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Abstract: System identification (SI) is the discipline of inferring mathematical models from un-
known dynamic systems using the input/output observations of such systems with or without prior
knowledge of some of the system parameters. Many valid algorithms are available in the literature,
including Volterra series expansion, Hammerstein–Wiener models, nonlinear auto-regressive moving
average model with exogenous inputs (NARMAX) and its derivatives (NARX, NARMA). Different
nonlinear estimators can be used for those algorithms, such as polynomials, neural networks or
wavelet networks. This paper uses a different approach, named particle-Bernstein polynomials, as
an estimator for SI. Moreover, unlike the mentioned algorithms, this approach does not operate in
the time domain but rather in the spectral components of the signals through the use of the discrete
Karhunen–Loève transform (DKLT). Some experiments are performed to validate this approach using
a publicly available dataset based on ground vibration tests recorded from a real F-16 aircraft. The
experiments show better results when compared with some of the traditional algorithms, especially
for large, heterogeneous datasets such as the one used. In particular, the absolute error obtained with
the prosed method is 63% smaller with respect to NARX and from 42% to 62% smaller with respect
to various artificial neural network-based approaches.

Keywords: system identification; ground vibration; nonlinear dynamic system; particle-Bernstein
polynomials; regression

1. Introduction

System identification (SI) is a discipline concerned with finding the mathematical
models of a dynamic system based on observations of its inputs and outputs. Due to
applications of SI to a variety of fields, such as the analysis and simulation of complex
systems or the control of dynamic processes, a rich body of research is available on SI [1,2].

However, the intrinsic nonlinear nature of real world phenomena makes the linear
hypothesis simply an approximation of real system behavior. Therefore, nonlinear system
identification (NSI) is of great interest and one of the key issues in the modeling of signals
generated by artificial systems and natural phenomena. The main applicative fields of
NSI are automatic control, neurosciences, communications (e.g., echo cancellation, channel
equalization and amplifier nonlinearity evaluation) and signal and image processing, to just
mention a few [3].

The algorithms classically used for NSI depend on the selection of a suitable model to
represent the data. Some valid and widely used models are the Volterra series expansion [4–6],
Hammerstein model [7–11], Wiener model [12–15] and the nonlinear auto-regressive mov-
ing average model with exogenous inputs (NARMAX) and its derivatives [16–21].

In the discrete time domain, one of the most successful approaches for nonlinear
system identification is the NARMAX model (and its derivatives NARX [22,23] and
NARMA [24]), in which the system is modeled in terms of a nonlinear functional expansion
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of lagged inputs, outputs and prediction errors. NARMAX models have been shown to be
very effective in many real-world applications [17,19,25–29], as they are powerful, efficient
and unified representations of a wide variety of nonlinear systems.

The choice of the nonlinear estimator function is an important part of NARMAX mod-
els. Various estimators can be used, such as polynomials [30,31], multilayer perceptrons
(MLPs) [32,33], artificial neural networks (ANNs) [34–37] and wavelet networks [38,39].

While traditional algorithms operate on time domain representations of the data, the
method used in this paper takes advantage of the spectral representation of the signals
through the use of the discrete Karhunen–Loève transform (DKLT), thus simplifying the
complexity of the problem, especially for large temporal series. The nonlinear relationship
in the spectral domain thus becomes a multivariate static function to be approximated,
and an alternative algorithm based on particle-Bernstein polynomials, a variation of the
classic Berstein polynomials [40,41] extended to continuous variables, has been applied for
this purpose.

To assert the effectiveness of the proposed algorithm, it has been tested on a public
dataset acquired from a real system, namely the F-16 aircraft benchmark dataset, which
consists of measures of the airplane’s ground vibrations, and compared to other widely
used ones.

This article is organized as follows. Section 2 introduces the mathematical theory and
algorithms used in the paper. Section 3 describes the dataset used for the experiments.
Section 4 explains how the data have been processed prior to the actual SI phase. The
experimental set-up and results are shown in Section 5, together with a discussion of the
results in Section 6. Finally, some conclusions are drawn in Section 7.

2. Proposed Method

The goal of this article is the identification of nonlinear dynamic systems, given a set
of inputs u(t) applied to the system and the corresponding outputs y(t) generated by the
system itself.

In the most common case of discrete time dynamic systems, the output of the system
at a given time depends on the input and output values at a certain number of previous
time points in what represents the memory of the system:

y(t) = h(y(t− 1), . . . , y(t− p), u(t− 1), . . . , u(t− q)), (1)

with t = 1, . . . , n.
The proposed algorithm operates in the spectral domain, thus converting the system to

a function that does not depend on time, but only on a set of static parameters. To this end,
the discrete Karhunen–Loève transform (DKLT) [42] is used, which has the well-known
property of separating the time-dependent components from fixed parameters.

Finally, the resulting nonlinear relation is estimated by particle-Bernstein polynomials.

2.1. Spectral Representation of Nonlinear Systems

Starting with the general case of time-dependent inputs u(t) and outputs y(t), as
used in Equation (1), it is convenient to represent them in matrix form, namely U and
Y, respectively, with U ∈ Rm×N , Y ∈ Rn×N and N being the number of realizations. It
is worth noticing that the original data are not always in this suitable form, likely being
composed of a few realizations of different lengths. Nonetheless, they can be turned into
this form by means of windowing, or splitting the input and output files into equally sized
windows whose length must be chosen so it is compatible with the properties of the data.

Then, the DKLT is applied to the resulting matrices. A possible realization of the DKLT
is using singular value decomposition (SVD), which factorizes a matrix (U for example) as

U = VΣWT (2)
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where Σ ∈ RN×N is a diagonal matrix containing the singular values of U and V and W
contain vectors forming the bases for the U components such that U can be represented as

U = VX (3)

where V contains the time-dependent components and X the desired static components
(features) of the signals. The correspondence is biunivocal such that X can be computed as

X = VTU ∈ RN×N (4)

for the properties of SVD.
Similarly, the outputs Y can be represented in their feature space as a new matrix K

such that the nonlinear system in Equation (1) can be represented in a new form as

k = f (x), x ∈ Rm, k ∈ Rn (5)

with no dependency on time.
With the two transformations being biunivocal, the identification problem can be

solved in the feature space, and the computed outputs can then be transformed back to the
time domain.

Moreover, it is customary to apply principal component analysis (PCA) to the DKLT
to reduce the dimensionality of the problem [43]. By retaining only the components of V
associated with the most significant singular values, the problem can be simplified with no
significant loss in signal representation. In Equation (2), assuming the singular values in Σ
are sorted in descending order, this is equivalent to truncating Σ to the upper d× d part
and V to the first d rows so that Equation (4) becomes

Xd = VT
d U, Xd ∈ Rd×N (6)

with d < m. An analog reduction can be applied to the output matrix K.
In most cases, the estimation of f (·) in Equation (5) is performed through supervised

learning, where an experimental set S of corresponding input/output realizations is given:

S = {(xj, k j), j = 1, . . . , N} (7)

Thus, this reduces to a regression problem in Equation (5) through a suitable technique.
Usually, a part of S is used for the actual system estimation (training), while a separate
subset is used to validate the approximated function (testing).

2.2. Bernstein Polynomials

Polynomials can effectively provide a basis to represent a function to be estimated, as
stated by the well-known Weierstrass approximation theorem, according to which every
continuous real function f : [0, 1]→ R can be approximated by a polynomial with arbitrary
accuracy. (The [0, 1] interval can easily be generalized to an arbitrary domain.)

Bernstein polynomials (BPs) are a convenient choice for such a basis [40,41]. Given
the space of polynomials of a degree m, the kth BP is defined as

b(m)
k (x) =

(
m
k

)
xk(1− x)m−k, k = 0, 1, . . . , m (8)

where x ∈ [0, 1] and (m
k ) is the usual binomial coefficient.

BPs are a convenient choice for representing a function to be estimated given an
input/output relationship as in Equations (5) and (7), because the associated coefficients
do not need complex algorithms to be computed but depend only on the value of f (·) in
a series of points. More precisely, say we are given the approximation sequence Bm(x),
expressed as
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Bm(x) =
m

∑
k=0

f (k/m) b(m)
k (x) (9)

Then, it can be shown that this sequence converges uniformly to f (x) as m → ∞
(therefore representing a constructive proof of the Weierstrass theorem). The coefficients
are simply given by the function evaluated at points {k/m, k = 0, . . . , m}.

This representation can easily be extended to the case of multivariate functions. If
x = (x1, . . . , xd) and k = (k1, . . . , kd), then Equations (8) and (9) can be redefined as

Bm(x1, . . . , xd) =
m

∑
k1=0

. . .
m

∑
kd=0

f
(

k1

m
, . . . ,

kd
m

)
b(m)

k (x) (10)

and

b(m)
k (x) =

(
m
k1

)
. . .
(

m
kd

)
xk1

1 (1− x1)
m−k1 . . . xkd

d (1− xd)
m−kd (11)

In this case, computing the coefficients requires evaluating the function at points

x = (k1/m, . . . , kd/m), k1 = 0, . . . , m, kd = 0, . . . , m (12)

which is a grid of points in Rd. Provided that such a grid must be sufficiently dense to obtain
a good approximation of f (·), this has the drawback that the computational cost increases
dramatically with the dimensionality of the input space, thus becoming prohibitive even
for moderately complex systems.

2.3. Particle-Bernstein Polynomials

To overcome the computational cost of BPs in the multivariate function case, re-
cently, a new class of functions named particle-Bernstein polynomials (PBPs) has been
proposed [40,42,44], which has been shown to achieve good results in regression problems
while maintaining a lower computational cost with respect to classic BPs.

Meanwhile, in Equation (8), the k index must be the integer for the presence of the
binomial coefficient, and thte PBPs relax this constraint by replacing k with a real parameter
ξ, where ξ ∈ [0, m]. The PBP functions are then defined as

C(m)
ξ (x) = α

(m)
ξ xξ (1− x)m−ξ = α

(m)
ξ k(m)

ξ (x) (13)

The α
(m)
ξ terms are computed so that

∫ 1

0
C(m)

ξ (x) dx = 1 (14)

Aside from them all having the same area, PBP functions have a maximum at x = ξ/m
in [0, 1], a property similar to traditional BPs. Together with the fact that they can be
considered mostly concentrated around their maximum for m � 1, the value of f (ξ/m)
can be approximated as

f (ξ/m) ∼=
∫ 1

0
f (x)C(m)

ξ (x) dx (15)

If a given set of arbitrary values {x(j), j = 1, 2, . . . , N} is given together with the
evaluated function f (x(j)) at the same points, as is usual in supervised learning, the
following approximation for f (·) in an arbitrary point holds:

f (ξ/m) ∼=
∑N

j=1 f (x(j))k(m)
ξ (x(j))

∑N
j=1 k(m)

ξ (x(j))
(16)
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It follows that the main advantage of PBPs is that f (·) can be estimated at an arbi-
trary point given its values in a set of N randomly chosen points, according to the most
convenient criterion, and not on a fixed grid as in traditional BPs.

The advantage is even more evident when extended to multivariate functions. Given
x = (x1, . . . , xd) and ξ = (ξ1, . . . , ξd), the k(m)

ξ (x) term in Equation (13) can be redefined as

k(m)
ξ (x) = xξ1

1 (1− x1)
m−ξ1 . . . xξd

d (1− xd)
m−ξd (17)

and the estimation of f (ξ/m) is given by the same expression in Equation (16), replacing
the scalar x and ξ with their vector equivalents. It can be seen from Equation (17) that
the estimation complexity does not increase exponentially with the dimension d of the
input space as in Equation (11), thus sensibly reducing the complexity with respect to
traditional BPs.

Figure 1 shows the several steps of the proposed algorithm in a concise way.

Input dataset
u(t) inputs, y(t) outputs

Windowing
→U, Y matrices, time-dependent

DKLT
→X,K matrices, parameterized on DKLT basis

PCA
dimensionality reduction of X,K

Function estimation with
Particle-Bernstein polynomials

Figure 1. Schematic flowchart of the proposed algorithm.

3. Dataset

The F-16 Ground Vibration Test Benchmark Dataset [45,46] contains experimental
data acquired from a full-scale F-16 aircraft on the occasion of the Siemens LMS Ground
Vibration Testing Master Class, held in September 2014 at the Saffraanberg military base in
Sint-Truiden, Belgium.

During the experiment, two dummy payloads were mounted at the wing tips to
simulate the mass and inertia of real devices typically equipped by an F-16 in flight
(Figure 2a). The aircraft structure was instrumented with accelerometers, and as the input
signal, one shaker was attached underneath the right wing. The dominant source of
nonlinearity in the structural dynamics was expected to originate from the mounting
interfaces of the two payloads. These interfaces consisted of T-shaped connecting elements
on the payload side slid through a rail attached to the wing’s side (Figure 2b).
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(a) (b)

Figure 2. (a) Dummy payload mounted at the right wing tip. (b) Connection of the right-wing-to-
payload mounting interface. Reproduced under CC BY-SA 4.0 from [46].

The measurements were acquired at a sampling frequency of 400 Hz. Two distinct
input signals were made available: (1) the voltage measured at the output of the signal
generator amplifier, acting as a reference input, and (2) the actual force provided by the
shaker and measured by an impedance head at the excitation location.

Three acceleration signals were provided as output quantities. They were measured
(1) at the excitation location, (2) on the right wing next to the nonlinear interface of interest
and (3) on the payload next to the same interface. Measurements were performed with
three different excitation types that yielded the three subsets of data described in the
following sections.

3.1. Sine-Sweep Excitation with a Linear, Negative Rate

Sine-sweep excitations with a linear, negative rate of 0.05 Hz/s (sweep down) were
applied. The covered input frequency range was 15–2 Hz. Seven different levels of excitation
were provided as benchmark data. The lowest level at a 4.8-N input amplitude could be
considered a linear dataset. Three higher excitation levels were given to function as
estimation data in the nonlinear regimes of vibration, namely dataset numbers 3, 5 and 7
corresponding to 28.8, 67.0 and 95.6 N, respectively. Dataset numbers 2, 4 and 6 at 19.2, 57.6
and 86.0 N, respectively, were to be used for testing the models estimated using datasets 3,
5 and 7.

3.2. Multisine Excitation with a Full Frequency Grid

The data recorded under multisine excitations with a full frequency grid from 2 to
15 Hz were provided. At each force level, nine periods were acquired, considering a single
realization of the input signal. The number of points per period was 8192. Note that
transients were present in the first period of measurement. Similar to the sine-sweep case,
7 excitation levels were considered, starting from the linear data at 12.4 N RMS (dataset
1). In addition, three nonlinear estimation datasets (numbers 3, 5 and 7 at 36.8, 73.6 and
97.8 N RMS, respectively) were accompanied by their corresponding test sets (numbers 2, 4
and 6 at 24.6, 61.4 and 85.7 N RMS, respectively).

3.3. Multisine Excitation with a Random Frequency Grid

In the third set of tests, sine-sweep excitations were applied with only odd frequencies
excited in the range of 1–60 Hz. Moreover, within each group of four successive excited
odd lines, one frequency line was randomly rejected to act as a detection line for odd
nonlinearities. In this setting, the frequency band from 1 to 60 Hz was excited. Three
periods per level were recorded, considering 10 input realizations per level. The number of
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points per period was 16384. Note that only the last two periods of each realization were in
a steady state. The datasets were originally sampled at 200 Hz. They were upsampled to
400 Hz in the frequency domain, processing period per period and assuming the data were
periodic and in a steady state.

4. Data Processing

For the system identification and its testing, the data subset with multisine excitation
on a full frequency grid was used, with separate experiments for each of the three output
sensors. The full data available for the mentioned input excitation were used for a total of
1290 s and at different excitation amplitudes.

To represent the input and output data in matrix form (Section 2.1) starting from a set
of time series of different lengths and amplitudes, the original signals were concatenated
and then split into a set of homogeneous windows. With w being the number of samples
in a window and o being the number of overlapping samples between adjacent windows,
the nth data window corresponded to the samples in the range

[n (w− o), n (w− o) + w− 1] (18)

with n ≥ 0.
For the input windows, a length of 8192 was used, corresponding to the period used

to generate the dataset (Section 3). To overcome the problem of a limited number of realiza-
tions, the splitting of input data wass performed with an overlap between windows. In this
way, a moving window was used on the input data, while the matching output was taken
as non-overlapping windows smaller than the input ones (Figure 3).

input

output

...

...

8192

1024
Figure 3. Windowing of input and output data.

To generate a well-balanced set of data for training and a set for testing, instead of
roughly using half of the data for training and testing, as meant in the original data group-
ing, single inputs and outputs obtained from the different signals through windowing were
randomly shuffled and then divided at an 80/20 ratio for training and testing, respectively.

The previous steps generated a pair of input/output matrices for training, named
Utrain and Ytrain, and a similar pair for testing, named Utest and Ytest. Then, the DKLT was
applied as in Section 2.1 by computing a base as in Equations (3) and (4). To avoid data
leaks from testing to training, the decomposition was computed on the training matrices
only. The same base was then applied to the testing material so as to obtain input/output
pairs in the feature space of Xtrain, Ktrain, Xtest and Ktest.

Finally, before using the particle-Bernstein polynomials (Section 2.3), the input data
had to be normalized in the range [0, 1]. The input data Xtrain and Xtest were normalized by
single components (columns) according to the following formula:

xnorm = a + (b− a)
x−min(x)

max(x)−min(x)
(19)

where x is the data component to be normalized, a = 0 and b = 1.
A prior clipping of data was performed using their mean value and standard deviation

to filter out the outlier data and better distribute the resulting signal in the desired range.
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Specifically, µ and σ are the mean value and standard deviation of a given component,
respectively, and data were limited to the range µ± 3σ.

5. Experimental Results

All the experiments on the different outputs were performed with particle-Bernstein
polynomials of a degree of 40, determined experimentally as a trade-off between the
resulting accuracy and numerical stability.

The input and output windows were of sizes of 8192 and 1024, respectively. For the
PCA, 16 components for the input matrices and 50 for the output were used because this
was experimentally determined to suffice for providing a good representation.

The absolute error of the predicted signals with respect to the true output were
computed as the root mean square (RMS) of the difference of the two signals:

RMSE =

√√√√ 1
N

N

∑
k=1

(ypredict[k]− ytrue[k])2 (20)

The relative error was computed as the ratio between the RMSE and the RMS of the
reference signal:

RMSErel = RMSE/

√√√√ 1
N

N

∑
k=1

(ytrue[k])2 (21)

Figure 4 shows the true output and the error with respect to the prediction for the
three output sensors, as well as a detailed comparison of the true and predicted outputs for
the three output sensors.

To test the effectiveness of our approach, a comparison of the numerical results with
the NARX model created with the Matlab “System Identification” tool was first conducted
using the same data for training and testing as in the PBP experiment. The parameters used
for the NARX model were as follows: 10 points (lags) for the input data, 20 points for the
output data, a linear input regressor and a wavelet network as an output function. These
parameters were chosen as a trade-off between accuracy and the resources needed by the
process (time and memory).

Table 1 shows the error of the predicted output for the three output sensors compared
with the NARX model.

Table 1. Comparison of errors in predicted output for testing data.

PBP PBP NARX
Output Rel. Error (%) Abs. Error (g) Abs. Error (g)

1 7.3 0.07 0.81
2 5.2 0.07 1.30
3 12.2 0.14 1.14

As a more exhaustive comparison, our approach was compared with deep convo-
lutional neural networks (CNNs) as performed in [47] with the same dataset (actually a
subset, as explained in the following). In [47], three types of CNNs are used: a temporal
convolutional network (TCN), multilayer perceptron (MLP) and long short-term memory
(LSTM). As a matter of comparison, in this case, the same data as in [47] were used, namely
the multisine realizations with a random frequency grid limited to the test with a 49.0-N
RMS amplitude. Moreover, only the training data were used to compute the RMSE of the
identification results with no independent testing data. Another difference was the number
of components needed by the PCA in our algorithm to represent the input values. In this
case, 25 components were used, provided that a bigger value posed stability problems for
the computations of the PBPs.
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Figure 4. (a,c,e) Identification error for testing data of outputs 1, 2 and 3, respectively. (b,d,f) Comparison
of true and predicted outputs for a sample window in outputs 1, 2 3, respectively.

Table 2 shows the error of the predicted data for the three output sensors for the
various algorithms, with the addition of the Matlab NARX implementation with the same
parameters as in the previous tests.
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Table 2. Comparison of errors in predicted output for training data. * These results are provided as
averages of the three outputs.

PBP Abs. NARX Abs. LSTM Abs. MLP Abs. TCN Abs.
Output Error (g) Error (g) Error (g) * Error (g) * Error (g) *

1 0.41 0.82 0.74 0.48 0.63
2 0.31 0.79 0.74 0.48 0.63
3 0.28 0.75 0.74 0.48 0.63

6. Discussion

In this work, PBPs were proposed as an alternative to the widely used system iden-
tification algorithms available in the literature, such as NARMAX and its derivatives
and convolutional neural networks based on different structures.

Moreover, unlike the aforementioned algorithms, this approach does not operate in
the time domain but rather in the spectral components of the signals through the use of
the DKLT.

Some experiments were performed to validate this approach using a publicly available
dataset based on ground vibration tests recorded from a real F-16 aircraft.

In the first experiment, we applied a PBP to the data in order to test the effectiveness
of our approach, and a comparison of the numerical results with the NARX model created
with Matlab’s “System Identification” tool was conducted. Table 1 reports a comparison of
the errors in the predicted output for the testing data between the proposed method and
the NARX model. It can be seen that the PBP algorithm yielded sensibly better results.

In the second experiment, to give a more exhaustive comparison, our approach was
compared with deep convolutional neural networks (CNNs), as performed in [47]. Table 2
reports a comparison of the errors in the predicted output for the training data between the
various algorithms in [47] and also the Matlab NARX model. Again, the PBP algorithm
yielded the best results in terms of identification error, with reductions in the absolute error
ranging from 42% to 63%.

We already successfully applied this method to synthetic data, as reported in [40], and
to identify two real-world nonlinear systems in the fields of speech signals and nonlinear
audio amplifiers using simulated data, as shown in [42]. This is a first attempt to apply
this method to real-world data, and the experimental results show that it achieved better
performance, probably because the other approaches suffered from the large amount of
data and their heterogeneity. Therefore, it could potentially be applied to other real datasets
presenting the same complexity.

7. Conclusions

In this article, PBPs were proposed as an alternative to the widely used system iden-
tification algorithms available in the literature, such as NARMAX and its derivatives
and convolutional neural networks based on different structures. The main difference
with respect to the traditional algorithms is that PBPs operate on a simplified system
representation in the spectral domain.

Experiments with a specific dataset showed that this approach yields better results
when compared with other algorithms, proving to be effective on datasets with large
amounts of data and heterogeneous compositions. In particular, the absolute error that was
obtained was 63% smaller with respect to NARX and from 42% to 62% smaller with respect
to various ANN-based approaches.
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