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Due to the uncertainty of wind and because wind energy conversion systems (WECSs) have strong nonlinear characteristics,
accurate model of the WECS is difficult to be built. To solve this problem, data-driven control technology is selected and data-
driven controller for the WECS is designed based on the Markov model. The neural networks are designed to optimize the output
of the system based on the data-driven control system model. In order to improve the efficiency of the neural network training,
three different learning rules are compared. Analysis results and SCADA data of the wind farm are compared, and it is shown that
the method effectively reduces fluctuations of the generator speed, the safety of the wind turbines can be enhanced, the accuracy
of the WECS output is improved, and more wind energy is captured.

1. Introduction

In recent years, the global wind industry has grown rapidly,
wind energy has become one of the most important renew-
able energy sources, installed capacity growth rate of wind
turbines has become more than 25% annually, and wind
energy has been widely applied to water irrigation [1], urban
power supply [2], and many other fields. However, there are
still some difficult issues in wind energy control technology:
how to get maximum power output of wind turbine is one
of the main concerns. Domestic and foreign scholars have
done a lot of research on capturing the largest wind energy;
the most common control strategy is maximum power point
tracking control (MPPT) [3]. The maximum wind energy
is captured by controlling the output error of the wind
generator speed, when the wind speed changes. PI control
[4, 5], LQG control [6, 7], and Fuzzy sliding mode control
[8] are commonly used as the control methods. However,
the parameters of PI controller are almost adjusted through
a large number of experiments. They will be affected by the
change of load and wind speed, and therefore, PI regulator

will lose the flexibility at this time. The LQG control method
does not have high modeling accuracy, so the error of system
output is too large. Fuzzy sliding mode control cannot reduce
the chattering phenomenon; it will lead to low accuracy and
poor robust performance.

Data-driven control theory has gradually become a hot
research area for domestic and foreign scholars [9–14].
The data-driven control theory can be used to design a
controller for a complex nonlinear system whose model is
unknown. The control method has general applicability and
is successfully applied to many fields, such as flight control
[15, 16], pattern recognition [17], and robot control [18, 19].

However, the shortcomings of the data-driven controller
are parameter perturbation and excessive computing. The
data-driven approach is improved by many well-known
scholars [20–23]. A new data-driven controller is designed
in the literature [20]; the method uses only measured input
and output data of the controlled plant and guarantees
bounded input and bounded output stability. It can be
known by comparing this data-driven approach with the
general adaptive control approach. The method has practical
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Figure 1: SCADA system for wind farm.

application value and can be combined with other control
methods, and thus the cost of the controller is greatly
reduced.

Neural networks have independence—not relying on
accurate mathematical model of the system—and a strong
classification ability for spatial data model. In fact, neural
networks have been successfully applicated to wind power
control systems [24–30]. Literatures [24–26] introduce the
neural network predictive control in the application of the
WECS, using neural network predictive controller to com-
pensate system output errors that are caused by uncertainty
parameters in WECS; disturbance output is reduced when
the wind turbine is at run time. Literatures [31, 32] introduce
observers applied to wind turbines; robust performance and
dynamic performance of the WECS can be improved by the
observers. When wind speed is larger, power output may
exceed the rated value; this will cause high wind turbine
torque load. Power output quality of the WECS is optimized
by controlling the blade pitch angle in literatures [27, 28],
so the wind turbine shutdown and overload can be reduced.
There exist analytical models of wind turbines as in [33–36]
and models based on input output data as in [29, 30, 37],
and in the paper, the second case is considered. Literatures
[29, 30, 37] introduce data-driven controller designed for
the WECS based on neural network, this method collects
wind farms data by supervisory control and data acquisition
(SCADA) system, such as wind energy utilization coefficient,
wind generator speed, and wind speed. Using data-driven
control to identify input and output of the controlled object,
different control methods are used to regulate WECS output;
the results proved that this method can be effectively applied
to different wind turbines.

Data-driven controller for the WECS based on neural
network compensation control is designed in this paper.
Firstly, a 10 min data of wind turbine was selected by SCADA
system; the data-driven control system Markov parameters

can be obtained by input and output data of the WECS.
Secondly, the controller gain can be obtained by closed
solution of differential Riccati.

In order to improve the WECS control precision and
capture more wind energy, a neural network compensator
is designed to counteract dynamic disturbances caused by
unkown parameters of the WECS, different neural network
learning rules are selected in the training process, and
another neural network is used to optimize the wind energy
utilization coefficient and reduce the mechanical shocks on
the WECS. Analysis results show that this way more wind
energy can be captured and safety of the wind turbine can be
enhanced.

2. Problem Description

Wind speed and wind direction are uncontrollable variables
while, wind generator speed and torque are controllable
variables [29, 30, 37, 38]. The SCADA system of wind
turbines is shown in Figure 1; the system can monitor
multiple wind farm data, for example, wind turbines, grid
data, and substation data. Data of output power, wind
generator speed, wind generator torque, and wind speed is
selected in this paper.

Wind farm data collected is given in Table 1; 10 min data
is used in this paper, the data from 2010/07/02 00:10:00 A.
to 2010/07/20 02:20:00 AM. v(t − 1) is wind speed data
of previous sampling time period, and Pa(t − 1) is wind
generator data of previous sampling time.

According to the literature [1], the relationship between
wind energy utilization coefficient and tip speed ratio can
be known. As in Figure 2, the tip speed ratio reaches
optimum value, the maximum wind energy utilization
coefficient Cpmax is around 0.47, tip speed ratio optimum
value is around 7, and blade pitch angle is around 0 degree;
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Table 1: 10 min sample data of SCADA system.

Sampling
points

v(t − 1) v(t) · · · pa(t − 1) pa(t)

(m/s) (m/s) (Kw) (Kw)

1 2 3 · · · 0 0
...

...
... · · · ...

...

300 11 12 · · · 793 801
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CPmax ≈ 0.47 β ≈ 0

λopt ≈ 7

Figure 2: Wind energy utilization coefficient versus tip speed ratio.

the figure has general applicability to the variable speed con-
stant frequency wind turbine:

Γ(t) = Cv(t)2CΓ(λ),

Ωw(t) = Pw(t)
Γ(t)

,

Pw(t) = C

R
v(t)3CP(λ).

(1)

Letting, C = 0.5πρR3, in (1), Γ is wind wheel torque,
ρ is air density, R is radius of the wind wheel, and v is
wind speed. The relationship between wind speed and wind
turbine power output is shown in Figure 3, CΓ(λ) is torque
coefficient, λ is tip speed ratio, λ = ΩWR/v, ΩW is rotor
speed, and Cp(λ) is wind energy utilization coefficient. The
relationship between CΓ(λ) and Cp(λ) can be expressed as
CΓ(λ) = (Cp(λ))/λ.

There are multiple unknown parameters and uncer-
tainties in the WECS, the system has strong nonlinear
characteristics, and its model is difficult to be established.
Using the equivalent model and ignoring a number of
uncertainties are often the solutions; however, the modeling
accuracy is greatly reduced and seriously affects the control
effect. Data-driven control only needs system input and
output data. So, data-driven control model for the wind
power system can be expressed as

yj = f j
[
Qj ,Rj ,uj , xj ,

{
Mij

}]
, j = 1, 2, 3, i = 1, 2...N ,

(2)
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Figure 3: Wind speed versus wind generator power.

where yj is wind generator power output. Because three
groups of data are selected for the experiment, j = 3, j can
be selected as a different value according to actual needs. xj is
system state, including wind generator speed, wind generator
torque, and wind speed. uj is the system control input. Qj

and Rj are positive semidefinite symmetric weight matrices,

Mij = C jA
(i−1)
j B j , where Mij are wind power control system

Markov parameters:

J = ε

⎧⎨
⎩y

T
j Qj y j +

N−1∑

k=0

(
yTj Qj y j + uTj Rjuj

)
⎫⎬
⎭. (3)

3. Data-Driven Control Methodology

Lemma 1 (see [39]). The closed solution of differential Riccati
equation is

X(k) = C(k)TQ(k)C(k)− C(k)TQ(k)S(k)

·
(

R(k) + S(k)TQ(k)S(k)
)−1

S(k)TQ(k)C(k),
(4)

where

C(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAN−k

⎤
⎥⎥⎥⎥⎥⎥⎦

,

S(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · 0

CB 0
. . .

...

CAB CB
. . .

. . .
...

...
...

. . .
. . .

...
CAN−k−1B CAN−k−2B · · · CB 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5)
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S(N) = 0, R(k) = diag(R, R, . . . , R) is block diagonal matrix
with dimensions (N−k+1)·m and Q(k) = diag(Q, Q, . . . , Q)
is block diagonal matrix with dimensions (N − k + 1) · l.

Theorem 2. For given Markov parameters of the WECS, after
introduction of a closed solution of the differential Riccati
equation, the data-driven controller can be expressed as

U(k) = G(k)xc(k), j = 1, 2, 3, (6)

where G(k) is the data-driven controller gain xc(k) is the data-
driven controller state

G(k) = −
(
R + θ(k + 1)TΩ(k + 1)θ(k + 1)

)−1

×θ(k + 1)TΩ(k + 1),

xc(k) = C(k + 1)Ax(k) =

⎡
⎢⎢⎢⎢⎣

CA
CA2

...
CAN−k

⎤
⎥⎥⎥⎥⎦

x(k),

(7)

where

θ(k + 1) = C(k + 1)B =
[

M1 M2 · · · MN−k
]T

,

Ω(k + 1) = Q(k + 1)−Q(k + 1)S(k + 1)

×
(

R(k + 1) + S(k + 1)TQ(k + 1)S(k + 1)
)−1

×S(k + 1)TQ(k + 1),

S(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · 0

M1 0
. . .

...

M2 M1
. . .

. . .
...

...
...

. . .
. . .

...
MN−k−1 MN−k−2 · · · M1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(S(N) = 0),

(8)

where R(k + 1) = diag(R, R, . . . , R) is block diagonal matrix
with dimensions m(N−k) and Q(k+1) = diag(Q, Q, . . . , Q) is
block diagonal matrix with dimensions l(N−k). A j , B j , and C j

of the Markov parameters Mij can be obtained by the input
uj and output yj , and the column vectors u j(k) and y j(k) are
formed by p-Step input and output data from the beginning of
the {uj , yj}:

Uj(k) =
[

u j1(k) · · · u j p−1
(
k + p − 1

)]T
, j = 1, 2, 3,

(9)

Yj(k) =
[
yj1(k) · · · yjp−1

(
k + p − 1

)]T
, j = 1, 2, 3.

(10)

Then, matrices Y j and V j in (11) can be formed by the input
data and output data. The relationship between input and
output data can be expressed as (12)

Y j =
[

y j1
(
k + p

) · · · y jL
(
k + p + L

)]
, j = 1, 2, 3,

V j =
⎡
⎢⎣

u j(k) · · · u j(k + L)
u j p
(
k + p

) · · · u j p
(
k + p + L

)

y j(k) · · · y jL(k + L)

⎤
⎥⎦, j = 1, 2, 3,

(11)

[
P j1 T j p P j2

]
= Y jVT

j

(
V jVT

j

)+
, j = 1, 2, 3, (12)

where

P j1 = O j p

(
B j p + M jT j p

)
,

P j2 = −O j pM j , M j = −Ap
j O+

j p,

B j p =
[

A j
p−1B j · · · A jB j B j

]
,

O j p =

⎡
⎢⎢⎢⎢⎣

C j

C jA j

...
C jA j

p−1

⎤
⎥⎥⎥⎥⎦

j = 1, 2, 3,

T j p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · 0

C jB j 0
. . .

...

C jA jB j C jB j
. . .

. . .
...

...
...

. . .
. . .

...
C jA j

p−2B j C jA j
p−3B j · · · C jB j 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j = 1, 2, 3.

(13)

P j1, P j2, and matrix T j p can be obtained by solving (9); when
p = N + 1, the WECS Markov parameters Mij can be extracted
from T j p.

The test time is from 2010/07/21 00:30:10 AM to 2010/
07/29 00:25:30 AM, corresponding control input data and
output data set are {u1, y1},{u2, y2},{u3, y3} and The original
power output and the optimized power output are shown by
Figures 4(a)–4(c). It can be seen that data-driven controller
can effectively identify wind turbine power output and
control precision achieves the desired effect.

4. Neural Network Optimization

As shown in Figure 2, the tip speed ratio can be adjusted
by controlling wind generator speed to improve wind energy
utilization coefficient Cp. Wind generator speed is optimized
by neural network compensator to improve wind energy
capture efficiency. Neural network performance evaluation
[40–43] is expressed as (14)

J = minE
(∫∞

t=0
(Oti −Oi)

2dt
)

, (14)

where Oti is the target output of the compensator and i =
1, 2, . . . ,n. Oi is the actual output of the compensator, which
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(a) Wind speed versus wind generator speed
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(b) Wind generator torque versus wind speed
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Figure 4: Power output.

is Δujnn(k) in (17). Neural networks have many learning
rules; different learning rules lead to different training
efficiency, OUTSTAR learning rules are used to train neural
network compensator in this paper, which is intended to
generate an m-dimensional desired output vector. Weight
vector ΔWk of OUTSTAR learning rule can be expressed as

ΔWk = η(d −Wk). (15)

Before adding the data-driven controller, open-loop input
data which constitutes the matrixY j and output data
which constitutes the matrixV j are collected, row vector
of matrixV j and matrixY j must be linearly independent.
Inputs of the neural network compensator are ej(k − 1),
yj(k − 1), and Δuj(k);Δuj(k) is the error between data-
driven controller current input u(k, xj) and previous input

u(k−1, xj). Output of the compensator is Δujnn(k); Δujnn(k)
is the error between neural network current input ujnn(k, xj)
and previous input ujnn(k − 1, xj) :

Δuj(k) = u
(
k, xj

)
− u

(
k − 1, xj

)
, (16)

Δujnn(k) = ujnn

(
k, xj

)
− ujnn

(
k − 1, xj

)
. (17)

The method has general applicability, so randomly wind
turbine 1, wind turbine 2, and wind turbine 3 are selected
as the study objects, and learning rules of EBPA and LMS are
used to train the neural network compensator also. Equation
(18) give the wind turbine output power mean absolute error
(MAE), the standard deviation of mean absolute error (SD
of MAE), the relative mean absolute error (RMAE), and
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Figure 5: Wind energy utilization coefficient versus tip speed ratio.

the standard deviation of relative mean absolute error (SD
of RMAE), where yK is control output, y0 is instance value,
and n is sample number. It can be seen that the model built
on the collected data is stabler with the OUTSTAR learning
rules. Output error with different training rules is given in
Table 2:

MAE =
∑n

K=1

∣∣yK − y0
∣∣

n
,

STD of MAE =
√√√∑n

K=1

(
yK − y0

)2

n
,

RMAE =
∑n

K=1

∣∣yK − y0
∣∣

ny0
,

STD of RMAE =
√√√∑n

K=1

((
yK − y0

)
/y0
)2

n
.

(18)

5. Analysis and Results

The original value and optimal value of wind energy utiliza-
tion coefficient are compared in Figure 5, it can be known
wind energy captured is increasing by adjusting tip speed
ratio value, as the tip speed ratio is close to the optimal value,
the value of wind energy utilization coefficient is increasing.
Wind turbine 1 is taken as study object, and a 5-17-1 neural
network is selected to optimize wind energy captured by
the wind wheel. Figure 6(a) gives the original and optimal
generator speeds. It can be seen that the optimal generator
speed is stabler than the original one. Figure 6(b) gives the
original and optimal power output. It can be seen that the
optimal power is more than the original one.

Table 2: Output error with different training rules.

Learning rules MAE (Kw) STD of MAE RMAE STD of RMAE

Turbine 1

EBPA 4.30 2.01 0.12 0.02

LMS 3.30 1.23 0.08 0.02

OUTSTAR 2.25 0.95 0.05 0.01

Turbine 2

EBPA 4.32 2.05 0.15 0.03

LMS 3.27 1.22 0.07 0.03

OUTSTAR 2.33 0.93 0.06 0.02

Turbine 3

EBPA 4.28 1.98 0.10 0.02

LMS 3.21 1.03 0.08 0.01

OUTSTAR 2.15 0.86 0.05 0.01

6. Conclusion

In this paper, data-driven controller for the WECS is de-
signed based on neural network, Markov parameters of
the data-driven controller can be obtained by input and
output data of the WECS. To overcome the inadequacy of
data-driven control, neural network compensator is used to
compensate for the deviation output of wind power data-
driven control system; the results show that the system stable
performance is improved.

10 min data of wind farm SCADA system is collected,
including wind generator power output, wind generator
speed, wind energy utilization coefficient, and tip speed ratio.
The method first determines the WECS Markov parameters,
the system output is controlled by adjusting the data-driven
controller gain, and the neural network is trained by different
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Figure 6: Optimized output.

neural network learning rules. The results show that the
generator speed fluctuations can be reduced, the security
of wind turbine operation is high, more wind energy is
captured, and the method is relatively simple and easy to
understand.
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