mapped on to the depth map using 

MATLAB to produce a 2 + D image. The texture map was employed because it aids the 

viewer in locating the objects in a scene. 

7.5.2 Test 1: Wooden Man with Plastic Football 

An artists' wooden man was set up to hold a smooth plastic ball and placed in front of a 

texture, that was printed on a colour laser printer, as shown in Figure 7.12. The individual 

pentagons on the plastic-coated ball were essentially textureless and so black dots were 

added to aid the DFD algorithm. The wooden man possessed sufficient natural texture due 

to the woodgrain. A high resolution image of a section of red stone (stone _ 09) provided a 

suitable backdrop; during experimentation it was found that the small dynamic range of 

the camera restricted the texture that could be used. 

Figure 7.12: Images of a wooden figure with ball using fJ5.6 (left) and f/2.8 (right) 

The texture-mapped depth map produced using the DFD algorithm is shown in Figure 

7.13. For the purposes of analysing the map, small regions (shown labelled in Figure 7.14) 

that could be considered to be at approximately constant depths were used. The mean 

depth of the region was then compared to the actual measurements made with a ruler and 

the results are shown in Table 7.5. 
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Figure 7.13: Texture mapped depth map of wooden figure with a ball 
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Figure 7.14: Labelled image of a wooden man with a plastic football 

The man's right arm and hand (labelled H, I and J) are the closest parts to the camera 

and they have been resolved well and the resulting depth map is quite smooth. The depth 

map of the ball is particularly noisy, and this was attributed to the texture having strong 

blue components, which are known to be more noisy than red and green textures, as shown 

in Section 7.4. 
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Label 

A 

B 

C 

D 

E 

F 

G 

H 

J 

K 

L 

M 

Table 7.5. Analysis of the regions of Test 1 

Component 
Actual depth Mean depth 

fmm fmm 

Neck 486 474 

Head 483 469 

Front of football 462 455 

Left hand 476 453 

Torso 480 475 

Right shoulder 490 476 

Left shoulder 490 476 

Left part of 
440 429 forearm 

Right part of 
430 424 

forearm 

Right hand 434 423 

Elbow joint 480 469 

Background 
535 534 

(right) 

Background (left) 535 538 

Depth error 

fmm 

-12 

-14 

-7 

-23 

-5 

-14 

-14 

-11 

-6 

-11 

-11 

-1 

3 

The results show that the depth has been almost always under-estimated and this is 

consistent with the theory presented in Section 5.2.2 concerning the presence of noise in 

image 2. When the depth is under-estimated, the optimum convolution ratio is too small in 

the spatial domain, thus suggesting that there was too little change in the defocus between 

the images. Defocusing acts as a low-pass filter and thus the amplitude of the high fre

quency components in the defocused image are reduced, however, noise is not blurred and 

thus it becomes more apparent at high frequencies, thus increasing the spread of the 

convolution ratio and hence under-estimating the depth. 

The best depth results were produced by the background regions that were perpendicu

lar to the optical axis. The worse depth results were produced by the left hand (label D), 

which was curved. Ens and Lawrence's algorithm was based on the assumption that the 

depth is constant within a region and thus violations of the this assumption can be 

expected to produce significant depth errors. 

It is known from experiments in Section 6.5.2 that the depth error increases with dis

tance from the camera. The head (label B) and the torso (label E) of the wooden man both 

have the same texture and are at approximately the same depth, but the mean depth error is 

nearly three times greater for the head and this was believed to be due to its curvature, 

whereas the torso has a smoother change with depth. 
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7.5.3 Test 2: Wooden Man Holding Chess Piece 

The randomly coloured checkerboard pattern performed well In experiments In the 

previous chapter and this was due to the good textural content. It was used as a backdrop 

for the wooden man, but this time with a wooden chess piece. The defocused images used 

taken with apertures of f15.6 and f12.8 are shown in Figure 7.15. The resulting depth map 

is shown in Figure 7.16. 

Figure 7.15: Images ofa wooden figure with a chess piece using f/5.6 (left) and f/2.8 (right) 

Figure 7.16: Texture mapped depth map of a wooden figure with a chess piece 
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Figure 7.17: Labelled image ofa wooden man holding a chess piece 

The specific regions considered are shown labelled in Figure 7.17 and the results 

compared to the actual measurements in Table 7.6. The depth of the background of the 

scene, although perpendicular to the optical axis, has been resolved badly. It is at O.581m 

from the camera and is therefore outside the range of 0.41m to O.52m originally proposed, 

however, it was used for testing purposes. The large distance from the camera has resulted 

in very defocused regions, making it very sensitive to noise in the system. 

The hands of the wooden man (labelled H and I) produced very small depth errors and 

this is probably because they are close to the focus position of the camera. The wooden 

chess king (labels C, D and E) has been resolved well and the depth error is consistent at 

about 16mm. 

Label 

A 

B 

C 

D 

E 

F 

G 

II 

I 

J 

K 

L 

Table 7.6. Analysis of the regions of Test 2 

Actual depth Mean depth 
Component 

Imm Imm 

Head 517 496 

Neck 523 506 

Top of king 450 434 

Middle of king 445 429 

Base of king 440 423 

Right shoulder 
535 511 

joint 

Torso 520 516 

Right hand 438 437 

Left hand 438 438 

Left shoulder joint 527 506 

Background (left) 581 602 

Background 
581 610 

(right) 
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Depth error 

Imm 

-21 

-17 

-16 

-16 

-17 

-14 

-4 

-I 

0 

-10 

21 

29 



7.5.4 Test 3: Toy Dog 

A toy dog with a complex depth map due to its construction was imaged to provide a 

difficult test. The defocused images used are shown in Figure 7.18. The wool gives a 

very good texture that is 3D, i.e. the texture is not purely in intensity, as with the wooden 

pieces of the previous two images. The eyes are shiny plastic and are essentially texture

less, so it could not be expected that the depth would be found accurately. 

Figure 7.18: Images of a toy dog with ball using f/S.6 (left) and f/2.8 (right) 

Figure 7.l9: Texture mapped depth map of the toy dog 
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Figure 7.20: Labelled image of a toy dog 

The woollen construction of the toy dog ensured plenty of texture. The eyes were 

essentially textureless, but median filtering the depth map has reduced the depth error 

there and in fact the depth error is consistent for both eyes. 

Label 

A 

B 

C 

D 

E 

F 

G 

II 

I 

J 

K 

L 

7.5.5 

Table 7.7. Analysis of the regions of Test 3 

Component 
Actual depth Mean depth 

I rnrn I rnrn 

Right ear 460 452 

Top of head 438 428 

Left ear 460 446 

Back right leg 530 521 

Front right leg 460 452 

Nose 428 418 

Right eye 440 428 

Left eye 440 428 

Left front leg 475 446 

Left back leg 530 522 

Background 
580 588 

(right) 

Background (left) 580 605 

Conclusion 

Depth error 

I rnrn 

-8 

-10 

-14 

-9 

-8 

-10 

-12 

-12 

-29 

-8 

8 

25 

The correlation coefficient (defined in Section 4.2.3) of the actual depth and the depth 

error was calculated based on the data for each test. The depth error is plotted as a func

tion of the actual depth in Figure 7.21. 
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Figure 7.21: Mean depth error plotted as a function of the actual depth for the three tests 

The depth range employed in the experiments and the correlation coefficient are sum

marised in Table 7.8. The positive correlation coefficient shows that as the depth of a 

point is increased, the mean error increases, but as it is generally negative, it makes the 

mean depth error better. When the depth is under-estimated, image 2 is too noisy and 

when the depth is over-estimated, image 1 is too noisy. From Figure 7.21 it can be seen 

that the depth is under-estimated up to a depth of around 550mm for Tests 2 and 3 and 

then over-estimated at larger depths. The reason for this would require further analysis 

and it would have to centre on the effect of multiplicative noise as a function of the rela

ti ve defocusing between the images. 

Test 

2 

3 

Table 7.8. Summary of the complex scenes 

Correlation coefficient 

0.38 

0.44 

0.55 

Depth range 

Imm 

430 - 535 (lOS) 

440 - 581 (141) 

428 - 580 (152) 

Mean depth error 
I mm 

-9.7 

-7.3 

-8.6 

The depth has been under-estimated in all three scenes, which is consistent with the 

theory of Section 5.2.2. 
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7.6 Conclusion 

This chapter has presented the research into the normalisation of the images that are 

used in the implementation of Ens and Lawrence's DFD algorithm. Statistical and the 

theoretical-based normalisation ideas were presented and it was found that the 24mm 

Sigma lens did not have a true f/2.8 aperture setting in terms of image irradiance. The four 

normalisation possibilities were tested and the statistical approach and normalisation using 

the actual image intensity ratio performed better than the original min-max normalisation 

used in Chapter 6. 

More complex depth maps were shown for three scenes and it was clear that the imple

mented DFD algorithm using experimentally derived PSF data performed better when the 

object was close to the camera. 
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Chapter 8 

Conclusions and Future Work 

8.1 Introduction 

The research was divided into two sections, namely the measurement of the PSF of a 

defocused imaging system and the development of a colour image pre-processing stage for 

depth-from-defocus. In this chapter the conclusions of the research are drawn and then 

further work that could be done is outlined. 

In summary, the main contributions of this thesis concerning the measurement of the 

PSF of a de focused imaging system are: 

• Generalised Gaussian model of the PSF (14 times better than the pillbox, 8 times better 

than the Gaussian and 5 times better than the sum of Fermi-Dirac functions); 

• Non-uniform illumination model of the lightbox (reduced the MSE by 25%). 

The main theoretical contributions in the field ofDFD are: 

• More accurate depth maps can be found using colour images instead of monochrome 

Images; 

• In the presence of additive noise, PCA produces better depth maps than monochrome, 

however, with multiplicative noise it performs worse; 

• SNR can be boosted through colour mixing assuming an additive noise model, and thus 

producing better depth maps; 

• Maximising the fractal dimension through colour mixing, where a least-squares fit 

assuming fractional Brownian motion was used to measure the FD, produced worse 

depth accuracy than monochrome; 

• A projected colour pattern and the LCM algorithm have shown that better depth localisa

tion is possible. 

The key theoretical contribution of this work is that although DFD is a frequency 

domain approach, better sampling and analysis of the spectral domain (i.e. using a colour 

camera) holds potential for more accurate depth maps than have been produced before 

using existing monochrome algorithms. 
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8.2 Point Spread Function Measurement 

8.2.1 Introduction 

The Point Spread Function (PSF) is very important for characterising optical systems 

and Chapters 3 and 4 discussed methods of finding the PSF. The research focused on 

using a knife-edge based technique originally developed by Reichenbach et al. [55] and 

improved by Tzannes and Mooney [56] and converted to 2D by Staunton [57]. 

8.2.2 Analysis of Research and Original Contribution 

Staunton [57] used a lightbox with a knife-edge to produce a sharp intensity transition 

and assumed that the step edge had uniform brightnesses in the upper and lower regions, 

which was a reasonable approximation as his work only considered a focused camera 

system. This research considered a camera system that could be focused or defocused and 

due to the increased spatial extent of the ESF and the construction of the lightbox, a non

uniform illumination model was created. The MSE between the fitted ESF and a model of 

the ESF decreased by 25% when the non-uniform illumination was incorporated, which is 

clearly a significant decrease. 

Space-invariance was assumed and so the maximum available number of ESF profiles 

in the image were used to reduce noise and produce a super-resolution ESF. The knife 

edge was rotated in 10 degree increments about the centre of the image captured by the 

camera to build up the 2D PSF. 

The biggest problem was to process the measured ESF to obtain the PSF. Various PSF 

models were considered: geometrical optics model (the pillbox); sum of Fermi-Dirac 

functions (as proposed by Tzannes and Mooney [56]); Gaussian; and the Generalised 

Gaussian (the novel model proposed). The noise level of the camera was sufficient to 

preclude the use of a five-point forward-difference formula that performs differentiation. 

Thus, a more advanced approach was sought. Chartrand's regularised numerical differenti

ation algorithm [126] is not based on any model and thus has more flexibility than assum

ing a given PSF model. The regularised numerical differentiation could not adequately 

account for the non-uniform illumination and further the results were poor when compared 

to the Generalised Gaussian. 

The proposed model of a defocused camera system, the Generalised Gaussian, was 14 

times better than the pillbox and 8 times better than the Gaussian model with the 24mm 
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Sigma photographic lens. The sum of the Fermi-Dirac functions was 5 times worse than 

the Generalised Gaussian, and thus had a better MSE than the Gaussian and pillbox mod

els, however, the non-uniform illumination could not be taken into account. Further, the 

shape of the ID PSF was often asymmetric, which was not expected in a well-corrected 

lens. 

The camera movement was automated using an x-stage and controlled through the 

parallel port of a computer with software written in Visual Basic. The combination of 

hardware and the MATLAB software implementation produced results for the 16mm 

video lens and the 24mm Sigma lens; and the former was diagnosed to suffer from spheri

cal aberration as well as possibly coma and astigmatism. The 24mm Sigma lens had a PSF 

that was circularly symmetric to a good approximation, thus suggesting that the aberra

tions, if present at all, were negligible. 

8.2.3 Future Work 

The output of Chartrand's numerical differentiation algorithm [126] was highly depen

dent on the choice of the regularisation parameter. More analysis into the parameter may 

help to alleviate some of the problems with the overall shape, but the fact that it cannot 

directly account for the non-uniform illumination is a hindrance. If a new lightbox was 

constructed that does not have a significant illumination change in either region then the 

regularised numerical differentiation, coupled with a better choice of the regularisation 

parameter, might be optimum. 

The results in Section 4.7.4 showed that the fitted Generalised Gaussian had a standard 

deviation that was a smooth function of the depth of the lightbox, but the power was quite 

noisy. It was believed that the power as a function of depth should be smooth too. 

MATLAB's function least squares curve fitting routine (lsqcurvefit) was used, but differ

ent fitting algorithms could be investigated that fit the actual ESF to the model. 

By assuming that the PSF was space-invariant, it was possible to use many ESF profiles 

to create a super-resolution ESF. In order to test this assumption, many smaller knife

edges spread throughout the image could be employed. For example, a matrix of 3 x 3 

knife edges could be used to give nine super-resolution ESFs that could then be processed 

separately. By assuming a Gaussian model, for example, the change in the standard 

deviation as a function of the position in the image gives an indication as to its space

variant nature. 

The colour images captured by the camera fitted with a Bayer filter were converted to 

monochrome using a very simple algorithm that reduced the spatial dimensions of the 

resultant image by half compared to that captured by the camera. Different demosaicing 
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algorithms could be analysed to determine their effect on the PSF. The 24mm Sigma lens 

was assumed to be an achromat, i.e. possess very little chromatic aberration, as it was a 

high quality photographic lens. However, by testing each colour plane separately, or even 

better using various sources with a restricted spectral band, the PSF for a given range of 

wavelengths could be determined. If one light source is used then better illumination for 

the lightbox, such as a fluorescent or xeon tube (with colour temperatures around 5000K), 

should be employed to give a more even spectral response. With the incandescent bulbs 

used in the experiments, the peak in the visible wavelengths is at the red end of the spec

trum (with a colour temperature around 2500K), and thus it does not adequately allow the 

PSF to be determined as an average for all visible wavelengths. 

Motorising the rotation of the lightbox and controlling it with the computer would be 

the last required hardware adjustment to make for a fully automated system for testing 

cameras and their associated lenses. 

8.3 Colour Depth-From-Defocus 

8.3.1 Introduction 

Dimension reduction of colour images to an optimum monochrome image was shown 

using a Genetic Algorithm that finds the colour plane weighting given the known depth. 

The requirement of a known object depth makes the approach unusable in practice and 

deterministic methods were employed in an attempt to approximate the function performed 

by the GA using Principal Component Analysis, maximisation of the SNR, maximisation 

of the fractal dimension and LCM. 

8.3.2 Analysis of Research and Original Contribution 

As far as the author is aware, this is the first work done on colour DFD that uses two 

de focused RGB images. Hiura and Matsuyama [104] used a 3-colour camera to capture 

three images where each image plane was imaged with lenses of differing focal lengths. 

Murata and Kawamura [lOS] used a similar approach for Particle Image Velocimetry, but 

with two colour planes only. 

The work began with the realisation that a monochrome camera can lose important 

textural information that is chromatic in nature. A GA was written to discover if there 

were optimum linear combinations of the colour planes and the result was affirmative. 

The GA could yield limited information about how it was achieving such good depth maps 
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and further it was capable of manipulating the noise present in an image to meet its desired 

goal. 

In the presence of uncorrelated, additive noise PCA was found to be superior to using 

an equal weighting of the colour planes. An image corrupted by A WGN was scaled by the 

eigenvector with the largest eigenvalue and improvements of between 1.3 and 1.5 times 

were found over the monochrome case. However, multiplicative noise adversely affected 

its ability to produce eigenvectors that give a good SNR. A weighted PCA algorithm 

based on the noise variances of the colour planes, denoted NY A-PCA, was not sufficient 

to alleviate the problem in the experiments. 

An algorithm was devised to maximise the SNR assuming an additive model and simula

tions showed that with noise that has the same variance (i.e. the noise is isotropic) in each 

colour plane that maximising the SNR and PCA produced essentially the same results. 

Evolving the solution using a GA is slower than using PCA and so the matrix-based 

solution should be used for efficiency. When the noise is non-isotropic, PCA is no longer 

optimum and the algorithm to maximise the SNR gave SNR improvements of around 2dB 

compared to PCA and 3dB compared to monochrome. The small increase in the SNR 

resulted in depth maps with a MSE that was between 3.4 and 7.8 times better than mono

chrome and 1.7 to 1.9 times better than PCA. 

The algorithm to find (a, {3, y) to maximise the fractal dimension gave worse depth 

maps than using both the monochrome and PCA approaches. This was traced to the 

reduction in the SNR by maximising the FD and so to be usable the SNR could be taken 

into account through a multi-objective optimisation approach. 

The Localisation through Colour Mixing (LCM) algorithm was specifically designed to 

reduce the windowing and image overlap problem. The scaling constants (a, {3, y) were 

derived using the Moore-Penrose matrix inverse to give the best approximation to a mono

chrome image with an impulse at the centre pixel. The approach required a random colour 

checkerboard pattern to be projected onto the scene using a telecentric projector to ensure 

the pixels have the same size on the camera regardless of depth. Due to the lack of this 

equipment, only simulations could be performed. LCM was found to give depth maps that 

were between 7.3 and 9.4 times better than monochrome and 1.7 and 2.2 times better than 

PCA. The SNR was reduced by improving the localisation, thus showing a trade-off that 

must be carefully managed in practice. 
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8.3.3 Future Work 

First and foremost, the lack of an adequate noise model for the camera hindered the 

construction of the algorithms and the underlying assumption that the noise was additive 

was clearly incorrect. A de-noising pre-process would be very useful before the resulting 

denoised images were applied to the PCA, maximisation of the FD or LCM algorithms. 

Alternatively, algorithms such as PCA, maximisation of the SNR and LCM need to be 

reformulated to be robust in the presence of multiplicative noise. 

An Artificial Neural Network (ANN) is composed of simple processing elements called 

neurons that can be used to model processes through a training procedure. An ANN could 

be employed to take the defocused colour images and return the optimum weights, denoted 

Ca, {3, y). The GA or the best point on a response surface [189] [190] [191] ofCa, fJ, y) 

could be used as the training input. The problem with presenting even a single image to 

the ANN is that for a window size of 32 x 32 with three colour planes, the number of 

inputs would be 3072. In order to reduce the number of inputs the statistics of each colour 

plane could be entered, including the mean, variance, skewness and kurtosis of each colour 

plane along with covariances between planes. 

The dynamic range of a CCD camera is very much less than the human visual system 

and it was a difficult to ensure that parts of the scene were not saturated while other parts 

were too dark to be imaged for subsequent tests. A much larger dynamic range could be 

achieved by using multiple exposure times and then reconstructing the scene. 

The research into colour DFD used a linear approach to creating a monochrome image 

and non-linear approaches could be investigated. A more advanced idea would be to 

employ an explicit multi-channel approach (instead of an implicit approach investigated in 

this thesis) that can take into account the correlations between the colour planes and the 

wavelength dependent nature of the PSF. 
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Appendix A 

Derivation of the Edge Spread 

Functions 

A.I Introduction 

The Point Spread Function (PSF) characterises an optical system and it is important to 

know the PSF accurately for Depth from Defocus (DFD) work for precise recovery of the 

depth of objects in a scene. The PSF can be measured by imaging a step edge in intensity 

to find the Edge Spread Function (ESF) and then differentiating the response as shown by 

[55] [56] [57]. Numerical differentiation of discrete data is problematic when noise is 

present, but it is possible to assume the PSF comes from a particular family of shapes. 

The experimentally obtained ESF can be fitted (in a least squares sense) to a model ESF 

formed from a defocus blurred ideal step with a particular PSF shape and from the fit the 

PSF parameters can be determined. In this Appendix the general ESFs are derived for 

steps that account for the experimental issues of non-uniform illumination when the PSF is 

a mathematically defined pillbox, Gaussian and Generalised Gaussian. The non-uniform 

illumination is modelled as a linear change in intensity with distance as this fitted with the 

experimental results. 

Previously the two PSF models most commonly employed in depth-from-defocus are 

the pillbox and Gaussian models, but the Generalised Gaussian was shown to be a good 

contender. The main problem with the Generalised Gaussian function is that it strongly 

resists being manipulated mathematically by virtue of its non-integer power. 

A.2 Edge Spread Function Model 

Consider a one-dimensional step edge where the brightness of the upper and lower 

levels have a linear dependence on position. The intensity of the bright region is given by 

212 



(AI) 

and the intensity of the dark region is given by 

(A2) 

where x is the position measured in pixels, mj is the gradient of the brightness and Cj is the 

brightness at the discontinuity where i E [1, 2] as shown in Figure A.!, The discontinuity 

occurs at x = xo, thus the piecewise function representing the ideal (non-blurred) step is 

given by 

The unit step function is defined as 

X ::5 xo 

X >xo 

{
o x < 0 

u(x) = 
I x ~ 0 

and thus the ideal step with non-uniform illumination sex) can be written as 

sex) = [ml x + Cl] u(xo + x) + [m2 x + C2] u(x - xo). 

(A3) 

(A4) 

(AS) 

Figure A.l below shows an example of a step with non-uniform illumination where 

m) = 2, m2 = -2, c) = 250, C2 = 50 and Xo = 2. The parameters of the non-unifonn 

illumination were chosen to exaggerate the actual effect found in experimental work to 

make the resulting ESF easier to see visually. 

sex) 

150 

100 

-20 -10 10 20 

Figure A.I: Step with non-unifonn illumination 

The ESF I(x) is given by the convolution of the ideal step sex) with the PSF hex) and it 

can be denoted 

I(x) = sex) * hex) (A6) 

where * denotes linear convolution. The convolution integral allows the equation to be re

written as 

I(x) = i:S(~) hex -~) d~ = [sex -~) h(~) d~ 
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and substituting in AS gives the general ESF as 

I(x) = 

[ h(§)[ml (x - §) + Cl] u(xo - x + §) d g + [h(g)[m2(x - §) + C2] u(x _ g _ xo) d g (A8) 

The shifted unit steps in A8 mean that the limits of the integration can be reduced as 

and 

and thus the ESF becomes 

{ 
0 g < X-Xo 

u(xo - x +§) = 
I g ~ x -Xo 

{ 
0 g > X-Xo 

u(x-§-xo)= I g:s X - Xo 

(A9) 

(AIO) 

For the purposes of the derivation it is useful to split up the ESF into two halves so that 

(AI2) 

where Ab(x) corresponds to contribution due to the bright region and it is given by 

(Al3) 

and Ad(x) corresponds to the dark region where 

(AI4) 

A.3 Pillbox PSF Model 

Now consider a pillbox PSF with unit area that is given by 

I 
hp(x) = - [u(x + a-) - u(x - a-)] 

2(7" 
(At5) 

where (]" is the radius of the pillbox (and hence the blur circle). Figure A.2 shows a 

pillbox PSF where the radius (]" = S. 
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hp(x) 
1\ t 
v .. 

0.08 

0.06 

0.04 

0.02 

x 
-20 -10 10 20 

Figure A.2: The pillbox PSF with a radius (T = 5 

The ESF due to the dark region is given by (A13) and substituting (A15) in gives 

(AI6) 

The piecewise nature of the PSF means that the ESF needs to be computed piecewise too. 

If x - Xo < -(]" then 

and if -(]" :5 x - Xo :5 (]" then 

and finally if (]" < x - Xo then i\b(X) = O. 

A similar analysis for the dark region gives 

1 
=-4U 

«2 Cl + ml (x + Xo - (T)) (x - Xo - (T)) 

Ad(X) = - [u(x + (T) - u(x - (T)][mz(x - g) + cz] d~ 1 Loo 

2 (T -00 

(AI7) 

(AI8) 

(AI9) 

(A20) 

(A2I) 

and again the equation must be considered piecewise. If x - Xo < -(T then i\d(X) = 0 and 

if -(T :5 x - Xo :5 (]" then 

(A22) 

_ (X-Xo+<T) (Z C2+m2(X+XO+<T) 
- 4<T 

(A23) 

and (T < x - Xo then 

~(X) = mz x + C2 
(A24) 

Combining the results gives the ESF for a pillbox PSF where the step has non-uniform 

illumination as 
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m\ X+c\ 
1 

4iT[-(2C\ +ml(X +XO -o-»)(X-XO -0-) + 

(X - Xo + 0-)(2 C2 + m2(x + Xo + 0-»] 

m2 X + C2 

X -Xo <-0-

-0- S X - Xo S 0-
(A25) 

0- < X -Xo 

and an example of the shape of the ESF is shown in Figure A.3 where 0- = 5 and the step 

with non-uniform illumination has the same shape as used in Figure A.I. The original 

(focused) step has been shown as a dashed line for comparison with the defocus blurred 

step, shown with the solid line. 

-20 -10 10 20 

Figure A.3: ESF with a pillbox PSF where 0- = 5 

A.4 Gaussian PSF Model 

Now consider a Gaussian PSF with unit area that is given by 

h (x) = 1 exp {_ 2. (x - i)2 } 
g 0- --{2; 2 0-2 

(A26) 

where (T is the standard deviation and it is assumed that the mean .x is zero. Figure A.4 

shows the Gaussian with (T = 5. 

Figure A.4: Gaussian PSF where 0- = 5 

Substituting the Gaussian PSF A26 into (All) gives the ESF as 
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Due to the discontinuity in the brightness the ESF can be considered to be composed of 

two distinct regions - bright and dark - as before. The parts of the ESF corresponding to 

the bright i\b(X) and dark regions i\d(X) are 

(A28) 

and 

(A29) 

It is necessary to perform the integration by parts and it can be shown using Mathemat

ica that 

and 

where the error function erf(x) is defined as 

2 LX /2 erf(x) = - e- dt 
{;o 

and a plot of the function is shown in Figure A.S. 

erf(x) 

1 

-4 -2 

-0 

-1 

2 4 

Figure A.S: The error function erf(x) 

(A32) 

x 

The Gaussian defocused step taking into account non-uniform illumination is given by 
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and Figure A.6 shows the shape of the ESF if a Gaussian with (j = 5 is used. 

hex) 
250- --, --_ .. -- : 

---~- , , 
2 

100 

50 

~~--~----~+-----~------~ x 
-20 -10 10 20 

Figure A.6: ESF when the PSF is a Gaussian with 0- = 5 

A.S Generalised Gaussian PSF Model 

A new model proposed for the PSF is the Generalised Gaussian and it is given by 

1-1.. {I I ~IP } P p x-x 
ho(x) = ( 1 ) exp --

2 o-r - P o-P 
P 

(A33) 

(A34) 

where r(·) is the Gamma function, (j is the standard deviation of the function, i is the 

mean, p is the power and 1·1 represents the modulus. It is assumed that the mean i is 

zero, thus this is no phase shift. When p = 2 the Generalised Gaussian reduces to a 

normal Gaussian. Figure A.7 below shows Generalised Gaussians for (p = 1, (j = 5) and 

(p = 4, (j = 5) 

-30 -20 -10 

hG(x) 
0.1 

10 20 30 

haCx) 

~ ______ L-~~~-------- X 

-30 -20 -10 10 20 30 

Figure A.7: Generalised Gaussian PSFs where (left) p = 1 and 0- = 5; (right) p = 4 and 0- = 5 
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From the figure it can be seen that the power p controls the pointedness of the peak and (J" 

specifies the spread, as with a normal Gaussian function. Using the general form of the 

ESF given in (All) and the Generalised Gaussian PSF (A34) results in 

pl-t i oo 
1 I~Y 

fG(X) = (I) exp {-- -}[ml(X-~)+CtJd~+ 
2 (J" r - X-Xo p (J"P 

P 

pl-t iX-xO 1 I~IP 

(
I) exp {-- -}[m2(X-~+C2]d~ 

2 (J" r - -00 p (J"P 
P 

(A35) 

Mathematica and Maple were employed in an attempt to simplify the equations but to no 

avail and so in order to calculate the ESF assuming a Generalised Gaussian numerical 

integration was employed. Figure A.8 below show the ESFs for the Generalised Gauss

ians described above. 

hex) 
25(} --, 

---_ ........ --_.. ! 

100 

50 

, 

.. _--

~--------~~------------ x 
-20 -10 10 20 

100 

50 -__ _ 

~----------4------------ x 
-20 -10 10 20 

Figure A.8: The ideal steps (dashed lines) and ESFs (solid lines) assuming Generalised Gaussian 

PSFs with (left) p = 1 and (J" = 5; (right) p = 4 and (J" = 5. 
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Appendix B 

Analysis of Linear Transforma-

tions of Images for Colour Depth-

from-Defocus 

B.1 Introduction 

Ens and Lawrence's [58] [59] DFD algorithm reqUires two differently defocused 

images to be employed to determine the depth. The colour images are pre-processed to 

give a monochrome image M(x, y) using 

(BI) 

M2(x, y) = a2 R2(x, y) + /32 G2(x, Y) + 'Y2 B2(x, y) (B2) 

where Rl (x, y), G1 (x, y) and Bl (x, y) are the red, green and blue components respectively 

of image 1 and (ai, /31, Yl) are the real scaling constants. In the general case for two 

images there will be two sets of scaling constants, (ai, /31, Yl) and (a2, /32, Y2) and consid

erations as to what restrictions must be placed on the constants so that DFD can still be 

performed accurately are important and necessary. 

B.2 Mathematical Analysis of Monochrome Case 

In order to solve the problem, linear transformations of the two monochrome images are 

considered in this section and then the specific problem is examined in the next section. 

Consider two defocused images il (x, y) and i2(x, y) where 

il (x, y) = j(x, y) * hi (x, y) (B3) 

and 

220 



(84) 

where the image that would be formed with a pinhole camera is denoted I(x, y) and 

hi (x, y) and h2(x, y) are the Point Spread Functions (PSFs), which are directly related to 

the camera parameters and the depth of the object. 

Ens and Lawrence's DFD algorithm [58] [59] searches through the known set of pre

computed convolution ratios h3(x, y) to find the particular one that gives the lowest mean 

square error, l.e. 

min I (il (x, y) * h3(x, y) - i2(X, y»2 
x,y (85) 

where * denotes linear convolution. In effect the algorithm searches for the best convolu

tion ratio such that blurring the defocused image taken by camera 1 approximates that 

taken with camera 2. 

The difference between the images without using the mean square measure is given by 

(86) 

and substituting (B3) and (B4) into (B6) gives 

d(x, y) = [f(x, y) * hi (x, y)] * h3(x, y) - [f(x, y) * h2(x, y)]. (87) 

The associative and distributive laws of convolution mean that the difference d(x, y) can 

be written as 

d(x, y) = j(x, y) * [(hi (x, y) * h3(x, y» - h2(x, y)] (88) 

and it can be clearly seen that, assuming no noise, using the correct h3(x, y) sets the term 

in square brackets is zero. 

Consider now the effect when the ideal defocused images i l (x, y) and i2(x, y) have 

undergone a linear transformation to produce two images ;1 '(x, y) and i2'(x, y) given by 

il '(x, y) = t/JI il (x, y) + 1/11 (89) 

and 

(810) 

The difference d(x, y) when the two images employed have undergone a linear transfor

mation is given by substituting (B9) and (B 10) into (B6) to give 

d(x, y) = [t/JI il (x, y) + 1/11] * h3(x, y) - [t/J2 i2(X, y) + 1/12]. (811) 

The defocused images il (x, y) and i2(X, y) are given by (B3) and (B4) and so 

d(x, y) = [t/JI (f(x, y) * hi (x, y)} + 1/11] * h3(X, y) - [t/J2 (j(x, y) * h2(X, y)} + 1/12] (812) 

and using the distributive law of convolution gives 
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d(x, y) = [CPI (f(X, y) * hI (x, y)} * h3(x, y) + 1/11 * h3(x, y)] - [CP2 (f(X, y) * h2(x, y)} + 1/12]. (B 13) 

Separating out the terms with additive constants 1/1) and 1/12 and re-arranging the tenns 

with multiplicative constants ¢) and ¢2 yields 

d(x, y) = [[(x, y) * {CPI hI (x, y) * h3(x, y)} - I(x, y) * ifJ2 h2(x, y)] + [1/11 * h3(x, y) -1/12]. (B 14) 

and using the distributive law of convolution again results in 

d(x, y) = I(x, y) * [{CPI hI (x, y) * h3(x, y)} - ifJ2 h2(x, y)] + [1/11 * h3(x, y) -1/12]. (B 15) 

The term in the second set of square brackets [1/1) * h3(x, y) -1/12] can be written using 

the two-dimensional convolution integral to give 

(B 16) 

and since 1/1) does not depend on spatial position (x, y) then 

(BI7) 

and the integral is the volume of the PSF. It is usual to set 

(BI8) 

and thus (B 17) and (B 18) gives 

(BI9) 

and so a constant is produced that is independent of depth. This shows the interesting 

result that adding constants to the images does not affect the best selected convolution 

ratio h3(x, y). 

Now consider the first square-bracketed term in (B 15), which will be denoted ,l(x, y), 

l.e. 

(B20) 

and note that when ¢) = ¢2 = 1 the term reduces to that of the original case before the 

linear transformation as shown in (B6). It is instructive at this point to transfonn the 

problem to the Fourier domain so that the useful property that spatial domain convolution 

becomes Fourier domain multiplication can be employed. Consider the Fourier transfonn 

of ,l(x, y) to give 

(B21) 

FT FT. .. 
where ,l(x, y)+---+A(w, v) and h;(x, y)+---+H;(w, v) for 1= 1,2,3 and assummg no nOIse 

and the correct convolution ratio was chosen the term A(w, v) will reduce to zero, i.e. 

CPI HI(w, v)H3(w, v) -CP2 H2(w, v) = O. 
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Rearranging to find the Fourier transform of the convolution ratio gives 

H
3
(w, v) = ¢>2 H2(w, v) . 

¢>I H1(w, v) (B23) 

It is assumed that the PSF is a Gaussian for simplicity, but similar analyses could be 

performed for other PSF shapes. If the ith 2D Gaussian PSF in the spatial domain is given 

by 

(B24) 

where i = 1, 2, 3 then its Fourier transform is given by 

Hj(w, v) = exp {- ~ (w2 cr;j + y2 cr;J} (825) 

and thus the Fourier transform of the convolution ratio (B23) is given by 

(826) 

which can be simplified to give 

(B27) 

In the implementation the convolution ratios have to be pre-computed and it is usual to 

make the assumption that H3(W, v) is a unit volume Gaussian PSF and so then it will be of 

the form 

(B28) 

and so equating (B27) and (B28) gives 

Taking natural logarithms gives 

and separating out the terms for the orthogonal spatial frequency components wand v 

gives equations for the variances of the Gaussians of the convolution ratio as 

(B31) 

and 

cr;J = - :2 In( :~ ) + (cr;2 - cr;.). (832) 
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Having completed a general monochrome analysis assuming a linear transformation of 

the images the next section considers the specific problem discussed in the introduction. 

B.3 Colour Mixing for Depth-from-Defocus 

Consider the model of the imaging and colour mixing system diagrammatically in 

Figure 9.2. It is assumed that the Point Spread Functions (PSFs) are identical for all three 

colour channels for a given camera setting. A linear transformation is applied to each 

colour channel following the capture and then the channels are summed to give the mono

chrome images that are subsequently presented to the DFD algorithm. 

f(x,y) 

colour scene 

camera I 

camera 2 

Two RGB colour images 

of the scene 

+ 

+ 

Linear colour mixing to form 

two monochrome images 

Figure B.1: Linear colour mixing model 

Monochrome image i is given by 

Mj(x, y) = (Xj Rj(x, Y) + f3j Gj(x, Y) + 'Yj Bj(x, Y) + Ilj (B33) 

where (aj, Pj, Yj) are the real multiplicative constants, J1j is an additive constant and Ri , 

G
j 

and B
j 

are the defocus blurred red, green and blue colour channels respectively. Two 

images are employed and so i = I, 2. The defocused colour channels are given by 

Rj(x, Y) = /R(x, Y) * hj(x, Y) 
(B34) 

Gj(X, Y) = !G(x, Y) * hj(x, Y) 
(835) 

Bj(x, Y) = !B(X, Y) * hj(x, Y) 
(836) 

·nh I . d h is the ;th 
where IR' IG and IB are the RGB colour channels of the pI 0 e Image an i 

PSFs. Expanding (B33) using (B34), (B35) and (B36) gives 

Mi(x, Y) = (XjlfR(X, Y) * hi(x, Y)] + f3ilfG(x, y) * hj(x, y)] + 'YilfB(X, y) * hi(x, y)] + Ili 
(837) 
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Two monochrome images MI(x, y) and M 2(x, y) are used in Ens and Lawrence's [58] 

[59] DFD algorithm so that the best convolution ratio h3 (x, y) is sought such that 

min L (MI (x, y) * h3(x, y) - M 2(x, y»2 
X,Y 

and in the noise-free case 

MI (x, y) * h3(x, y) - M 2(x, y) = 0 

and substituting in (B37) for i = 1, 2 gives 

(al [!R(x, y) * hI (x, y)] + /31 [fG(x, y) * hI (x, y)] + YI [fB(X, y) * hI (x, y)] + 111) * h3 

-(a2[fR(x, y) * h2(x, y)] + /32 [fG(X, y) * h2(x, y)] + Y2[fB(X, y) * h2(x, y)] + 112) = o. 

Separating out the RGB components gives 

fR(X, y) * [{al hI (x, y) * h3(x, y)} - a2 h2(X, y)] 

+ fG(x, y) * [{/31 hI (x, y) * h3(x, y)} - /32 h2(x, y)] 

+ !B(x, y) * [{YI hI (x, y) * h3(x, y)} - Y2 h2(x, y)] 

+[111 * h3(x, y) - 112] = 0 

(838) 

(839) 

(840) 

(841) 

and from (B 19) it can be seen that /11 * h3(x, y) - /12 = /11 - /12 and this does not affect the 

optimum convolution ratio h3(x, y). If the constant is ignored for the moment and the 

Fourier transform of(B4l) is taken then 

FT FT 
where J;(x, y)f----+Fj(w, v) for i = [R, G, B] and h/x, y)+---+H/w, v) for j = 1,2,3 and 

the spatial frequency components have been dropped for clarity. If only one colour chan

nel existed (e.g. red) then the problem would reduce to 

(843) 

and it was shown in (B31) and (B32) that if al =/=. a2 then an offset is produced. With 

three colour planes the problem becomes more complicated to analyse mathematically 

because the contribution due to the scene does not cancel. If al = a2, /31 = /32 and 

YI = Y2 then (B42) becomes 

a FR(HI H3 - H 2) + /3FG(HI H3 -H2) + Y FB(HI H3 - H 2) = 0 (844) 

from which it can be seen that the correct convolution ratio in the noise-free case sets 

HI H3 - H2 = O. Thus the corresponding colour planes of both images must be scaled 

identically to give accurate depth estimates. 
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B.4 Conclusion 

In the case where a monochrome image is formed from a linear combination of the 

colour planes, it is important that the corresponding colour planes of both images are 

scaled identically to give accurate depth estimates, i.e. at = a2, f3t = f32 and ')'1 = ')'2. It 

was found that the addition of the constants to each colour plane does not affect the depth 

returned using Ens and Lawrence's DFD algorithm. 
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Appendix C 

HSI Analysis of Colour Mixing 

C.I Introduction 

When humans discuss colour they are unlikely to specify the proportions of red, green 

and blue, instead they use the Hue-Saturation-Intensity (HSI) colour space without necessar

ily knowing it. The intensity is a measure of the brightness of the pixel and the hue gives 

its colour, e.g. red, yellow, green, cyan, blue, magenta etc. The saturation specifies how 

far the colour is from grey. This Appendix examines linear colour mixing from an HSI 

view-point, instead of in terms of the RGB colour space, to find out what variation an 

image must be possess so that colour mixing using 

M(x, y) = a R(x, y) + f3 G(x, y) + r B(x, y) (el) 

gives a different response to simply using (n, {3, y) = (t, t, ~). 

C.2 RGB to HSI Transformation 

The transformation from RGB to HSI begins by normalising the pixels to lie in the 

closed interval [0, 1]. The value or intensity of the red, green and blue pixels is denoted 

R, G and B respectively. The hue H is given by 

{
o 

H = 2 1f - 0 if B > G 

if B ~ G 
(e2) 

where the angle () (in radians) is given by 

( 
t [(R - G) + (R - B)] 1 

0= cos-1 
I . 

[ (R - G)2 + (R - B) (G - B) ] ~ 
(e3) 

The hue is often normalised to lie in the range [0, 1] by dividing by 2 Tr. The saturation S 

is given by 
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3 
S = 1 - min(R, G, B) 

R+G+B 
(C4) 

where min(R, G, B) is a non-linear function that returns the lowest pixel value of the red, 

green and blue pixels. The intensity I is the only linear function in the transfonnation and 

it is given by 

R+G+B 
1=---

3 
(C5) 

The inverse transformation of the HSI coordinates to RGB is less straightforward and it 

depends on the value of the hue, which is assumed to be in the range [0, 2n]. If 

° ~ H < 231r (the RG sector) then the RGB components are given by 

(C6) 

G = 1- (R +B) (C7) 

B = 1(1 - S) (C8) 

If 2r ~ H < \1r (the GB sector) then the hue must be modified to H -+ H - 2r and then 

R = 1(1 - S) (C9) 

(CI0) 

B = 1- (R + G) (Cll) 

and if 431r ~ H < 2n (the BR sector) then the hue must be modified with H -+ H - \TC 

and then 

R = 1- (G +B) (C12) 

G = 1(1- S) (C13) 

B : I( 1 + co~t;S~H))- (C14) 

Colour mixing was formulated in the RGB space, but it is useful to consider whether it 

could be used on images that only vary in hue, saturation or intensity, where the remaining 

two quantities are a constant. More generally the equations can be written as 

Xl = 1(1- S) 
(C15) 

( 
ScosH 1 

X2 = 1 1 + cos( f _ H) 
(C16) 
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(CI7) 

and then the following table could be used to determine which equation applies for RGB 

depending on the sector. 

Table C.l: Variable for a given sector 

Variable R-G Sector G-B Sector 8-R Sector 

XI B R G 

X2 R G B 

X3 G B R 

C.3 HSI Colour Mixing Analysis 

The HSI transformation equations are useful to analyse colour mixing and then find the 

effects of allowing only one of the HSI components to vary. The monochrome image 

M(x, y) used for DFD is given by (C I). It can be shown that the particular sector of hue is 

irrelevant in the conclusions formed and for the derivations the R-G sector will be used. 

The general colour mixing equations are derived below and then for each specific case the 

general equations are altered. The spatial location of the pixel (x, y) must be included to 

give 

( 
S(x, y) cos H(x, y) 1 

R(x, y) = I(x, y) I + ( . ) 
cos T - H(x, y) 

(CI8) 

G(x, y) = 1 - (R(x, y) + B(x, y» (CI9) 

B(x, y) = I(x, y) (1 - sex, y» (C20) 

The green colour plane G(x, y) needs to be written in terms of HSI so the red and blue 

plane equations are substituted in to give 

G(x, y) = 1- (/(X' Y)(1 + S(X'tCOS
H

(X, y; 1 +/(x, y)(1-S(x, y»l (C21) 
cos T -H(x, y) 

and re-arranging gives 

( 

Sex, y) cosH(x, y) 1 
G(x, y) = 1 - I(x, y) 2 + ( Tr ) - sex, y) . 

cos "3 - H(x, y) 

(C22) 

Using the HSI-based equations gives the colour mixed monochrome image as 
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M(x, y) = a (/(X, y) (1 + Sex, y) cos H(x, y) 11 + 
cos{f -H(x, y») 

( ( ( 
sex, y) cos H(x, y) 1 11 f3 1- I(x, y) 1 + (Tr ) +/(x, y)(1-S(x, y» + 
cos T - H(x, y) 

y (I(x, y) (1 - sex, y))). 

(C23) 

Now consider the case where two of the components of the HSI are held constant and the 

remaining component is allowed to change spatially. 

C.3.1 Hue Variation and Colour Mixing 

Consider a surface with a varying hue H(x, y) and a constant saturation S and intensity 

I. The resulting monochrome image can be found from (C23) and is given by 

M(x, y) = 

I (1 S cos H(x, y) 1 ( ( sex, y) cos H(x, y) 11 a + + f3 1 - I 2 + - S + Y 1 (1 - S) 
cos{ f - H(x, y») cos{ f - H(x, y») . 

(C24) 

Rearranging the terms together gives 

1 S cos H(x, y} 
M(x, y) = [a I + f3 - 2 I f3 + f31 S + Y 1(1 - S)] + ( ) (a - (3) (C25) 

cos f - H(x, y) 

and denoting the constant term in square brackets as C gives 

I S cos H(x, y) 
M(x, y) = c + ( ) (a - f3). 

cos f - H(x, y) 
(C26) 

The resulting monochrome image M(x, y) is not proportional to the intensity I and hence 

the image has been changed through mixing using (a, /3, y). 

C.3.2 Saturation Variation and Colour Mixing 

Consider a image that has a varying saturation Sex, y) and a constant hue H and inten

sity I. The colour mixed image M(x, y) is thus given by modifying (C23) to give 

( 
I Sex y)cosH 1 ( I sex, y)cosH 11 M(x, y) = a 1+ ' Tr + f3 1 - 2 I - Tr ) + I sex, y) + 

cos{T -H) cos{T- H (C27) 

y 1(1 - sex, y». 

and collecting the terms gives 

I sex, y) cosH f3 } f3 
M(x, y} = I(a - 2 f3 + y) + Tr (a - (3) + I Sex, y)( - y + . 

cos{ T -H) 
(C28) 
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If a - f3 = 0 and f3 - y = 0, which implies a = f3 = y, then the image reduces to a constant 

intensity, given by 

M(x, y) = l(a - 213+ y) + 13 (C29) 

and otherwise the resulting monochrome image M(x, y) does not have a constant intensity 

and is dependent on the varying saturation Sex, y) as can be seen by rearranging (C28) to 

gIve 

M(x, y) = [lea - 213 + y) + 13] + sex, y) Tr (a - 13) + I (13 - y) . [ 
I cosH 1 

cos( '3 -H) (C30) 

The terms in square brackets are constants and will be denoted C) and C2 so that 

M(x, y) = C) + C2 Sex, y) (C31) 

Depending on the sign of C2 the saturation term Sex, y) can either increase or decrease the 

brightness of the colour mixed monochrome image. 

C.3.3 Intensity Variation and Colour Mixing 

Now consider a surface that has a changing intensity lex, y) but a constant hue Hand 

saturation S. The general equation (C23) becomes 

( ( 
ScosH 11 M(x, y) = a I(x, y) 1 + ( Tr ) + 

cos '3 - H(x, y) 

( ( 
ScosH 11 13 1 - I(x, y) 2 + cos( f _ H) - sex, y) + y I(x, y) (1 - S) 

(C32) 

and rearranging gives 

[ 
ScosH 1 M(x, y) = I(x, y) (a - 213 + y) + ( Tr ) (a - 13) + S(f3 - y) 

cos --H 3 

(C33) 

and since the term in square brackets is a constant then M(x, y) oc lex, y), thus showing 

that colour mixing has not been performed. The consequence of this derivation is that an 

image with a constant hue and saturation but a varying intensity cannot be colour mixed to 

yield a different intensity image from using ( +, +, ~). 
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C.4 Conclusion 

The analysis has shown that if the hue or the saturation vary with spatial position then 

colour mixing can be applied, but if only the intensity changes and the hue and saturation 

remain constant then colour mixing is no different from using the monochrome case of 

( ~, ~, ~) except for a scaling factor. 
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Appendix D 

Gaussian Convolution Ratios 

D.I Introduction 

Ens and Lawrence's [58] [59] DFD algorithm relates the point spread functions (PSFs) 

of cameras 1 and 2, denoted hI (x, y) and h2(x, y), through a function known as the convolu

tion ratio h3 (x, y), given by 

(01) 

If the PSFs are Gaussian functions then it is known that the convolution ratio is also a 

Gaussian. This Appendix derives the relationship between the spreads of the PSFs and the 

convolution ratio. 

D.2 Derivation of the Convolution Ratio 

A I-D Gaussian centred on x = 0 is given by 

(02) 

where O"i is the standard deviation of the Gaussian. The 2-D Gaussian is a separable 
x 

function and it is given by 

h;(x, y) = h;Jx) h;/y) (03) 

(04) 

~ h;(x, y) = 1 exp {_ ~ (:'" + ~"Y )}. 2 1r (T;. (T;y Vi 

(OS) 

The 2-D Continuous-Space Fourier Transfonn (CSFT) of a function f(x, y) is given by 

233 



(06) 

where flxand fly are the frequency components and j = ~. If I(x, y) is separable then 

it can be rewritten as I(x, y) = fx(x) hey) and the 2-D CSFT becomes 

F(!lx, !ly) = ([.fx(X) e-
jil

•
x 

d x )([/y(y) e-jilyy d Y) = F(nx) F(ny). (07) 

Now consider the I-D CSFT of a Gaussian function hj.(x) , given by 

H;.(nx) = [h;,(X)e-jil• X dx 

and substituting in (D2) gives 

and this can be simplified to 

Thus, the CSFT of the separable 2-D Gaussian is given by 

Hj(nx, ny) = exp {- ~ n; ai} exp {- ~ n; 07y} 

The CSFT of the convolution equation (D I) is given by 

(08) 

(09) 

(010) 

(011) 

(012) 

as convolution in the spatial domain becomes multiplication in the Fourier frequency 

domain. Thus, 

exp {- ~ (n; ai. + n; aiJ} exp {- ~ (n; ai. + n; aiJ} = 

exp {- ~ (n; ai. + n; aiJ} 

~ exp {- ~ (n;[ai. + ~J + n;[aiy + ~J)} = exp {- ~ (n; ai. + n; aiJ} 

and thus for equality to hold 
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(014) 

(015) 

(016) 

(017) 



A simple rearrangement shows that the required spread in the x and y-directions for the 

convolution ratio is given by 

(DI8) 

oi = oi -~ . y y y 
(DI9) 
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Appendix E 

Checkerboard Experiments 

E.I Introduction 

Images of a checkerboard pattern perpendicular to the camera's optical aXIs were 

obtained using the Basler A631 fc colour camera and the 24mm Sigma photographic lens 

for six equally spaced depths between 0.423m and O.673m with three different apertures: 

f12.8; f/4; and f/5.6. The images were processed using the MATLAB script developed to 

implement DFD. Experiments were performed using image window sizes (WI) of 32 x 32 

and 64 X 64 pixels. The convolution ratio window (WCR ) was allowed to change with 

depth or it was fixed at 21 X 21, 31 x 31, 41 X 41 or 51 x 51 pixels for a 64 x 64 image 

window. For a 32 x 32 image window only the fixed convolution ratio window of 

21 X 21 could be used. 

The dimensions of the squares of the checkerboard were measured for each distance 

and then an ideal focused checkerboard image was created that was subsequently defocus 

blurred using the PSF data for the camera. This was used as a visual check and as a 

method of checking the parameters in a noise-free environment, except for the ubiquitous 

quantisation noise. 
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E.2 Results and Analysis 

The first noticeable feature of the results from the experiment was that the usable depth 

range was about 0.414m to 0.523m. Although PSFs were calculated up to 0.725m, the 

significant defocus blurring reduces the variance of the imaged texture and consequently 

the signal-to-noise ratio decreases. A further effect of a large depth range is that the image 

overlap problem gets progressively worse. Although the range is small at 0.109m, it is 

larger than that used in 2 of the 18 compared in Section 2.6. For the purposes of testing 

the colour mixing algorithms it is sufficient. Different camera parameters or changing the 

focus position instead of the f-number (thus increasing the depth sensitivity [74]) could be 

used to improve the range for a specific application. 

The results in Table E.l show the mean depth error and the variance of the depth error 

for checkerboards at 0.423m, 0.473m and 0.523m in simulation (S) and practice (P) for the 

three different error measures. 

For a fixed convolution ratio window of 21 x 21 an image window of 32 x 32 had a 

lower mean error than using 64 x 64, but the variance of the error was four times greater. 

In practice there was very little difference in the mean depth error using convolution 

window sizes of 21 x 21, 31 x 31, 41 x 41 or 51 x 51 pixels. However, the variance of the 

error steadily increased with increasing window size. This effect is attributed to the fact 

that as the convolution ratio window increases in size the result of the restricted convolu

tion f2(X, y) = il (x, y) * h3(x, y) gets smaller and consequently so does i2(X, y) and thus 

less image data is employed, which makes it more prone to errors due to noise. 

The variable convolution ratio window size produced worse results than a fixed win

dow, and so this method can be eliminated. For example, with a 32 x 32 image window 

the mean error using a variable convolution ratio window was 1.3 times larger and the 

variance 2.4 times greater. Of the fixed convolution ratio window sizes the L2 -norm 

produced better results overall than the LI -norm and both performed much better than the 

Information-Divergence measure. 
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Table E.l: Mean error and variance (in brackets) using different error measures for fl5.6 and fl2.8 

Window Size Error Measure 

WI WCR SIP L2 L1 I -Divergence 

32x32 Variable P 5.33 (40.5) 101 (4.66) 7.00 (46.7) 

S 1.00 (9.48) 1.67 (11.2) 14.0 (5l.0) 

32x32 21x21 P -4.00 (17.2) -3.67 (17.9) 32.3 (102) 

S -0.333 (1.50) -0.333 (1.57) 42.0 (106) 

64x64 Variable P 11.3 (29.5) 76.3 (52.4) 29.7 (79.7) 

S 0(0.036) 0(0.0363) 68.0 (87.2) 

64x64 21x21 P -6.00 (2.95) -7.00 (4.07) -10.0 (7.76) 

S -0.333 (0) 0.333 (0) 9.33 (23.8) 

64x64 31 x31 P -6.00 (3.67) -7.33 (4.64) 9.67 (49.6) 

S 0(0.0897) 0(0.093) 4.00 (25.4) 

64x64 41x41 P -6.67 (4.08) -7.00 (5.07) 12.7 (67.8) 

S 0(0.143) 0(0.143) 22.3 (69.8) 

64x64 51x51 P -5.00 (11.7) -5.33 (12.0) 31.0 (99.5) 

S -0.333 (1.40) -0.333 (l.41) 42.3 (107) 

The mean error in the simulation results (denoted S) with only quantisation noise 

present were very low using a 64 x 64 window and as with the practical experiments, the 

standard deviation of the error increased with increasing convolution ratio window size. 

As the L2 -norm worked the best it was employed in the next set of tests, shown in Table 

E.2, where all three aperture combinations were tested. 
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Table E.2: Mean error and variance (in brackets) using the L2 -norm 

Window Size Aperture Combination 

WI WCR SIP fl5.6, fl2.8 f/5.6, fl4 f'4. f/2.8 

32x32 Variable P 5.33 (40.5) 93.0 (85.2) 109 (92.3) 

S 1.00 (9.48) 4.33 (18.2) 0.667 (9.34) 

32x32 21x21 P -4.00 (17.2) 5.00 (16.7) -30.7 (26.3) 

S -0.333 (1.50) -0.667 (1.71) -0.333 (2.60) 

64x64 Variable P 11.3 (29.5) 1.67 (3.18) -29.7 (4.88) 

S 0(0.036) 0(0.120) -0.333 (0.363) 

64x64 21x21 P -6.00 (2.95) 4.33 (2.74) -33.7 (3.00) 

S -0.333 (0) 0(0.120) -0.667 (0.153) 

64x64 31x31 P -6.00 (3.67) 4.33 (3.23) -32.0 (0.470) 

S 0(0.0897) 0(0) -0.667 (0.275) 

64x64 41x41 P -6.67 (4.08) 4.33 (3.51) -34.3 (5.70) 

S 0(0.143) 0(0.140) -0.333 (0.440) 

64x64 51x51 P -5.00 (11.7) 4.33(11.1) -33.0 (15.2) 

S -0.333 (l.40) -0.333 (1.21) -0.333 (2.14) 

Overall it was found that the aperture combination of (/1 = 5.6, h = 4) produced the 

best results and those produced using (ft = 4, h = 2.8) were the worst. 

E.3 Slope Experiments 

A colour checkerboard was pasted to a slope that was between 0.440m and O.520m 

from the camera. The three different aperture combinations were tested along with the 

three different error measures. The 32 x 32 image window was employed and the convolu

tion ratio window was fixed at 21 x 21. The depth error was measured at 2745 equally 

spaced points in the images and the results are presented in Tables E.3 to E.5. 

In Section 6.8.2 an improved normalisation equation is shown to compensate for the 

exposure change. The results are shown in Tables D.3 to D.5 in brackets. 
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Table E.3: MSE results for checkerboard pattern 

Mean Square Error / mm2 

Apertures L1-norm L2-norm I-Divergence 

f/S.6, f/2.8 0.42S (0.232) 0.374 (0.227) 19.2 (1.49) 
flS.6, f/4 0.373 (0.170) 0.327 (0.168) 23.3 (1.S4) 
f/4, fl2.8 2.27 (1.91) 2.220.92) 24.2 (3.10) 

Table E.4: Mean error results for checkerboard pattern 

Mean Error / mm 

Apertures L1-norm L2-norm I-Divergence 

f/S.6, f/2.8 -4.97 (-S.27) -4.72 (-S.OI) 68.S (1.01) 

f/S.6, f/4 3.94 (3.76) 4.24 (3.94) 81.8 (8.47) 

f/4, fl2.8 -31.6 (-32.1) -32.0 (-32.1) 83.6 (-11.3) 

Table E.S: Variance of the error results for checkerboard pattern 

Variance of Error / mm2 

Apertures Ll-norm L2-norm I-Divergence 

f/S.6, fl2.8 0.400 (0.20S) 0.3S2 (0.201) 14.S (1.49) 

f/S.6, fl4 0.3S7 (0.1S6) 0.310 (0.IS2) 16.7 (1.47) 

f/4, fl2.8 1.27 (0.880) 1.19 (0.882) 17.2 (2.98) 

The best error measure was found to be the L2 -norm, as used by Ens and Lawrence [58] 

[59], and it is noticeable that there is very little difference in the errors using the aperture 

combinations (/1 = 5.6, fz = 2.8) and (/1 = 5.6, fi = 4). The aperture combination 

(ji = 4, fz = 2.8) produced much worse results with all three measures. As both images 

were fairly defocused with this setting, it is assumed that the overall information content is 

less than the other two combinations. 

By using the improved normalisation the MSE using the I-Divergence decreased by 

11.9 times on average where as the decrease was only 1.6 times using the L2 -norm and 1.5 

times using the LI -norm. Thus, the I-Divergence measure is particularly sensitive to noise 

in the images and the relative scaling of f2(X, y) and i2(x, y). 
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E.4 Conclusion 

To ensure good localisation, a 32 x 32 image window is preferable to a 64 x 64 win

dow. With a 32 x 32 window a fixed convolution ratio window size of 21 x 21 performed 

better than using a variable window size. The accuracy of the results were similar using 

(It = 5.6, fz = 2.8) and (/1 = 5.6, fz = 4) compared to (/1 = 4, fz = 2.8). 

241 



Appendix F 

Analysis of a Step in Depth 

F.l Introduction 

Ens and Lawrence's algorithm is based on the equifocal assumption that the depth is 

constant within a window and for a real scene this assumption is generally violated. If the 

scene I(x, y) has a varying depth then the PSF hk(x, y, {, 1]) is space-varying and the 

de focused image is given by 

(FI) 

If it is assumed that the depth is constant then the integral can be reduced to the convolu

tion integral, given by 

(F2) 

Ens and Lawrence's algorithm searches for the best convolution ratio such that the less 

defocused image, image il (x, y) convolved with a convolution ratio h3(x, y) from the look

up table approximates the more defocused image i2(X, y). This section considers the 

simple case of a step in depth and the effect that assuming space-invariance has. 

F.2 Analysis 

Consider a scene I(x, y) composed of two regions that will be denoted A and B. The 

unit step is denoted u(x) and is given by 

and so the scene can be written as 

{o x < ° 
u(x) = 1 x ~ 0 

I(x, y) = IA(x, y) u(-x) + IB(x, y) u(x) . 
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If the regions A and B are defined to have zero intensity outside their required support 
then (F4) can be simplified to 

i(x, y) = hex, y) + iBeX, y) (F5) 

The image of the defocused scene ik(x, y) can be written using the sum of two convolu

tions because each region has a constant depth, thus 

(F6) 

Due to the linearity property of the Fourier transform the discrete Fourier transform of (F 4 

) is given by 

(F7) 

and if HkA * HkB , i.e. the regions are at different depths, then with two defocused images 

there are four PSFs. If the depths of the regions are the same then 0 becomes 

h(u, v) = [FA(U, v) + F B(U, v)] Hk(u, v) = F(u, v) Hk(u, v). (F8) 

In the case where the image region is at a constant depth the convolution ratio is given 

by 

F(u, v) H2(U, v) H2(U, v) 
H3(u, v) = = ---:...--

F(u, v) HI (u, v) HI (u, v) 
(F9) 

but in the case where there is a step in the depth the convolution ratio is given by 

(FlO) 

Suppose the region of interest is region A then the error in the convolution ratio is given 

by the difference between the required convolution ratio due to A and that due to the step 

in the depth with regions A and B, i.e. 

FA(u, v)H2/u, v) FACu, V)H2/U, v)+FB(u, V)H2B (U, v) 
H3(u,v)= - ( )H ( ) FA(u, v) HI/u, v) FA(u, v) HI/u, v) + FB u, v IB U, V 

(F II) 

If the contribution of region B to the convolution ratio can be removed using colour 

mixing then the depth estimate will be more accurate. In the next section a couple of 

simulation results are presented to show the effect of the step. 
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F.3 Simulations 

The set-up of the simulation is shown diagrammatically in Figure F.l where the top step 

was moved from 0.48m to O.76m in 4cm steps. The experimentally-derived PSF data from 

the 16mm video lens was used as the results were produced during the earlier stages of the 

research. The colour image were converted to monochrome using an equal weighting of 

the colour planes. 

O.76m 

O.62m 

0.48m 

L--------..JK--------------[-ts·; 

IE O.62m >1 

Figure F.l: The set-up for the simulation experiment where the top step is moved in small increments 

In the first experiment images of grass taken with a high resolution digital stills camera 

were used to create a texture. Actual PSF data was used to simulate the defocus blurring 

of the texture on the two steps. The right hand step was held constant at a depth of O.62m 

and the left hand step was varied in depth. All pixels running down the boundary edge 

were processed and then the mean and variance of the depths were calculated. Figure F.2 

below shows the mean and variance of the step depth as a function of the actual depth of 

the left hand step. The dotted line shows the depth that would be obtained if the mean 

depth was equal to the actual depth. The right hand figure shows the depth error, which 

appears to show a fairly linear relationship with depth. Also plotted is the depth that was 

obtained if the height of the right hand step was equal to that of the left, thus providing a 

benchmark and the results are denoted wlo step in the figure legends. 
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The second experiment was done to ensure the results were not dependent on the same 

texture being used on the top and bottom of the steps. Grass and carpet were used on the 

upper and lower steps respectively and the results are shown in Figure F.3. 
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Figure F.3: The results for grass / carpet combination 
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When the region of interest R is closer to the camera's focus position than R it pos

sesses more power in the high frequency components compared to those pixels in R. 

When there is no difference in the depth of the steps the depth estimates are the same as 

for the control case. The worst depth errors occur when the region R is further from the 

camera than R, which is where region R possesses less high frequency power. As the 

mean depth estimates are consistently poor it is likely that the high frequency components 

of R are adversely affecting the DFD algorithm. 

Lai et al. [67] stated that from the Gaussian lens law and plane geometry that the depth 

measured at the edge of a depth discontinuity is the depth due to the nearer side. 
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F.4 Conclusion 

This appendix has considered the effect of a step in depth in an image segment and the 

results have shown that the texture of the object closer to the camera dominated. If the 

region of interest is closer to the camera than the other region then the depth error is not 

significant. However, if the situation is reversed and depth error becomes significant. 

This work has highlighted the problem of object boundaries. 
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Appendix G 

Colour Image Textures 

G.l Introduction 

For the purposes of testing the colour mixing algorithm it was useful to have a variety 

of colour textures available. Images of size 2560 x 1920 pixels were captured and aved 

in uncompressed Tiff mode using a 5 megapixel Panasonic DMC-FZ20 digital still 

camera. An uncompressed file format was used to ensure that the image quality was not 

degraded. The next section shows the 27 textures that were captured and used during the 

research. 

G.2 Images Captured 
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Figure G.14: stone_06 
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