343 research outputs found

    Nonlinear Dynamic System Identification in the Spectral Domain Using Particle-Bernstein Polynomials

    Get PDF
    System identification (SI) is the discipline of inferring mathematical models from unknown dynamic systems using the input/output observations of such systems with or without prior knowledge of some of the system parameters. Many valid algorithms are available in the literature, including Volterra series expansion, Hammerstein–Wiener models, nonlinear auto-regressive moving average model with exogenous inputs (NARMAX) and its derivatives (NARX, NARMA). Different nonlinear estimators can be used for those algorithms, such as polynomials, neural networks or wavelet networks. This paper uses a different approach, named particle-Bernstein polynomials, as an estimator for SI. Moreover, unlike the mentioned algorithms, this approach does not operate in the time domain but rather in the spectral components of the signals through the use of the discrete Karhunen–Loève transform (DKLT). Some experiments are performed to validate this approach using a publicly available dataset based on ground vibration tests recorded from a real F-16 aircraft. The experiments show better results when compared with some of the traditional algorithms, especially for large, heterogeneous datasets such as the one used. In particular, the absolute error obtained with the prosed method is 63% smaller with respect to NARX and from 42% to 62% smaller with respect to various artificial neural network-based approaches

    Neural Network Compensation Control for Output Power Optimization of Wind Energy Conversion System Based on Data-Driven Control

    Get PDF
    Due to the uncertainty of wind and because wind energy conversion systems (WECSs) have strong nonlinear characteristics, accurate model of the WECS is difficult to be built. To solve this problem, data-driven control technology is selected and data-driven controller for the WECS is designed based on the Markov model. The neural networks are designed to optimize the output of the system based on the data-driven control system model. In order to improve the efficiency of the neural network training, three different learning rules are compared. Analysis results and SCADA data of the wind farm are compared, and it is shown that the method effectively reduces fluctuations of the generator speed, the safety of the wind turbines can be enhanced, the accuracy of the WECS output is improved, and more wind energy is captured

    Modern approaches to control of a multiple hearth furnace in kaolin production

    Get PDF
    The aim of this thesis is to improve the overall efficiency of the multiple hearth furnace (MHF) in kaolin calcination by developing control strategies which incorporate machine learning based soft sensors to estimate mineralogy related constraints in the control strategy. The objective of the control strategy is to maximize the capacity of the furnace and minimize energy consumption while maintaining the product quality of the calcined kaolin. First, the description of the process of interest is given, highlighting the control strategy currently implemented at the calciner studied in this work. Next, the state of the art on control of calcination furnaces is presented and discussed. Then, the description of the mechanistic model of the MHF, which plays a key role in the testing environment, is provided and an analysis of the MHF dynamic behavior based on the industrial and simulated data is presented. The design of the mineralogy-driven control strategy for the multiple hearth furnace and its implementation in the simulation environment are also outlined. The analysis of the results is then presented. Furthermore, the extensive sampling campaign for testing the soft sensors and the control strategy logic of the industrial MHF is reported, and the results are analyzed and discussed. Finally, an introduction to Model Predictive Control (MPC) is presented, the design of the Linear MPC framework for the MHF in kaolin calcination is described and discussed, and future research is outlined

    Improved multi model predictive control for distillation column

    Get PDF
    Model predictive control (MPC) strategy is known to provide effective control of chemical processes including distillation. As illustration, when the control scheme was applied to three linear distillation columns, i.e., Wood-Berry (2x2), Ogunnaike-Lemaire-Morari-Ray (3x3) and Alatiqi (4x4), the results obtained proved the superiority of linear MPC over the conventional PI controller. This is however, not the case when nonlinear process dynamics are involved, and better controllers are needed. As an attempt to address this issue, a new multi model predictive control (MMPC) framework known as Representative Model Predictive Control (RMPC) is proposed. The control scheme selects the most suitable local linear model to be implemented in control computations. Simulation studies were conducted on a nonlinear distillation column commonly known as Column A using MATLAB® and SIMULINK® software. The controllers were compared in terms of their ability in tracking set points and rejecting disturbances. Using three local models, RMPC was proven to be more efficient in servo control. It was however, not able to cope with disturbance rejection requirement. This limitation was overcome by introducing two controller output configurations: Maximizing MMPC and PI controller output (called hybrid controller, HC), and a MMPC and PI controller output switching (called MMPCPIS). When compared to the PI controller, HC provided better control performances for disturbance changes of 1% and 20% with an average improvement of 12% and 20% of the integral square error (ISE), respectively. It was however, not able to handle large disturbance of + 50% in feed composition. This limitation was overcome by MMPCPIS, which provided improvements by 17% and 20% of the ISE for all of types and magnitudes of disturbance change. The application of MMPCPIS on a single model MPC strategy produced almost similar performance for both types of disturbances, while its application on MMPC yielded better results. Based on the results obtained, it can be concluded that the proposed HC and MMPCPIS deserve further detailed investigations to serve as linear control approaches for solving complex nonlinear control problems commonly found in chemical industr

    Energy-Efficient Distributed Estimation by Utilizing a Nonlinear Amplifier

    Get PDF
    abstract: Distributed estimation uses many inexpensive sensors to compose an accurate estimate of a given parameter. It is frequently implemented using wireless sensor networks. There have been several studies on optimizing power allocation in wireless sensor networks used for distributed estimation, the vast majority of which assume linear radio-frequency amplifiers. Linear amplifiers are inherently inefficient, so in this dissertation nonlinear amplifiers are examined to gain efficiency while operating distributed sensor networks. This research presents a method to boost efficiency by operating the amplifiers in the nonlinear region of operation. Operating amplifiers nonlinearly presents new challenges. First, nonlinear amplifier characteristics change across manufacturing process variation, temperature, operating voltage, and aging. Secondly, the equations conventionally used for estimators and performance expectations in linear amplify-and-forward systems fail. To compensate for the first challenge, predistortion is utilized not to linearize amplifiers but rather to force them to fit a common nonlinear limiting amplifier model close to the inherent amplifier performance. This minimizes the power impact and the training requirements for predistortion. Second, new estimators are required that account for transmitter nonlinearity. This research derives analytically and confirms via simulation new estimators and performance expectation equations for use in nonlinear distributed estimation. An additional complication when operating nonlinear amplifiers in a wireless environment is the influence of varied and potentially unknown channel gains. The impact of these varied gains and both measurement and channel noise sources on estimation performance are analyzed in this paper. Techniques for minimizing the estimate variance are developed. It is shown that optimizing transmitter power allocation to minimize estimate variance for the most-compressed parameter measurement is equivalent to the problem for linear sensors. Finally, a method for operating distributed estimation in a multipath environment is presented that is capable of developing robust estimates for a wide range of Rician K-factors. This dissertation demonstrates that implementing distributed estimation using nonlinear sensors can boost system efficiency and is compatible with existing techniques from the literature for boosting efficiency at the system level via sensor power allocation. Nonlinear transmitters work best when channel gains are known and channel noise and receiver noise levels are low.Dissertation/ThesisPh.D. Electrical Engineering 201

    Results of Fitted Neural Network Models on Malaysian Aggregate Dataset

    Get PDF
    This result-based paper presents the best results of both fitted BPNN-NAR and BPNN-NARMA on MCCI Aggregate dataset with respect to different error measures.  This section discusses on the results in terms of the performance of the fitted forecasting models by each set of input lags and error lags used, the performance of the fitted forecasting models by the different hidden nodes used, the performance of the fitted forecasting models when combining both inputs and hidden nodes, the consistency of error measures used for the fitted forecasting models, as well as the overall best fitted forecasting models for Malaysian aggregate cost indices dataset

    Artificial Immune Systems: Principle, Algorithms and Applications

    Get PDF
    The present thesis aims to make an in-depth study of adaptive identification, digital channel equalization, functional link artificial neural network (FLANN) and Artificial Immune Systems (AIS).Two learning algorithms CPSO and IPSO are also developed in this thesis. These new algorithms are employed to train the weights of a low complexity FLANN structure by way of minimizing the squared error cost function of the hybrid model. These new models are applied for adaptive identification of complex nonlinear dynamic plants and equalization of nonlinear digital channel. Investigation has been made for identification of complex Hammerstein models. To validate the performance of these new models simulation study is carried out using benchmark complex plants and nonlinear channels. The results of simulation are compared with those obtained with FLANN-GA, FLANN-PSO and MLP-BP based hybrid approaches. Improved identification and equalization performance of the proposed method have been observed in all cases

    Identification of continuous-time model of hammerstein system using modified multi-verse optimizer

    Get PDF
    his thesis implements a novel nature-inspired metaheuristic optimization algorithm, namely the modified Multi-Verse Optimizer (mMVO) algorithm, to identify the continuous-time model of Hammerstein system. Multi-Verse Optimizer (MVO) is one of the most recent robust nature-inspired metaheuristic algorithm. It has been successfully implemented and used in various areas such as machine learning applications, engineering applications, network applications, parameter control, and other similar applications to solve optimization problems. However, such metaheuristics had some limitations, such as local optima problem, low searching capability and imbalance between exploration and exploitation. By considering these limitations, two modifications were made upon the conventional MVO in our proposed mMVO algorithm. Our first modification was an average design parameter updating mechanism to solve the local optima issue of the traditional MVO. The essential feature of the average design parameter updating mechanism is that it helps any trapped design parameter jump out from the local optima region and continue a new search track. The second modification is the hybridization of MVO with the Sine Cosine Algorithm (SCA) to improve the low searching capability of the conventional MVO. Hybridization aims to combine MVO and SCA algorithms advantages and minimize the disadvantages, such as low searching capability and imbalance between exploration and exploitation. In particular, the search capacity of the MVO algorithm has been improved using the sine and cosine functions of the Sine Cosine Algorithm (SCA) that will be able to balance the processes of exploration and exploitation. The mMVO based method is then used for identifying the parameters of linear and nonlinear subsystems in the Hammerstein model using the given input and output data. Note that the structure of the linear and nonlinear subsystems is assumed to be known. Moreover, a continuous-time linear subsystem is considered in this study, while there are a few methods that utilize such models. Two numerical examples and one real-world application, such as the Twin Rotor System (TRS) are used to illustrate the efficiency of the mMVO-based method. Various nonlinear subsystems such as quadratic and hyperbolic functions (sine and tangent) are used in those experiments. Numerical and experimental results are analyzed to focus on the convergence curve of the fitness function, the parameter variation index, frequency and time domain response and the Wilcoxon rank test. For the numerical identifications, three different levels of white noise variances were taken. The statistical analysis value (mean) was taken from the parameter deviation index to see how much our proposed algorithm has improved. For Example 1, the improvements are 29%, 33.15% and 36.68%, and for the noise variances, 0.01, 0.25, and 1.0 improvements can be found. For Example 2, the improvements are 39.36%, 39.61% and 66.18%, and for noise variances, the improvements are by 0.01, 0.25 and 1.0, respectively. Finally, for the real TRS application, the improvement is 7%. The numerical and experimental results also showed that both Hammerstein model subsystems are defined effectively using the mMVO-based method, particularly in quadratic output estimation error and a differentiation parameter index. The results further confirmed that the proposed mMVObased method provided better solutions than other optimization techniques, such as PSO, GWO, ALO, MVO and SCA
    corecore