40,986 research outputs found

    Retention and application of Skylab experiences to future programs

    Get PDF
    The problems encountered and special techniques and procedures developed on the Skylab program are described along with the experiences and practical benefits obtained for dissemination and use on future programs. Three major topics are discussed: electrical problems, mechanical problems, and special techniques. Special techniques and procedures are identified that were either developed or refined during the Skylab program. These techniques and procedures came from all manufacturing and test phases of the Skylab program and include both flight and GSE items from component level to sophisticated spaceflight systems

    Active depinning of bacterial droplets: the collective surfing of Bacillus subtilis

    Full text link
    How systems are endowed with migration capacity is a fascinating question with implications ranging from the design of novel active systems to the control of microbial populations. Bacteria, which can be found in a variety of environments, have developed among the richest set of locomotion mechanisms both at the microscopic and collective levels. Here, we uncover experimentally a new mode of collective bacterial motility in humid environment through the depinning of bacterial droplets. While capillary forces are notoriously enormous at the bacterial scale, even capable of pinning water droplets of millimetric size on inclined surfaces, we show that bacteria are able to harness a variety of mechanisms to unpin contact lines, hence inducing a collective slipping of the colony across the surface. Contrary to flagella-dependent migration modes like swarming we show that this much faster `colony surfing' still occurs in mutant strains of \textit{Bacillus subtilis} lacking flagella. The active unpinning seen in our experiments relies on a variety of microscopic mechanisms which could each play an important role in the migration of microorganisms in humid environment.Comment: 6 pages, 7 figures, SI: 5 movies, 10 figures, 1 tabl

    Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke

    Full text link
    Stroke-induced hemiparetic gait is characteristically asymmetric and metabolically expensive. Weakness and impaired control of the paretic ankle contribute to reduced forward propulsion and ground clearance—walking subtasks critical for safe and efficient locomotion. Targeted gait interventions that improve paretic ankle function after stroke are therefore warranted. We have developed textile-based, soft wearable robots that transmit mechanical power generated by off-board or body-worn actuators to the paretic ankle using Bowden cables (soft exosuits) and have demonstrated the exosuits can overcome deficits in paretic limb forward propulsion and ground clearance, ultimately reducing the metabolic cost of hemiparetic walking. This study elucidates the biomechanical mechanisms underlying exosuit-induced reductions in metabolic power. We evaluated the relationships between exosuit-induced changes in the body center of mass (COM) power generated by each limb, individual joint powers, and metabolic power. Compared to walking with an exosuit unpowered, exosuit assistance produced more symmetrical COM power generation during the critical period of the step-to-step transition (22.4±6.4% more symmetric). Changes in individual limb COM power were related to changes in paretic (R2= 0.83, P= 0.004) and nonparetic (R2= 0.73, P= 0.014) ankle power. Interestingly, despite the exosuit providing direct assistance to only the paretic limb, changes in metabolic power were related to changes in nonparetic limb COM power (R2= 0.80, P= 0.007), not paretic limb COM power (P> 0.05). These findings provide a fundamental understanding of how individuals poststroke interact with an exosuit to reduce the metabolic cost of hemiparetic walking.Accepted manuscript2019-03-0

    Remote robot manipulator coupled with remote-controlled guide vehicle for soil sampling in hazardous waste sites

    Get PDF
    The important initial step for remediation of hazardous waste is contaminant analysis since the cleanup operation can not begin until the contaminants in hazardous waste sites have been clearly identified. Ames Laboratory, one of the U.S. Department of Energy sites, has developed a robotic sampling system for automation of real-time contaminant analysis in situ which will provide the advantage of lowering the cost per sample, eliminating personnel exposure to hazardous environments, and allowing quicker results. Successful accomplishment of real-time contaminant analysis will require a remote manipulator to perform the sampling tasks in remote and unstructured surroundings, and a remote-controlled guide vehicle to move a remote manipulator into the desired sampling location;This thesis focuses on the design and construction of a remote-controlled guide vehicle to move the robotic sampling system into the contaminated field to obtain soil samples at the desired locations, the development of an integrated dynamic model of a remote manipulator, the identification of dynamic parameters in the integrated dynamic model, and the design of a mobile robotic sampling system. A four-wheeled vehicle prototype has been constructed and its performance tested manually in the field to verify the design requirements. To remotely control the vehicle, mechanical requirements to activate the brake, throttle, transmission, and steering linkages were determined based on experimental results. A teleoperated control utilizing hundred feet long umbilical cords was first employed to remotely control the vehicle. Next, the vehicle was modified to remotely operate in the field by radio control without the aid of long umbilical cords, satisfying all the design specifications;To reduce modeling error in the robotic system, the integrated dynamic system comprised of a remote manipulator (located on a trailer pulled by the remote-controlled guide vehicle) and its drive system has been modeled. The friction model as a function of velocity is included. The dynamic parameters such as velocity-dependent friction and gravity torque in the integrated dynamic model have been determined based on experimental results;Finally, a robotic arm, a sampling tool, and a soil recovery fixture for a mobile robotic sampling system to be mounted on the remote-controlled guide vehicle have been designed and analyzed. The integrated dynamic model for the robotic arm (mounted on the remote-controlled guide vehicle) and its drive system has also been developed

    Estimation of Real-Time Runway Surface Contamination Using Flight Data Recorder Parameters

    Get PDF
    Within this research effort, the development of an analytic process for friction coefficient estimation is presented. Under static equilibrium, the sum of forces and moments acting on the aircraft, in the aircraft body coordinate system, while on the ground at any instant is equal to zero. Under this premise the longitudinal, lateral and normal forces due to landing are calculated along with the individual deceleration components existent when an aircraft comes to a rest during ground roll. In order to validate this hypothesis a six degree of freedom aircraft model had to be created and landing tests had to be simulated on different surfaces. The simulated aircraft model includes a high fidelity aerodynamic model, thrust model, landing gear model, friction model and antiskid model. Three main surfaces were defined in the friction model; dry, wet and snow/ice. Only the parameters recorded by an FDR are used directly from the aircraft model all others are estimated or known a priori. The estimation of unknown parameters is also presented in the research effort. With all needed parameters a comparison and validation with simulated and estimated data, under different runway conditions, is performed. Finally, this report presents results of a sensitivity analysis in order to provide a measure of reliability of the analytic estimation process. Linear and non-linear sensitivity analysis has been performed in order to quantify the level of uncertainty implicit in modeling estimated parameters and how they can affect the calculation of the instantaneous coefficient of friction. Using the approach of force and moment equilibrium about the CG at landing to reconstruct the instantaneous coefficient of friction appears to be a reasonably accurate estimate when compared to the simulated friction coefficient. This is also true when the FDR and estimated parameters are introduced to white noise and when crosswind is introduced to the simulation. After the linear analysis the results show the minimum frequency at which the algorithm still provides moderately accurate data is at 2Hz. In addition, the linear analysis shows that with estimated parameters increased and decreased up to 25% at random, high priority parameters have to be accurate to within at least ±5% to have an effect of less than 1% change in the average coefficient of friction. Non-linear analysis results show that the algorithm can be considered reasonably accurate for all simulated cases when inaccuracies in the estimated parameters vary randomly and simultaneously up to ±27%. At worst-case the maximum percentage change in average coefficient of friction is less than 10% for all surfaces

    Use of collective expertise as a tool to reinforce food safety management in Africa

    Get PDF
    The Erasmus+ project (2017-2020) entitled Societal Challenges and Governance of African Universities: the case of ALIments in Morocco, the Democratic Republic of the Congo and Senegal (DAfrAli) seeks to strengthen the governance capacity of African Higher Education Institutions to mobilize their resources in order to respond to major societal challenges in relation to external stakeholders. A work package consisted of organizing three workshops to use Collective Expertise as a tool for the identification of societal risks, in the area of food safety. These three workshops were conducted in Morocco, in Senegal and in Democratic Republic of Congo. The exercise was performed by country academics with the contribution of the European project partners. Collective Expertise gave results that demonstrated that, with a careful and diversified selection of experts, this methodology can have a deep importance to list the food hazards in a country. The results obtained can induce changes in university curricula, showed the social impacts of food safety, unveiled research needs and training needs for different agents in the food sector and above all the impact in food policy in a country. The collective expertise approach of the determination of hazards also permitted to discuss possible organization models for food risk management in the 3 countries

    Reliability handbook for silicon monolithic microcircuits. Volume 2 - Failure mechanisms of monolithic microcircuits

    Get PDF
    Reliability handbook for silicon monolithic microcircuits - failure mechanism
    corecore