210 research outputs found

    Two Different Approaches of Feature Extraction for Classifying the EEG Signals

    Get PDF
    The electroencephalograph (EEG) signal is one of the most widely used signals in the biomedicine field due to its rich information about human tasks. This research study describes a new approach based on i) build reference models from a set of time series, based on the analysis of the events that they contain, is suitable for domains where the relevant information is concentrated in specific regions of the time series, known as events. In order to deal with events, each event is characterized by a set of attributes. ii) Discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time- that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. The performance of the model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG signals

    Study on characteristic of epileptic multi-electroencephalograph base on Hilbert-Huang transform and brain network dynamics

    Get PDF
    Lots of studies have been carried out on characteristic of epileptic Electroencephalograph (EEG). However, traditional EEG characteristic research methods lack exploration of spatial information. To study the characteristics of epileptic EEG signals from the perspective of the whole brain,this paper proposed combination methods of multi-channel characteristics from time-frequency and spatial domains. This paper was from two aspects: Firstly, signals were converted into 2D Hilbert Spectrum (HS) images which reflected the time-frequency characteristics by Hilbert-Huang Transform (HHT). These images were identified by Convolutional Neural Network (CNN) model whose sensitivity was 99.8%, accuracy was 98.7%, specificity was 97.4%, F1-score was 98.7%, and AUC-ROC was 99.9%. Secondly, the multi-channel signals were converted into brain networks which reflected the spatial characteristics by Symbolic Transfer Entropy (STE) among different channels EEG. And the results show that there are different network properties between ictal and interictal phase and the signals during the ictal enter the synchronization state more quickly, which was verified by Kuramoto model. To summarize, our results show that there was different characteristics among channels for the ictal and interictal phase, which can provide effective physical non-invasive indicators for the identification and prediction of epileptic seizures

    A Performance Comparison of Neural Network and SVM Classifiers Using EEG Spectral Features to Predict Epileptic Seizures

    Get PDF
    Epilepsy is one of the most common neurological disorders, and afflicts approximately 70 million people globally. 30-40% of patients have refractory epilepsy, where seizures cannot be controlled by anti-epileptic medication, and surgery is neither appropriate, nor available. The unpredictable nature of epileptic seizures is the primary cause of mortality among patients, and leads to significant psychosocial disability. If seizures could be predicted in advance, automatic seizure warning systems could transform the lives of millions of people. This study presents a performance comparison of artificial neural network and sup port vector machine classifiers, using EEG spectral features to predict the onset of epileptic seizures. In addition, the study also examines the influence of EEG window size, feature selection, and data sampling on classification performance. A total of 216 generalised models were trained and tested on a public seizure database, which contained over 1300 hours of EEG data from 7 subjects. The results showed that ANN outperform SVM, when using spectral features (p = 0.035). The beta and gamma frequency bands were shown to be the best predictors of seizure onset. No significant differences in performance were determined for the dif ferent window sizes, or for the feature selection methods. The data sampling method significantly influenced the performance (p \u3c 0.001), and highlighted the importance of treating class imbalance in EEG datasets

    Survey analysis for optimization algorithms applied to electroencephalogram

    Get PDF
    This paper presents a survey for optimization approaches that analyze and classify Electroencephalogram (EEG) signals. The automatic analysis of EEG presents a significant challenge due to the high-dimensional data volume. Optimization algorithms seek to achieve better accuracy by selecting practical features and reducing unwanted features. Forty-seven reputable research papers are provided in this work, emphasizing the developed and executed techniques divided into seven groups based on the applied optimization algorithm particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), grey wolf optimizer (GWO), Bat, Firefly, and other optimizer approaches). The main measures to analyze this paper are accuracy, precision, recall, and F1-score assessment. Several datasets have been utilized in the included papers like EEG Bonn University, CHB-MIT, electrocardiography (ECG) dataset, and other datasets. The results have proven that the PSO and GWO algorithms have achieved the highest accuracy rate of around 99% compared with other techniques

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    EEG Signal Processing and Analysis

    Get PDF
    Tato práce se zabývá oblastí elektroencefalografie, zpracováním EEG signálů a jejich analýzou. Jsou vysvětleny základní principy vzniku biologických signálů v mozku, charakteristické mozkové vlny a jejich klasifikace. Dále práce ilustruje základní metodologie měření a záznamu těchto signálů, chyby měření, vliv a zdroje signálových artefaktů. Následně je rozebrána problematika předzpracování signálu, nejrozšířenější metodologie, jejich primární určení a teoretické podklady. Zároveň je obsažen i přehled metod pro analýzu EEG signálu v časové, frekvenční a časově-frekvenční oblasti. Jádrem práce jsou metody analýzy EEG signálu ve frekvenční oblasti, jsou uvedeny jejich teoretické podklady, omezení, odchylky a zaměření, jako i vhodné matematické aparáty pro kompenzaci uvedených nedostatků. Praktická část popisuje architekturu a implementaci aplikace Easy EEG Player, která vznikla jako součást téhle práce. Jsou popsány metody reprezentace, zpracováni a analýzy EEG dat za použití zvolených metodologií.This thesis covers topic of electroencephalography, EEG signal processing and analysis. It explains fundamental concepts of biological signal genesis in brain, characteristic brain waves and their classi cation. Then it illustrates basic methodologies of EEG signal recording, measurement errors, impact and sources of signal artifacts. Thesis provides overview of the most common methodologies for EEG preprocessing and analysis with special focus on methods for spectral analysis. Practical part of this thesis describes architecture and implementation of Easy EEG Player application created as a part of this thesis.

    Biomimetic Based EEG Learning for Robotics Complex Grasping and Dexterous Manipulation

    Get PDF
    There have been tremendous efforts to understand the biological nature of human grasping, in such a way that it can be learned and copied to prosthesis–robotics and dextrous grasping applications. Several biomimetic methods and techniques have been adopted, hence applied to analytically comprehend ways human performs grasping to duplicate human knowledge. A major topic for further study, is related to decoding the resulting EEG brainwaves during motorizing of fingers and moving parts. To accomplish this, there are a number of phases that are performed, including recording, pre-processing, filtration, and understanding of the waves. However, there are two important phases that have received substantial research attentions. The classification and decoding, of such massive and complex brain waves, as they are two important steps towards understanding patterns during grasping. In this respect, the fundamental objective of this research is to demonstrate how to employ advanced pattern recognition methods, like fuzzy c-mean clustering for understanding resulting EEG brain waves, in such a way to control a prosthesis or robotic hand, while relying sets of detected EEG brainwaves. There are a number of decoding and classification methods and techniques, however we shall look into fuzzy based clustering blended with principle component analysis (PAC) technique to help for the decoding mechanism. EEG brainwaves during a grasping and manipulation have been used for this analysis. This involves, movement of almost five fingers during a grasping defined task. The study has found that, it is not a straight forward task to decode all human fingers motions, as due to the complexity of grasping tasks. However, the adopted analysis was able to classify and identify the different narrowly performed and related fundamental events during a simple grasping task

    Quantitative Analysis of the Antiepileptogenic Effects of Low Frequency Stimulation Applied Prior or After Kindling Stimulation in Rats

    Get PDF
    Background and Objective: Developing quantitative measures based on spectral analysis of electroencephalograph (EEG) recordings of neural activities plays an important role in developing efficient treatments for epilepsy. Such biomarkers can be used for developing open or closed loop approaches for seizure prediction or prevention. This study aims to quantitatively evaluate antiepileptogenic effects of low frequency stimulation (LFS) applied immediately before or after kindling stimulations using spectral power analysis of extracellular EEG in rat.Methods: Nineteen adult rats were used: seven for kindle, six for LFS+Kindle (LFSK) and six for Kindle+LFS (KLFS). Four packages of LFS (1Hz) were applied immediately before or after rapid kindling stimulations. The power spectral densities of afterdischarge (AD) sections of EEG corresponding to different stages of kindling for delta (0–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–28 Hz), gamma (28–40 Hz) sub-bands, and theta/alpha ratio were comparatively investigated. Moreover, correlation between AD duration (ADD) and its different frequency components was calculated.Results: Both LFSK and KLFS significantly increased delta and reduced beta and gamma oscillations, compared with kindle group. However, just the reduction in LFSK group was significant. Both protocols increased theta/alpha ratio, but just LFSK showed significant increase (p < 0.05). Although LFSK enhanced theta/alpha ratio more than KLFS, the difference was not statistically significant. Furthermore, strong correlation between each frequency sub band and ADD was not observed in kindle and LFS treated groups (both LFSK and KLFS).Conclusion: Although behavioral assessments showed relatively the same level of antiepileptogenic effects for KLFS and LFSK, quantitative assessments showed more significant differences in the quantitative measures between the two protocols. Developing more quantitative EEG based measures correlated with LFS-induced effects can facilitate developing open or closed loop seizure prevention modalities

    Detection and Classification of EEG Epileptiform Transients with RBF Networks using Hilbert Huang Transform-derived Features

    Get PDF
    Diagnosis of epilepsy or epileptic transients AEP (Abnormal Epileptiform Paroxysmal) is tedious, but important, and an expensive process. The process involves trained neurologists going over the patient\u27s EEG records looking for epileptiform discharge like events and classifying it as AEP (Abnormal Epileptiform Paroxysmal) or non-AEP. The objective of this research is to automate the process of detecting such events and classifying them into AEP(definitely an Epileptiform Transient) and non-AEPs (unlikely an epileptiform transient). The problem is approached in two separate steps and cascaded to validate and analyze the performance of the overall system. The first step is a detection problem to find the Epileptiform like transients (ETs) from the Electroencephalograph (EEG) of a patient. A Radial basis function-based neural network has been trained using a training set consisting of examples from both classes (ETs and non-ETs). The ETs are the yellow boxes which are marked by expert neurologists. There are no particular examples of non-ETs and any data not annotated by experts can be considered to be examples of non-ETs. The second step is classification of the detected ETs also known as yellow boxes, into AEPs or non-AEPs. A similar Radial basis function-based neural network has been trained using the ETs marked and classified into AEPs and non-AEPs manually by seven expert neurologists. The annotations or yellow boxes along with the contextual signal was used to extract features using the Hilbert Huang Transform. The system is validated by considering an entire epoch of the patient EEG and potential ETs are identified using the detector. The potential ETs marked by the detector are classified into AEPs and non-AEPs and compared against the annotations marked by the experts
    corecore