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Abstract

Diagnosis of epilepsy or epileptic transients AEP (Abnormal Epileptiform Paroxysmal) is

tedious, but important, and an expensive process. The process involves trained neurologists going

over the patients EEG records looking for epileptiform discharge like events and classifying it as AEP

(Abnormal Epileptiform Paroxysmal) or non-AEP. The objective of this research is to automate the

process of detecting such events and classifying them into AEP(definitely an Epileptiform Transient)

and non-AEPs (unlikely an epileptiform transient). The problem is approached in two separate steps

and cascaded to validate and analyze the performance of the overall system.

The first step is a detection problem to find the Epileptiform like transients (ETs) from the

Electroencephalograph (EEG) of a patient. A Radial basis function-based neural network has been

trained using a training set consisting of examples from both classes (ETs and non-ETs). The ETs

are the yellow boxes which are marked by expert neurologists. There are no particular examples of

non-ETs and any data not annotated by experts can be considered to be examples of non-ETs.

The second step is classification of the detected ETs also known as yellow boxes, into AEPs

or non-AEPs. A similar Radial basis function-based neural network has been trained using the

ETs marked and classified into AEPs and non-AEPs manually by seven expert neurologists. The

annotations or yellow boxes along with the contextual signal was used to extract features using the

Hilbert Huang Transform.

The system is validated by considering an entire epoch of the patient EEG and potential

ETs are identified using the detector. The potential ETs marked by the detector are classified into

AEPs and non-AEPs and compared against the annotations marked by the experts.
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Chapter 1

Introduction

1.1 Overview of the problem

Epileptic seizure is a transient occurrence of signs or symptoms due to abnormal excessive

or synchronous neuronal activity in the brain. Epilepsy is a disease characterized by an enduring

predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological

and social consequences of this condition [8]. This chronic disease is characterized by recurrent,

unprovoked seizures. Although the symptoms of a seizure may affect any part of the body, electrical

events that produce the symptoms occur in the brain. The location of that event, how it spreads,

how much of the brain is affected, and the duration it lasts all have profound effects. These factors

determine the characteristics of a seizure and its impact on the individual [9]. According to the

epilepsy foundation, epilepsy is the fourth most common neurological disorder and affects people of

all ages.

The routine scalp electroencephalogram (rsEEG) is an important test for diagnosing epilepsy

which records the electrical activity in the brain. EEG machine records the brains activity as a

series of signal traces. Each trace corresponds to different region of the brain. The presence of

epileptiform transients (ETs) also known as the spike or sharp wave discharges in EEG is evidence

of epilepsy [1] [14]. Due to the wide variety of morphologies of ETs and their similarities to normal

activities of the brain and other artifacts (i.e. extra cerebral potentials from muscles, eyes, heart etc.)

make it difficult to detect with high accuracy [11]. These spikes are typically 20-70 ms in duration

and are followed by sharp waves of 70-200 ms duration. Some of the ETs are more complex consisting

1



of spikes followed by a slow wave lasting 150-350 ms called as spike-and-slow-wave-complex [46].

ETs are usually detected by expert physicians who visually inspect the patients EEG record-

ings. This process is highly time consuming, especially in the case of long term EEG recordings,

e.g. 24-hour continuous ambulatory monitoring studies. Also, the considerable disagreement in the

detection of ETs by experts leading to increased chances of misdiagnosis [46] [27] [17]. It is therefore

necessary to develop an efficient and reliable technique to automatically detect the Epileptiform

Transients.

1.2 Previous Work

A lot of work has been done in the area of ET detection and classification in EEG using

both raw data and feature engineering. Most of these strategies can be roughly divided into the

following categories. (1) Orthogonal transforms which captures the rhythmic change of EEG and is

used to detect spike-and-wave complex [27]. (2)Template matching where templates of epileptiform

waves are used and cross correlation between EEG segment and ET templates are computed and

decision is made based on threshold [35]. (3) Expert System methods mimic human visual inspec-

tion by considering parameters such as amplitude, width, slope of EEG waves and compare them

against a threshold, additional information such as spatial and temporal context of such signals are

also considered to reject artifacts sharing similarities to ETs [11] [12]. (4) Raw EEG signals along

with few parameters are considered and combined to form a weighted input to discriminative clas-

sifiers [10] [43] [24] [44] [28]. (5) Time-frequency analysis in detection of Epileptiform EEG has also

been widely used by great number of researchers [38] [36] [22]. Each method provides some unique

advantages but none of them alone can fulfill the requirement of Epileptiform detection.

It is very important to consider temporal information of signals in performing analysis of

EEG signals for any applications [11] [12]. Feature extraction from EEG signals using empirical mode

decomposition (EMD) which provides effective time-frequency analysis of non-stationary signals with

support vector machines (SVMs) classifier has shown good results [34]. In 1998, Norden E. Huang et

al, proposed a new method for analyzing non-stationary data [19] [4]. This technique is known as the

Huang-Hilbert transform(HHT). This technique has been recently applied to different applications

to analyze EEG signals including Epileptic seizure detection and classification [32] [33] which utilize

EMD as a preprocessing step in computing Hilbert transforms. In parallel, the parameters such as

2



energy, variance, peaks, sharp-spike wave complexes and duration are used to extract features and

radial basis functions (RBF) neural networks are used as post classifiers to predict the epilepsy risk

levels in EEG signals due to its structural simplicity and faster learning abilities of locally tuned

neurons [15].

1.3 Approach

The diagnosis of epilepsy is usually a very time consuming procedure usually performed

manually by expert neurologists. The EEG recordings are visually examined and suspected ETs

are marked. Then the marked regions also known as the annotations or yellow boxes are classified

into AEPs or non-AEPs. These ETs can be seen on different channels depending on the location of

occurrence of such events in the brain. The main objective of this research is to automate the entire

process of detection of Epileptiform like Transients (ETs) in the given EEG data and classify them

in to AEPs (Abnormal Epileptiform Paroxysmal) and non-AEPs. This problem is approached as

two separate steps.

In the first step, an entire 30 second recording of EEG on one montage and channel is

considered. The suspected ETs are marked using a pre-trained Radial Basis Function (RBF) based

neural network. The data for training the network is taken from the annotations (yellow boxes)

marked by experts which represents the examples of the class ETs. The examples for the other

class, non-ETs, are taken randomly by considering all the non-annotated data (which represents a

majority class) and different balancing techniques are applied to have equal number of examples

from both classes.

In the second step, the marked or suspected ETs are classified into AEPs or non-AEPs using

a different radial basis function based neural network. This network is trained using the annotated

data provided by experts which is assigned into one of the two classes using the five confidence levels

(201 to 205) with 201 indicating that the annotation is definitely not an epileptiform transient and

205 indicating that the annotation is definitely an epileptic transient as explained in Table. 2.2. The

overview of the model used for classification and detection is shown in Figure. 1.1 and 1.2

The data for detection and classification networks is balanced and divided into training and

test set. The test set is used to analyze the performance of the classifiers. These trained networks are

then used in validating the system by considering a test EEG data and the performance is analyzed.

3



Figure 1.1: Block diagram of the classification stage Neural Network

Figure 1.2: Block diagram of the ET Detection Neural Network
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Chapter 2

Data Acquisition and

Preprocessing

2.1 Electroencephalogram

Electroencephalography(EEG) is a noninvasive electrophysiological monitoring method of

recording the electrical activity in the brain. These electrical activities in the brain are due to the

voltage fluctuations resulting from the ionic current within the neurons in the brain [31]. Brain waves

or neural oscillations are observed in EEG signals and has several diagnostic applications. EEGs

are most commonly used in diagnosis of epilepsy. Prior to the current sophisticated techniques such

as Magnetic Resonance Imaging (MRI) and computed Tomography (CT), EEGs were also used for

diagnosis of tumors and focal brain disorders. It is also used to diagnose sleep disorders, coma and

brain death.

A routine clinical EEG recording typically lasts 20-30 minutes and is recorded from the scalp

electrodes. An internationally accepted standard of placement of electrodes is the 10-20 system. The

distance between the electrodes is either 10 to 20 percent of the front-back or left-right distance of the

skull [40]. The nomenclature is based on the brain lobe and numbers indicate whether the electrode

is attached to the left or right hemisphere. Diagrammatic representation of 10-20 placement system

on the scalp is shown in Figure. 2.1.

5



Figure 2.1: 10-20 electrode placement system

Electrode Lobe
F Frontal
T Temporal
C Central∗

P Parietal
O Occipital

Table 2.1: Nomenclature of Electrodes.

6



• The ∗Central lobe is not an actual lobe and is used only for identification purposes.

• Even numbers refer to electrode positions on the right hemisphere.

• Odd numbers refer to electrode positions on the left hemisphere.

• ”z” refers to electrode positions on the mid line on the scalp.

A total of 21 electrodes are placed on different positions of the scalp as shown in Figure. 2.1.

EEG recordings can be displayed in several formats called montages. A montage consists of a set of

channels, where each channel is a difference between the voltage at two electrodes. There are three

different types of montages used by neurologists for visual inspection of the EEG signal. [5]

• Bipolar: It is the difference between any two electrodes and montages contain a series of

differential data of a series of electrode pairs.

• Referential: Each channel is the difference between a certain electrode and a common reference

electrode connected at A1 or A2 or a mathematical average of electrodes attached to both

earlobes.

• Average Reference: The output of all the electrodes are averaged and this signal is used as

common reference for each channel.

There is no specific rule in selection of montages and the option of choosing a specific

montage is based on the preference of each neurologist. The annotations in our data were marked

on 47 unique channels on 7 different montages.

2.2 Data Acquisition

2.2.1 Raw Data

EEG of 200 patients were recorded for a duration of 30 seconds. This data was collected

using the international standard of 10-20 system described in the previous section. For convenience,

the data from all 200 patients were concatenated to form a single file of around 100 minutes duration

and was provided to 18 board certified (American Board of Clinical Neurophysiology) neurologists.

The data was visually inspected by experts and the epileptiform discharges were marked. This entire

process was done in three phases.

7



Scores Definition Class
201 Definitely not an Epileptiform Transient

non-AEP
202 Mostly not an Epileptiform Transient
203 Can go either way not sure
204 Mostly an Epileptiform Transient

AEP
205 Definitely an Epileptiform Transient

Table 2.2: Confidence factors used for annotations.

• Phase 1: The experts were asked to mark the location of the suspected epileptiform discharges

(ETs) present in the entire 100 minute recording.

• Phase 2: All the markings or annotations were collected and any event marked by at least 2

experts were considered [6]. Approximately one month later, all the previously marked anno-

tations were asked to be categorized into epileptiform or non-epileptiform transients (AEPs

and non-AEPs) on a 5 point scale.

• Phase 3: To ensure reliability, another opinion or clarification was rendered for any inconsis-

tencies in opinion from the previous two phases.

After the 3 phases, based on consistency, a list of most consistent or ’best 7’ experts was

formed. The annotations from the list of ’best 7’ was then used as training data or ground-truth for

the research.

Out of the 200 patient files, all the annotations came from 91 files and the rest 109 files

that had no annotations was later used to extract the training data to represent the non-ET signals.

Each annotation or epileptic transients vary in their duration depending on whether the ET is a

spike or sharp wave or spike-slow wave complex etc [21]. Some statistical information about the

duration of epileptiform transients are shown in the table 2.3 below.

Annotations Length
Minimum 11

Mean 49
Median 39

Maximum 316

Table 2.3: Yellow Box duration statistics
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2.2.2 Data Formats

The EEG recordings of 200 patients were recorded in three different sampling rates: 200

Hz, 256 Hz and 512 Hz based on the EEG machine setting. This data was filtered with a notch

filter of 60 Hz to remove any interference of surrounding electrical signals or noise. This data is

then stored in the European Data Format (.edf) [46]. Each (.edf) file has two objects (header and

record). The header consists of all the information about the particular file such as sampling rate,

signal information, electrodes etc. and the record consists of the actual signal recordings from the

electrodes. This record data from all 200 files was combined to form a single 100 minute long file for

annotations from the experts. The annotations from the experts were then obtained in the comma

separated value (.csv) file containing the following details:

• Annotation ID: A unique ID corresponding to each annotation.

• Dataset ID: Number corresponding to the patient to which the annotation belongs. (1-200)

• Start Second: The start time of each event in the 100 minute long record

• End Second: The end time of each event in the 100 minute long record

• Montage ID: The number corresponding to the montage used by experts

• Channel Num: The channel on which the event was marked.

• User ID: Filename matching the dataset ID

• Classification score: Score assigned (from the 5 point scale) to the particular event by each

experts

Additionally the information regarding the montage and channel numbers and the corre-

sponding electrode combinations in the 10-20 system is also obtained for research purposes.

2.2.3 Data Processing

All the above information from various files was converted into a single unified database and

stored in the ’mat’ file for further processing. The matlab struct ”overall db” with following fields

was created.
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• Fields 1-6: These fields contain the information about the annotations, the annotation ID,

start time, end time, total time, montage ID, Channel number.

• Fields 7-13: These fields contain the scores assigned to particular annotation by best 7 experts.

• Field 14: ”montage signal” consists of the entire 30 second recording of the particular channel

on which the epileptiform transient was marked.

• Field 15: This field spike contains each annotation individually

• Field 16,17: These 2 fields ”prespike” and ”postspike” of around 50 samples before and after

the yellow box, is the precontextual and postcontextual signal. This was used in feature

extraction of ETs.

• Field: 18: contains information about the sampling frequency of the particular file to which

the annotation belongs.

• Field 19: The field ”inferred groundtruth” states a single true value for the annotation. This

was assigned by taking votes of the scores (5 point scale) and the true value was decided to be

the score that had the maximum votes.

”Overlap”: This struct contains information about all the start and end times belonging to

a single patient and the number of annotations in that file.

These variables contains all the basic information about each annotation which can be

easily queried and can be directly used for further processing and feature engineering without need

to understand the details of data acquisition. A few examples of the annotations belonging to both

classes AEP and non-AEP with its confidence score levels are shown in left side of the Figure. 2.2 to

2.6. The ”pre and post contextual” information along with the annotation are shown to the right.

It can be observed that, even the transients belonging to the same class differs in its length and

morphology.
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(a) Annotated signal (b) Annotation with contextual data

(c) Annotated signal (d) Annotation with contextual data

Figure 2.2: 2 examples of Annotations taken from file 36 and file 65. Belongs to class AEP with a
confidence level of 205 indicating that its definitely an epileptiform discharge.
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(a) Annotated signal (b) Annotation with contextual data

(c) Annotated signal (d) Annotation with contextual data

Figure 2.3: 2 examples of Annotations taken from file 138 and file 71. Belongs to class AEP with a
confidence level of 204 which indicates the transient is most likely an epileptiform discharge.
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(a) Annotated signal (b) Annotation with contextual data

(c) Annotated signal (d) Annotation with contextual data

Figure 2.4: 2 examples of Annotations taken from file 108 and file 164, is scored as 203, this confidence
level indicates that the experts are unsure whether it is an AEP or non-AEP.

13



(a) Annotated signal (b) Annotation with contextual data

(c) Annotated signal (d) Annotation with contextual data

Figure 2.5: 2 examples of Annotations taken from file 160 and file 106. Belongs to class non-AEP
with a confidence level of 202 indicating that the signal is most likely not an epileptiform discharge
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(a) Annotated signal (b) Annotation with contextual data

(c) Annotated signal (d) Annotation with contextual data

Figure 2.6: 2 examples of Annotations taken from file 30 and file 27. Belongs to class non-AEP with
a confidence level of 201 indicating that the signal is definitely not an epileptiform discharge.
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Chapter 3

Outline of HHT and RBFNN

3.1 Hilbert Huang Transform (HHT)

Traditional data-analysis methods are all based on stationary assumptions of a signal.

Fourier transforms, for example, considers a fixed ’a priori’ basis of orthogonal functions and the

transform does not depend on the nature of the analyzed signal. This kind of analysis is not very

well suited for non-stationary signals. Wavelet transforms use a preset of basis functions, i.e. a

mother wavelet used in the transform can be selected. Every component resulting from a wavelet

transform has parameters that determine the scale and level or time for which it solves the problem,

this addresses some of the constraints of non-stationarity of the signal.

Most natural physical processes are non-stationary and necessitates an adaptive basis func-

tion based on the nature of the analyzed signal. The Hilbert-Huang transform (HHT) by Huang et

al. [19] provides a method to effectively analyze the complex signals which decomposes the signal

into intrinsic mode functions (IMF) and obtain instantaneous frequency data. Most recently, HHT

has also been used in the analysis of EEG signals and epileptic seizure detection [32] [30] [45].

HHT decomposes the signal in time domain and preserves the characteristics of the varying

frequency. A brief description is provided by N.E.Huang in his book [18] which is also shown below.

Hilbert-Huang transform consists of two parts as described below:

1. Empirical mode decomposition (EMD)

2. Hilbert Spectral Analysis (HSA)
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3.1.1 Empirical mode Decomposition (EMD)

EMD is a method of decomposing the signal into finite number of components which form a

complete and nearly orthogonal basis for the original signal, these are called intrinsic mode functions

(IMFs) [19] [29], and are the functions into which the signal is decomposed. They are in time domain

and are of same length as the original signal and hence the varying frequency information is preserved.

Each intrinsic mode represents simple oscillations which will have the same number of extrema and

zero crossings. Also, the oscillations will also be symmetric with respect to the local mean [19]. An

IMF represents a simple oscillatory mode as a counterpart of the simple harmonic function but with

variable amplitude and frequency as functions of time.

An IMF is constrained by the following conditions:

• In the entire signal, the number of extrema and the number of zero-crossings must be either

equal or differ at most by one,

• At any point the mean value of the envelope defined by local maxima and envelope defined by

local minima is zero [18].

The process of obtaining IMFs is called sifting, as explained below.

1. Identify all the local extrema from the signal x(t).

2. Generate its upper and lower envelopes, Xuen(t) and Xlen(t) using cubic spline interpolation.

3. Calculate point by point mean from the upper and lower envelopes, i.e. m1(t)

m1(t) = mean(Xuen(t) +Xlen(t)) (3.1)

4. Extract the difference between the data and m1(t) which is the first component h1(t)

h1(t) = x(t)−m1(t) (3.2)

Test if the two conditions of IMFs are satisfied by h1(t). If it meets the two conditions, the

first IMF is derived.

5. If h1(t) does not satisfy the conditions of IMF, it is considered to be a proto-IMF and in the

next step it is treated as data, can be written as,
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h11(t) = h1(t)−m11(t) (3.3)

where m11(t) is the mean from the upper and the lower envelopes generated from treating

h1(t) as data and h11(t) is the new proto-IMF.

6. The above steps are repeated k times until an IMF is derived, given by,

h1k(t) = h1k−1(t)−m1k(t) (3.4)

c1(t) = h1k(t) (3.5)

where c1(t) from Eqn.(3.5) is the first derived intrinsic mode function (IMF), h1k−1(t) and

m1k(t) are the proto-IMF and mean of the envelopes from the previous step.

7. Now c1(t) can be separated from the rest of the data by

r1(t) = x(t)− c1(t) (3.6)

r1(t) is residue and can still contain longer period variations in the data, which can be assumed

as new data and new IMFs are derived.

8. This sifting process is repeated until a predetermined criteria is met, i.e. when the residue is

a monotonic function, from which no more IMFs can be extracted, which can be written as,

x(t) =

n∑
j=1

cj(t) + rn(t) (3.7)

where n is the number of IMFs, rn(t) denotes the final residue, which represents the mean

trend or constant.

A few examples of the IMFs extracted on the EEG signals are shown in Figure.3.1 and 3.2.

It can be seen that the IMFs are of the same length as the original signal and the sum of first three

IMFs closely resemble the original signal, and hence, the time information is preserved. The phase

and frequency of each IMFs obtained helps in the time-frequency analysis, which is an important

information in distinguishing ETs from non-ETs.
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(a) Annotation example of class 201 (b) IMFs from the EEG yellow box

(c) Annotation example of class 202 (d) IMFs from the EEG yellow box

Figure 3.1: Examples of IMFs extracted from annotations belonging to class 201 and 202 respectively.
It can be seen that the sum of the first three IMFs preserves most of the time series information.
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(a) Annotation example of class 204 (b) IMFs from the EEG yellow box

(c) Annotation example of class 205 (d) IMFs from the EEG yellow box

Figure 3.2: Examples of IMFs belonging to annotations from class 204 and 205 respectively. The
three IMFs preserve most of the time series information and the frequency analysis of each IMFs
provide both the time and frequency information of the entire signal.
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3.1.2 Hilbert Spectral Analysis

Hilbert spectral analysis is a method applying the Hilbert transform to compute the instan-

taneous frequency [19]. The Hilbert transform creates an analytic signal by defining an imaginary

component and provides instantaneous amplitude and phase with respect to time. The Hilbert

transform is applied to each IMF and instantaneous frequency is computed. Given a real signal x(t),

its analytic signal z(t) is given by,

z(t) = x(t) + ixH(t) (3.8)

Where xH(t) is the Hilbert transform of x(t) [26], i.e.

xH(t) =
1

π
lim
ε→0+

(

∫ t−ε

t−1/ε

x(τ)

t− τ
dτ +

∫ t+1/ε

t+ε

x(τ)

t− τ
dτ) (3.9)

The complex representation of the signal in its polar form is written as,

Z(t) = A(t)eiϕ(t) (3.10)

Where,

A(t) =
√
x(t)2 + xH(t)2 (3.11)

ϕ(t) = arctan(
xH(t)

x(t)
) (3.12)

The time derivative of the polar form is

z′(t) = A(t)eiϕ(t)(iw(t)) + eiϕ(t)A′(t) (3.13)

Where w(t) is the instantaneous angular frequency, which by definition is the time derivative

of the instantaneous angle.

w(t) = ϕ′(t) =
d

dt
(arctan(

xH(t)

x(t)
)) (3.14)

f(t) =
w(t)

2π
(3.15)
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After performing the Hilbert transform on each IMF, the original signal can be expressed

as the real part in the following form.

x(t) = Re

n∑
j=1

Aj(t)e
i
∫

(wj(t))dt (3.16)

where wj(t) is the derived instantaneous frequency of each IMF except the residue rn(t)

which is usually constant.

This gives both the amplitude and frequency of each component as functions of time. This

frequency-time distribution of the amplitude is called Hilbert amplitude spectrum or Hilbert spec-

trum. [18]

With the above method, intrinsic functions (IMFs) of the EEG signal are extracted for the

annotated part along with the ”pre and post” contextual signal surrounding the annotated signal.

3.1.2.1 Feature Extraction

The following features were extracted from each IMF based upon previous work. [20]

Weighted Mean Frequency: It is one of the most useful feature of HHT which is also called the

Hilbert weighted frequency [32]. Weighted frequency is computed by taking the weighted average of

instantaneous frequency with instantaneous amplitude acting as weights. Weighted frequency is the

indicative of the energy distribution in each IMF. This frequency wf gives an idea about the mean

frequency using instantaneous frequency f and amplitude A over an interval from the point index 1

to point index l.

wf =

∑l
i=1(A(i)f2(i))∑l
j=1(A(j)f(j))

(3.17)

Temporal Statistics of Analytic IMFs: The statistical features of IMF are useful features due

to the asymmetry, dispersion and concentration around the mean. The IMFs from healthy EEGs

and non-healthy EEGs during interictal periods of epilepsy tend be different [34]. These differences

can be analyzed using the statistics of the IMFs. Hence, statistical features (mean µ, variance σ,

skewness β and kurtosis κ) are computed for each IMF.
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µ =
1

N

N∑
i=1

yi (3.18)

σ =

√√√√ 1

N

N∑
i=1

(yi − µ)2 (3.19)

β =
1

N

N∑
i=1

(
yi − µ
σ

)3 (3.20)

κ =
1

N

N∑
i=1

(
yi − µ
σ

)4 (3.21)

Mean absolute deviation in each IMF: Average or mean absolute deviation is the

mean of absolute deviations of a set of data about the data’s mean. For a sample size N and the

mean distribution x, the mean absolute deviation is defined by (MAD) [20].

MD =
1

N

N∑
i=1

|xi − µ| (3.22)

where N is the number of samples in the IMF.

Interquartile range in each IMF: Interquartile deviation is a measure of the statistical

dispersion being equal to the difference between 75th and 25th percentiles. It is a measure of

variability, based on dividing the data set into quartiles [20] [42].

IQR = Q3−Q1 (3.23)

Where Q1 and Q3 are the first and third quartile respectively.

Spectral Statistics of IMFs: Previous research suggests that epileptic seizures give rise to

changes in certain frequency bands [2] [41]. The spectral features extracted from IMFs thus provide

information about the physiology of the EEG signals. Power spectral density [34] has been calculated

for each IMFs and statistics of PSD from each IMFs are used as features.

P (f) =

∞∑
−∞

ry[n]e−jwn (3.24)
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Where f is the frequency bin and ry[n] represents the autocorrelation of y[n] given by ,

ry[n] = E(y[n]y ∗ [n]) (3.25)

Spectral Entropy: Entropy is defined as the measure of degree of disorder [23]. In the

context of EEG signals, entropy can be considered to be a measure of the complexity of the time

series. Spectral entropy uses the power spectrum of the signal to estimate the regularity of the time

series. Spectral entropy is evaluated using the normalized Shannon entropy applied to the power

spectral density of each IMF [39]. If the power spectral estimate for each frequency is denoted by

Pf , then the spectral entropy is calculated using the formula:

ShEn =
∑
f

(p
f
log(p

f
)) (3.26)

Where p
f

is the normalized power spectral estimate calculated using the total power
∑
Pf

and dividing the power level corresponding to each frequency by the total power.

Weiner Entropy: Weiner entropy or the flatness is mostly used in the characterization of

the audio signals. A higher spectral flatness indicates that the power is distributed uniformly across

the spectral bands and a low spectral flatness indicates that the power is concentrated on smaller

number of bands. It is given as the ratio between the geometric mean of the power spectral density

estimate of the IMFs to the arithmetic mean of the power spectral density estimate of the IMFs.

WnEn =
(
∏
f pf )

1
N∑

f pf
(3.27)

Spectral Centroid: Spectral centroid is used to characterize a spectrum which indicates

where the center of mass of the spectrum is. When applied to IMFs extracted from the EEG signals

it represents the centroid of the frequencies in each IMF. The centroid frequencies of the IMFs

extracted from EEG signals form distinctive groups for seizure and nonseizure EEG signals [32].

The centroid frequency is calculated using the formula:

Cs =

∑
f fPf∑
f Pf

(3.28)
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where Pf is the power corresponding to the f th frequency bin.

Variation Coefficient: Like the spectral centroid, spectral variation coefficient can also

be used for characterization of EEG signals. Spectral variation in the IMFs is said to be different

for normal and pathological EEG signals [34]. The variation coefficient can be calculated using the

formula:

σ2
s =

∑
f (f − Cs)2Pf∑

f Pf
(3.29)

Where Cs is the spectral centroid of the IMF.

Spectral Skew: Skewness is the third order moment and it is a measure of the asymmetry

of a distribution. Skewness of each IMF is computed as

βs =

∑
f ( f−Csσs

)3Pf∑
f Pf

(3.30)

The number of IMFs generated by the EEG signals varies based on the length of the signal

and the intrinsic mode oscillations present in the signal. A visual investigation indicated that most of

the properties of the original signal is preserved in the first few IMFs and hence the above mentioned

features are extracted from the first three IMFs resulting in a 33 dimensional feature vector which

is used for this research.

The list of features extracted from each IMF is shown below.

FeaturesIMFj = [wf , µ, σ, β, κ,MD, IQR, SpEn,Cs, σs, βs]
T , 1 ≤ j ≤ 3 (3.31)

3.2 Radial Basis Function Neural Network

3.2.1 Basic RBF Network

Radial basis function network is a feed-forward network with a modified hidden layer and

training algorithm which may be used for mapping. A basic RBF network consists of single hidden

layer of locally sensitive units, i.e. the unit’s response decreases monotonically with the distance of

input vector i, from the units receptive field center wij [37].
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3.2.1.1 Network Architecture

An RBF network consists of hierarchy of units, that are organized to form consecutive

layers. The input is fed to these interconnected layers through the input layer, and output layer (in

most cases) consists of linear units. There exists intermediate or hidden layers between the input

and output layers. The RBF hidden layer employs a Gaussian activation function with euclidean

distance measure which may be described as,

oij = f(netij) = e(
−||i−wij ||

2

2σ2
) (3.32)

where, net activation of the jth unit in the ith layer, netij is given by,

netij =
−||i− wij ||2

2σ2
(3.33)

wij the weight vector or unit center corresponding to the jth unit in the ith layer.

The unit has maximum net activation netij and correspondingly maximum output oij when

i = wij , (i.e. netij = 0). In practice, for a given input, only a fraction of the hidden units will be

active (net activation, netij ≥ 0) that leads to a non-zero output [37].

Output Units are in most cases simple linear units which is just the weighted linear combi-

nation of the output from the previous layer, given by

oij = netij =

n∑
j=1

wh−oij oi−1j (3.34)

where, oi−1j are the outputs of jth unit from the i− 1th layer (hidden layer) and wh−oij are

weights connecting the output of the hidden layer to output layer.

A block diagram of simple RBF network is shown in Figure.3.3
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Figure 3.3: A Basic RBF Network

3.2.1.2 Network training

The process of training involves two steps:

1. Determination of RBF unit centers which can be accomplished in different ways.

• Using the K-means clustering, initialized from randomly chosen points from the training

set.

• Using the Kohonens SOFM which forms individual neural clusters self-organized to reflect

input pattern similarity [37]. Then select unit weight vectors from the map as the RBF

unit centers.

2. The training of RBF network consists of determining weights connecting RBF to output layer

which can be trained using the psuedoinverse or gradient descent methods [37] [25].
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Figure 3.4: Representation of Multilayer RBF Network

3.2.2 Multilayer RBF Network

A multilayer RBF network is designed by adding an extra hidden layer before the RBF

layer. Although there is no clear proof of significant improvement in the results by adding extra

layers in the RBF network, the advantage of using deep networks is that it can compactly represent

a significantly larger group of functions than simpler networks. In this method an extra hidden layer

with RELU non-linearity [13] has been added in between the input and the RBF hidden layer. The

network is trained using back-propagation algorithm [37].

The block diagram representation of the network is shown in Figure.3.4

3.2.2.1 L2-Regularization

The number of iterations to train the network is a hyper parameter which is to be chosen

carefully to achieve small error on the training data but also make sure the network generalizes well

on the test data. Training of the network involves adjusting the network weights to minimize the

cost function, so that, for the training data, the predicted output closely match the known correct
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outputs. Unfortunately, if the network is over-trained the network adjusts the weights so as to

perfectly predict the correct values on every training example. These weights when used on test

data that’s previously unseen by the network would perform poorly. This is called over-fitting. The

over-fitted weights tend to be large and dominate the output prediction [7].

In order to avoid the overfitting it is possible to regularize the cost function. L2-Regularization

technique restricts the values of the weights by penalizing the sum of squared values of the weights

to avoid any weight dominating the output prediction [13]. This regularization term in the update

of weights causes weight decay in proportion to its size. Weight decay is an additional term in

the weight update rule that causes the weight to exponentially decay to zero, if no other update is

scheduled [7].

3.2.2.2 Hidden Layer with ReLU nonlinearity

The multilayer RBF network uses ReLU nonlinearity in the hidden layer between input and

RBF layer. Rectified linear units (ReLU) use the activation function given by g(z) = max(0, z).

ReLU units are easy to optimize because they are similar to linear units. The derivatives through

a rectified linear unit remain large whenever the unit is active. The gradients are consistent and

the second order effects are almost zero everywhere and the derivative of the rectifying operation is

one when the unit is active. Thus the gradient direction is far more useful for learning than when

compared to the other activation functions that introduce second-order effects [13].

Formulae for forward and back-propagation used in the algorithm are given below:

Forward Pass hidden layer:

netIH = (x.wH + bH) (3.35)

oIH = max(0, netIH) (3.36)

Forward pass RBF layer :

oHR = enetHR (3.37)

where netHR is,
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netHR =
−||oIH − µ||2

2σ2
(3.38)

Forward pass output layer:

oRO = oHR.wO + bO (3.39)

Sum of squared error loss function is considered in the training of the network, given by:

loss =
1

2
(oRO − t)2 +

1

2
(reg ∗ ||w2

O||+ reg ∗ ||w2
H ||) (3.40)

where reg is the L2-regularization coefficient.

doRO = (oRO − t) (3.41)

Backward pass output layer:

dwO = oTHR.doRO (3.42)

doHR = doRO.w
T
O (3.43)

dbO =

m∑
i=1

doRO (3.44)

where M is the number of training samples in each epoch.

Backward pass RBF layer:

dµj =

M∑
i=1

doHR.oHR.
(oIHi − µj )

σ2
j

(3.45)

dσ
j

=

M∑
i=1

−doHR.oHR.
||oIHi − µj ||2

σ3
j

(3.46)

doIHi = −
k∑
j=1

doHR.oHR.
(oIHi − µj )

σ2
j

(3.47)
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Backward pass ReLU Hidden layer:

dnetIH = (doIH(oIH <= 0) = 0) (3.48)

dx = dnetIH .w
T
H (3.49)

dwH = xT .dnetIH (3.50)

db =

M∑
i=1

dnetIH (3.51)

Where M is the number of training examples, k is the number of RBF centers in the

network. The choice of hyper parameters like the number of receptive units k in the RBF layer, the

learning rate η were decided based on the cross-validation tests covered in the subsequent chapters.

The above network was used for classification of epileptic transients in both stages (detection and

classification).
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Chapter 4

Classification of Yellow Boxes

Classification of the yellow boxed signals involves mapping the annotations or yellow boxes

into AEP or non-AEP classes. As mentioned in the previous chapter, a multilayer RBF neural

network (Figure.3.4) is used for this purpose. Neural network is trained using the annotated data

provided by the most consistent seven experts from the EEG recordings of 200 patients.

4.1 Data

As explained in chapter 2, EEG recordings from 200 patients were collected and provided to

experts for visual inspection and identification of the annotations. The scores given by seven most

consistent experts were considered. The scores were on a 5 point scale from 201 to 205. This problem

is modified into a two class problem of AEP and non-AEP. The scores of 204/205, which indicated

the annotation to be mostly AEP, is considered to be class AEP and the scores of 201/202, which

indicated the annotations to be mostly non-AEP, are considered to be class non-AEP. The data

with score 203 had no consensus between the experts and hence is left out from this study. There

are a total of 231 annotations out of which 86 belong to class AEP and 145 to class non-AEP. This

imbalanced dataset was balanced using max distance criteria [16] and then divided into training and

test set.
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(a) Count of annotations from each class 201 to 205 (b) Count of annotations for a two class problem

Figure 4.1: Histogram of Yellow Boxes

The visual identification of epileptic transients are performed by experts by comparing the

signal with the surrounding data. Thus the contextual information around the transients are also

included to compute the features from the annotations. A typical length of an annotation lasts

around 200ms which corresponds to around 50 samples at sampling frequency of 256Hz. Therefore,

a window size of 50 samples of pre-contextual and post-contextual signals has been considered. A

histogram plot of the length of annotations are shown in Figure.4.2

4.2 Classifier Neural Network

4.2.1 Design

A multilayer Radial basis function neural network is trained to classify the epileptiform

transients into two classes (AEP and non-AEP). The hidden layer between the input units and the

RBF layer consists of a Rectified Linear Unit activation(ReLU) [13] non-linearity, explained in the

previous chapter. The RBF layer unit receptive centers are chosen using the k-means algorithm, the

activations of the RBF units are computed based on the distance between the test input and the

RBF unit’s center. The output layer consists of a single unit which is a linear weighted combination

of the output from the RBF layer. The desired output of +1 corresponds to an AEP and an output

of 0 is classified as non-AEP. The number of centers for the RBF is chosen based on the performance

of the RBF network. The number of ReLU units in the hidden layer is the equal to the dimension
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Figure 4.2: Histogram of length of annotations

of the input feature vector.

4.2.2 Training

The training of the network involves two steps as described in Chapter 3. First step is

to choose the centers or receptive field of the RBF units which is computed using the standard

k-means algorithm with correlation distance measure. The centroids from the k-means algorithm

was considered as the RBF receptive field centers. The entire network is then trained by back

propagating the error.

4.2.3 Cross Validation

Cross validation is a method of validating the model and to gain an insight of how well

the model performs on an independent dataset. In a k-fold cross validation, the dataset is divided

into k groups or subsets and k-1 subsets are used for training the network. The other remaining

subset is used as test set to analyze the performance of the network. The process is repeated k times

with each of the k subsets acting as test set exactly once. This gives a statistical prediction as to

how the model would perform on an independent data or an instance from the real problem. Cross

validation combines the results of model and averages them to provide a more accurate estimate of
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the performance of the model.

The dataset is balanced using the max distance criteria [16] and the balanced dataset is

used in cross validation to contain equal representations of AEPs and non-AEPs. The value of k

was varied from 4 to 10. The table 4.1 shows the number of samples from each class (AEP and

non-AEP) in the subset.

4.2.4 Parameters

Initially the weights of the units with ReLU activation and the output unit is initialized

with values of magnitude between 0.005 to 0.05. The centers for the RBF is chosen by k-means

algorithm with a k value of 8. The network is trained for 15000 iterations with a learning rate of

0.001. The value for L2-Regularization to prevent the network from over fitting was chosen to be

0.0001.

4.3 Results

The training of neural network can be seen on the graph plot of Error with respect to

training iterations. The graph has been plotted for each value of k-fold. The error plot shows the

error decreasing with respect to the iterations on the kth training set. The Figure. 4.3 to 4.9 shows

the error plot for value of k from 4 to 10. This ensures the network trains well to discriminate the

AEPs from the non-AEPs.
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No. of Folds Trial AEP samples non-AEP samples Ratio Training:Test Total

4

1 21 21 3.09 42
2 22 22 2.90 44
3 22 22 2.90 44
4 21 21 3.09 42

5

1 17 17 4.05 34
2 18 18 3.77 36
3 17 17 4.05 34
4 17 17 4.05 34
5 17 17 4.05 34

6

1 14 14 5.14 28
2 15 15 4.73 30
3 15 15 4.73 30
4 14 14 5.14 28
5 14 14 5.14 28
6 14 14 5.14 28

7

1 12 12 6.16 24
2 13 13 5.61 26
3 13 13 5.61 26
4 12 12 6.16 24
5 12 12 6.16 24
6 12 12 6.16 24
7 12 12 6.16 24

8

1 10 10 7.60 20
2 11 11 6.81 22
3 11 11 6.81 22
4 11 11 6.81 22
5 11 11 6.81 22
6 11 11 6.81 22
7 11 11 6.81 22
8 10 10 7.60 20

9

1 9 9 8.55 18
2 10 10 7.60 20
3 10 10 7.60 20
4 10 10 7.60 20
5 10 10 7.60 20
6 10 10 7.60 20
7 9 9 8.55 18
8 9 9 8.55 18
9 9 9 8.55 18

10

1 8 8 9.75 16
2 9 9 8.55 18
3 9 9 8.55 18
4 9 9 8.55 18
5 9 9 8.55 18
6 9 9 8.55 18
7 9 9 8.55 18
8 8 8 9.75 16
9 8 8 9.75 16
10 8 8 9.75 16

Table 4.1: Distribution of samples during k-fold validation
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Figure 4.3: Error plot for k = 4

Figure 4.4: Error plot for k = 5
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Figure 4.5: Error plot for k = 6

Figure 4.6: Error plot for k = 7
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Figure 4.7: Error plot for k = 8

Figure 4.8: Error plot for k = 9
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Figure 4.9: Error plot for k = 10

To analyze the performance of the model a confusion matrix is drawn which yields a bet-

ter estimate of the performance than by just computing the accuracy which might be misleading.

Confusion matrix as shown in the Figure. 4.10 consists of 4 values described below.

• An output is True Positive when the model predicts the input to be an AEP and the

groundtruth for the input is also an AEP.

• An output is True Negative when the model predicts the input to be non-AEP and the

groundtruth for the input is also non-AEP.

• An output is False Positive when the model predicts the input to be an AEP but the

groundtruth of the input is actually non-AEP. Its also called the type I error.

• An output is False negative when the model predicts the input to be non-AEP but the

groundtruth of the input is actually an AEP. Its also called the type II error.

From the confusion matrix the following performance metrics were calculated.

• Sensitivity is the rate at which the positives are correctly identified. Its also called the true
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Figure 4.10: Confusion matrix

positive rate.

Sensitivity =
TP

TP + FN
(4.1)

• Specificity is the rate at which the negatives are correctly identified. Its also called the true

negative rate.

Specificity =
TN

TN + FP
(4.2)

• Precision is the fraction of the positives that are correctly identified over all the positives

predicted by the model.

Precision =
TP

TP + FP
(4.3)

• Accuracy is the number of correct predictions from all the predictions by the model. It can

be written as the ratio of correctly identified samples (True positives and True negatives) to

the total number of samples.

Accuracy =
TP + TN

TP + FP + TN + FN
(4.4)

Table. 4.2 shows the performance measures of the network for each trial of the k-fold vali-

dation. Table. 4.3 shows the average performance metrics of the model for each fold.
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No. of Folds Trial Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

4

1 90.48 85.71 86.36 88.10
2 86.36 77.27 79.17 81.82
3 77.27 86.36 85.00 81.82
4 85.71 80.95 81.82 83.33

5

1 64.71 82.35 78.57 73.53
2 83.33 94.44 93.75 88.89
3 88.24 76.47 78.95 82.35
4 76.47 76.47 76.47 76.47
5 100.00 94.12 94.44 97.06

6

1 78.57 71.43 73.33 75.00
2 86.67 60.00 68.42 73.33
3 100.00 86.67 88.24 93.33
4 78.57 100.00 100.00 89.29
5 100.00 71.43 77.78 85.71
6 64.29 85.71 81.82 75.00

7

1 100.00 66.67 75.00 83.33
2 76.92 92.31 90.91 84.62
3 92.31 84.62 85.71 88.46
4 83.33 83.33 83.33 83.33
5 91.67 75.00 78.57 83.33
6 75.00 75.00 75.00 75.00
7 83.33 100.00 100.00 91.67

8

1 80.00 90.00 88.89 85.00
2 72.73 72.73 72.73 72.73
3 100.00 100.00 100.00 100.00
4 72.73 63.64 66.67 68.18
5 81.82 90.91 90.00 86.36
6 81.82 81.82 81.82 81.82
7 100.00 81.82 84.62 90.91
8 90.00 80.00 81.82 85.00

9

1 100.00 88.89 90.00 94.44
2 80.00 80.00 80.00 80.00
3 80.00 70.00 72.73 75.00
4 100.00 80.00 83.33 90.00
5 70.00 80.00 77.78 75.00
6 90.00 100.00 100.00 95.00
7 88.89 88.89 88.89 88.89
8 100.00 100.00 100.00 100.00
9 77.78 66.67 70.00 72.22

10

1 87.50 87.50 87.50 87.50
2 88.89 88.89 88.89 88.89
3 77.78 88.89 87.50 83.33
4 88.89 77.78 80.00 83.33
5 100.00 77.78 81.82 88.89
6 77.78 77.78 77.78 77.78
7 66.67 100.00 100.00 83.33
8 87.50 75.00 77.78 81.25
9 75.00 87.50 85.71 81.25
10 87.50 87.50 87.50 87.50

Table 4.2: Performance Metrics for each Trial of k-fold Validation
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No. of Folds Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)
4 84.95 82.57 83.08 83.76
5 82.54 84.77 84.43 83.66
6 84.68 79.20 81.59 81.94
7 86.08 82.41 84.07 84.24
8 84.88 82.61 83.31 83.75
9 87.40 83.82 84.74 85.61
10 83.75 84.86 85.44 84.30

Table 4.3: Average Performance Metrics of k-fold validation

4.4 Conclusion

From Table. 4.3 it can be seen that k = 9 provides the best results in terms of sensitivity

and specificity. This indicates that as the sample size of the training set increase, the model showed

better results. The results showed that the model with the considered features had an average of

84% sensitivity to 83% specificity and is able to distinguish majority of the AEP and non-AEP

transients correctly. Investigation of other features along with considering different techniques could

result in higher ideal performance.
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Chapter 5

Detection of Epileptiform

Transients

The aim of this project is to automate the system of detecting and classifying the annotations

into AEP and non-AEP. Usually this process, as explained in Chapter-2, is performed manually by

experts who mark or yellow box the epileptiform like transients and classify them into AEP and

non-AEPs. The process of detection is performed by training a multilayer RBF neural network with

segments of normal EEG data extracted from the non-annotated part of the signal to classify an

epileptiform like transient from that of the normal EEG segment.

5.1 Training Data

5.1.1 Data Synthesis

The data for training the neural network had to be indicative of epileptiform transients and

non-epileptic signals. For examples of epileptiform transients, the annotations or yellow boxes given

by experts are considered. However, there is no specific definition nor morphological properties that

can specifically describe a non-epileptic signal. So, any part of the signal that is not annotated can

be considered to be a non-epileptic signal and that provides us with enormous amount of examples

indicative of non-epileptic signals.

As mentioned in Chapter-2, EEG recordings of 200 patients, each of 30 seconds duration
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were recorded. The annotations that represented class ET came from only the 91 files out of 200,

and the rest 109 files had no annotations and hence any segment from any channel is an indicator

of non-epileptic signal and can be used as training data. To synthesize a good dataset for training

involves taking few precautions. First of all, the data belonging to different patients were recorded

at different sampling rates, so the EEG recordings are frequency normalized to 256 Hz. Also, there

are 47 unique combination of electrodes or channels which are used by experts in identification of

the epileptic transients. The data from 109 files on those 47 channels are primarily considered as the

source of non-epileptic signals. These recordings represent only the normal brain activity and might

have the possibility of not containing any artifacts. In order to account for this, the EEG data from

other 91 EEG files is also considered. All the data in each channel other than the annotated data

segments fall under the class non-ET which might be normal brain activity or artifacts. Around

270000 non-et signals has been extracted from 47 different channels in 200 EEG files. Like the length

of the epileptiform transients, the length of the non-ET signal is also considered to be variable with

a similar length distribution as discussed in Table. 2.3 in Chapter-2. The ’pre’ and ’post’ contextual

information of around 200ms is also considered along with the non-ET signal for computing the

features.

5.1.2 Balancing the data

There are around 270000 extracted samples of non-et class while there are only 235 samples

of class ET. This represents a hugely imbalanced dataset. In literature, [16] several techniques have

been proposed to balance the dataset such as oversampling, under-sampling, random sampling etc.

Some techniques based on the distance measures between the samples of two classes have also been

suggested but does not work very well for this problem may be due to the fact that non-ET signals

look very similar to epileptiform transients. So, in order to balance the data informed under-sampling

has been used. Around 120 examples are taken from 109 files that do not have any annotations and

the other 115 examples from the remaining files which contains epileptiform transients.

5.1.3 Features

As mentioned in Chapter-3, Empirical mode decomposition and Hilbert Huang transform

has been used in the extraction of features at both stages. In addition to the 33 dimensional feature
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from the EEG data segment, ’Weiner Entropy’ and the ratio of the weighted mean frequency of the

’pre’ and ’post’ contextual signal to the weighted mean frequency of the annotation are also used as

additional features only for the detection stage resulting in 42 dimensional feature vector.

5.2 Neural Network for Detection

A multilayer RBF network as described in classification phase is also used in the detection

phase. The number of RBF unit centers, number of training iterations, learning rate and L2-

regularization value are chosen based on the performance of the model in the cross validation tests.

The desired output of +1 here corresponds to a suspected epileptic transient which is to be yellow

boxed and an output of 0 is classified as non-epileptiform transient.

The weights of the units with ReLU activation and the output unit is initialized with values

of magnitude between 0.005 to 0.05 and the RBF unit centers is chosen by using standard k-means

algorithm with a k value of 8. The network is trained for 25000 iterations with a learning rate of

0.0005. The value for L2 regularization to prevent the network from over fitting is set to 0.0001.

5.3 Results

The training of neural network can be seen on the graph of Error with respect to training

iterations. To analyze the performance of the detection model a k-fold cross validation analysis is

performed with k values from 4 to 10. The graph has been plotted for each value of k-fold. The

error plot shows the error decreasing with the iterations on the kth training set. The Figure. 5.1

to 5.7 shows the error plot for value of k from 4 to 10. Table. 5.1 shows the performance results for

each trial of the k-fold validation and Table. 5.2 shows the average performance results of the model

for each fold.
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Figure 5.1: Error plot for k = 4

Figure 5.2: Error plot for k = 5
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Figure 5.3: Error plot for k = 6

Figure 5.4: Error plot for k = 7
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Figure 5.5: Error plot for k = 8

Figure 5.6: Error plot for k = 9
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No. of Folds Trial Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

4

1 92.98 82.46 84.13 87.72
2 91.38 89.66 89.83 90.52
3 82.76 87.93 87.27 85.34
4 84.48 79.31 80.33 81.90

5

1 95.65 82.61 84.62 89.13
2 82.98 95.74 95.12 89.36
3 93.48 89.13 89.58 91.30
4 86.96 91.30 90.91 89.13
5 95.65 71.74 77.19 83.70

6

1 89.47 84.21 85.00 86.84
2 94.87 87.18 88.10 91.03
3 82.05 89.74 88.89 85.90
4 92.31 89.74 90.00 91.03
5 84.21 86.84 86.49 85.53
6 86.84 97.37 97.06 92.11

7

1 90.91 96.97 96.77 93.94
2 87.88 81.82 82.86 84.85
3 90.91 93.94 93.75 92.42
4 90.91 93.94 93.75 92.42
5 96.97 81.82 84.21 89.39
6 90.91 93.94 93.75 92.42
7 87.88 78.79 80.56 83.33

8

1 89.29 85.71 86.21 87.50
2 96.55 86.21 87.50 91.38
3 89.66 75.86 78.79 82.76
4 89.66 89.66 89.66 89.66
5 86.21 96.55 96.15 91.38
6 89.66 93.10 92.86 91.38
7 89.66 79.31 81.25 84.48
8 96.55 89.66 90.32 93.10

9

1 92.00 84.00 85.19 88.00
2 88.46 84.62 85.19 86.54
3 96.15 76.92 80.65 86.54
4 84.62 96.15 90.38 90.38
5 84.62 92.31 91.67 88.46
6 80.77 73.08 75.00 76.92
7 96.15 96.15 96.15 96.15
8 92.00 72.00 76.67 82.00
9 96.00 96.00 96.00 96.00

10

1 86.96 82.61 83.33 84.78
2 83.33 87.50 86.96 85.42
3 86.96 82.61 83.33 84.78
4 86.96 91.30 90.91 89.13
5 95.65 91.30 91.67 93.48
6 86.96 73.91 76.92 80.43
7 95.65 91.30 91.67 93.48
8 91.30 73.91 77.78 82.61
9 82.61 82.61 82.61 82.61
10 86.96 95.65 95.24 91.30

Table 5.1: Performance Metrics for each Trial of k-fold Validation in Detection
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Figure 5.7: Error plot for k = 10

No. of Folds Sensitivity Specificity Precision Accuracy
4 87.90 84.83 85.38 86.36
5 90.94 86.10 87.48 88.52
6 89.29 89.18 89.25 88.73
7 90.90 88.74 89.37 89.82
8 90.90 87.00 87.84 88.95
9 90.08 85.69 86.90 87.88
10 88.33 85.27 86.04 86.80

Table 5.2: Average Performance Metrics of k-fold validation
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5.4 Conclusion

In order to accomplish detection of yellow boxing of epileptic transients using a neural

network, the data that best represents the both classes were extracted. The values of sensitivity and

specificity are around 89% and 86% which indicates that the model is performing well in classifying

the epileptiform transients from the non-epileptic data segments extracted from the EEG signal. The

results are slightly better compared to the classification phase. This may be due to the larger training

set. These detection and classification stage neural networks trained using the extracted data are

then cascaded to automatically detect the epileptiform transients on an EEG channel waveform.
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Chapter 6

Overall System Validation

6.1 Method

The main objective of this project is to build a system to automatically identify epileptiform

transients and classify them into AEPs and non-AEPs. The neural networks trained separately for

classification of ETs and the non-epileptiform segments and then classifying the ETs into AEPs

and non-AEPs, as described in the previous chapters, are used in cascade. The block diagram

representation of the entire system is shown in the Fig. 6.1.

To analyze the performance of the entire system, a subset of 10 patient files (chosen ran-

domly based on the number of annotations in each file), contributing about 25% (57 of the 235

annotations) of the total annotations marked by the experts, are considered and run through the

system. In contrast to the extracted/synthesized training data used previously in Chapter-5, here,

the actual EEG channel waveform is considered. Each file may contain multiple annotations and

each annotations could be on different channels. From the prior information, there are about 47

different channels on which the annotations are identified by experts. So, all the channels have to

be checked for identifying all the annotations. However, to validate the performance of the system,

the channel having the maximum number of annotations is only considered. This also helps to

compare the performance of the system with expert’s opinion. Table. 6.1 shows the files considered

for validation along with the number of ETs in that file.

A sliding window of 1/3rd overlap is run through the entire epoch of 30 seconds on the

selected channel. Features are extracted from each windowed EEG segment and checked for epilep-
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Figure 6.1: Block diagram of ET detection system

Annotations by experts
File AEPs non-AEPs Total
12 4 3 7
36 8 0 8
65 12 0 12
89 10 0 10
95 4 3 7
124 0 6 6
160 3 4 7
24 No Epileptiform Transients
84 No Epileptiform Transients
159 No Epileptiform Transients

Table 6.1: List of files for Validation
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tiform transients. If the segment is a suspected epileptiform transient, the same data segment is

passed through the second neural network to classify the suspected epileptiform transient into an

AEP or non-AEP.

A window length similar to annotations has been used rather than using a fixed length

window to account for variable length of the annotations. This also reduced the number of false

positives greatly. The pre and post contextual signal lengths are fixed to 50 samples each, similar to

the individual detector and classifier stages. A black box is drawn across all EEG segments suspected

to be an epileptiform transient at the detector stage. These segments are then run through the

classifier and a yellow box is drawn if the epileptiform is identified as an AEP.

To compare with the ground-truth of the annotations, a green box is drawn across AEPs

and red box is drawn across non-AEPs. The classifier and detector stage neural networks are trained

using all the data excluding the file that is considered for validation, and the neural network with

best performance is used for validating the signal.

6.2 Performance Measures

Performance measures like sensitivity, specificity and precision helps in analyzing classifier

when there are approximately equal number of samples from both classes. In this case, each channel

of EEG is recorded for a duration of 30 seconds and sampled at 256Hz. The number of epileptiform

transients in the channel for entire epoch is much smaller than the non-epileptiform segments. So,

performance measures like sensitivity and specificity could be misleading. The following performance

indicators were defined to quantify the performance of the overall system.

• B-Selectivity(Boxing selectivity) - This measure indicates the model’s selectivity in mark-

ing the data segments. It is defined by the ratio of the number of EEG events that are actually

present on the channel to the number of EEG events marked by the system on the channel.

Ideally this value should be 1 for a system which has no false positives and a system with low

selectivity value indicates the presence of lot of false positives.

B-selectivity =
Total number of events actually present on a channel

Total number of events detected by the system
(6.1)

• Inverse B-score(Inverse Boxing score) - The system’s ability to capture all the EEG
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events that are actually present on the channel. It is given by one minus the ratio of number

of EEG events missed by the system to the number of EEG events actually present on the

channel. Ideally it should be 1 for a system which detects all the events.

Inverse B-score = 1− Number of EEG events missed

Total Number of EEG events actually present on a channel
(6.2)

• M-Score(Marking score) - The system’s ability to correctly classify the detected events into

AEP or non-AEP. It can be given by the ratio of the number of correctly classified AEP/non-

AEP to the number of AEP/non-AEP present and detected by the system. Ideally it should

be 1 for a system which is able to correctly classify the events into AEP/non-AEP correctly.

M-score =
Number of events(AEP and non-AEPs) correctly classified

Total number of events (AEPs and non-AEPs) actually present and detected by the system

(6.3)

• M-Sensitivity(Marking sensitivity) The system’s ability to correctly identify the detected

events as an AEP. It can be defined by the ratio of number of AEPs present on the channel and

correctly predicted by the system to the total number of events detected as an AEP. Ideally

should be 1 for a system which has correctly classified all the AEPs with no false positive

AEPs.

M-sensitivity =
Number of AEPs actually present on the channel and correctly classified by the system

Number of AEPs detected by the system

(6.4)
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Figure 6.2: Validation on file no.12 on channel ’O1 - T5’

Figure 6.3: A closer look on annotation in file no.12 on channel ’O1-T5’ showing the identification
of AEP transient.
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Figure 6.4: validation on file no.36 on channel ’FP1 - Avg’

(a) AEP transient detection
(b) A false positive overlapped window on the actual
annotation

Figure 6.5: A closer look on file no.36 which has been successful in identifying the all EEG segment
into AEP.
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Figure 6.6: validation on file no.65 on channel ’Fp1 - F3’

(a) AEP transient detection (b) False positive AEP transient predicted by system

Figure 6.7: A closer look on file no.65 which has correctly identified AEP transients and a false
positive AEP.
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Figure 6.8: Validation on file no.89 on channel ’Fp1 - F3’

Figure 6.9: An example of a false positive of non-AEP in file no.89
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Figure 6.10: Validation on file no.95 on channel ’F3 - C3’

(a) AEP detected correctly (b) non-AEP misclassified

Figure 6.11: Validation closer look on channel ’F3 - C3’ having two annotations one AEP and one
non-AEP. Misclassification of non-AEP segment is shown in fig. 6.11b.
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Figure 6.12: Validation on file no.124 on channel ’Fp2 - F4’

Figure 6.13: A closer look of validation on channel ’Fp2 - F4’ having six non-AEP transients all of
them correctly identified
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Figure 6.14: Validation on file no.160 on channel ’O2 - O1’

(a) AEP detected correctly (b) non-AEP misclassified

Figure 6.15: Validation closer look on channel ’O2 - O1’ having two annotations one AEP and one
non-AEP. Misclassification of non-AEP segment and a false positive AEP transient predicted by the
system is shown in fig. 6.15b.
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Figure 6.16: Validation on file no.159 on channel ’T5 - Avg’

(a) Validation on channel ’Cz - Pz’ (b) Validation on channel ’Fp1 - F3’

Figure 6.17: Examples of validation performed on file no.24 on different channels. No suspected
epileptiform transients is predicted by the system in channel ’Cz - Pz’. In the fig. 6.17b the system
detects a false positive non-AEP transient.
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6.3 Results

Table. 6.2 and Table. 6.3 shows the system’s response on EEG channel data considered for

validation and the performance measures of the system. System did a good job of detecting all the

actual annotations present in the signal. The classifier also performed well in correctly classifying

the marked epileptiform transients as AEP and non-AEP in most cases.

System’s performance on file 124 is good with only one false positive non-AEP transient

and the system’s performance on file no.95 was bad with 57% B-score indicating that the system

could only identify 57% of the actual annotations present in the EEG data. Also, the system did

not mark any annotations on a few files of healthy patients and also the false positives on such files

are mainly non-AEPs.

The overall performance of the system in the validation of the random EEG signal is lesser

than the individual performances of the network in the classifier and detection stages due to marking

a large number of false positives. The marking score provided overall performance of the system by

considering the annotations on all the channels.

File Black Boxes Yellow Boxes Green Boxes Red Boxes
12 9 3 3 0
36 1 5 3 0
65 2 3 3 0
89 5 3 3 0
95 5 2 1 1
124 7 0 0 6
160 4 4 1 1

Table 6.2: Results of Validation
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File B-Selectivity (%) B-Score (%) M-Score (%) M-Sensitivity (%)
12 18.75 100 57.14 100
36 50 100 87.5 60
65 60 91.66 91.66 100
89 37.50 100 90 100
95 28.57 57.14 28.57 50
124 85.71 100 100 -
160 25 100 71.42 25

Table 6.3: Performance metrics of Validation

6.4 Conclusion

The main aim of this project to automatically detect and classify the epileptiform transients

was accomplished by a cascaded design of two radial basis function neural networks. The individual

neural networks in the classification and detection stages were trained on the features extracted from

the data provided by best seven experts. The results of validation on a random EEG signal was not

as good as expected and this may be due to the technique of windowing method adopted on the

validation data. The system was able to correctly identify most of the AEPs on the validation data,

although with a lot of false positives. The system’s performance on the healthy EEG signal by not

marking any segment to be a suspected epileptiform transient is a good indicator of the significance

of the features extracted using EMD and HHT technique.

There were a lot of false positives marked as suspected Epileptiform like transients, similar

to the results in the previous efforts [3] [46]. However, most of the errors or false positives on the

non-annotated data were marked to be as non-AEP transients which indicates that these transients

are mostly non-epileptic discharges. Another type of error or false positive in which the annotation

was detected but misclassified was marking non-AEPs to be AEPs which even though not desirable,

is better than the error of marking AEP transients as non-AEPs.
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Chapter 7

Future Work

The main inference from this research was the importance of time-frequency information

in the EEG signals. Hilbert-Huang transform and empirical mode decomposition served as good

feature extraction techniques in the analysis of EEG signals. HHT has gained some recognition in

the recent times and substantial research is being done in the area of EEG seizure detection and

BCI applications using HHT and wavelet transforms. Unfortunately, a proper theoretical base is

yet to be established. All the results are case-by-case comparisons conducted empirically [18]. Some

of the outstanding mathematical problems in HHT that needs further investigation are, selection of

the best IMFs extracted from the EEG signals, spline implementation problems in the process of

sifting and extracting the IMFs.

The problem under consideration is challenging due to the fact that AEP transients are very

similar to other normal electrocortical signals and artifacts. The understanding of the structural

nuances of epileptiform transients in the way the expert neurologists examine is vital. Investigation

of morphological properties of the epileptiform transients and the relation of pre and post contextual

signals to the transients is an area worth considering which may lead to extraction of more localized

and dependable features.

Although there are different standard databases for EEG signals for seizure detection [41],

there is not much information on the interictal spikes complexes and no standard databases with

such pre seizure spikes. An example dataset, with signals that define a proper non-epileptiform

signals like artifacts and normal brain activities, need to be developed under the supervision of

experts.
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Other techniques such as use of wavelets or power spectral density estimates are being

explored to compute interesting features. Also, use of raw signal in deep convolutional networks are

being explored which may lead to better results.
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