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i 

ABSTRACT 

 Distributed estimation uses many inexpensive sensors to compose an accurate 

estimate of a given parameter.  It is frequently implemented using wireless sensor 

networks.  There have been several studies on optimizing power allocation in wireless 

sensor networks used for distributed estimation, the vast majority of which assume linear 

radio-frequency amplifiers.  Linear amplifiers are inherently inefficient, so in this 

dissertation nonlinear amplifiers are examined to gain efficiency while operating 

distributed sensor networks.   

 This research presents a method to boost efficiency by operating the amplifiers in 

the nonlinear region of operation.  Operating amplifiers nonlinearly presents new 

challenges.  First, nonlinear amplifier characteristics change across manufacturing 

process variation, temperature, operating voltage, and aging.  Secondly, the equations 

conventionally used for estimators and performance expectations in linear amplify-and-

forward systems fail.  To compensate for the first challenge, predistortion is utilized not 

to linearize amplifiers but rather to force them to fit a common nonlinear limiting 

amplifier model close to the inherent amplifier performance.  This minimizes the power 

impact and the training requirements for predistortion.  Second, new estimators are 

required that account for transmitter nonlinearity.  This research derives analytically and 

confirms via simulation new estimators and performance expectation equations for use in 

nonlinear distributed estimation.     
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 An additional complication when operating nonlinear amplifiers in a wireless 

environment is the influence of varied and potentially unknown channel gains.  The 

impact of these varied gains and both measurement and channel noise sources on 

estimation performance are analyzed in this paper.  Techniques for minimizing the 

estimate variance are developed.  It is shown that optimizing transmitter power allocation 

to minimize estimate variance for the most-compressed parameter measurement is 

equivalent to the problem for linear sensors.  Finally, a method for operating distributed 

estimation in a multipath environment is presented that is capable of developing robust 

estimates for a wide range of Rician K-factors.     

 This dissertation demonstrates that implementing distributed estimation using 

nonlinear sensors can boost system efficiency and is compatible with existing techniques 

from the literature for boosting efficiency at the system level via sensor power allocation.  

Nonlinear transmitters work best when channel gains are known and channel noise and 

receiver noise levels are low. 
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1 INTRODUCTION 

 Distributed estimation is the production of an estimate of one or more physical 

quantities based on the measurements of a set of sensors.  These sensors are individually 

low-precision devices, allowing them to be used in any given scenario.  By aggregating 

the output of many sensors, it is possible to produce a detailed estimate of the quantities 

being measured over some region.   

 An area of active research is the implementation of distributed estimation systems 

using wireless sensor networks [1].  These sensors are often used to perform surveillance 

on locations that are physically difficult to access.  For these scenarios, the wireless 

sensors should be inexpensive enough to be considered disposable.  Additionally, the 

wireless sensors should be self-contained with their own power source, typically a 

battery.  For battery-powered estimation systems, overall utility is determined by the 

system’s ability to produce quality estimates and the battery lifetime over which quality 

estimates can be attained.  Extending the battery life over which accurate estimates can 

be attained requires increasing the energy-efficiency of both the sensors and the 

algorithms used to produce distributed estimates.  

 In other applications, wireless sensors may be required by the application but the 

endurance is required to exceed the lifetime of any available batteries.  Passive wireless 

sensors can be built that obtain their energy from a directional high-frequency field 

transmitted by a master, similar to operation of radio-frequency identification (RFID) 

tags  [2].  Examples of systems with such requirements would be wireless sensors used to 
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monitor stress across a wind-turbine blade.  The amount of power that can be coupled 

into the “passive” sensor is small, and thus both the sensor and the sensing algorithm 

must be energy-efficient to avoid long charging times and large charge-storage devices.   

 There are a variety of ways to transmit data from each sensor to the fusion center.  

Each individual sensor can transmit its data to the fusion center using an orthogonal 

signaling scheme, which makes each sensor’s measurement independently discernible, 

but also requires a total system bandwidth that grows with the total number of sensors.  

This increasing bandwidth requirement limits the attainable sensor sampling rate.  This 

may be acceptable if the number of sensors is small, but may not be applicable when the 

number of sensors is large.  Several papers have proposed deactivating sensors [3] or 

truncating digitally transmitted values [4,5,6] to reduce the amount of transmitted data 

and thus boost energy-efficiency of the distributed estimation system. 

 A different technique is to use an estimation algorithm which does not need to 

attain the values of individual sensor measurements orthogonally, but instead operates on 

an aggregate received value.  One estimation algorithm that can operate using a shared 

bandwidth is Amplify-and-forward (AF) [1,7,8].  Optimization has been performed to 

minimize the sum of transmitter powers subject to achieving some steady-state error 

power or to minimize the error power subject to some sum of transmitter powers [9].   

 An issue with the power optimizations proposed in the reference literature is that 

it has been assumed that the transmitter is linear with constant gain and that power 

consumption is proportional to the transmitted power.  These assumptions do not hold 
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with conventional amplifiers, which are only linear when operating in the inefficient 

class-A region of operation and consume a large amount of battery power to maintain 

required biasing [10].  This dissertation investigates this tradeoff and develops a modified 

amplify-and-forward algorithm aimed at extending sensor battery life while minimizing 

impact to error power.   

 Another assumption commonly made with AF systems is that the transmitting 

sensors are phase-aligned.  This dissertation also investigates that assumption and 

proposes an alternate system for implementing AF distributed estimation in a dynamic 

scattering environment.   

1.1 Problem Statement 

 An assumption made in AF systems is that the transmitter is either inherently 

linear or has been linearized by a predistorter.  Though linearity is desirable for accurate 

estimation by keeping the equations of [7] and [8] tractable, it significantly reduces the 

power efficiency of the transmitting sensors.  Many papers have been published on 

maximizing the energy-efficiency of wireless sensor networks at the system-level by 

optimally allocating transmitted output power among the sensors [1,6,9,11] or by phase-

modulation [12,13], but none of these examines the battery power required to generate 

the output.  In this research, an algorithm is developed that uses the nonlinear region of 

amplifier operation in combination with a modified amplify-and-forward estimation to 

operate with higher power efficiency from the sensor’s power source.    
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 The key component in a transmitter that affects its efficiency is the power 

amplifier (PA) [14].  PA design involves a tradeoff between linearity and efficiency.  

When an amplifier is operating linearly as typically assumed by AF algorithms, the 

amplifier’s efficiency is low.  Efficiency improves as input signal power increases, but at 

the cost of introducing gain-compression, as shown in Figure 1-1.  One common metric 

for amplifier efficiency is called power-added efficiency (PAE).  PAE is defined as the 

ratio between signal power out and the sum of signal power and supply power into the 

amplifier:  

 PAE =  
𝑃𝑠𝑖𝑔𝑛𝑎𝑙𝑂𝑢𝑡

𝑃𝑠𝑢𝑝𝑝𝑙𝑦𝐼𝑛+𝑃𝑠𝑖𝑔𝑛𝑎𝑙𝐼𝑛
   

(1-1) 

 

 
Figure 1-1: Class AB Amplifier.  PAE peaks when gain compression is present, but the 

amplifier is not yet saturated. 

 When gain compression is uncorrected, the equations for linear AF from [7] and 

[8] fail.  To add further implementation complexity, the exact gain-compression behavior 

can differ between sensors based on manufacturing process, supply voltage, and 
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temperature (PVT) variations.  The gain-compression problem cannot be solved by 

assuming all sensors are identically nonlinear.  

 Linear AF operation in the gain compressed region can be accomplished by 

linearizing each amplifier individually.  This linearization is done by adding a gain-

expansive predistorter [15] preceding the amplifier in each transmitter.  It is possible to 

operate linearly a few decibels into the class AB region of operation by using 

linearization as shown in Figure 1-2.  However, the amplifier system still requires a linear 

dynamic range equal to the dynamic range of the noisy sensed measurements.  The highly 

efficient operating region will only be utilized at the largest measurement values. Most 

measurements will still occur in the inefficient class A region. 

 
Figure 1-2: Predistortion (Linearization) System Gain. 

 The objective of this research is to develop methodologies to extend the battery 

life of sensors in AF distributed estimation systems by enabling the use of high-efficiency 

nonlinear amplifiers.  For the proposed methodologies, performance expectations are 

developed and related to the conventional linear AF distributed estimation system.  The 

performance of proposed distributed estimation systems is also investigated in the 

presence of unequal gain channels.  In summary, the problems investigated by this 

dissertation are: 

Ideally gives 

Predistorter PowerAmp Linear 

Followed by 
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 Amplify-and-forward distributed estimation over a coherent multiple-access 

channel is a common technique used to estimate a measured parameter using a 

large number of inexpensive sensors.   

 A lot of research has been published on predicting estimate variance attainable 

using amplify-and-forward distributed estimation systems and on optimal 

transmitted power allocation.  However, the vast majority of this research 

assumes linear transmit amplifiers. 

 Linear transmit amplifiers are less efficient than their nonlinear counterparts. 

 Practical implementations of distributed estimation over coherent multiple-access 

networks suffer from the need to have accurate phase estimation. 

1.2 Contributions 

 This research proposes a new approach for boosting efficiency of AF systems 

where receiver and channel noise are low relative to received power.  Predistortion is 

utilized not to linearize an amplifier, but rather to force all sensor amplifiers to fit a 

common limiting-amplifier model.  Modified estimators are designed that exploit the 

more efficient, nonlinear, class AB region of amplifier operation for a wider range of 

sensor measurements than the linear AF system allows.  The performance of the proposed 

technique is analyzed in terms of asymptotic variance and power added efficiency.   

 Analytical backing of the proposed algorithms is produced using a hyperbolic 

tangent limiting amplifier model and uniform sensing noise.  Modeling and simulation is 
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used to validate the algorithms with simulated data from a real amplifier for both perfect 

and more practical methods of digital predistortion.   Significant improvements in power-

added efficiency are demonstrated at the cost of small amounts of additional estimation 

variance.  The modified estimator is proven to be effective in the presence of limited 

additive receiver noise, and sensitivities not present in the linear AF scheme are 

discussed.   Imperfections in realizing predistortion are shown to have similar 

performance degradation.  The performance of the proposed estimator is investigated for 

uniform and non-uniform additive white Gaussian noise channels.  For operation in 

dynamic scattering environments, a new approach utilizing orthogonal-frequency 

division multiple access is been proposed.  

 Numeric simulations have been conducted to verify the performance of the 

proposed distributed estimation system utilizing the less tractable Cann limiting amplifier 

model [16], and using Gaussian and Cauchy sensing noise sources.  Consistent estimators 

are demonstrated for Cauchy sensing noise, which are not possible using the linear AF 

system.  Additionally, numeric solutions have been utilized to solve analytically posed 

optimization problems for sensor powers in a wireless network with widely varied 

channel gains.   

 As a part of the implementation of the proposed distributed estimation system for 

scattering environments, this work proposes two developments of digital predistortion 

that improve performance under specific conditions.  The first development is an 

improvement to help reduce the convergence time of gain-based look-up-table 
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incorporating memory-effect compensation predistortion.  This improvement has been 

done by including a binned block least-mean-squares (LMS) gradient-descent algorithm 

to accelerate convergence by using more samples when there is long transmitter-receiver 

loop latency in the modem.  The second improvement is done to reduce the number of 

required weights to be trained in neural network predistortion.  This is done when the 

power amplifier can be nearly modeled by a memory polynomial, neglecting some 

memory effects.  The memory polynomial terms are all input to the neural network.  The 

neural network is then already nearly fit to the amplifier at the start of training, thus 

leaving the existing neurons free to be trained for matching more complex interactions 

not already incorporated by the memory polynomial.    

 In summary, this dissertation provides the following contributions to the 

literature: 

 Proposes a new method for performing distributed estimation over a coherent 

multiple access channel using nonlinear amplifiers.  Nonlinear amplifiers are 

capable of provided better power efficiency than linear amplifiers. 

 Provides Analytical derivations for both the estimator and the estimate variance 

attainable using nonlinear distributed estimation system in both identical and non-

identical gain additive white Gaussian noise channels, for both known and 

unknown channel gains.   
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 Provides a technique for optimizing sensor power allocation for nonlinear 

distributed estimation systems.  Simulated data demonstrates that this in most 

scenarios optimization yields one of two two-complexity sensor power allocation 

strategies. 

 Proposes a technique for using orthogonal-frequency division multiple-access to 

allow real-time changeover between coherent multiple-access channels and 

orthogonal distributed estimation. 

 Proposes predistortion techniques for use in OFDMA systems to improve 

performance with nonlinear amplifiers.  

1.3 Dissertation Organization 

 In the second chapter of this dissertation, a literature review of both amplify-and-

forward distributed estimation and of predistortion is presented.  Refinements developed 

for digital predistortion are presented in chapter three.  In chapter four, an energy-

efficient form of distributed estimation is presented in the case of either uniform gain or 

equalized additive white Gaussian noise channels.  In the fifth chapter, the proposed 

technique is extended to non-uniform gain channels, including the proposal of an 

orthogonal frequency division multiple-access technique for use in dynamic scattering 

environment.  Finally, in the last chapter conclusions and opportunities for future work 

are discussed.   



 

 

10 

2 LITERATURE REVIEW 

2.1 Literature Review of Distributed Estimation 

 In distributed estimation, noisy measurements from multiple sensors are 

processed in order to estimate the value of a set of parameters.  The measurements of 

these sensors are then jointly processed in some manner to form an estimate of the single 

quantity they all measure.    Each sensor must be self-contained, with its own power 

source and transmitter.  For the cases examined in this research, data is transmitted from 

the sensor to a fusion center which processes the measurements of each sensor into a 

single estimate.  Other techniques are available for doing estimation using ad-hoc 

wireless networks [17].  The sensors themselves are small and have generally low data 

processing capability.  Current trade publications are discussing proposed systems for 

implementing wireless sensor networks using sensors that do not even utilize a proper 

battery, deriving all required power from a radio transmitter in a manner similar to an 

radio-frequency identification (RFID) tag [2].  A typical generic system for doing 

distributed estimation using a fusion center is shown in Figure 2-1.   

 One of the key decisions is how to transmit data to the fusion center.  Data 

transmission can be scheduled so that each sensor transmits its signal orthogonally from 

the other sensors or simultaneously over a multiple-access channel [5].  Data can be 

transmitted from the sensors either digitally [6] or in an analog format [1].  The 

scheduling and format by which sensor measurements are transmitted to the fusion center 

have a significant effect on the implementation required to boost the energy-efficiency of 
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the overall system.  When designing a distributed estimation system one of two 

approaches is generally taken, one can design either to minimize the estimate variance for 

a given power constraint or one can design to minimize the power consumed in meeting a 

variance constraint.  Power constraints can be either a system-level total power constraint 

(TPC) or a per-sensor individual power constraint (IPC) [18]. 

 
Figure 2-1: Generic distributed estimation system using a fusion center, modified from 

[8] 

 This literature review of distributed estimation is divided into three parts.  In 

section 2.1.1, basic amplify-and-forward concepts are reviewed.  In section 2.1.2, 

algorithms for energy-efficient estimation using orthogonal channels are reviewed.  In 

section 2.1.3, algorithms for energy-efficient estimation when using coherent multiple-

access channels (MAC) are reviewed.  

2.1.1 Amplify-and-Forward Distributed Estimation  

 Consider a set of 𝐿 sensors, each with its own power supply transmitting over a 

Gaussian multiple-access channel [19] to a fusion center as shown in Figure 2-2: 
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Fusion Center 
(Receiver)

Σ 

Channel and 
Receiver Noise 

 

Estimator
 

Estimate

  

AWGN 
Channel

h   

Physical 
Value 
  

AWGN 
Channel

h2  

AWGN 
Channel

h1  

Scaling
      

Noisy Sensor 
(Transmitter)

Power Amp

     1
 1

Σ 

 1

Measurement
(noisy)

Noisy Sensor 
(Transmitter)

Power Amp

     2 

 2
Σ 

 2

Measurement
(noisy)

Noisy Sensor 
(Transmitter)

Power Amp

       
   

Σ 

   

Measurement
(noisy)  
Figure 2-2: Distributed Estimation System Topology. 

For simplicity, the channels between the sensors and the fusion center are assumed to be 

additive white Gaussian noise (AWGN) channels.  Each of the sensors is measuring 𝜃 ∈

ℝ+, in some additive noise 𝜂𝑙.  The measurement, 𝑥𝑙, including observed noise at each 

sensor is:  

 𝑥𝑙 =  𝜃 + 𝜂𝑙 .  (2-1) 

 For the reference techniques presented in [7] and [8], the value transmitted by the 

sensor l is a perfectly scaled version of the noisy sensor measurement 𝑎𝑙 𝑥𝑙, where 𝑎𝑙 ∈

ℝ+ is a hardware determined constant determining the largest gain factor of the input 

signal range that can be applied while keeping the amplifier linear.  Initially, it is 

assumed that all sensors have the same gain 𝑎𝑙 = 𝑎, and all channels have the same gain 

ℎ𝑙 = 1.  The received signal, 𝑦, is a sum of the transmitted signals from each sensor, 

subject to some receiver noise, 𝜈:   
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 𝑦 =∑𝑎𝑥𝑙

𝐿

𝑙=1

+ 𝜈. (2-2) 

At the receiver, this is scaled by the number of sensors to provide: 

 𝑧 =
1

𝐿
𝑦 =

1

𝐿
∑𝑎𝑥𝑙

𝐿

𝑙=1

+
𝜈

𝐿
  . (2-3) 

 Evaluating the limit of 𝑧 as 𝐿 → ∞ gives the asymptotic approximation, 𝜁(𝜃), of 

the value received 𝑧 as the number of sensors becomes large: 

 𝜁(𝜃) = lim
𝐿→∞

𝑧 = lim
𝐿→∞

(
1

𝐿
∑𝑎𝑥𝑙

𝐿

𝑙=1

) . (2-4) 

 Note that equations (2-2) through (2-4) add the baseband equivalent signals and 

the resulting output signal produces a coherent sum of the baseband signals.  This 

statement makes the assumption that the transmitters have all been phase synchronized 

including accounting for their channel state information (CSI).  Making this assumption 

implies that other than distributed estimation signals, there is a channel estimation system 

running prior to and during the measurement estimation process and for that estimation to 

work that the channels and signals are slowly varying [9].  Examples of synchronization 

systems are shown in [20] and [21].  It is demonstrated in [20] and [22] that even with 

some phase error in the synchronization, reasonable estimates can be developed. 

 In (2-4), the receiver noise 𝜈 is ignored due to the assumption that as the number 

of sensors transmitting, 𝐿, becomes large, the received power from the sensors becomes 

much greater than the fusion center’s receiver noise floor.  By applying the central limit 
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theorem, it can be seen that 𝜁(𝜃) in (2-4) approximates a Gaussian random variable with 

mean 𝜁(̅𝜃) and variance Σ(𝜃), when 𝜁(̅𝜃) and Σ(𝜃) exist [23].    

 The asymptotic mean of received value 𝜁(𝜃) as L → ∞ is subject to variation 

induced by the random sensor measurement noise.  It is useful to develop an estimate of 

the expected value received given sensor noise distributions 𝑝(𝜂1)𝑝(𝜂2)⋯𝑝(𝜂𝑙) = 𝑝(𝜼): 

 𝜁(̅𝜃) = 𝐸[𝜁(𝜃)] = 𝑎∫ 𝑝(𝜼) (𝜃 +
1

𝐿
∑𝜂𝑙

𝐿

𝑙=1

)𝑑𝜼
𝜼

. (2-5) 

The sum term from (2-5) can be simplified using the central limit theorem [24], provided 

each sensor noise has similar distribution and is of zero mean and defined variance, 𝜎𝜂
2, 

to obtain 𝜁(̅𝜃), the asymptotic mean of the received value for a given actual parameter 𝜃: 

 𝜁(̅𝜃) = 𝐸[𝜁(𝜃)] = 𝑎𝜃. (2-6) 

 Although the estimator with uniform sensor noise, perfect CSI, and linear 

amplifiers can be found using a conventional means, this research takes the more general 

approach to developing the estimator for smallest variance for a received signal in 

Gaussian noise [23].  The estimator with smallest variance is found by solving the 

minimization problem in (2-7) utilizing the actual observed received value, 𝑧, assuming 

small receiver noise, 𝐿 → ∞, and the expected asymptotic mean and variance of received 

signal 𝑧, given by 𝜁(̅𝜃) and Σ(𝜃) respectively [23,25]: 

 𝜃 = argmin
𝜃

((𝑧 − 𝜁(̅𝜃))Σ−1(𝜃)(𝑧 − 𝜁(̅𝜃))). (2-7) 

 The variance of the received value, Σ(𝜃), asymptotically converges to: 
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 Σ(𝜃) = 𝑎2𝜎𝜂
2. (2-8) 

 Using (2-8), the Σ(𝜃) can be evaluated for either the Gaussian or uniform 

distributed sensing noise by substituting the value of variance, 𝜎𝜂
2, appropriate for that 

distribution.  This yields the values: 

 
If 𝜂𝑙~𝒩(0, 𝜎

2) → Σ(𝜃) = 𝑎2𝜎𝜂
2 

If 𝜂𝑙~𝑈(−𝑏, 𝑏) → Σ(𝜃) = 𝑎
2𝑏2/3. 

(2-9) 

 Solving the equation (2-7) utilizing either the Gaussian or uniform distribution 

yields an identical result:   

 𝜃 =
𝑧

𝑎
  . (2-10) 

From [23,25], the asymptotic variance of the optimal estimate (2-10) can be calculated 

as: 

 
AsVar(𝜃) =

Σ(𝜃)

[
𝜕
𝜕𝜃
𝜁(̅𝜃)]

2    , (2-11) 

resulting in: 

 
If 𝜂𝑙~𝒩(0, 𝜎

2) → AsVar(𝜃) = 𝜎2 

If 𝜂𝑙~𝑈(−𝑏, 𝑏) → AsVar(𝜃) = 𝑏
2/3. 

(2-12) 

 From (2-12) it can be seen that in the absence of receiver noise and channel noise, 

if the sensor measurement noise is distributed in such a manner that the central limit 

theorem can be applied, the estimate has asymptotically the same variance as the quantity 

being measured.   
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 Using Cauchy distributed sensor measurement noise yields an undefined mean 

and variance.  Consequently the reference amplify-and-forward schemes do not work for 

sensors with Cauchy distributed noise.  This is because the conventional amplify-and-

forward technique implicitly computes the sample mean of the sensor observations via 

(2-3).  For heavy-tailed distributions such as the Cauchy distribution, the sample mean 

does not produce a meaningful value. 

 In chapter 4, an algorithm is proposed that provides accurate estimates in the 

presence of nonlinear amplifiers.  It also provides consistent estimates with Cauchy 

distributed sensing noise, while linear amplifiers do not. 

2.1.2 Energy-Efficient Estimation: Orthogonal MAC Sensor Transmissions 

 Orthogonal transmission of sensor data to the fusion center places full burden of 

estimation on the fusion center.  One of benefits of implementing orthogonal sensor 

transmissions is that it allows reusing existing wireless digital communications 

techniques such as coding to minimize the rate of bit errors occurring between the sensor 

transmitters and the fusion center.  Thus, issues that must be solved for analog orthogonal 

or multiple-access channel implementations such as channel-state equalization and phase 

synchronization can be largely mitigated.  Common orthogonal transmission schemes for 

distributed estimation include time-division multiple access (TDMA) [6], code-division 

multiple-access (CDMA), or frequency-division multiple-access (FDMA) [9]. 
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 In many papers including [5] and [11] orthogonal digital transmission is used and 

the total power transmitted by the sensors is minimized subject to an estimate variance 

constraint.  The individual sensor powers are often controlled by adjusting the number of 

bits to which each sensor reading is quantized.  To determine power, it is assumed each 

sensor transmits its reading as a single M-level quadrature amplitude modulation (QAM) 

constellation point.  The number of bits of to which the 𝑙th sensor is quantized is 𝑄𝑙.  Each 

sensor measures a value ranging from −𝑊 to +𝑊.  The average power, 𝑃𝑙, to transmit a 

measurement of 𝑄𝑙 bits from the 𝑙th sensor is [11]:  

 𝑃𝑙 =
𝑐𝑙
ℎ𝑙
𝐵𝑠 ln (

2

𝑝𝑏
𝑙 ) (2

𝑄𝑙 − 1), (2-13) 

where ℎ𝑙 is the path or channel gain from the 𝑙th sensor, 𝑝𝑏
𝑙  is the bit error probability at 

the 𝑙th sensor, 𝐵𝑠 is the sampling rate, and 𝑐𝑙 is a constant determined in part by the 

receiver noise figure and the single-sided power spectral density of channel noise.  The 

point of (2-13) is that transmitting the same information in a channel with high channel 

loss, also known as low channel gain, takes much more power than transmitting the same 

information in a low loss channel.  The quantized sensors inject quantization noise into 

the estimate beyond the sensor measurement noise already present.  The quantization 

noise power, 𝛿𝑙
2, can be characterized by [26]: 

  𝛿𝑙
2 =

𝑊2

(2𝑄𝑙 − 1)2
  . (2-14) 

  



 

 

18 

From the quantization noise power and the sensor measurement noise power itself, and 

with a bounded number of bit errors, estimate variance Var(𝜃) can be upper-bounded by 

[27]: 

 Var(𝜃) ≤  (1 + 𝑝0)
2 (∑

1

𝜎𝜂𝑙
2 + 𝛿𝑙

2

𝐿

𝑙=1

), (2-15) 

where 𝑝0 is a constant dependent upon bit error rate and sensor noise.  Assuming all 

channels have similar noise characteristics 𝑐𝑙 and sampling bandwidth 𝐵𝑠, a total sensor 

transmitted power minimization problem is setup in [27] to attain estimate variance of 

less than a desired target Υ using digital quantization levels of 𝑄𝑙 bits for the 𝑙th  sensor: 

 

min
𝑄𝑙∈ℤ

∑
(2𝑄𝑙 − 1)2

ℎ𝑙
2

𝐿

𝑙=1

 , 

Subject to:  

Var(𝜃) =  (1 + 𝑝0)
2 (∑

1

𝜎𝑙
2 + 𝛿𝑙

2

𝐿

𝑙=1

) ≤ Υ 

𝛿𝑙
2 =

𝑊2

(2𝑄𝑙 − 1)2
  ,   𝑙 = 1,… , 𝐿 

𝑄𝑙 ≥ 0,       𝑙 = 1, … , 𝐿. 

(2-16) 

Solving this minimization yields optimal quantization levels of:  

 𝑀𝑙
𝑜𝑝𝑡 = {

0 ℎ𝑙𝜏0 ≤ 1

log2 (1 +
𝑊

𝜎𝜂𝑙
√𝜏0ℎ𝑙 − 1) ℎ𝑙𝜏0 > 1

  , (2-17) 

where the threshold 𝜏0 is a function of the desired estimate variance, sensor noise 

variance, and the channel gains for activated sensors.  Equation (2-17) indicates that 
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higher levels of quantization, which corresponds to higher transmitter power, is provided 

to sensors that have better channels with higher channel gain, ℎ𝑙.  Additionally it 

indicates that there is some channel gain ℎ𝑙 < 1/𝜏0 below which it does not make sense 

to transmit any power in order to achieve the desired distortion target.  .   

 In [6], the opposite problem is solved.  In this setup of orthogonal digital sensors, 

the estimate variance is minimized subject to constraints limiting both the total power 

transmitted by all sensors and on the power transmitted by any individual sensors.  For 

analog sensors, similar minimizations can be performed indicating that transmit power is 

allocated to each sensor based on the combined quality of the sensor measurement noise 

and channel loss.  Sensors with the lowest measurement noise and the lowest channel loss 

transmit the measurements with the most power [11].  A limiting aspect on performance 

in orthogonal schemes is that because the sensor measurements are processed 

individually and that each measurement introduces some independent sensing noise; 

consequently when transmit power is finite, even with 𝐾 → ∞ channels, estimation 

variance does not approach zero [1].   

2.1.3 Energy-Efficient Estimation: Coherent MAC Sensor Transmissions 

 Amplify-and-forward is an example of coherent MAC sensor transmission.  In 

this system, all sensor measurements are transmitted simultaneously and received by the 

fusion center in a manner where individual sensor transmissions cannot be isolated.  The 

operation of an amplify-and-forward link in with perfect and identical channel state 
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information (CSI) is discussed in section 2.1.1.  Optimal power allocation is discussed in 

[1] as a minimization of estimate variance, Var(𝜃), subject to a constraint on the total 

power transmitted by all sensors.  In [1], the measured parameter 𝜃 is unknown, 

distributed according to 𝜃~𝒩(0, 𝜎𝜃
2) and observed in Gaussian noise 𝜂𝑙~𝒩(0,1) to 

produce noisy sensor measurement 𝑥𝑙.  The transmitter amplifies the noisy sensor 

measurement by a factor 𝑎 to produce output 𝑦.  For the 𝑙th sensor, output is found to be: 

 𝑦𝑙 = 𝑎𝑙(𝜎𝜃𝑙𝜃 + 𝜂𝑙) . (2-18) 

 The power transmitted by the sensor is: 

 𝑃𝑙 = 𝑎𝑙
2(𝜎𝜃𝑙

2 + 1) . (2-19) 

The estimate variance, Var(𝜃), is found in [1] according to the formula: 

 
1

Var(𝜃)
= 1 + (1 +∑ℎ𝑙  𝑎𝑙

2

𝐿

𝑙=1

)

−1

(∑ℎ𝑙
2𝑎𝑙
2𝜎𝜃𝑙

2

𝐿

𝑙=1

)

2

 , (2-20) 

where ℎ𝑙 is the channel gain for the 𝑙th sensor and 𝐿 is the number of sensors.  The 

optimization of estimate variance given a total transmitted power constraint of 𝑃 is done 

according to: 

 

max
𝑎𝑙:1≤𝑙≤𝐿

1 + (1 +∑ℎ𝑙  𝑎𝑙
2

𝐿

𝑙=1

)

−1

(∑ℎ𝑙
2𝑎𝑙
2𝜎𝜃𝑙

2

𝐿

𝑙=1

)

2

   

subject to ∑(𝜎𝜃𝑙
2 + 1)𝑎𝑙

2 ≤ 𝑃

𝐿

𝑙=1

. 

(2-21) 
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In minimizing distortion using coherent estimation, unlike for orthogonal transmissions, 

no sensors are turned off except for the trivial case of zero channel gain.  Sensor is 

allocated optimally to each power based on the formula [1]:  

 

𝑃𝑙
𝑜𝑝𝑡 = 𝑐𝑙𝑃,   𝑙 = 1,… , 𝐿 

Where:   

   𝑐𝑙 = 𝑐
ℎ𝑙
2𝜎𝜃𝑙

2 (𝜎𝜃𝑙
2 + 1)

(𝜎𝜃𝑙
2 + 1 + ℎ𝑙

2𝑃)
2  , 𝑐 = ( ∑

ℎ𝑙 
2𝜎𝜃𝑙

2 (𝜎𝜃𝑙
2 + 1)

(𝜎𝜃𝑙
2 + 1 + ℎ𝑙

2𝑃)
2

𝐿

𝑙=1

)

−1

. 

(2-22) 

 The key asymptotic finding here is that unlike orthogonal sensor transmissions, 

estimate variance does approach zero as the number of sensors approaches infinity, even 

with a finite amount of total sensor power.  Even with infinite power, if the number of 

channels is finite the estimator will still have non-zero variance [1].    

2.2 Literature Review of Power Amps and Predistortion 

2.2.1 Power Amplifier Background 

 Mobile communication systems are subject to two severe physical limitations: 

power and bandwidth.  First transmitters are not typically connected to the power grid; 

therefore power consumption is critical to battery life and device usability.  The second 

limitation is that bandwidth available over the air is both limited and expensive; therefore 

both a signal’s amplitude and phase must be modulated to achieve high data rate within a 

given bandwidth.   Power amplifiers are a requirement for any wireless communications 

system.  There are many different power amplifier topologies [10].  Most of these 

topologies address different levels of the tradeoff between amplifier linearity and 
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amplifier efficiency.  In a wireless communications system, the power amplifier is 

typically the single largest energy consumer.  Consequently, its efficiency has a 

tremendous effect on the overall power efficiency of the communications system. 

 When the communication method being utilized involves changing, or 

modulating, the amplitude of the signal, it is important the amplifier have a constant gain 

over the range of expected signal amplitudes to avoid distorting the signal.  The region of 

constant gain can be called the linear region of the amplifier.  If the gain is not constant 

across the region of operation, distortion can result as shown in Figure 2-3.  It can be seen 

that for a quadrature amplitude modulation (QAM) scheme, amplifier non-linearity 

reduces the distance between constellation points and thus degrades demodulation 

performance in the presence of noise.   

 Power amplifier efficiency is determined largely by the amplifier class.  An 

amplifier’s class is determined by the fraction of each sine wave spent conducting power.  

Typically, a full sinusoid cycle is represented by 2.  An amplifier that’s conducting all 

the time would have a conduction angle of 2, called class A.  Class A amplifiers have 

theoretical PAE of up to 50% percent at maximum unclipped output power [10], and get 

much more inefficient when operating at lower power levels that may be required based 

on the input dynamic range.  An amplifier that conducts during either the positive or 

negative half cycle would have a conduction angle of , known as class B.  If the 

amplifier cuts off some of its negative peaks but conducts during the entire positive peak, 
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than it would have a conduction angle between  and 2 (class AB) as shown in Figure 

2-4. 

 
(a) 

 
(b) 

Figure 2-3: QAM16 (a) Ideal and (b) if amplifier gain is reduced at large amplitude. 

 When the conduction angle is 2, the amplifier is conducting all the time.  

Amplifiers of this characteristic tend to have linear behavior and low distortion.  This is 

because they do not clip the input waveform.  However, a bias current is running all the 

time and is significant compared to the output current.  Reducing the conduction angle 

decreases gain, but it also significantly reduces bias current and thus boosts efficiency 

[10].  

 When the conduction angle is reduced, the output waveform is a clipped sinusoid.  

For most communications systems, the carrier frequency is much faster than the 

modulation frequency.  Consequently, the waveform is generally highly correlated cycle-

to-cycle and can be considered nearly periodic over a period much shorter than the 

symbol time.  This local (near) periodicity means it can be (nearly) represented by 
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Fourier series, or a sum of complex exponentials with frequencies at integer multiples of 

the fundamental frequency.  This is the Fourier Series representation of a function 𝑓(𝑡) , 

where 𝑇 is the period of the fundamental, 𝑡, is time, 𝑐𝑛 is the Fourier Series Coefficient of 

the 𝑛th harmonic: 

 𝑓(𝑡) = ∑ 𝑐𝑛𝑒
𝑗2𝜋𝑡/𝑇 .

∞

𝑛=−∞

 (2-23) 

 
Figure 2-4: Various amounts of clipping and the resulting harmonic spectrums. 

 

 Figure 2-4 illustrates the effect of various amounts of amplifier clipping on a 

sinusoidal input.  These 4 cycles of input sinusoid can be considered as the near 

stationary output of the amplifier within a given modulation symbol.  It can be seen that 

as amplifier clipping is increased, the fundamental gain is reduced and more energy is 
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shifted to the harmonics.  The shifting of energy from the fundamental to the harmonics 

under clipping mandates the use of high-order low-insertion loss filters at the output of a 

transmitter.  Conventional filtering networks do a good job of removing harmonics of the 

carrier frequency.   

 A more difficult problem is introduced by the change in amplifier gain with 

clipping.  For an amplifier with a fixed clipping level, the percentage of waveform cycle 

clipped varies with the input signal amplitude [10].  When a signal is amplitude 

modulated, its input level and consequently the gain of its primary harmonic changes.  

This results in a slowly time varying change in the amplifier gain.  The change in gain is 

illustrated by Figure 2-5.  Here, the input signal level causes the amplifier to effectively 

change conduction angle.   

 This time-varying amplifier gain multiplying the modulated input signal can be 

viewed in the frequency domain as the convolution of the time-varying amplifier gain 

spectrum and the original modulated signal spectrum.  Thus, driving a class AB amplifier 

with an amplitude modulated signal into clipping (compression) causes spectral spreading 

on the order of the modulation frequency.  This spectral spreading cannot be alleviated 

with simple low-pass filters as can harmonics of the carrier frequency.  Spectral 

spreading can cause a transmitter to fail requirements, called masks, specifying how 

much power can be leaked into adjacent frequencies.  Because the gain changes are 

introduced by changes in the input signal amplitude, modulation systems where the input 

has large swings in amplitude are more susceptible to distortion due to amplifier non-
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linearity.  One common modulation system in use today which has peak-to-average 

power variations (PAR) of around 10dB is orthogonal frequency-division multiplexing 

(OFDM).  This system is used in IEEE standards 802.11g wireless LAN, 802.16e 

WiMAX, and Long-Term Evolution (LTE).    

 
Figure 2-5: Change in Gain versus Input Magnitude for Class AB Amplifier. 

 When a multi-tone signal is fed into the amplifier, mixing products are produced 

as the harmonics are multiplied.  Two sets of these mixing products produce problems 

that are difficult to filter away.  First, mixing products that produce tones around the 

input signal frequency are problematic.  These mixing products produce spectral 

spreading.  Secondly, mixing products are produced near DC.  The resulting low-

frequency envelope can be responsible for memory effects, the dependency of amplifier 

outputs on previous inputs [28].  Slowly-varying low-frequency signals can be at high 

amplitudes and low-amplitudes for longer durations than the amplifier package thermal 
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time-constant, which can change the temperature, and thus the electrical characteristics, 

of the amplifier.  Additionally, as signal bandwidth increases, the analog filters used to 

maintain a constant DC bias on the amplifier must be more broadband, requiring better 

performance that can be difficult to achieve at several MHz.  The resulting bias 

movement causes a dependency on previous symbol points.  A common symptom of 

memory effects is an asymmetric frequency spectrum [28].     

 Two of the metrics more commonly used metrics used to measure transmitter 

performance that directly indicate the linearity of the amplifier system are error-vector 

magnitude (EVM) and adjacent channel power ratio (ACPR).  For OFDM data, the 

performance metrics EVM and ACPR are defined over the N subcarriers in the frequency 

domain: 

 𝐸𝑉𝑀𝑑𝐵 = 10 log10 (
‖𝐕𝐑𝐗 − 𝐕𝐃𝐄𝐓𝐄𝐂𝐓𝐄𝐃‖

2

‖𝐕𝐃𝐄𝐓𝐄𝐂𝐓𝐄𝐃‖
2

) , (2-24) 

 𝐴𝐶𝑃𝑅𝑑𝐵 = 10 log10 (
∑ ‖𝐕𝐑𝐗(𝑘)‖

22𝑁
𝑘=𝑁+1

∑ ‖𝐕𝐑𝐗(𝑙)‖2
𝑁
𝑙=1

). (2-25) 

Here, the VRX is the column vector of all subcarrier’s after the Fast-Fourier Transform 

(FFT) of the received packet data is taken.  VDETECTED indicates the subcarrier values 

within the intended channel, after they have been mapped to the nearest constellation 

point.   

 One common metric for amplifier efficiency is called power-added efficiency 

(PAE).  PAE is defined as the ratio between signal power out and the sum of signal 

power and supply power into the amplifier: 
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 𝑃𝐴𝐸 =  
𝑃𝑠𝑖𝑔𝑛𝑎𝑙𝑂𝑢𝑡

𝑃𝑠𝑢𝑝𝑝𝑙𝑦𝐼𝑛 + 𝑃𝑠𝑖𝑔𝑛𝑎𝑙𝐼𝑛
  . (2-26) 

A table showing both gain and power-added efficiency for an actual class AB amplifier 

simulation is shown in Figure 1-1. 

2.2.2 Power Amplifier Modeling 

 Many papers describe methods for developing analytical models for power 

amplifiers, as summarized in [29].  Most of these models fit the relationship of the 

baseband equivalent signal into and out-of the amplifier.  A common family of models 

used for representing amplifiers used to transmit data signals are composed of full or 

reduced versions of the Volterra series [30,31].  Another common family of amplifier 

models used to represent amplifiers transmitting data is based on nonlinear neural 

networks [32].  These models often include memory-effects, which become very 

significant as modulated data signal increases to megahertz bandwidths.  There are also 

amplifier models which place more emphasis on modeling amplifier compression 

behavior [33].  These limiting amplifier models are more useful in distributed estimation 

applications.     

2.2.2.1 Volterra Series-Based Power Amplifier Models 

 A Volterra series model can be used to represent the non-linear transmitting 

behavior of power amplifiers operating with memory effects.  The Volterra series can be 

viewed as a weighted combination of the products of various lag terms of an amplifier.  A 
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discrete Volterra series with a memory of 𝑀 taps and non-linearity up to order-𝐾 non-

linearity of up to can be represented as [34]:  

𝑣𝑜𝑢𝑡(𝑛) = ∑(∑ ∑ … ∑ 𝑎𝑘(𝑚1, 𝑚2, … ,𝑚𝑘)𝑣𝑖𝑛(𝑛 −𝑚1)𝑣𝑖𝑛(𝑛 − 𝑚2)… 𝑣(𝑛 − 𝑚𝑘)

𝑀−1

𝑚𝑘=0

𝑀−1

𝑚2=0

𝑀−1

𝑚1=0

)

𝐾

𝑘=0

 (2-27) 

 The problem with the Volterra series is that the number of complex weights, 𝑎, 

that must be estimated becomes impractically large, taking ∑ 𝑀𝑘𝐾
𝑘=0  separate weights to 

train.  This makes it difficult to estimate weights in a manner that is computationally 

efficient and numerically robust.  Aside from being expensive to compute a valid set of 

weights, once a set of weights is computed, a different set of 𝑣𝑖𝑛(𝑛) used to validate the 

robustness of the model may not yield a good fit. 

 Techniques have been developed to reduce the number of terms to be trained in 

the Volterra series.  Some special cases of the Volterra series include parallel summations 

of cascaded memoryless nonlinearities and linear time-invariant (LTI) filters, with the 

cascaded elements known as either Wiener and/or Hammerstein models [35,36,37] as 

shown in Table 2-1.  Where the linear filter has finite impulse response, the relation to the 

Volterra series is straightforward.  When the linear filter has infinite impulse response, 

the relation is more difficult as 𝑚𝐾 = ∞. 

Table 2-1: Cascaded Elements of Wiener and Hammerstein Models 

Reduced Volterra Model Stage 1 Stage 2 Stage 3 

Wiener LTI Memoryless Nonlinearity Not used 

Hammerstein Not used Memoryless Nonlinearity LTI 

Wiener-Hammerstein LTI Memoryless Nonlinearity LTI 
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 A power series is another model commonly fit to the amplifier’s memoryless non-

linear transfer function using least-squares techniques [37,38].  This power series models 

the changes invoked on the baseband equivalent signal.  The fitting yields amplifier 

output as a power series of the baseband input signal 𝑣𝑖𝑛(𝑛) with weighting parameters 

𝑎𝑘 where 𝐾 is the maximum order of nonlinearity:  

 𝑣𝑜𝑢𝑡(𝑛) = ∑𝑎𝑘𝑣𝑖𝑛(𝑛)|𝑣𝑖𝑛(𝑛)|
𝑘−1 

𝐾

𝑘=1

. (2-28) 

 To incorporate memory effects into the power series, the weighted power series of 

the current power amplifier input with the weighted power series of previous amplifier 

inputs.  In this power-series resembling model, called the memory-polynomial model 

[38,39], products between different memory lags are assumed to be 0, yielding for an 

amplifier with maximum memory 𝑀, 

 𝑣𝑜𝑢𝑡(𝑛) = ∑∑𝑎𝑘,𝑚𝑣𝑖𝑛(𝑛 − 𝑚)|𝑣𝑖𝑛(𝑛 − 𝑚)|
𝑘−1 

𝐾

𝑘=1

𝑀

𝑚=0

, (2-29) 

where 𝑎𝑘,𝑚 is the complex weight of the 𝑚th lag at the 𝑘th order nonlinearity. 

 Finally, the memory polynomial is generalized in [35] to include cross-terms 

between a region of previous amplifier inputs and complex envelopes from  𝑀𝑏 nearby 

terms.  This model is known as the generalized memory polynomial, and can be 

represented as: 



 

 

31 

 𝑣𝑜𝑢𝑡(𝑛) = ∑∑ ∑ 𝑎𝑘,𝑚,𝑖𝑣𝑖𝑛(𝑛 − 𝑚)|𝑣𝑖𝑛(𝑛 − 𝑚 + 𝑖)|
𝑘−1

𝑀𝑏

𝑖=−𝑀𝑏

 

𝐾

𝑘=1

𝑀

𝑚=0

, (2-30) 

 The choice between amplifier models is made based on the accuracy and 

precision requirements of the system being designed around the amplifier.  While more 

generalized models yield more accurate performance predictions, they require 

significantly more computation to generate.  Among the most accurate and most 

expensive ways to model amplifier performance when such a model is required, is to use 

a periodic-steady-state circuit simulator to predict the baseband-equivalent amplifier 

output for a given amplifier input signal.   

2.2.2.2 Memoryless Limiting Amplifier Models 

 Models are also available which pay more attention to the amplifier’s 

compression characteristics than its memory effects [33].  These models are of greater 

interest when working with distributed estimation applications where data is usually 

transmitted more slowly, making memory effects less significant.  The Cann model [16] 

has a parameter, 𝑠𝐶 ∈ ℝ
+, to control sharpness of the gain curve “knee” where the 

amplifier enters the class AB region, and a parameter, 𝑐 ∈ ℝ+, indicating the amplifier’s 

maximum, or limiting, value: 

 
𝑣𝑜𝑢𝑡(𝑛) =  

𝑐

√1 + (𝑐/𝑣𝑖𝑛(𝑛))
𝑠𝐶

𝑠𝐶
 . 

(2-31) 
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A more analytically convenient and common model for soft saturation is the hyperbolic 

tangent function [40], where 𝑐 ∈ ℝ+ is again the maximum output amplitude.   

 𝑣𝑜𝑢𝑡(𝑛) = 𝑐 tanh(𝑣𝑖𝑛(𝑛)). (2-32) 

The hyperbolic tangent function model is convenient because its derivatives are defined, 

continuous functions and its inverse function can be determined analytically.  These 

properties are utilized when analyzing distributed estimation through an amplifier in soft 

compression, as done in chapter 4. 

 
Figure 2-6: Limiting Amplifier Models 

 A comparison between the Cann model utilizing various of knee sharpness, 𝑠𝐶, 

the hyperbolic tangent model, and a simulated class AB amplifier circuit is shown in 

Figure 2-6.  It can be seen from the figure that hyperbolic tangent model behavior can be 

close to that of a simulated amplifier, despite the relative lack of parameters available for 
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tuning its behavior.  Furthermore, where tuning the sharpness of the transition to more 

closely match amplifier compression is beneficial, than the Cann model can be utilized.  

It can also be observed that as 𝑠𝐶 → ∞, the Cann model approximates the behavior of the 

ideal perfectly linearized power amplifier.   

2.2.3 Digital Predistortion Overview 

 Predistortion can be implemented either via analog circuitry or digital circuitry.  

Digital predistortion is more prevalent due to its easier control and adaptation.  A typical 

digital predistortion system is shown in Figure 2-7.  In digital predistortion, the actual 

transmitter output is monitored by a co-located receiver.  By comparing received values 

to the desired to be transmitted, an adaptation algorithm can be used to modify the 

predistortion function such that actual outputs match the values intended to be transmitted 

accounting for the process, voltage, and temperature (PVT) variation.  Two of the 

methods used for digital predistortion include gain-based look-up-table (LUT) [15] and 

neural network techniques [41].  

vpd(n)
Modem

Pre-

distorter
f ↑ 

P
Avin(n)

Coupler

~

f ↓ 
Adaptation

data LPF
vAct(n)

 
Figure 2-7: Typical predistortion system, modified from [15]. 
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2.2.3.1 Gain Based Look-up-Table Predistortion for Memoryless PA 

 The gain-based predistorter [15], shown in Figure 2-8, is a common predistorter 

that compensates for variable amplifier gain at the fundamental signal frequency.  It 

dramatically extended the capabilities, decreased the learning time, and reduced the 

memory requirements from the original mapping predistorter developed in [42].  The 

gain-based predistorter topology is based on two assumptions.  First, it assumes 

compression occurs primarily as a result of input power.  Second, it assumes adjacent 

input power levels have highly similar power amplifier complex gains.  Consequently, 

sensor outputs are assigned look-up-table (LUT) bins based on their input power level.  

The exact method used for allocation of these bins is discussed in [43].   

Non-DSP

P
A

Desired PA Gain 

Function: d(∙)

e(n)

 p(∙ )   Adaptive Predistorter

         

+

Σ
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Error
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Actual OutputPredist Output

g(·)

f ↑ f ↓
 

 

p, bin1
p, bin2

:
p, binN

| · |
2

x
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Modem Output
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Figure 2-8: Gain-based predistortion. 

 Each bin has a correction factor which scales the sensor output, with the intent of 

bringing the combined gain of the predistorter and the nonlinear amplifier to the total 

desired gain.  The correction factors are learned via the least-mean-squares (LMS) 

gradient descent algorithm [44].  It is assumed that increasing the correction factor 
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magnitude increases the output magnitude of the amplifier, so that the amplifier’s output 

is monotonically increasing with output power.   

 For a given bin, the error, e, can be found by finding the difference between the 

actual signal transmitted, 𝑣𝑎𝑐𝑡(𝑛), and the desired signal, 𝑣𝑑𝑒𝑠(𝑛) according to (2-33).  

Actual amplifier gain is 𝑔(∙), predistorter gain is 𝑝(∙), and the desired gain resulting from 

the soft-saturation function is 𝑑(∙). 

 𝑒(𝑛) = 𝑣𝑑𝑒𝑠(𝑛) − 𝑣𝑎𝑐𝑡(𝑛) = 𝑑(𝑣𝑖𝑛(𝑛)) − 𝑔(𝑝(𝑛)𝑣𝑖𝑛(𝑛)). (2-33) 

The error, 𝑒(𝑛), the current predistortion correction factor for input points within the 

corresponding bin, 𝑝𝑏𝑖𝑛(𝑛), and the input value 𝑣𝑖𝑛(𝑛), can then be used to compute an 

updated correction factor 𝑝𝑏𝑖𝑛(𝑛 + 1) according to the LMS algorithm as shown: 

 𝑝𝑏𝑖𝑛(𝑛 + 1) = 𝑝𝑏𝑖𝑛(𝑛) + 2𝜇𝑒(𝑛)𝑣𝑖𝑛
∗ (𝑛) (2-34) 

Many different customizations have been made to the LUT technique to aid with 

modeling accuracy given specific nonlinear characteristics, memory effects, or to 

improve learning time in the presence of significant delay between when the modem 

sends the transmit signal and has the time-synchronized signal from the receiver available 

for adaptation [43].  

2.2.3.2 Gain Based Look-up-Table Predistortion for PA with Memory Effects 

 The gain-based LUT has been extended to compensate for power amplifier with 

memory effects.  In one extension, proposed by [45], a second-dimension is added to the 

gain-based LUT.  The second dimension is indexed by a metric of previous symbol 
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powers.  Three different symbol power metrics are utilized in [45].  In the first metric, the 

ratio of current symbol averaging the symbol power over the 𝑀 previous symbols is used.  

The second metric shown took a weighted average of the symbol powers, where each 

symbol was weighted by an exponential decay, 𝐷−𝑚, where 𝑚 is the amount of delay 

from the current sample and 0 < 𝐷 < 1, to provide more weighting to the most recent 

terms.  The third metric used is a special case of the first where 𝑀=1 delay term, resulting 

in the ratio of current symbol power to previous symbol power.  As a variation of the 

approach utilized in [45], previous symbol amplitudes instead of powers are used 

similarly in [46].  A convenient side effect of using amplitudes instead of powers is a 

reduction in required computations in the digital signal processor. 

 In another extension of gain-based LUT predistortion developed in [39], it is 

assumed the PA with memory effects is modeled as a power series function with finite 

non-linear memory, 𝑀.  The LMS algorithm is still split into bins based on the current 

input symbol power.  These bins now consist of finite impulse response (FIR) filters, not 

simple gain factors.  The assumptions about transmitter gain being locally similar and 

monotonic from memoryless gain-based predistortion are still required.  Additionally the 

weighted higher-order terms of the memory lag are assumed to remain small compared to 

the current sample, otherwise they will dominate the response and a linear filter may not 

provide good performance.  The update equation now becomes a vector equation, 

 𝐛(𝑛 + 1) = 𝐛(𝑛) + 2𝜇𝑒(𝑛)𝐯𝐢𝐧
∗ (𝑛), (2-35) 
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where 𝐛(𝑛) is the column vector of FIR coefficients for a given bin at time 𝑛, and 𝐯𝐢𝐧(𝑛) 

is the column vector of current and previous input points, current input being at time 𝑛:   

 𝐛(𝑛) = [

𝑏0(𝑛)

𝑏1(𝑛)
⋮

𝑏𝑀(𝑛)

] , 𝐯𝐢𝐧(𝑛) = [

𝑣𝑖𝑛(𝑛)

𝑣𝑖𝑛(𝑛 − 1)
⋮

𝑣𝑖𝑛(𝑛 − 𝑀)

].   (2-36) 

Similar with the gain-based technique, the selected FIR filter coefficients within a 

selected bin, 𝐛(𝑛), are used to calculate the predistorter output, 𝑣𝑝𝑑(𝑛), for the next 

sample within a given LUT bin after the update operation is completed.  The FIR 

equation is:  

 𝑣𝑝𝑑(𝑛) = 𝐯𝐢𝐧
⊺ (𝑛)𝐛(𝑛). (2-37) 

   

 The major weakness of the LMS gain-based predistorters is also that a significant 

assumption is made about the structure of the linearizer required and thus the behavior of 

the power amplifier; specifically, the linearizer can be represented accurately by a linear 

FIR filter within each given bin.  The non-linear aspect of behavior comes from the 

selection of different linear filters based on the current input symbol amplitude. 

2.2.3.3 Neural Network Based Predistortion 

 Another approach not utilizing LUTs that can be taken to implanting digital 

predistortion is to either learn a function by which the power amplifier can be modeled by 

a known model form and then invert it as is done in [47], or by learning the inverse 

function of the power amplifier itself [37].  These approaches use conventional power 

amplifier models such as Weiner-Hammerstein or memory polynomial models; 
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consequently, like the LMS based approaches make significant assumptions about the 

behavior of the power amplifier.   A neural-network based method of identifying the 

inverse function allows estimation of the power amplifier function with less restrictive 

assumptions about its form.  This may be able to provide a better estimate of the power 

amplifier function and its inverse.   

 First, a network is developed that estimates the inverse function of the power 

amplifier with the desired gain removed.  Next, a copy of this network is placed 

immediately after the modem as the predistorter.  This copied network then warps, or 

predistorts, the value to be transmitted such that after the amplifier distortion the 

transmitter output is as originally intended by the modem 

 The simplified topology used in the neural network algorithms is the indirect 

learning architecture described in [37] shown in Figure 2-9.  Note that the desired gain of 

the PA is removed when identifying g-1, the inverse function of PA gain.  

P
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Desired

Gain
Predist  NN
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(est.g-1)
vin(n)vout(n)

vPAout(n)
Predist NN

 
Figure 2-9: Neural Net Predistortion by Indirect Learning 
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 When identifying the baseband-equivalent function of a power amplifier, all terms 

involved are complex valued.  But, many of the existing tools and code for neural 

network training and evaluation assumes real numbers [48].  By separating out the 

baseband equivalent inputs and outputs to the in-phase and quadrature (I and Q) 

components while leaving them connected internally, it is implied in [48] that the 

modified neural network can remain fully real but yet accommodate for operations such 

as phase rotation.  Specifically, in [48] a neural network estimates the forward function of 

a power amplifier with memory effects.  The inputs to the network are the in-phase and 

quadrature components of the current and (𝑀-1) previous input symbol coordinates, and 

the outputs are the current in-phase and quadrature output coordinates. 

 In [32,41,49], neural networks using similar topologies are used to identify the 

inverse function of a power amplifier excluding the nominal desired gain of the amplifier.  

The real-valued neural networks all consist of a series of interconnected neuron layers.  

The neuron layers each take weighted inputs from the previous stage, sum them with a 

weighted bias, and pass the sum through an activation function to produce an output.  In 

both [32,41], the activation functions used are linear for the first layer, tan-sigmoid for 

the second layer, and linear for the third layer.  The weights are initialized with random 

values.   The neural network is trained using back-propagation to model the inverse 

power amplifier function.  The current and lag values of baseband I and Q components 

measured at the transmit antenna are the inputs to the network and the baseband modem 

feed is the expected output.    
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Figure 2-10: Neural-Network Based Predistortion System. 

From Figure 2-10, it can be determined that if the predistorter has function 𝑝(𝑛) and the 

combination of up-converter and power amplifier have function, 𝑔(𝑛), then the following 

relationships hold: 

 𝑣𝑎𝑐𝑡(𝑛) = 𝑔 (𝑣𝑝𝑑(𝑛)) = 𝑔 (𝑝(𝑣𝑖𝑛(𝑛))) . (2-38) 

The following substitution can be made to make 𝑣𝑎𝑐𝑡(𝑛) a predetermined function of 

input voltage: 

 𝑣𝑎𝑐𝑡(𝑛) = 𝑑(𝑣𝑖𝑛(𝑛)) . (2-39) 

Solving (2-38) for 𝑣𝑖𝑛(𝑛) and substituting back into (2-39) yields: 

 𝑣𝑎𝑐𝑡(𝑛) = 𝑔 (𝑝(𝑑
−1(𝑣𝑎𝑐𝑡(𝑛))) . (2-40) 

Applying the inverse of function g to each side of (2-40) yields: 

 𝑔−1(𝑣𝑎𝑐𝑡(𝑛)) = 𝑝(𝑑
−1(𝑣𝑎𝑐𝑡(𝑛)) . (2-41) 

 The function 𝑑−1(∙) can be determined provided the amplifier system desired 

function 𝑑(∙) is invertible.  Furthermore, 𝑔−1(𝑣𝑎𝑐𝑡(𝑛)) is the input to the amplifier, 
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 𝑣𝑝𝑑(𝑛), that produces output 𝑣𝑎𝑐𝑡(𝑛).  The predistortion function 𝑝(∙)  is the function 

that takes as input 𝑑−1(𝑣𝑎𝑐𝑡(𝑛)) and produces output 𝑣𝑝𝑑(𝑛).  When measurements of 

power amplifier output are available, this function can be fit to a neural network.  Such a 

network is numerically fit using a Levenberg-Marquadt neural network training algorithm  

[50] on a neural network consisting of typically two layers.  The first layer uses non-

linear hyperbolic tangent functions capable of modeling non-linear combinations and the 

second layer is a linear node as a combiner. 

 The neural network based predistortion techniques are computationally more 

intensive then the LMS based approaches.  The linearization computation is done 

between transmitted packets.  The memory requirements can be large due to the number 

of weights involved in the network.  For the neural network, the number of weights in the 

network, w, can be computed by: 

  𝑤 = ∑ 𝑐𝑚(𝑐𝑚−1 + 1)

𝑀

𝑚=0

 , (2-42) 

where M is the number layers in the neural network, cm  is the number of neurons in the 

mth layer of the network, and c0 are the number of inputs to the networks first layer. 

2.2.3.4 Considerations for Implementing Practical Digital Predistortion  

 When implementing predistortion systems, some practical concerns must be met.  

First, to cancel the spectral broadening introduced by nonlinear amplification, the 

predistortion system itself is equally broadband in most predistortion systems.  This 
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requires oversampling the transmitted data by twice the order of the highest nonlinear 

term [51].  This oversampling increases power requirements in the baseband analog 

converters and the digital signal processor of a conventional in-phase/quadrature 

modulated system.  Additionally, feeding data back into the DSP for performing 

predistortion requires an additional receive chain to be implemented in the predistorter.  

This shift of complexity from the RF components to the baseband and digital domain has 

two benefits.  First, digital circuits can be inexpensively manufactured to operate 

deterministically across process corners, while the performance of analog devices varies.  

Second, the power consumption and size of digital integrated circuits improves much 

faster than analog devices, a realized trend predicted by in 1965 as Moore’s Law [52].  

Despite the trend towards increase digital performance at lower power levels, the 

additional power penalty imposed by the increased DSP and baseband requirements must 

be considered when choosing if to implement predistortion. 

 Care must be taken in designing the quadrature modulator and demodulator to 

minimize errors.  Errors introduced in these devices in include both gain and phase 

imbalance between the in-phase and quadrature components, and DC offset.  Methods for 

quantifying the performance impact due these imperfections are discussed in [53].  

Techniques for correcting these imperfections are discussed in [54].  Further design 

tradeoffs for gain-based LUT and neural network based predistortion are discussed in 

[55,56,57] 
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3 PREDISTORTION 

 In this chapter, two different modifications to existing predistortion techniques are 

proposed.  The first technique, outlined in section 3.1 is a block-LMS based technique 

intended to demonstrate a reduction in convergence time required to train the gain-based 

LUT’s FIR filters [58].  The second technique, outlined in section 3.2, is designed to 

reduce the number of weights that must be trained for neural network based predistortion 

[59].  The proposed technique to reduce neural network weight count is implemented by 

starting the neural network with inputs approximating a memory-polynomial based 

predistortion.   

3.1 Block Adaptive Gain-based LUT Predistortion 

3.1.1 Algorithm Description 

 In an attempt to reduce measurement noise and to decorrelate the input data, a 

modified block LMS (BLMS) algorithm was developed.  The difference from 

conventional BLMS algorithms [60] is due to the power binned nature of the gain-based 

predistorter.  As with standard BLMS approaches, this BLMS computes a gradient based 

on averaging N individual measurements of error as shown: 

 𝐛(𝑛 + 1) = 𝐛(𝑛) + 2
𝜇

𝑁
[𝐯𝐢𝐧
∗ (𝑛1) 𝐯𝐢𝐧

∗ (𝑛2) … 𝐯𝐢𝐧
∗ (𝑛𝑁)] [

𝑒(𝑛1)
𝑒(𝑛2)
⋮

𝑒(𝑛𝑁)

] (3-1) 

In the standard BLMS algorithm, the measurements are taken for subsequent points 

where 𝑛2 = 𝑛1 + 1, implying a vertical shift of one element between subsequent 
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columns.  Due to the binning behavior of the gain-based LUT, this relationship does not 

hold for measurements in this BLMS implementation.  As shown in Figure 3-1  

subsequent measurements may be assigned to different bins based on their input power 

magnitude. 

 
Figure 3-1: Block LMS Gain Based Predistorter Binning 

Consequently, the indexes within the BLMS matrix with 𝑁 = 3 measurements for bin 4 

with an FIR memory M = 2 could be: 

 𝐛𝑏𝑖𝑛4(9) = 𝐛𝑏𝑖𝑛4(8) + 2
𝜇

𝑁
[

𝑣𝑖𝑛
∗ (3) 𝑣𝑖𝑛

∗ (7) 𝑣𝑖𝑛
∗ (8)

𝑣𝑖𝑛
∗ (2) 𝑣𝑖𝑛

∗ (6) 𝑣𝑖𝑛
∗ (7)

𝑣𝑖𝑛
∗ (1) 𝑣𝑖𝑛

∗ (5) 𝑣𝑖𝑛
∗ (6)

] [

𝑒(3)
𝑒(7)
𝑒(8)

] (3-2) 

 The BLMS algorithm is evaluated to determine if it can converge in fewer points 

for a transceiver with significant latency from predistorter output to output data 

measurement.  In such a system, all data samples between the time an adjustment is made 

in the predistorter and the reception of the first data point using that adjustment are of 

limited use.  The cost of making an adjustment is that all measurements taken for points 

within that specific LUT bin during the latency duration are discarded.  Thus it is critical 

that when an adjustment is made, it is made with upmost accuracy.  Implementation of 
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this modified BLMS requires maintenance of a matrix for each LUT bin along with a 

trigger condition to trigger evaluation when the matrix is full and ready for gradient 

calculation. 

3.1.2 Simulation Environment 

 To simulate the proposed digital predistortion algorithm, a MATLAB simulation 

environment was written.  The simulation consists of a signal generator, a parameterized 

digital predistorter, a PA model, and a signal analyzer.   

3.1.2.1 OFDM Signal Generator and Signal Analyzer 

 The signal used to test the algorithm is an OFDM signal with 2048 subcarriers.  

Each subcarrier is BPSK modulated with amplitude of 1 and a random data bit.  This 

signal is oversampled by a factor of 4.  There is a cyclic prefix of 80 points at the 4x 

oversampled rate.  The points used for the cyclic prefix are the last 80 points of the 

transmitted data burst.  Additionally, every fourth subcarrier is used as a pilot tone for 

tracking channel gain variation by the receiver.   

 The OFDM receiver starts by locating the received signal time-offset that 

maximizes the autocorrelation of points separated by the word length in time-domain data 

points.  This trick is exploitable because the cyclic prefix is the same as the transmitted 

data word itself.  Because the amplifier model being used is constant, a filter tracking 

movement of the signal time-offset is not required.   
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 The receiver trims off all data, including the cyclic prefix, not part of the 

modulated data burst.  It takes the FFT of the modulated data word to recover the 

individual data subcarriers.  The pilot tones are used to reverse gain variation across the 

channel bandwidth, with simple linear interpolation used to correct subcarriers between 

each pilot tone.  After the correction, a measurement of EVM and ACPR is taken.  

Finally, the received data is compared to the transmitted data to check for any bit errors 

within the burst.   

3.1.2.2 PA Model 

 The power amplifier model presented by [37] is used in this simulation.  The 

power amplifier model incorporates memory effects.  It is implemented in the memory 

polynomial format indicated by (2-29).  The maximum valid magnitude for the inputs of 

this polynomial while attaining compressive characteristics is 0.75.  Above this, output 

was hard-clipped to.  The nominal gain is 1.  The coefficients used were:  

Table 3-1: Power amplifier memory-polynomial model coefficients 

a1,0 =  1.0513 + j 0.0904 

a3,0 = -0.0542 – j 0.2900 

a5,0 = -0.9657 – j 0.7028  

a1,1 = -0.0680 – j 0.0023 

a3,1 =  0.2234 + j 0.2317 

a5,1 = -0.2451 – j 0.3735 

a1,2 =  0.0289 – j 0.0054 

a3,2 = -0.0621 – j 0.0932 

a5,1 =  0.1229 + j 0.1508 

     all other terms 0 

3.1.3 Block LMS Predistortion Performance 

 The block LMS predistorter was simulated with average transmit power backed 

off from peak amplifier by values from 10dB to 18dB, stepping by 2dB.  For each power 
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level, 20 packets of OFDM data were simulated.  To quantify the performance 

differences caused by the predistorter, ACPR was measured for each packet for each of 4 

different predistortion configurations.  The first simulation run was with predistortion 

disabled, shown in Figure 3-2(a).  In this configuration, large values of ACPR indicate 

the amplifier is experiencing significant spectral leakage due to non-linearity.  It also 

indicates the leakage is as expected, stronger for lower power back-off values such as 

10dB.  The second configuration was a predistorter with a block size of 1, corresponding 

to a conventional non-block LMS and shown in Figure 3-2(b).  For 10dB and 12dB 

power back-off, a significant reduction in ACPR is observed.  Larger back-offs indicate 

an increase in ACPR, indicating a probably need to normalize against μ.  The modified 

block LMS algorithm can be seen in Figure 3-2(c) and (d) with block sizes of 4 and 16 

respectively.  An increase in convergence speed and decrease in sensitivity at larger 

power back-off values is observed. 
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Figure 3-2: ACPR at different power back-off values versus sequential packet with (a) no 

predistortion, (b)conventional predistortion, and block LMS predistortion with block 

sizes of (c) 4 and (d) 16. 
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3.2 Neural Networks w/ Higher-Order Terms as Inputs 

3.2.1 Proposed Change 

 A major issue with the neural network predistortion is the amount of computation 

required to train the network.  This research attempts to improve performance by 

employing a hybrid between the neural network topology, which is ignorant about the 

function being modeled, and the LMS which assumes a specific equation form for the 

predistortion function.  This decision was made with the objective of reducing the 

number of nodes in the neural network and thus lighten the computational and memory 

requirements.  To implement such a topology, it was assumed that the primary function 

involved in a power amplifier is roughly a memory polynomial.  A memory polynomial 

is a simplification of the Volterra series where the higher-order products between 

different lag terms are all insignificant  [37].  Additionally, it was assumed second order 

terms were also insignificant.  Third power terms of the in-phase and quadrature input 

series, 𝑣𝑖𝑛𝐼(𝑛) and 𝑣𝑖𝑛𝑄(𝑛),  were assumed significant and thus |𝑣𝑖𝑛𝐼(𝑛)|
2
𝑣𝑖𝑛𝐼(𝑛) and 

|𝑣𝑖𝑛𝑄(𝑛)|
2

𝑣𝑖𝑛𝑄(𝑛) input magnitudes were added to the list of network inputs.  Where 

other terms or cross-terms are required, it is desired to let the neural network learn them.   
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3.2.2 Simulation Results 

 To validate the proposed neural network predistortion, two different neural 

network datasets were simulated.  In the first data set, a fairly large neural network 

configured as specified in Table 3-2 topology (a) was utilized.  Utilizing this predistortion 

with only first-ordered lag terms yielded an improvement in ACPR levels relative to the 

case of no predistortion across a large range of power back-off values, as shown in Figure 

3-3 for topology (a).  This confirms the methods described in [32] and [41] are capable of 

linearizing amplifiers.  By including third-order terms to the neural network, and thus 

mimicking the structure of a memory polynomial, performance was increased as 

indicated by a further reduction in ACPR for the 3rd order predistortion of topology (a) in 

Figure 3-3.  However this further reduction of ACPR was attained at the cost of 

introducing new weights to the neural network, boosting the number of weights from an 

already large 707 to an even larger 857 weights. 

 To validate the worthiness of the proposed approach, the linearization 

performance would have to improve while simultaneously reducing the number of 

weights in the neural network more than what is possible for the first-order terms only 

network.  This is demonstrated using the neural network topology specified in Table 3-2 

simulation set (b).  Using this set, it can be seen that predistortion using the reference 

technique required 229 weights, but failed to provide a large boost in linearization at 

largest generally usable back-off of around 10dB.  However, by including the third-
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ordered terms, topology (b) was able to outperform the reference technique from 

topology (a) utilizing only 299 weights instead of 707 weights. 

Table 3-2: Neural Network Simulation Set Topologies 

Network Topology (a) (b) 

Layer 1 Neurons 15 7 

Layer 1 Function Tan-Sigmoid Tan-Sigmoid 

Layer 2 Neurons 30 15 

Layer 2 Function Tan-Sigmoid Tan-Sigmoid 

Layer 3 Neurons 2 2 

Layer 3 Function Linear Linear 

Total Weights, First Order Terms Only 707 229 

Total Weights, First and Third Order Terms 857 299 

 

 
Figure 3-3: Improved Performance with Lower Weight Count 
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4 ESTIMATION IN SOFT COMPRESSION, AWGN 

 Traditional amplify-and-forward (AF) distributed estimation techniques [11] 

assume the entire dynamic range of noisy sensor measurements is within the transmitter’s 

linear region.   Although this assumption may be permissible when measuring a 

parameter of small dynamic-range and transmitting via a linearized class AB amplifier, 

this assumption limits the efficiency of higher dynamic range systems.  The limitation is 

imposed because assuming the transmitter is linear over the full measured parameter 

dynamic range implies that much of the time the amplifier will be operating well backed-

off of its maximum amplitude and thus in the inefficient class A region of operation.  In 

this chapter, an alternate approach is proposed to allow utilizing the amplifier more 

efficiently in the gain-compressed operating region.   

 In the proposed approach, rather than trying to linearize away the mathematically 

inconvenient gain compression, it is utilized to attain higher sensor energy efficiency.  

Specifically, the soft-limiting behavior of amplifiers is utilized to compress the dynamic 

range of the sensor measurements, and thus largely avoid using amplifiers in the 

inefficient deep class-A region of operation.  Implementation of the proposed system 

does impose new design challenges.  First, because amplifiers are being used in a non-

linear manner, spectral widening can be a problem if the sensors are measuring signals of 

arbitrarily high bandwidth.  For simplicity, it is assumed that the sensors are measuring 

slowly-varying physical quantities such as temperature or moisture for environmental 

monitoring thus largely avoiding mixing products.  Second, introducing nonlinearities to 
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the amplify-and-forward process makes deriving estimators much more complex.  

Finally, a mechanism needs to be developed to ensure all sensors have a similarly 

profiled soft-limiting behavior.    

 Implementing and analyzing a distributed estimation system utilizing the soft-

limiting behavior of amplifiers requires three things: a model for the soft-limiting 

behavior of amplifiers, a method to ensure all amplifiers in the sensor network adhere to 

the behavior specified in the model across PVT variation, and an algorithm for computing 

and quantifying the validity of estimates based on the value received at the fusion center 

from the sensors.  The proposed system shows increases in sensor power-added-

efficiency are attainable in exchange for a predictable and tolerable penalty in estimate 

variance.   The next two subsections describe the first two requirements: limiting 

amplifier models and a method to make sure amplifiers match the models. 

4.1 Limiting Amplifier Model Selection 

 When implementing predistortion, the first decision that must be made is to 

decide what function it is desired to have the amplifiers model.  The conventional choice 

when implementing predistortion is to linearize the amplifier, but that need not be the 

only option.  To utilize the gain compressed region of operation, limiting amplifier 

models are utilized as the target function to which the transmitter is matched via 

predistortion.  When selecting a limiting amplifier model, the selected model must be 

chosen such that the sensor network produces consistent estimates.  
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 Using techniques for distributed estimation with bounded transmissions outlined 

in [25], it is asserted that if a non-linear transmitter shaping function satisfies certain 

criteria, a consistent estimate of θ can be attained.  The required criteria for this non-

linear function from [25] are in place to ensure that if the non-linearity, 𝑠(𝑥), is one-to-

one and monotonic, then the expected value at the receiver,  𝜁(̅𝜃), is also one-to-one and 

monotonic.  The required criteria are: 

 𝑠(𝑥) is differentiable everywhere in the domain of 𝑥 (∀𝑥); 

 𝑠(𝑥) is bounded by a finite constant, 𝑐, such that |𝑠(𝑥)| ≤ 𝑐 < ∞,∀𝑥; 

 lim
|𝑥|→∞

|𝑠(𝑥)| → 𝑐; 

 𝑠(𝑥) is monotonic in 𝑥. 

 For the sake of completeness, a proof of the required criteria from [25] is 

summarized.  Lemma 1 of the proof demonstrates that mean of all transmissions received 

at the estimator in the fusion center can be found to be a function, 𝜁(̅𝜃),  independent of 

the individual sensing noise distributions, 𝜂𝑙, distributed according to probability density 

function 𝑝(𝜂𝑙) when the number of sensors, 𝐿 → ∞, as shown: 

 lim
𝐿→∞

1

𝐿
∑𝑠(𝜃 + 𝜂𝑙)

𝐿

𝑙=1

= 𝜁(𝜃). (4-1) 

 To prove lemma 1, it is demonstrated in [61] that the mean, 𝜁(𝜃), of a set of 

random variables with finite variances approaches its expectation, 𝜁(̅𝜃), almost surely as 

the number of random variables, 𝐿 → ∞ where: 
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 𝜁(̅θ) =  𝐸[𝜁(𝜃)] =  lim
𝐿→∞

1

𝐿
∑∫ 𝑠(𝜃 + 𝜂𝑙)

∞

−∞

𝑝(𝜂𝑙)𝑑𝜂𝑙  ,

𝐿

𝑙=1

 (4-2) 

This assumption can be made with regard to random variables 𝑆𝑙 = 𝑠(𝜃 + 𝜂𝑙) whenever 

the variance of Var[𝑠(𝜃 + 𝜂𝑙)] ≤ 𝑐
2, which holds when the function is bounded by 

|𝑠(𝑥)| ≤ 𝑐, ∀𝑥.  This bounding is consequently listed in the 𝑠(𝑥) requirement.  This 

bounding holds even distributions for which a mean does not exist, such as the Cauchy 

distribution.   

 Once a function, 𝜁(̅𝜃), can indicate the value expected at the fusion center’s 

estimator, 𝑧, for a given 𝜃, the inverse function can be used to compute the an estimate, 𝜃 

according to: 

 𝜃 = 𝜁 ̅−1(𝜃). (4-3) 

The inverse function is most useful if there is a one-to-one relationship between 

parameter, 𝜃, and expected value received at the fusion center 𝜁(̅θ),  and thus between 

the observed value received at the fusion center, 𝑧, and parameter estimate 𝜃.  A one-to-

one relationship will hold in 𝑧 = 𝜁(̅𝜃), if each component of the sum in equation (4-2) is 

itself differentiable and monotonic.  For each component 𝜍𝑙(𝜃) = 𝐸[𝑠(𝜃 + 𝜂𝑙)] to be 

monotonic, it is shown in [25] that using the assumptions that 𝑠(𝑥) is differentiable 

everywhere and bounded by ± 𝑐 in the domain of 𝑥 yields the requirement that 𝑠(𝑥) 

should itself be monotonic.  Usually monotonically increasing functions are used by 

convention as shown in (4-4):  
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𝜕𝜍𝑙(𝜃)

𝜕𝜃
= ∫

𝜕𝑠(𝜃 + 𝜂𝑙)

𝜕𝜃
𝑝(𝜂𝑙)

∞

−∞

𝑑𝜂𝑙 > 0, (4-4) 

although implementation using monotonically decreasing functions is also possible. 

 Both of the limiting amplifier models presented in section 2.2.2.2, meet the 

criteria required for consistent distributed estimation from [25].  The limiting amplifier 

models are parameterized to allow fitting them to a performance consistently achievable 

across all sensors.  For the Cann model from (2-31), the new parameters added is a 

measurement scaling factor applied to the noisy sensor measurement,  𝑘.  The existing 

parameters for maximum compressed output, 𝑐, and the sharpness factor, 𝑠𝐶, yield a 

transmitter function, 𝑠(𝑥) where 𝑥 > 0: 

 
𝑠(𝑥) =  

𝑐

[1 + (
𝑐
𝑥/𝑘

)
𝑠𝐶

]

1
𝑠𝐶

 . 
(4-5) 

 While the Cann model does have the benefit of a sharpness parameter, 𝑠𝐶, that 

allows tuning to match the model abruptness to the compression characteristics of more 

amplifiers, it has a drawback that it is not very analytically convenient for conducting 

mathematical analysis of the estimation algorithm performance, though such analysis has 

been completed and is discussed in section 4.4.  The function is difficult to invert, making 

exact determination of the estimator difficult.  For most analysis, the scaled hyperbolic 

tangent function was used as it is a more common and tractable limiting amplifier model.  

 The scaled hyperbolic tangent function from (2-32) is an analytically tractable 

model that both satisfies the mathematical requirements for a consistent estimator to exist 
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and can accurately approximate the response of a transmit amplifier, as shown in Figure 

2-6.  The scaled hyperbolic tangent function is mathematically convenient in that it is 

both invertible and has continuous derivatives.  A new parameter has been added to scale 

the noisy sensor measurement 𝑥 by 1/𝑘 ∈ ℝ+ and give the amplifier has peak output 

amplitude 𝑐 = 𝛼𝑘 ∈ ℝ+ with amplifier gain-scaling constant 𝛼 ∈ ℝ+ to give: 

 𝑠(𝑥) = 𝛼𝑘 tanh (
𝑥

𝑘
)  (4-6) 

Determination of the proper values of 𝛼, 𝑘, and 𝑐 is discussed in section 4.2. 

 If the channel gains between each sensor and the fusion center are unequal, this 

must be compensated for by channel estimation.  It is assumed in this chapter that the 

transmitter’s power control dynamic range system can bias the amplifier such that peak 

amplifier output as seen at the receiver is similar for all amplifiers, and thus amplifier 

efficiency is similar across all amplifiers for similar sensor measurements.  Also, it is 

assumed that the predistorter can shape the amplifier response such that all amplifiers 

appear to be transmitting the same function through the same channel loss when observed 

from the fusion center.  For the remainder of this chapter unless otherwise noted, the 

assumption is that channel estimation is working and each transmitter appears to be 

operating through an identical AWGN channel with a gain of 1.  

 The implementation of the proposed predistortion is similar to the reference 

techniques reviewed in section 2.2.3 except for one main difference: the target value to be 

produced by the combined predistorter and amplifier system is not be linear, but rather is 
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the limiting amplifier model behavior.  On the implementation side, for the gain-based 

LUT predistortion technique, a linear LMS convergence rate was observed to have 

greater stability at a cost of some additional convergence time compared to the secant-

based algorithm used in [15].  For the neural network predistorter, the desired transmitter 

output function, 𝑑(∙), was set equal to the limiting amplifier model 𝑠(∙).  The training 

was done in accordance with Figure 2-10.  For the hyperbolic tangent limiting amplifier 

model, the predistortion function 𝑝(∙) was learned utilizing training inputs 

(𝑘 tanh−1(𝑣𝑎𝑐𝑡(𝑛)/(𝛼𝑘))) and training outputs 𝑣𝑝𝑑(𝑛) according to (4-7): 

 𝑣𝑝𝑑(𝑛) = 𝑝 (𝑘 tanh
−1 (

𝑣𝑎𝑐𝑡(𝑛)

𝛼𝑘
)) . (4-7) 

4.2 Estimator & Performance Analysis 

 In the following subsection, the estimator for transmitters operating in soft-

compression is derived for distributed estimation systems.  The techniques for distributed 

estimation using bounded transmissions outlined in [25] are the starting point for 

developing the proposed distributed estimation system.  First the assumptions made for 

linear AF systems are reviewed to see if they can be maintained for nonlinear AF 

systems.  Then, estimators and performance estimates for general non-linear AF systems 

are derived [62,63].  Finally, specific equations are derived using measurements with a 

uniform sensing noise transmitted through a limiting amplifier fit to a scaled hyperbolic 

tangent function as described in sections 2.2.2.2 and 4.1.   
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 When quantifying the estimate variance for linear AF systems, an assumption 

made was that the number of sensors 𝐿 → ∞.  This assumption allows analyzing the 

signal at the receiver as a Gaussian distribution.  In practical systems, there will be a 

finite, but large, number of sensors, 𝐿𝒩, for which the distribution is effectively 

Gaussian.  In a linear AF system with 𝐿𝒩  sensors and uniform-gain AWGN channels, the 

receiver divides the received value by the number of sensors, 𝐿𝒩, and the linear gain, 𝑎, 

to attain the estimate.  Because 𝑎 is generally a large constant, the receiver noise 𝜈 is 

generally insignificant compared to the sensing noise contribution to estimate variance 

and thus ignored. 

 When nonlinear transmitters are used, the sensor gain is no longer fixed at a 

generally large constant 𝑎.  Instead, the gain changes as a function of the sensor 

measurement.  For large sensor measurements operating in the highly-compressed region 

of amplifier operation, effective sensor gain could be very small.  Thus, a small amount 

of noise coupled at the receiver input could result in a large estimation error.  Therefore, 

the receiver noise is no longer ignored for a finite number of sensors, 𝐿𝒩 .  The distributed 

estimation equations from  section  2.1.1 are reanalyzed now assuming the receiver noise 

is Gaussian with mean 𝜇𝜈 and variance 𝜎𝜈
2, such that 𝜈~𝒩(𝜇𝜈 , 𝜎𝜈

2). 

 The value received at the fusion center is the scaled sum of the transmissions due 

noisy sensor measurements, 𝑥𝑙, using limiting amplifier model 𝑠(∙)  plus receiver noise 𝜈:  
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 𝜁(𝜃) =
𝜈

𝐿𝒩
+
1

𝐿𝒩
∑𝑠(𝑥𝑙)

𝐿𝒩

𝑙=1

 . (4-8) 

The expected value at the fusion center, 𝜁(̅𝜃), can be found given the distribution of 

sensing noise at each sensor, assuming each sensor has independent identically-

distributed sensing noise distributed according to 𝑝(𝜂), and the mean receiver noise is 𝜇𝜈: 

 𝜁(̅𝜃) = 𝐸[𝜁(𝜃)] = ∫ 𝑝(𝜂)𝑠(𝜃 + 𝜂)𝑑𝜂
𝜂

+
𝜇𝜈
 𝐿𝒩
   (4-9) 

The choice of 𝐿𝒩 is such that the summation in (4-8) converges according to the law of 

large numbers, but the channel noise does not go to 0.  The variance of the expected 

received value can be calculated as [23]: 

 Σ(𝜃) = ∫ 𝑝(𝜂)𝑠2(𝜃 + 𝜂)𝑑𝜂 −
𝜂

ζ̅2(𝜃) +
𝜎𝜈
2

𝐿𝒩
  . (4-10) 

Using [23], the asymptotic variance of the optimal estimate can be calculated to be: 

 
AsVar(𝜃) =

Σ(𝜃)

[
𝜕
𝜕𝜃
𝜁(̅𝜃)]

2     . (4-11) 

Intuitively in (4-11), when the amplifier is highly compressed, the change in value 

expected at the receiver due to changes in θ becomes small.  When the derivative term is 

small for large θ and the variance due to receiver noise is constant, the estimation 

variance for large θ will become very large.  

 As an example case, a scaled hyperbolic tangent limiting amplifier model as 

shown in (4-6), a uniform distribution of sensing noise bounded by ±𝑏, 𝜂 ~𝑈(−𝑏, 𝑏), 
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and zero-mean receiver noise, 𝜇𝜈 = 0 is solved.  Under these assumptions, the value 

observed at the receiver is: 

 

𝜁(̅𝜃) = ∫
1

2𝑏
[𝛼𝑘 tanh (

𝜃 + 𝜂

𝑘
)] 𝑑𝜂

𝑏

−𝑏

=
𝑘2𝛼

2𝑏
ln (cosh (

𝑏 + 𝜃

𝑘
) sech (

𝑏 − 𝜃

𝑘
)) 

(4-12) 

 The estimate 𝜃 can be found by replacing the expected receiver value 𝜁(̅𝜃) with 

the actual received value 𝑧 and replacing actual 𝜃 with the estimate 𝜃, then solving for 

𝜃  ∈ ℝ+.  These steps find the inverse function, 𝜁−̅1(𝑧), of the expected value, 𝜁(̅𝜃). For 

the hyperbolic tangent limiting amplifier model, defining constant 𝑚 = exp ( 2𝑏𝑧/

(𝛼 𝑘2) ), and for 𝑧 ∈ [0, 𝛼𝑘]:  

 𝜃 = 𝑘 cosh−1

(

 
sinh (

𝑏
𝑘
) (1 + 𝑚)

√2𝑚 cosh (
2𝑏
𝑘
) − 1 −𝑚2)

 . (4-13) 

It should be noted here that the estimate in (4-13) is the same solution to the optimization 

problem in (2-7), and the condition 𝑧 ∈ [0, 𝛼𝑘], is satisfied almost surely for a 

sufficiently large number of sensors 𝐿𝒩 and  small consequently 𝜎𝜈
2/𝐿𝒩. 

 The variance of the received value at the fusion center’s estimator, Σ(𝜃), can be 

computed for the uniformly distributed sensing noise as:  
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Σ(𝜃) = ∫
1

2𝑏
[𝛼𝑘 tanh (

𝜃 + 𝜂

𝑘
)]
2

𝑑𝜂
𝑏

−𝑏

− 𝜁2̅(𝜃) +
𝜎𝜈
2

𝐿𝒩

=
(𝛼𝑘)2

2𝑏
(2𝑏 − 𝑘 tanh (

𝑏−𝜃

𝑘
) −𝑘 tanh (

𝑏+𝜃

𝑘
)) − 𝜁2̅(𝜃) +

𝜎𝜈
2

𝐿𝒩
 . 

(4-14) 

The derivative of 𝜁(̅𝜃) can be found using (4-12) to be: 

 
𝜕𝜁(̅𝜃)

𝜕𝜃
=
𝛼𝑘

2𝑏
[tanh (

𝑏 + 𝜃

𝑘
) + tanh (

𝑏 − 𝜃

𝑘
)]. (4-15) 

Substituting (4-14) and (4-15) into (4-11) yields the asymptotic variance of the estimate 

calculated using a scaled hyperbolic tangent function at specific values of θ measured in 

the presence of uniformly distributed zero-mean sensing noise: 

 AsVar(𝜃) =
2𝑏[2𝑏−𝑘 tanh(𝑏−𝜃

𝑘
)−𝑘 tanh(𝑏+𝜃

𝑘
)]−𝑘2[ln(cosh(𝑏+𝜃

𝑘
)sech(

𝑏−𝜃
𝑘
))]
2
+
4𝑏2

(𝛼𝑘)2
 
𝜎𝜈
2

𝐿𝒩

[tanh(
𝑏+𝜃

𝑘
)+ tanh(

𝑏−𝜃

𝑘
)]
2   (4-16) 

The scaled hyperbolic tangent function becomes equivalent to the linear function when 

𝛼 = 𝑎 and 𝑘 → ∞. Evaluating from (4-16), lim
𝑘→∞

AsVar(𝜃) = 𝑏2/3, yielding as expected 

the same estimate variance result as attained by using the perfectly linear model. 

 A design tradeoff exists when determining the proper value of 𝑘 for sensor 

measurements.  Smaller 𝑘 allows the sensor to operate at higher output powers and thus 

attain higher efficiency, but at the cost of increased estimation variance.  As 

demonstrated previously large 𝑘 selection approximates linear amplification, and thus 

ultimately yield estimation accuracy equivalent to a linear amplifier, but the highly 

efficient compressed region of operation will not be utilized.    As 𝑘 is decreased from ∞, 

at first the measurement noise will dominate estimate variance.  Eventually, when 𝑘 
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reaches some threshold, the receiver noise, 𝜈, will dominate and the asymptotic variance 

increases dramatically.  The best point of operation from an efficiency standpoint is the 

smallest 𝑘 for which estimate variance is determined by the sensing noise.  The 𝑘 value at 

which this transition occurs will depend on the specific sensing noise distribution.  For a 

given amplifier type, the maximum amplifier output, 𝑐, is typically fixed.  Thus, the 𝛼 

can be determined given 𝑘 via 𝛼 = 𝑐/𝑘. 

 For Gaussian and Cauchy sensing noise sources, equation (4-11) holds but the 

integrals cannot be easily evaluated in a closed form.  Simulations showing the 

performance attainable with Gaussian and Cauchy sensor noise distributions are shown in 

section 4.3.4, using numerical integration to determine asymptotic variance of the 

estimate for those sensing noise distributions. 

4.3 Verification and Results 

 To verify the proposed estimation algorithm, simulations were performed in 

MATLAB.  Initial simulations to validate the analytical solutions (4-13) to (4-16) were 

performed with uniform noise passed through perfectly predistorted amplifiers.  This 

“perfect” predistortion was attained by using the targeted scaled hyperbolic tangent 

function itself as the amplifier model.   

 To attain a realistic profile of PAE versus amplifier output power, an example 

class-AB amplifier from the PA design guide of Agilent Advanced Design System (ADS) 

was simulated using the ADS harmonic balance simulator [64].  PAE was calculated by 
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taking the ratio of output RF fundamental-frequency power to the sum of input RF and 

input DC power as input RF power was swept.  PAE was assembled into a list indexed by 

the output power at the fundamental frequency.  In the MATLAB estimation simulations, 

PAE is determined by performing a table look-up based on the fundamental-frequency 

output power.  PAE and fundamental-frequency gain for this amplifier simulation are 

shown in Figure 1-1. 

4.3.1 Selection of Hyperbolic Tangent Scaling Factors 

 To use the scaled hyperbolic tangent model to do nonlinear estimation, the proper 

values to use for 𝛼 and 𝑘 must be determined.  First, the limiting value of the amplifier 

𝑐 = 𝛼𝑘 can be selected to be just below the amplifiers maximum output amplitude.  In 

this case, based on the actual amplifier simulated in ADS, the value of 𝑐 = 𝛼𝑘 = 7.26.    

 In simulation, 𝜃 was chosen to range from 6/32 to 6, with sensing noise, 𝜂, chosen 

to be uniform bounded by ±𝑏, with 𝑏 = 3/32.  These selections were made to roughly 

mimic 5-bits of accuracy in a converter.  It is demonstrated via simulation in subsection 

4.3.4 that this performance is equivalent to analog sensor over the same range with 

Gaussian noise variance 𝑏2/3.  The receiver noise was Gaussian with variance such that 

𝜎𝜈
2/𝐿𝒩 = 10

−7.  The sensor measurements were allowed to be equally likely across the 

anticipated range to determine expected PAE. 

 To find the best value for measurement scaling factor 𝑘, simulations were run 

across the full range of expected 𝜃 with many realizations of sensing noise.  It is known 
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that for large 𝑘 the sensor approximates linear operation, and the estimate asymptotic 

variance should approach 𝑏2/3.  This was confirmed by simulation for large 𝑘, as shown 

in Figure 4-1, where at 𝑘 = 40, AsVar(𝜃) = 𝑏2/3.  The rapid rise in estimate asymptotic 

variance at low 𝑘 given non-zero 𝜎𝜈
2 is predicted by (4-16), which is experimentally 

verified in section 4.3.2.  In Figure 4-1 under the simulated conditions, the lowest value 

of 𝑘 that maintains worst case AsVar(𝜃) ≈ 𝑏2/3 over the entire expected range of 𝜃 is 

𝑘 = 1.75, thus setting the nominal 𝑘 value used throughout this chapter unless otherwise 

noted.  Using 𝑘 = 1.75 with 𝑐 = 7.26, requires that 𝛼 = 4.15 because 𝑐 = 𝛼𝑘. 

 

Figure 4-1: AsVar  ̂  and PAE versus scaling k.  Optimal PAE is attained at smallest k 

where estimate variance is sufficiently small. 
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4.3.2 Experimental Verification of Analytical Results 

 Simulations with both 𝐿 = 10 and 𝐿 = 1000 sensors were used to verify the 

expected value received at the fusion center, 𝜁(̅𝜃), and asymptotic variance of the value 

received at the fusion center, Σ(𝜃), predicted by equations (4-12) and (4-14).   The sensor 

measurement noise, 𝜂𝑙, used for each sensor was uniformly distributed from −𝑏 to 𝑏 with 

𝑏 = 0.25 in this simulation.  The resulting simulations are shown in Figure 4-2.  It is seen 

that the experimentally generated values of 𝜁(̅𝜃) match the analytically determined 

values.  Similarly, the experimentally determined value 𝐿 Var(𝑧) matches the analytically 

determined asymptotic variance.   

 
Figure 4-2:    and    with Uniform Sensing Noise 

 Simulations were performed using perfect predistortion to experimentally verify 

the analytic formulae (4-13) to (4-16).  Unless otherwise noted, the simulations used 𝛼, 𝑘, 
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𝑏, and 𝜎𝜈
2/𝐿𝒩 values as specified in section 4.3.1.  The values attained from simulation 

using 𝐿𝒩 = 10 sensors proved identical to the analytic formulae, as can be seen from 

Figure 4-3 and Figure 4-4.  In these figures, markers indicate the values attained from 

simulation with 𝐿𝒩 = 10 sensors, and the solid lines indicate values attained from 

simulation. These plots are used to demonstrate the tradeoffs between 𝑘, 𝜎𝜈
2/𝐿𝒩, and 

achievable estimate asymptotic variance AsVar(𝜃). 

 
Figure 4-3: Asymptotic Variance of Value Received for Estimator,   .  Note that 

receiver noise establishes a noise floor not present when only using sensing noise. 

 Some key observations can be made from these plots.  First, from (4-14) it can be 

seen that receiver noise introduces an additive term, which is not a function of 𝜃 in Σ(𝜃), 

that establishes a floor on the asymptotic variance Σ(𝜃) of the quantity 𝜁(𝜃) provided to 

the estimator.  This noise floor is demonstrated for several different receiver noise 

strengths in Figure 4-3, and serves to limit the maximum 𝜃 for which accurate estimates 
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may be attained.  A plot of estimate asymptotic variance, AsVar(𝜃),  for the same 

conditions is shown in Figure 4-4.  It can be seen that once the receiver noise floor 

determines Σ(𝜃), accurate estimates are no longer attainable.  These plots show both 

results obtained from the analytic formulas derived in section 4.2 as solid lines, and 

results obtained via simulation as markers.   

 
Figure 4-4: Asymptotic Variance of the Estimate.  The flat receiver noise causes trivial 

changes in AsVar  ̂  until some threshold value of  above which large increases in 

AsVar  ̂  occur. 

 Aside from reducing 𝜎𝜈
2/𝐿𝒩, estimate asymptotic variance, AsVar(𝜃), can be 

reduced by increasing the measurement scaling factor, 𝑘, as shown in Figure 4-5.  This 

has the effect of moving amplifier operation back closer to the linear region.  From a 

performance standpoint, it is equivalent to scaling down the values of 𝜃, but this 

improvement in AsVar(𝜃) comes at a cost of decreased PAE as shown previously in 
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section 4.3.1.  Here again the values attained from the analytic equation (4-16)  match 

values attained from simulation. 

 

Figure 4-5: AsVar  ̂  Improves at a fixed receiver noise level by increasing the scaling 

factor, 𝑘, by which measurements are divided.  

4.3.3 Efficiency Performance Vs. Conventional Techniques 

 The major benefit of the proposed technique is the ability to obtain accurate 

estimates while pushing further into the non-linear region of the amplifier.  To 

demonstrate this, simulations were run to determine the asymptotic variance of 𝜃 for 

three different configurations of AF distributed sensing networks.  The first configuration 

simulates the reference technique: conventional AF over an uncompensated amplifier.  

The estimator assumes linear transmitters.  In the second technique, the amplifier has 

been linearized to make it perform perfectly linearly up to its maximum output power.  

The estimator still assumes linear transmitters.  The third technique simulated is the 
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proposed technique, with the amplifier predistorted to fit a scaled hyperbolic tangent and 

estimation done according to (4-13).   

 Each of the three techniques was simulated using the same receiver noise 

characteristics to indicate the effect of receiver noise sensitivity which is a potential 

vulnerability of the proposed approach relative to the two reference techniques.  

Additionally, the measurement scaling factor 𝑘 was swept to make sure the comparison 

included the best scaling factor possible for each of the three techniques to ensure a fair 

comparison.  The performance at each scaling factor was quantified via two metrics.   

The first metric was the worst-case asymptotic variance of 𝜃 across the range of 𝜃.  This 

value should be kept as low as possible.  The second metric was the power-added 

efficiency across 𝜃, obtained by the ratio of all power transmitted at the fundamental 

frequency to all power consumed across 𝜃 for each scaling factor.  PAE should be as high 

as possible.   

 It can be seen in Figure 4-6 that the proposed technique is able to provide 

AsVar(𝜃) limited by sensing measurement noise while achieving a PAE around 48% 

with the simulated class AB amplifier when receiver noise 𝜎𝜈
2/𝐿𝒩 = 10

−7.  Achieving 

estimate variance with a perfectly linearized amplifier, only 33% PAE was achievable.  

Without linearization, using the amplifier in deep class A by using large 𝑘 results in PAE 

around 2%.   
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(a) Worst Case Asymptotic Variance vs. Measurement Scaling 𝑘  

 

(b) PAE vs. Measurement Scaling 𝑘 

Figure 4-6: Performance across 𝑘 and Estimation Algorithm.  Best performance is for k 

with AsVar  ̂  low while PAE is high. 
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 In cases where the sensor network can tolerate AsVar(𝜃) greater than the 𝑏2/3 

limit imposed by the sensing noise, performance of the proposed technique degrades 

more slowly with decreases in 𝑘 than does the linearized AF technique.   The 

performance degradation is shown by the slope of the worst-case AsVar(𝜃) shown in 

Figure 4-6(a), with steeper slopes indicating more sudden performance degradation. The 

sudden decrease in performance for linearized amplifiers is because once linearized 

amplifiers reach their maximum output amplitude, any additional information about how 

far beyond maximum power would have been transmitted is fully lost.  In the proposed 

algorithm using the limiting amplifier models, the performance gracefully degrades as 

𝜕𝜁(̅𝜃)/𝜕𝜃 decreases.   

 Conventional linear AF systems have the slowest performance degradation with 

decrease in 𝑘, but power-added efficiency is unacceptably low.  This is because once any 

amplifier reaches compression, the assumptions made by the estimator start to fail.  When 

the amplifier first encounters compression, the impact on performance is light as the 

amount of compression is small.  As compression increases, the performance falls further 

away from the desired value.  Compression can only be avoided by increasing the 

amplifier scaling factor 𝑘, which decreases the power the amplifier is transmitting and in 

turn decreases PAE.    
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 When receiver noise 𝜎𝜈
2/𝐿𝒩 is increased, the margin between linearized AF and 

the proposed technique decreases, but PAE remains a few percent higher.  The 

performance of the two techniques becomes similar at approximately 𝜎𝜈
2/𝐿𝒩 = 10

−3. 

4.3.4 Performance for Gaussian and Cauchy Sensor Noise 

 To verify the performance of the estimation technique for other sensor noise 

distributions, simulations were performed with both Gaussian and Cauchy distributed 

sensing noise sources.  The parameters 𝜁(̅𝜃) and Σ(𝜃) determine the asymptotic variance 

of the best attainable estimator using (4-11). These two values are plotted and used to 

attain AsVar(𝜃).   

 For Cauchy distributed noise sources in conventional AF systems, it was 

determined in section 2.1.1 that a consistent estimator does not exist.  The expected value 

of data at the receiver with the proposed scheme is shown in Figure 4-7.  Using the 

proposed limiting amplifier models with Cauchy sensing noise, 𝜁(̅𝜃) was consistent and 

well-defined.  This is an advantage over the reference techniques.  

 From Figure 4-7, it can be seen that with comparable sensor noise variances, 

changes in the value expected at the receiver, 𝜁(̅𝜃), versus distribution are small.  Thus, 

rough estimates for 𝜃 can be attained using the analytical estimator (4-13) from uniformly 

distributed sensor noise with comparable variance.  

 From Figure 4-8, it can be seen that with 𝐿 = 10 sensors, the uniformly 

distributed and Gaussian distributed sensing noises of the same sensing noise variance 
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have almost identical asymptotic variance at the receiver, Σ(𝜃), as alluded to in section 

4.2.  Thus, similar estimator performance is to be expected, and this is confirmed in 

Figure 4-9.  For the Cauchy distribution, Σ(𝜃) is much higher.  Consequently, the 

performance of its estimator is worse and is only valid for small 𝜃.  This restriction 

requiring low 𝜃 can be bypassed by using a higher measurement scaling value 𝑘, but at a 

power-added efficiency cost.     

 
Figure 4-7:    for different sensor noise distributions.  Sensor noise distribution does 

not induce large change in     
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Figure 4-8:    for different sensing noise distributions.  Gaussian and Uniform sensing 

noises of similar variance have similar   . 

 

 

Figure 4-9: AsVar  ̂  vs θ for different sensor noise distributions.  Cauchy estimates can 

be seen to be less accurate at larger θ than Gaussian or uniform noise distributions. 
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4.3.5 Predistortion Application & Efficiency Gains 

 In this section it is verified that it is possible to fit amplifier behavior to a scaled 

hyperbolic tangent function using predistortion, and thus extend the range of sensor 

values that can be successfully estimated well into the amplifier’s more power efficient 

non-linear class AB region of operation.  To achieve this, the previously discussed ADS 

amplifier model was utilized.   

 Three different predistorter configurations were simulated.  The first two 

configurations used the gain-based look-up-table technique, the first with 32 bins and the 

second with 128 bins.  The third configuration used a neural network where the first layer 

consisted of 3 hyperbolic tangent neurons and the second layer was a single linear 

neuron.  The performance of each predistorter implementation is shown in Figure 4-10.  

The predistorter imperfections manifest themselves similarly to modest receiver noise.   

 

Figure 4-10: AsVar  ̂  vs. θ.  Good estimates are still possible even using realizable 

predistortion techniques. 
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4.4 Estimation Using a Cann Limiting Amplifier Model 

 As previously discussed in sections 4.1 and 4.2, the Cann model is another 

limiting amplifier that meets the requirements for use in amplify-and-forward distributed 

estimation outlined in section 4.1.  This model has three parameters.  Two of them are 

similar to the scaled hyperbolic tangent function, the limiting value 𝑐 = 𝛼𝑘 and 

uncompressed gain 1/𝑘 also known as measurement scaling factor 𝑘.  The third 

parameter, 𝑠𝐶, is specific to the Cann model [16,65] and controls the sharpness of the 

transition from the linear region to the limited region.  The actual amplifier modeling 

function is: 

 
𝑠(𝑥) =

𝑐

[1 + (
𝑐
𝑥/𝑘

)
𝑠𝐶

]

1
𝑠𝐶

=
𝑥/𝑘

[1 + (
𝑥/𝑘
𝑐 )

𝑠𝐶

]

1
𝑠𝐶

    𝑤ℎ𝑒𝑟𝑒 𝑥 > 0 
(4-17) 

 Similarly, to the scaled hyperbolic tangent function approaches, the expected 

value received at the fusion center using a Cann limiting amplifier model and sensing 

noise uniformly distributed from –b to b can be computed according to (4-9) as [66]: 

 

𝜁(̅𝜃)

=
1

4𝑏𝑘
(𝜃 + 𝑏)2 2𝐹1 (

1

𝑠𝐶
,
2

𝑠𝐶
,
2 + 𝑠𝐶
𝑠𝐶

; − [
1

𝑐𝑘
(𝜃 + 𝑏)]

𝑠𝐶

)

−
1

4𝑏𝑘
(𝜃 − 𝑏)2 2𝐹1 (

1

𝑠𝐶
,
2

𝑠𝐶
,
2 + 𝑠𝐶
𝑠𝐶

; − [
1

𝑐𝑘
(𝜃 − 𝑏)]

𝑠𝐶

), 

(4-18) 

where  2𝐹1(𝑡, 𝑢, 𝑣; 𝑤) is the ordinary hypergeometric function as defined as [67]: 
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  2𝐹1(𝑡, 𝑢, 𝑣; 𝑤) =
Γ(𝑣)

Γ(𝑡)Γ(𝑢)
∑

Γ(𝑡 + 𝑛)Γ(𝑢 + 𝑛)

Γ(𝑣 + 𝑛)

∞

𝑛=0

𝑤𝑛

𝑛!
. (4-19) 

The variance expected about the value received at the fusion center subject to the same 

uniform sensing noise can be computed according to (4-10) as:  

 

Σ(𝜃)

=
1

6𝑏𝑘2
(𝜃 + 𝑏)3 2𝐹1 (

2

𝑠𝐶
,
3

𝑠𝐶
,
3 + 𝑠𝐶
𝑠𝐶

; − [
1

𝑐𝑘
(𝜃 + 𝑏)]

𝑠𝑐

)

−
1

6𝑏𝑘2
(𝜃 − 𝑏)3 2𝐹1 (

2

𝑠𝐶
,
3

𝑠𝐶
,
3 + 𝑠𝐶
𝑠𝐶

; − [
1

𝑐𝑘
(𝜃 − 𝑏)]

𝑠𝐶

) − [𝜁(̅𝜃)]2

+
𝜎𝜈
2

𝑁
. 

(4-20) 

Finally, the derivative of the expected value received at the fusion center is required to 

compute the asymptotic variance of the estimator utilizing (4-11).  The derivative is:  

 

𝜕𝜁(̅𝜃)

𝜕𝜃
=

(𝜃 + 𝑏)

2𝑏𝑘 (1 + [
1
𝑐𝑘
(𝜃 + 𝑏 )]

𝑠𝑐

)

1
𝑠𝐶

− 
(𝜃 − 𝑏)

2𝑏𝑘 (1 + [
1
𝑐𝑘
(𝜃 − 𝑏 )]

𝑠𝐶

)

1
𝑠𝐶

 
(4-21) 

 Unlike the scaled hyperbolic tangent model, the expected received value function 

was not straightforward to invert, and thus a table look-up or other function 

approximation is to be used for determining the estimate 𝜃 from the received value z.   

 If the estimator is simulated without receiver noise, with perfect predistortion, and 

noiseless unity-gain channels, all of the techniques can produce good estimates across the 

full-range of θ until both  𝜕𝜁(𝜃)/𝜕𝜃 and Σ(𝜃) become so nearly zero that the asymptotic 

variance calculation becomes numerically unreliable.  In the example shown in Figure 
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4-11, 𝑏 = 0.25, meaning the variance of what is being measured itself is 𝜎𝜂
2 = 𝑏2/3 =

0.0208.  

 

Figure 4-11: Estimate Asymptotic Variance when 02  . 

 Assuming appropriate choices are made for measurement scaling 𝑘 and amplifier 

limiting value 𝑐, then the asymptotic variance of the estimator is determined largely by 

the receiver noise.  The best limiting amplifier model function to select is the sharpest 

one that still enables identification.  An example plot showing how receiver noise impairs 

estimation performance is shown in Figure 4-12. 

 According to Figure 4-12, it can be seen that subject to receiver noise the Cann 

model with sharpness parameter 𝑠𝐶=10, the signal is too high up into the compressed 

region for the estimator to distinguish values in the presence of receiver noise.  

Accordingly, increasing the measurement scaling 𝑘 may enable operation with low 
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estimate asymptotic variance over the full-range of anticipated sensor measurements 𝜃.  

To verify this, simulations were run to determine PAE and asymptotic variance for many 

different 1/𝑘 values across the entire anticipated range of 𝜃.  The best model type and 

gain combination is the one with an acceptable worst case of estimate asymptotic 

variance while maintaining the highest PAE.  For this specific model, the best would be 

the Cann model with a low sharpness parameter of 𝑠𝐶=2, as shown in Figure 4-13  

 To verify the analytical formulations made in (4-18) through (4-21), the 

analytically determined values from the equations were compared to experimentally 

determined values.  It can be seen that the values align nicely for the Cann model across a 

large range of sharpness parameters.  

 

Figure 4-12: Estimate Asymptotic Variance when 
62 10/   
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Figure 4-13: Estimate Asymptotic Variance and PAE when 
62 10/   
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5 ESTIMATION WITH NON-UNIFORM CHANNELS 

 Distributed estimation uses multiple inexpensive sensors to estimate a single 

quantity.  In previous literature, many methods have been developed for transmitting 

measured data back to a fusion center [1,5,6,17].  For each of the methods, much analysis 

has been done to determine how to allocate power amongst the sensors for a variety of 

channel conditions [18].  One common algorithm used in the literature is amplify-and-

forward (AF) distributed estimation, where sensors transmit a value based on a measured 

noisy parameter.  When these amplifiers transmit simultaneously over a shared channel, 

that method is called AF over a coherent multiple access channel (MAC) [7,8,19].  This 

technique is summarized in section 2.1 and illustrated in Figure 2-2.  For most analyzed 

AF systems, linear transmit amplifiers have been assumed.  While linear amplifiers make 

analytical optimization of transmitted power tractable, they have poor power-added 

efficiency (PAE).  In chapter 4, a technique utilizing efficient nonlinear amplifiers in an 

AF system with coherent MAC was demonstrated when the channels had been equalized 

to appear as equivalent-gain AWGN channels.    

 In this chapter, estimators and performance expectations are derived for utilizing 

nonlinear transmitters in an AF system operating over AWGN channels that have not 

been equalized to have constant gain.  This approach merges the transmitter power 

allocation techniques from existing literature [1,5,6,11] with the techniques for utilizing 

efficient nonlinear amplifiers introduced in chapter 4.  Real world systems utilizing 

AWGN channels of varying gains may exist where the fusion center has line-of-sight 
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paths to each sensor being the dominant path of signal propagation.  These environments 

are assumed to have low multipath levels.  In the first two subsections, estimator 

performance for nonlinear AF transmissions over non-equal AWGN channels is 

analyzed.  In subsection 5.1, estimator performance is derived assuming only gain 

statistics, and full phase-information is available at the transmitter for the corresponding 

channel.  In subsection 5.2, performance and power allocation is analyzed when full 

channel gain statistics are available.   

 In the last scenario, it is assumed that sensors are operated in a dynamic 

multipath-fading channel environment.  In this environment, the channel characteristics 

must be derived as the data is being transmitted.  This may be the case of transmitters 

operating in a busy urban environment, where assumptions about low multipath and 

slowly varying path gains may not hold.  In section 5.3, a technique utilizing OFDM with 

multiple access (OFDMA) to simultaneously implement both coherent multiple-access 

and orthogonal-signaling AF distributed estimation is introduced.  It is possible in this 

technique to implement amplify-and-forward distributed estimation and determine, in real 

time, if better performance can be expected from coherent multiple access or orthogonal 

signaling techniques.  Additionally, the pilot tones used in this OFDMA system may 

render it possible to localize estimates in AF, utilizing wireless sensor network 

localization techniques [68].  Depending on the spatial resolution required, it may even 

be possible to dynamically allocate sensors to separate common-subcarrier pools once 

sensor location has been established.   
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5.1 Phase-Only Channel State Information 

5.1.1 Network Topology, Assumptions, and Analysis 

 A typical distributed estimation topology for utilizing AF distributed estimation 

over a coherent MAC is shown in Figure 5-1.  In this scenario, it is assumed that only 

channel gain statistics are available and not individual path gains.  It is also assumed that 

full state information is available at each sensor for achieving phase alignment at the 

fusion center.  Each transmitter amplifies a noisy sensor measurement, 𝑥𝑙, through a 

common limiting amplifier model meeting requirements described in 4.2, 𝑠(𝑥𝑙), and 

output power capability determining gain, 𝑔𝑙.  
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Figure 5-1 :Distributed estimation topology with random channels and sensor gains 

 For this scenario, the value received at the fusion center is: 
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 𝑦(𝜃) =∑ℎ𝑙𝑔𝑙𝑠(𝜃 + 𝜂𝑙)

𝐿

𝑙=1

+ 𝜈   , (5-1) 

where 𝑔𝑙 and ℎ𝑙 are assumed not to be independent across the same transmitter, but are 

independent across different transmitters.  Each sensing measurement noise, 𝜂𝑙, is iid and 

assumed to be independent from channel noise, 𝜈.  The expected value received at the 

fusion center is:  

 𝐸[𝑦(𝜃)] =∑𝐸[ℎ𝑙𝑔𝑙]𝐸[𝑠(𝜃)]

𝐿

𝑙=1

+ 𝜇𝜈  , (5-2) 

where 𝜇𝜈 is the mean of the channel noise, usually zero.  Assuming all channels have iid 

total-gain distributions ℎ𝑙𝑔𝑙~ℎ𝑔, and the channel and receiver noise is zero mean, 𝜇𝜈 =

0: 

 𝐸[𝑦(𝜃)] = 𝐿 𝐸[ℎ𝑔]𝐸[𝑠(𝜃)]. (5-3) 

The derivative of 𝐸[𝑦(𝜃)] with respect to 𝜃 is: 

 
∂𝐸[𝑦(𝜃)]

𝜕𝜃
= 𝐿𝐸[ℎ𝑔]𝐸 [

𝜕𝑠(𝜃)

𝜕𝜃
] . (5-4) 

The variance of the expected received value at the fusion center is: 

 Var[𝑦(𝜃)] = 𝜎𝜈
2 + 𝐿(𝐸[ℎ2𝑔2]𝐸[𝑠2(𝜃)] − 𝐸2[ℎ𝑔]𝐸2[𝑠(𝜃)]) . (5-5) 

Consequently, the variance of the parameter estimate expected at the fusion center is 

according to [25] : 
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Var(𝜃) =

Var[𝑦(𝜃)] 

[
𝜕
𝜕𝜃
𝐸[𝑦(𝜃)]]

2  .    (5-6) 

 To have a fair metric for comparing estimator performance independent of the 

number of sensors, asymptotic expectation and variance values were developing using 

𝑧 =  𝑦/𝐿. Using this substitution and methods similar to those used in section 4.2, it can 

be found that: 

 𝜁(̅𝜃) = 𝐸[𝑧] =  𝐸[ℎ𝑔]𝐸[𝑠(𝜃)], (5-7) 

 Σ(𝜃) = 𝐿 Var[𝑧] = 𝐸[ℎ2𝑔2]𝐸[𝑠2(𝜃)] − 𝐸2[ℎ𝑔]𝐸2[𝑠(𝜃)] +
𝜎𝜈
2

𝐿
 . (5-8) 

 By swapping the order of the expectation and derivative, which are taken with 

respect to different variables, it can be found that: 

 
𝜕𝜁(̅𝜃)

𝜕𝜃
=  𝐸[ℎ𝑔]𝐸 [

𝜕𝑠(𝜃)

𝜕𝜃
]. (5-9) 

 By substitution of (5-8) and (5-9) into (4-11), a formula can be determined for 

asymptotic variance of the estimate. 

 
AsVar(𝜃) =

Σ(𝜃)

[
𝜕𝜁(̅𝜃)
𝜕𝜃

]
2 (5-10) 

 

AsVar(𝜃) =
𝐸[ℎ2𝑔2]𝐸[𝑠2(𝜃)] − 𝐸2[ℎ𝑔]𝐸2[𝑠(𝜃)] +

𝜎𝜈
2

𝐿  

𝐸2[ℎ𝑔]𝐸2 [
𝜕𝑠(𝜃)
𝜕𝜃

]
 (5-11) 

 



 

 

87 

5.1.2 Analytic Solution & Verification for Hyperbolic Tangent Amplifier 

 For verifying the formula specified above, simulations were run.  For initial 

simulations used to validate the accuracy of the predicted  AsVar(𝜃) formulation, the 

channel and the sensor gains were both assumed to be uniformly distributed from 0 to 1 

to mimic channels that may have obscured paths.  A more realistic model may be to use a 

Rician distribution of gains with a random K-factor.  The hyperbolic tangent model was 

used as the limiting amplifier model, but unlike in section 4.2 the maximum nominal 

amplitude of the limiting amplifier model, 𝑐,  was left at 1.  This simplification was done 

only because in this simulation, no attempt was made to match a specific circuit 

simulated amplifiers to develop estimates of power-added efficiency.  The limiting 

amplifier nominal output was scaled by a gain factor, 𝑔𝑙, controllable in the amplifier 

biasing circuitry. 

 The steps outlined in section 5.1.1 were used to determine an estimator and its 

performance for the hyperbolic tangent limiting amplifier model.  The amplifier model 

differs from the formulation in (4-6) in that the limit setting term, 𝑐 = 𝛼𝑘, has been 

incorporated into the sensor gain value 𝑔𝑙 leaving only the hyperbolic tangent of the 

scaled measurement as the amplifier model function 𝑠(𝑥) as shown in (5-12): 

 𝑠(𝑥) = tanh(𝑥/𝑘). (5-12) 

Substituting 𝑠(𝑥) into (5-7) yields an expectation of the value at the fusion center’s 

estimator, 𝜁(̅θ), as shown in (5-13): 
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 𝜁(̅θ) = 𝐸[ℎ𝑔]
𝑘

2𝑏 
log (cosh (

𝑏 + 𝜃

𝑘
) sech (

𝑏 − 𝜃

𝑘
)) . (5-13) 

 To develop the estimator, the inverse equation to (5-13) is found in a process 

similar to that in section 4.2.  The estimate 𝜃 can be found by replacing the expected 

receiver value 𝜁(̅𝜃) with the actual received value 𝑧 and replacing the actual 𝜃 with the 

estimate 𝜃, then solving for 𝜃  ∈ ℝ+.  For the hyperbolic tangent limiting amplifier 

model, defining constant 𝑚 = exp (
2𝑏𝑧

𝑘𝐸[ℎ𝑔]
), and for 𝑧 ∈ [0, 𝐸[ℎ𝑔]]: 

 𝜃 = 𝑘 cosh−1

(

 
sinh (

𝑏
𝑘
) (1 + 𝑚)

√2𝑚 cosh (
2𝑏
𝑘
) − 1 −𝑚2)

 . (5-14) 

 To analyze the performance of the estimator, the variance of the value received at 

the fusion center, AsVar(𝜃), is determined using (5-10).  The variance divided by the 

number of sensors, in this example also known as the asymptotic variance, can be 

determined according to: 

 
Σ(𝜃) = 𝐸[ℎ2𝑔2]

2𝑏 − 𝑘 tanh (
𝑏 − 𝜃
𝑘
) − 𝑘 tanh (

𝑏 + 𝜃
𝑘
)

2𝑏 
− 𝜁2̅(θ) +

𝜎𝜈
2

𝐿
. 

(5-15) 

The derivative of the value expected is the other component required to determine 

estimator performance.  

 𝜕𝜁(̅𝜃)

𝜕𝜃
= 𝐸[ℎ𝑔]

tanh (
𝑏 − 𝜃
𝑘
) + tanh (

𝑏 + 𝜃
𝑘
)

2𝑏
  

(5-16) 

 To validate that values calculated in (5-13) through (5-16) are correct, simulations 

were run in MATLAB to find experimentally determined values for Σ(𝜃) and AsVar(𝜃) 
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for random channels of known statistics.  For these simulations both the sensor gains and 

the channel gains were randomized to verify the robustness of the equations.  Both sensor 

gains and channel gains were chosen to be uniformly distributed between 0 and 1, thus 

𝑔~𝑈[0,1] and ℎ~𝑈[0,1].  These values were compared to those attained from 

simulations with identical constant channel gains, with 𝑔 = 0.5  and ℎ = 0.5.  For both 

simulations, channel noise was set to 𝜈 = 0 as the influence of channel noise is the same 

between the two topologies.  As shown in Figure 5-2, theoretical results match the 

experimental results for both the identical constant channels case and the channel-gain 

statistics cases.  

  It can be seen from Figure 5-2, that the mean and derivative against 𝜃 of the value 

received at the fusion center’s estimator is identical between the two cases.  The key 

observation from Figure 5-2 is therefore that variance observed at the estimator is much 

higher when only channel-gain statistics are known than it is when the channels are all 

identical and known.  Within the only channel-gain statistics cases, it can also be seen 

that variance increases with increasing 𝜃, whereas for identical channels variance 

decreases with increasing 𝜃.  This increasing received value variance is especially 

problematic as the derivative of the received value is also decreasing, causing estimate 

variance to expand as specified by (5-10).   This rapidly increasing estimate variance with 

𝜃 is confirmed via the simulated and theoretical results shown in Figure 5-3. 
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Figure 5-2: Verification of phase-only CSI gain-statistic equations, and comparison of AF 

systems with gain-statistics available versus systems with identical channels. 

 

Figure 5-3: AsVar  ̂  for Identical Constant and Statistical Gain Channels versus 𝜃. 
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5.1.3 Issues with Nonlinear AF Using Phase-Only CSI 

 Figure 5-4 shows histograms of the actual values received, 𝑧, for a finite number 

of sensors, 𝐿.  For these simulations, the hyperbolic tangent limiting amplifier model has 

been used with 𝑘 = 1, 𝜃 = 1.25, 𝑏 = 3/32, and 𝜈 = 0.  The channel gains, ℎ, were 

chosen to be uniformly distributed between 0 and 1, ℎ𝑙~𝑈[0,1], and the sensor gains 

were set to 1, 𝑔𝑙 = 1, thus 𝐸[ℎ𝑔] = 0.5.  The primary problem in estimating 𝑧 with only 

channel gain-statistics is that variation in 𝑧 becomes much greater than for identical 

constant channels as the transmitter becomes more nonlinear.  This is due to the 

exaggerated effect on received value of channel gain changes when the amplifier is 

operating in the compressed region.  This point is illustrated in by histograms values 

received by estimator for both (a) identical constant gain channels and for (b) the random 

phase-only CSI channels are shown in Figure 5-4.  In these two plots, the variance for 

constant identical channels at 𝐿 = 20 sensors is still lower than the variance of the gain-

statistic channels at 𝐿 = 2000 sensors.  This corresponds to a 100x increase in sensor 

power without improvement in estimate variance compared to the known statistics case.  

 A second problem illustrated by Figure 5-4 is that it is likely that even with a 

practically large 𝐿, such as 20, the value presented to the estimator 𝑧 ∉ [0, 𝐸[ℎ𝑔]].  

When 𝑧 ∉ [0, 𝐸[ℎ𝑔]], the estimator in (5-14) provides a complex-valued estimate and 

thus fails.  Therefore, it is important to make sure the number of channels is large enough 

to make the probability Pr[𝑧 > 𝐸[ℎ𝑔]] → 0 when implementing a nonlinear distributed 
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estimation system, as also demonstrated in [69].  This requirement is easily violated when 

using nonlinear distributed estimation with phase-only channel-state information or when 

channel noise is high 

 
Figure 5-4: Histogram of values received at fusion center’s estimator input. 

 The increase in number of sensors that is required to attain similar variance at the 

fusion center’s estimator, Var(𝑧), when the channel gains are only statistically known is 

shown in Figure 5-5.  In this plot, the limiting amplifier model used for transmitting data 

is the hyperbolic tangent function.  The channels in this plot have uniformly random 

gains between 0 and 1.  At 𝜃 = 0.25, the hyperbolic tangent function is nearly linear.  

When transmitters are operating nearly linear, it can be seen that similar performance can 

be attained to constant channels when the number of sensors is increased by a factor of 

10; however, when the transmitters are operating nonlinearly, it can be seen that a large 
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increase in the number of sensors is required.  In the case of 𝜃 = 1.00, it can be seen that 

333 times more sensors are required to achieve the same variance.  Because the power 

consumed in transmitters scales with the number of sensors, this system of nonlinear 

transmitters operating through statistically-known phase-synchronized channels cannot 

be regarded as very efficient.   

 
Figure 5-5: Variance vs. number of channels for hyperbolic-tangent shaped transmitters 

operating through constant channels and random statistical channels. 

5.2 Full Channel-State Information  

 In this section, the performance of nonlinear distributed estimation is investigated 

when the channel state information is fully known at the transmitters.  First, analytical 

expressions are derived for the asymptotic variance of the estimate when the channel 

state information, ℎ𝑙, is known for all channels.  Because ℎ𝑙 is known, it is also assumed 
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that 𝑔𝑙 is also known, and will be chosen strategically during system implementation to 

achieve a desired performance in terms of estimate variance. 

5.2.1 Derivation of Estimate Variance  

 Because the ℎ𝑙 and 𝑔𝑙 are now known values, the analysis of section 5.1 must be 

reconsidered.  Starting from the same system model in (5-1), the expectation can be 

recalculated assuming non-random sensor and channel gain values: 

 𝐸[𝑦(𝜃)] = 𝐸[𝑠(𝜃)]∑ℎ𝑙𝑔𝑙

𝐿

𝑙=1

+ 𝜇𝜈 . (5-17) 

A slightly different definition of 𝑧 is utilized here than in previous sections: 

 𝑧 =
𝑦

∑ ℎ𝑙𝑔𝑙  
𝑁
𝑙=1  

 . (5-18) 

With this definition of 𝑧, the expected value when channel noise, 𝜈, has zero mean is: 

 𝜁(̅𝜃) = 𝐸[𝑧(𝜃)] = 𝐸[𝑠(𝜃)]. (5-19) 

The estimate can therefore be computed using the inverse of the expected value of the 

non-linear amplifier model, i.e.,  

 𝜃 = 𝜁−̅1(𝑧). (5-20) 

The variance of the received value, 𝑧, with preconditioning on known ℎ𝑙 and 𝑔𝑙 can be 

found to be: 

 Var(𝑧) =
∑ ℎ𝑙

2𝑔𝑙
2𝐿

𝑙=1

(∑ ℎ𝑙𝑔𝑙
𝐿
𝑙=1 )2

(𝐸[𝑠2(𝜃)] − 𝐸2[𝑠(𝜃)]) +
𝜎𝜈
2

(∑ ℎ𝑙𝑔𝑙
𝐿
𝑙=1 )2

 . (5-21) 

Using (5-6), the estimator variance can be found to be: 
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 Var(𝜃) =
 (𝐸[𝑠2(𝜃)] − 𝐸2[𝑠(𝜃)])( ∑ ℎ𝑙

2𝑔𝑙
2𝐿

𝑙=1 ) + 𝜎𝜈
2

𝐸2[𝜕𝑠(𝜃)/𝜕𝜃 ] (∑ ℎ𝑙𝑔𝑙
𝐿
𝑙=1 )2

 . (5-22) 

 For the specific case of a hyperbolic tangent limiting amplifier model, as shown in 

(5-12), with sensing noise distributed uniformly and iid from – 𝑏 to 𝑏, 𝜂𝑙~𝑈[−𝑏, 𝑏], and 

fully known channel and sensor gain information ℎ𝑙𝑔𝑙, the definitions of 𝐸[𝑠2(𝜃)], 

𝐸[𝑠(𝜃)], and E[𝜕𝑠(𝜃)/𝜕𝜃] representing the random components of sensing can be found 

to be: 

 𝜁(̅𝜃) =  𝐸[𝑠(𝜃)] =
𝑘

2𝑏
log (cosh (

𝑏 + 𝜃

𝑘
) sech (

𝑏 − 𝜃

𝑘
)), (5-23) 

 𝐸[𝑠2(𝜃)] = 1 −
𝑘

2𝑏
tanh (

𝑏 − 𝜃

𝑘
) −

𝑘

2𝑏
tanh (

𝑏 + 𝜃

𝑘
), (5-24) 

 
𝜕𝜁(̅𝜃)

𝜕𝜃
= 𝐸 [

𝜕𝑠(𝜃)

𝜕𝜃
] =

1

2𝑏
tanh (

𝑏 − 𝜃

𝑘
) +

1

2𝑏
tanh (

𝑏 + 𝜃

𝑘
) (5-25) 

 The estimator can be found very similarly to (4-13) and (5-14) by solving for the 

inverse of the expectation function.  Where 𝑚 = exp (2𝑏𝑧/𝑘) and 𝑚 ∈ [0,1], then:  

 𝜃 = 𝑘 cosh−1

(

 
sinh (

𝑏
𝑘
) (1 + 𝑚)

√2𝑚 cosh (
2𝑏
𝑘
) − 1 −𝑚2)

  . (5-26) 

To validate the variance of the received value and estimate, simulations were performed 

and the results were compared to the analytically-determined theoretical values as shown 

in Figure 5-7.  To perform the side-by-side comparison more clearly, the measurements 

of the full exact channel state information case was scaled by 𝐸[ℎ𝑔] = 0.25 for the 
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expected values received and by the variance 𝐸2[ℎ𝑔] = 0.252.  This was done as the 

uniform channels technique did not incorporate the channel gains into the measurement 

scaling.   

 Figure 5-7  shows that the performance in the presence of full CSI, the received 

value variance is much closer to the performance of uniform identical channels than are 

the phase-only CSI simulations from Figure 5-2.  In agreement with the decrease in 

received value variance, the variance of the estimate is also much closer to the 

performance of the constant identical channels than the phase-only CSI.  The estimate 

variance can be seen in Figure 5-6. 

 

Figure 5-6: AsVar  ̂  for Identical Constant and Full CSI Channels versus 𝜃. 
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Figure 5-7: Verification of full CSI gain-statistic equations, and comparison of AF 

systems with full CSI available versus systems with identical channels. 
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5.2.2 Optimal Power Allocation Strategies 

 With an analytically verified solution for the estimate variance for AF distributed 

estimation with full channel-state information, a minimization problem can be formed to 

intelligently allocate power between the individual transmitting sensors in order to 

achieve the best performance while maintaining a specific performance level.  The 

problem can be posed as an optimization problem of the sensor gains.  Given an expected 

probability distribution function of the underlying physical values to be measured 𝑝(𝜃), a 

function 𝑃𝑎𝑚𝑝(𝑔𝑙, 𝑥𝑙) which is the power consumed by a sensor measuring quantity 𝑥𝑙 =

 𝜃 + 𝜂𝑙 with sensing transmitter gain of 𝑔𝑙, and a total consumed power budget of 𝑃𝑏𝑢𝑑𝑔𝑒𝑡 

the best average estimate variance possible is: 

 

minimize
{𝑔1,…,𝑔𝐿}

∫
 (𝐸[𝑠2(𝜃)] − 𝐸2[𝑠(𝜃)])( ∑ ℎ𝑙

2𝑔𝑙
2𝐿

𝑙=1 ) + 𝜎𝜈
2

𝐸2 [
𝜕𝑠(𝜃)
𝜕𝜃

] (∑ ℎ𝑙𝑔𝑙
𝐿
𝑙=1 )2𝜃

𝑝(𝜃)𝑑𝜃 

subject to: ∫ (∑∫ 𝑃𝑎𝑚𝑝(𝑔𝑙, 𝜃 + 𝜂𝑙)𝑑𝜂𝑙
𝜂𝑙

𝐿

𝑙=1

)𝑝(𝜃)𝑑𝜃
𝜃

= 𝑃𝑏𝑢𝑑𝑔𝑒𝑡. 

(5-27) 

 This optimization is not easily evaluated using convex optimization techniques, so 

as part of making the optimization easier, a very similar dual problem was posed similar 

to the techniques in [8].  The dual problem minimizes the power consumed subject to a 

specified average variance level, Υ𝑡: 
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minimize
{𝑔1,…,𝑔𝐿}

∫ (∑∫ 𝑃𝑎𝑚𝑝(𝑔𝑙, 𝜃 + 𝜂𝑙)𝑑𝜂𝑙
𝜂𝑙

𝐿

𝑙=1

)𝑝𝜃(𝜃)𝑑𝜃
𝜃

 

subject to: ∫
 (𝐸[𝑠2(𝜃)] − 𝐸2[𝑠(𝜃)])( ∑ ℎ𝑙

2𝑔𝑙
2𝐿

𝑙=1 ) + 𝜎𝜈
2

𝐸2 [
𝜕𝑠(𝜃)
𝜕𝜃

] (∑ ℎ𝑙𝑔𝑙
𝐿
𝑙=1 )2𝜃

𝑝𝜃(𝜃)𝑑𝜃 = Υ𝑡.  

(5-28) 

 This optimization problem is itself still computationally intensive to solve using 

convex optimization techniques, so the optimization problem was again reposed with a 

slightly different target.  In this revision of the dual problem, it is decided to optimize 

against the worst case variance produced by the desired estimator.  It is observed 

consistently throughout chapters 4 and 5 that the worst case estimator performance, both 

with and without considering channel noise, 𝜈, occurs when the limiting amplifier model 

is most compressed.  This compression occurs at the largest value of 𝜃.  Given all noise 

measurements 𝑥𝑙 = 𝜃 + 𝜂𝑙 are relatively similar, it is assumed that the amplifier’s 

efficiency will be similar for all sensors, and thus, the function 𝑃𝑎𝑚𝑝(𝑔𝑙, 𝑥𝑙) can be 

reduced to a constant factor, 𝜙.  Similarly, if only the worst case of 𝜃 is considered, the 

probability density function, 𝑝(𝜃) = 𝛿(𝜃𝑤𝑐), where 𝜃𝑤𝑐 is the maximum value in the 

expected range of 𝜃 to be measured, and Υ𝑤𝑐 is the worst case estimate variance.  This 

reduced problem can be considered as:  
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minimize
{𝑔1,…,𝑔𝐿}

∑𝜙𝑔𝑙
2

𝐿

𝑙=1

 

s. t. : 
 (𝐸[𝑠2(𝜃𝑤𝑐)] − 𝐸

2[𝑠(𝜃𝑤𝑐)])( ∑ ℎ𝑙
2𝑔𝑙

2𝐿
𝑙=1 ) + 𝜎𝜈

2

𝐸2 [
𝜕𝑠(𝜃𝑤𝑐)
𝜕𝜃

] (∑ ℎ𝑙𝑔𝑙
𝐿
𝑙=1 )2

= Υ𝑤𝑐  

(5-29) 

 By introducing a slack variable, 𝜌, and ignoring the constant factor 𝜙 which has 

no bearing on the minimization, the problem can be rearranged to a similar form as is 

solved in [8].  In this form the minimization does not directly find the total power 

consumed, but rather a scaled version of it due to the removal of the 𝑃𝑎𝑚𝑝(𝑔𝑙, 𝑥𝑙). 

 

minimize
{𝑔1,…,𝑔𝐿,𝜌}

∑𝑔𝑙
2

𝐿

𝑙=1

 

subject to: (𝐸[𝑠2(𝜃𝑤𝑐)] − 𝐸
2[𝑠(𝜃𝑤𝑐)]) ( ∑ℎ𝑙

2𝑔𝑙
2

𝐿

𝑙=1

) + 𝜎𝜈
2 = 𝜌2Υ𝑤𝑐 . 

                              𝐸 [
𝜕𝑠(𝜃𝑤𝑐)

𝜕𝜃
] (∑ℎ𝑙𝑔𝑙

𝐿

𝑙=1

) = 𝜌     

(5-30) 

 The minimization in (5-30) has been solved in [8].  A few specific cases are 

investigated to demonstrate performance and sensor gain allocation in specific scenarios.  

In the first scenario, 𝐿 = 12 sensors were used with ℎ1 = ℎ2 = ⋯ = ℎ9 = 5.7735 ×

10−4, and ℎ10 = ℎ11 = ℎ12 = 0.57735, making ∑ ℎ𝑙
212

𝑙=1 = 1.  In this scenario, the split 

between how power was allocated between strong and weak channels was investigated.  

Solutions to the Karush-Kuhn-Tucker (KKT) conditions [70] were computed using 

Mathematica.   The sensing noise, 𝑏, has been chosen to be uniformly distributed such 
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that it is bounded by ± 1/32.  The channel and receiver noise, 𝜈, has been chosen to have 

Gaussian distribution with zero-mean and variance 10−7/𝐿. 

 We have compared two extreme cases with the solution of the optimization 

problem.  In one extreme case, a water-filling like solution is utilized where power is 

allocated to the sensors in proportion to their channel strengths.  A power allocation 

allocating power to the strongest channels is best at overcoming limitations when channel 

and receiver noise is the leading cause of received value variance.  However, when sensor 

measurement noise is a limiting factor, the proportional allocation of power is poor at 

averaging multiple noisy sensor measurements to achieve consensus.  Depending on the 

noise sources, one of these two low-complexity cases is very close to the performance of 

the optimized solution with much lower computation requirements.  If the crossover point 

can be found, it may be possible to get near optimal performance from the two low-

complexity approaches.   

 For the given distribution of channels gains, estimate variance with a uniform 

power allocation strategy should be similar to a case with 3 uniform, identical gain 

channels since 9 of the channels are very weak.  Using that with negligible channel noise, 

𝐿𝑒 Var(𝜃) = 𝑏
2/3, where  𝐿𝑒 is the effective number of channels, the expected variance 

for the estimate Var(𝜃) = 1.08 × 10−4 should be the best performance possible.  In 

cases where the tolerable gain variance is much greater than Var(𝜃) = 𝑏2/(3𝐿𝑒), the 

total transmitter power can be decreased to where channel noise is the primary 
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contributor to measurement variance.  This is confirmed by the simulations as regardless 

of the sum of transmitter powers this is the best performance possible, as confirmed in 

Figure 5-8. 

 
Figure 5-8: Estimate variance vs. scaled total sensor power allocation for various 

allocations of sensor powers with faded channels. 

 The allocation of power to strongest channels works well until such a point that 

the sensing measurement bound for using the strongest channels has been attained.  To 

perform better than that bound requires moving towards a situation where all channels 

arrive at the receiver’s FC with similar strength, and thus increase the effective number of 

channels, 𝐿𝑒, by taking the expectation over more instances of the sensing noise.  In order 

to accomplish this in the presence of weak channels requires placing a considerably 

higher gain on weaker channels to make its arrival strength similar to those of the strong 

channels.  In this opposite extreme case of power allocation, the sensor gains are set 



 

 

103 

inversely proportional to the channel gains, the objective being to make ℎ𝑙𝑔𝑙 equal across 

all sensors making 𝐿𝑒 = 𝐿.  This case achieves the best performance in the event that 

sensor measurement noise solely limits estimator performance rather than channel and 

receiver noise.  It can be seen from Figure 5-8 that when weak channels exist, the 

equalizing technique uses a lot of power and has poor performance when channel and 

receiver noise limits estimator performance.  However by averaging all measurements the 

equalized technique can achieve better estimation accuracy than can the proportional 

power allocation technique. 

 
Figure 5-9: Combined gains for sensing-noise limited and channel-noise limited 

scenarios. 

 It can be seen from Figure 5-8 that the optimal solution for worst case variance 

tracks the proportional allocation of sensor gains where the power budget is low and thus 

performance is limited by the fixed channel and receiver noise, 𝜈.  It can also be seen that 

where power budget is high and the sensor measurement noise limits estimator 

performance, channel equalization as a power allocation strategy yields the best 
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performance.  This can be confirmed when the combined channel gains are plotted for 

two different power budgets, as shown in Figure 5-9.    

   

 

 
Figure 5-10: Estimate variance vs. scaled total sensor power allocation for uniformly 

distributed and optimized distribution of sensor powers with progressively increasing 

channel gains.    

 The return that can be expected by optimizing the sensor gain powers depends on 

the number of channels that are deeply faded.  In a second simulated scenario, 𝐿 = 10 

channels were used with channel gains ℎ𝑙 = 𝑙/𝐿 with 𝑙 = 1,… ,10.  The measurement 

noise is uniformly distributed 𝑏~𝑈[−1 32⁄ , 1 32⁄ ] and channel noise is normally 

distributed with variance 10−7/𝐿,   Simulations results are shown in Figure 5-10.  Even 

though channel gains are unequal, the reduction in power consumed by the sensors in 

while maintaining the same estimate variance is typically 20% for this distribution of 



 

 

105 

channel gains.  Whether or not it makes sense to optimize the allocation of sensor powers 

in the presence of full CSI will depend primarily on the expected distribution of channel 

gains, especially how many channels are known to be deeply faded and thus a wastful 

place to allocate sensor power. 

5.3 OFDMA with a Continuous AM Carrier 

5.3.1 Proposed Technique 

 A preliminary investigation has been conducted into the use of orthogonal 

frequency-division multiple access (OFDMA) with an amplify-and-forward distributed 

estimation scheme.  This estimation system was designed not for power efficiency, but 

rather to operate in a heavily scattered environment where synchronizing the transmitters 

and developing channel statistics has proven difficult to achieve.  The key difference 

from previous discussions is that the channels between the transmitter and the carrier 

contain multiple-paths with time lags, amplitudes, and phase rotations, denoted in Figure 

5-11 by the fading channel.  Orthogonal-frequency division multiplexing has been proven 

to be an effective modulation scheme in the presence of multipath channels, and thus has 

been utilized in these experiments.   

 In the proposed system, there are two types of data-transporting subcarriers per 

each sensor: a common subcarrier and an independent subcarrier.  Each subcarrier is 

modulated with a “continuous-AM” signal, which is an amplitude-modulated signal with 

amplitude equal to a linearly-scaled copy of the noisy sensor measurement, 𝑥𝑙.  In 
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practice, the resolution of the “continuous-AM” signals would be dependent upon the 

resolution of each sensor’s output digital-to-analog converter.  Measurement quantization 

noise can be modeled by incorporating it into the sensor measurement noise distribution.  

Each data-transporting subcarrier is enclosed by pilot subcarriers of both lower and 

higher frequencies for channel estimation.  The channel estimation is done according to 

comb-type pilot arrangement in [71].  Because the OFDMA system is heavily utilized 

commercially, its selection for this distributed estimation system provides opportunities 

for system implementation utilizing inexpensive, commodity hardware.    
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Figure 5-11: Distributed Estimation over Fading Channels.  

 The common subcarrier and its surrounding tones is a shared-access channel, 

allowing estimator asymptotic variance performance less than the variance of individual 

measurements provided a strong enough signal is received.  The design intent of the 

common subcarrier is that with each sensor transmitting similar data, excepting 

measurement noise, on the same subcarrier, that each sensor’s transmission looks like 
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multipath data received from a single equivalent transmitter.  The independent subcarriers 

from each sensor allow both forming an estimate by consensus from the individual 

measurements, though estimate asymptotic variance is limited to the variance of 

individual sensors.  The consensus estimate for orthogonal signals has been formed by 

taking the weighted average of the orthogonal sensor measurements where the weighting 

has been done based on the channel power estimates such that: 

 𝜃 =
∑ 𝜃𝑙|𝐻𝑒𝑠𝑡(𝑙)|

2𝐿
𝑙=1

∑ |𝐻𝑒𝑠𝑡(𝑙)|2
𝐿
𝑙=1

 . (5-31) 

 The effect of randomness in the channel gains due to multipath is determined by 

examining the inverse fast-Fourier transform (IFFT) used for demodulating the received 

signal.  According to this formula, the received signal is 𝑋(𝑘) is: 

 𝑋(𝑘) =
1

𝑁
∑ ℎ(𝑛)𝑥(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁  

𝑁−1

𝑛=0

, (5-32) 

where 𝑥(𝑛) is randomly distributed due to the noisy sensor measurements and ℎ(𝑛) is 

randomly distributed due to the channel noise.  By the central limit theorem [24], for 

channel noise distributions with defined mean and variance, the noise in 𝑋(𝑘) is a sum of 

complex random numbers  of random phase and is thus can thus be approximated by a 

complex Gaussian distribution. 

 A known performance limiter for OFDMA systems is frequency mismatch 

between individual nodes in the network.  Where frequency mismatch or excessive phase 

noise occurs, the subcarriers are no longer completely orthogonal and introduce inter-
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carrier interference (ICI) [72,73].  A formula by given for SNR degradation, 𝐷𝑆𝑁𝑅 for due 

to ICI in terms of the original signal to noise ratio, 𝐸𝑠/𝑁0, the number of subcarriers 𝑁, 

the modulated bandwidth 𝑊, and the frequency mismatch Δ𝐹 [73]: 

 𝐷𝑆𝑁𝑅(dB) ≈
10

3 ln 10
(𝜋
𝑁 Δ𝐹

𝑊
)
2

(
𝐸𝑠
𝑁0
) (5-33) 

 In the event of time-synchronization errors, the effects of this mismatch are 

exaggerated farther away from the carrier frequency [74], thus for this system the 

common subcarrier and its pilots were transmitted on subcarriers indexed between 1 and 

3.  Six subcarriers were also reserved for peak-power reduction by method of tone 

reservation at the subcarriers farthest away from the carrier for similar reason.  Tone 

reservation is outlined in [75] and [76].   

 The use of independent pilot tones from each sensor opens additional 

opportunities including the use of multiple fusion centers to provide triangulation data for 

determining the location and the exact measurement from each sensor [68].  

Opportunities for future optimization to help obtain estimation efficiency typically lost 

when using an OFDM transmission system include both PAPR reduction systems and 

advanced amplifier predistortion systems.   

5.3.2 Simulation Results 

 Simulations were performed to analyze the performance of the system.  In this 

system, each transmitted signal passed through several independent paths to arrive at the 
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fusion center.  The amplitude of each path were independently distributed.  The lag of 

each path were also randomly distributed.   

 
Figure 5-12: OFDMA channel estimation performance vs estimation method for various 

multipath channel lags, Rician K=5 channel gains. 

 For the first set of simulations, the maximum time difference in OFDMA 

multipath delay times were investigated.  The simulation utilized 18 sensors.  Each sensor 

had 5 paths to the fusion center.  For the initial simulations, the individual path gains 

were all set to have a Rician distribution with 𝐾 = 5.  The maximum path delay time, 

𝑡𝑚𝑎𝑥 was swept between 0 to 15 sampling rate symbol times or 60 oversampled symbols.  

For each path, the delay for sensor 𝑙 path 𝑝 was distributed according to a uniform 

distribution with 𝑡𝑙,𝑝~𝑈[0, 𝑡𝑚𝑎𝑥].  The cyclic prefix length was 10 symbols prior to 

oversampling, 40 after oversampling.  It can be seen from Figure 5-12 that anticipated 
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performance is better when the variation in the multipath delays were minimized.  More 

importantly, when performance was being estimated in the presence of moderate delays 

on the order of 5 symbols prior to oversampling, the multiple access subcarrier yielded 

better performance with smaller mean error and variance than could be attained by taking 

the weighted mean of orthogonal measurements.    

 
Figure 5-13: OFDMA channel estimation performance vs estimation method for various 

path counts, Rician K=5 channel gains. 

 The second simulation performed was to estimate the performance of the sensor 

network when more multipath components present in signal.  In this simulation, the 

individual path gains were all set to have a Rician distribution with 𝐾 = 5.  The maximum 

path delay time was 2 symbols, or 8 oversampled symbols.  In this simulation, the 
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number of paths was swept from 1 to 15.  It can be seen from Figure 5-13 via this 

technique that the performance using the multiple-access channel exceeds that attainable 

from the weighted mean of orthogonal sensor estimates.  While the variance is again 

slightly lower for the weighted average, the mean error was higher and thus the coherent 

MAC signaling was better when there was a significant line-of-sight component such as 

when multipath channel gains are distributed with a Rician  distribution with 𝐾=5. 

 The third simulation compared the performance of the proposed techniques in the 

presence or absence of a strong line-of-sight channel.  This was accomplished by 

sweeping the Rician 𝐾-factor from 0.01, corresponding to a near Rayleigh distribution, 

up to 100, corresponding to a near line-of-sight channel gain distribution.  This was 

accomplished by setting the gains of each individual paths to have a complex Gaussian 

distribution where 𝑃𝑜 is the power per sensor path, and Rician 𝐾-factor: 

 ℎ𝑙,𝑝 ~ 𝒞𝒩(√
𝐾𝑃𝑜

(1 + 𝐾)
 ,

𝑃𝑜
2(1 + 𝐾)

) (5-34) 

The simulation results, shown in Figure 5-14, demonstrate that when the Rician 𝐾-factor 

is small, that better performance is attainable via the weighted mean of the independent 

subcarrier results.  However, when a strong line-of-sight component exists, the 

performance attained is better using the shared multiple-access channel with a single 

subcarrier.   
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Figure 5-14: OFDMA Channel Estimation Performance vs Estimation Method for 

Various Path Gain Distributions. 

 Some odd behavior is observed in the current simulation environment with regard 

to what subcarrier selected as the common subcarrier.  This could indicate weakness in 

the timing synchronization.  This symptoms of this problem include a ringing response to 

different maximum path lag times.  The frequency of the ringing is roughly proportional 

to the subcarrier index of the common subcarrier.   These effects are shown in Figure 

5-15. 

 Opportunities for future work exist in expanding the capabilities of this OFDMA 

technique.  One opportunity is developing techniques for estimating the 𝐾-factor to 

determine when to use the weighted mean of independent subcarriers and when to use the 

common multiple-access subcarrier for composing the estimate.  Existing techniques for 
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estimating Rician 𝐾-factors have been presented in [77].  Another opportunity is to 

localize the sensors using the pilot tones and techniques similar to those in [68].  Once 

localized, the sensors could be ganged into several different groups sharing a common 

subcarrier where such allocations would help either reduce estimate variance or 

bandwidth requirements. 

 
Figure 5-15: Difference in estimation accuracy against maximum lag by subcarrier. 

5.4 Summary 

 In this chapter, it has been demonstrated that it is possible to perform distributed 

estimation over a coherent multiple access channel when full channel state information is 

known.  With only channel-phase state information, the use of nonlinear transmitters 
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drives up the number of required sensors required to attain accurate estimates to 

unrealistically high levels.  It has been demonstrated that when full channel state 

information is available, good performance is attainable with nonlinear transmitters.  It 

was found via simulation that in most cases where allowable estimate variance is greater 

than the measurement sensing noise and thus limited by the channel and receiver noise, it 

is best to allocate power to the strongest channels.  Where the estimate variance desired is 

less than that attainable via the independent combination of the strongest sensors, better 

performance is possible by equalizing the channels to average out more sensor 

measurements, but this gain comes at a substantial cost in power.   

 A new method has been presented for implementation of distributed estimation 

possible for implementation using OFDMA hardware.  The estimation technique opens 

opportunities for sensor localization.  Once localized, opportunities exist for splitting the 

sensors up into separate groups of subcarriers to perform coherent multiple-access 

distributed estimation of groups of sensors measuring quantities that may differ between 

the two separate locations. 
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6 CONCLUSIONS 

6.1 Summary  

 This research has proposed a new algorithm for amplify-and-forward distributed 

estimation utilizing non-linear amplifiers that extends the battery life of sensors by 

boosting transmitter efficiency [63].  Analytical backing has been provided for the 

proposed algorithm over equalized channels, known channels of unequal gain, and for 

channels with known phase information and gain statistics.  Modeling and simulation was 

used to validate the algorithms using simulated data from a real amplifier for both perfect 

and more practical methods of digital predistortion.   The proposed approach 

demonstrated significant improvements over linear amplify-and-forward distributed 

estimation systems in overall efficiency for situations where channel gains were known 

and levels of channel and receiver noise were low.  For sensing scenarios where channel 

gains were fully known, optimizing to minimize the estimate variance of a sensor 

measurement, 𝜃, for a given transmitted power budget at the most compressed region of 

amplifier operation was shown to be an equivalent problem to the case of linear amplify-

and-forward operation.  Thus, the proposed technique to boost amplifier efficiency is 

compatible with existing systems in the literature to minimize transmitted signal power. 

 While the proposed approach is better when full channel-state information is 

available, its performance suffers relative to linear amplify-and-forward when only 

aggregate channel gain statistics are available.  In these scenarios, an individual sensor 
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with a low-probability abnormally large channel gain can overwhelm the results of many 

individual sensors with nominal channel gain measuring a value near their compressed 

maximum.  Simulations have demonstrated the increase in power required maintain the 

estimation accuracy in the case of channel gain-statistics only increases as the sensors 

operate more deeply into compression. 

 Transmitting power amplifiers do not have consistent gain and output power 

capability across process, voltage, temperature, or manufacturing variation.  As such, a 

method is required with the proposed approach to force amplifiers to have a similar 

characteristic.  In this approach, rather than attempting to linearize the amplifier, 

predistortion was utilized to match the amplifier to a similarly shaped non-linear limiting 

amplifier model.  The compression present in the non-linear amplifier model reduces the 

dynamic range of the incoming signal and allows maintaining the amplifier in more 

efficient class AB operation more often than linearized amplifiers.  Selection of a proper 

amplifier model is required for the proposed estimation technique to produce consistent 

estimates.  The amplifier model should provide a gradual compression based on the 

sensing measurement, channel, and receiver noise distributions present in the network. 

Ideally, the model should be close to the inherent behavior of the amplifier to minimize 

the effort and power required to implement the predistortion system. 

 The techniques proposed for implementing a distributed estimation system over 

coherent multiple access channels can work well when a strong line-of-sight path is 

present.  But there may be scenarios where the validity of such an assumption may be 
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questionable.  Preliminary work has been done for a proposed distributed estimation 

technique to be used channel state information is unknown and a multipath environment 

is present.  The proposed approach uses the orthogonal frequency-division multiple 

access scheme to transmit both orthogonal and coherent measurements, with included 

pilot tones to allow for channel estimation simultaneously with the reception of incoming 

sensor measurements.  For near line-of-sight environments, the shared subcarrier 

coherent multiple-access approach yields the best performance.  When the channel gain is 

Rayleigh, the independent measurements yield best performance.  Thus, it is possible to 

make a decision in the receiver about the approach that yields the best performance if the 

channel environment Rician 𝐾-factor is known.   

 When the OFDMA approach is used, it will likely be required to utilize a high-

quality predistortion system due to the high peak-to-average ratios inherent to 

orthogonal-frequency division technique, even though the number of carriers allocated 

per sensor is relatively low.  In this research, we have proposed techniques for improving 

the performance and computational complexity of digital predistortion when memory-

effects are present relative to existing techniques from the literature [59].  

 A block LMS (BLMS) technique for calculating predistortion coefficients in a 

transceiver with long loop-latency was presented [58,59].  This technique allows for 

faster convergence by allowing more points to be incorporated into each update of the 

LMS gradient calculation, thus discarding a lower fraction of measurements due to an 

update already being in progress.  Initial simulations show good promise in terms of both 
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ACPR and EVM reductions.  Further areas for exploration are made possible by using the 

block structure.  These areas include optimizing μ by using non-constant values and re-

use of certain data measurements. Implementations using weighted frequency-domain 

BLMS algorithms are an interesting area to pursue to allow explicitly biasing 

performance to reduce either ACPR or EVM.  These approaches are complicated due to 

the non-standard sampling of the time-domain BLMS input matrix. 

 A modified neural network based predistorter was presented [59] that enabled 

reduction of the number of neurons, and thus weights, used in the predistorter neural 

network by incorporating as inputs the terms of a memory polynomial that is a rough 

match for the required predistortion function. 

6.2 Future Work 

 The proposed OFDMA based distributed estimation opens numerous 

opportunities for future research projects to be completed within the group.  OFDMA is a 

modulation standard used in many of the fourth-generation cellular communication 

standards.  Thus it may be possible to implement the proposed system utilizing 

commercial off-the-shelf hardware at commodity design prices, and utilize it in real-

world trials.  Second, because pilot tones are used for the channel estimation, it may be 

possible to localize individual sensors.  In doing so, the sensors could perhaps be 

allocated dynamically to different pools to allow measuring different systems. 

Opportunities also exist for research into peak-to-average power ratio reduction via tone 

reservation.     
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 Room for future innovation exists in tuning both the high and low amplitude sides 

of the amplifier region being utilized.  Right now the modified amplify-and-forward 

technique compresses the dynamic range of the transmitted signal at the high-power 

ranges.  An intriguing problem to try and develop a further modified amplify-and-

forward scheme that introduces both an offset, along with measurement and sensor gain 

scaling coefficients.  In this way, the amplifier could be designed to allow increased 

estimate variance by both compressing the signal dynamic range and eliminating to as 

much as the variance requirement allows operation within the linear region of operation.   

Other opportunities could include scheduling different sensor gains during different times 

to extend the battery life of the whole system.    
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