

R ETENTION AND APPLICATION OF SKYLAB EXPERIENCES TO FUTURE PROGRAMS

Skylab Program Office

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

1. REPORT	г но. 5-64853	2. GOVERNMENT ACCESSI	DN NO.	. REPORT STANDARD TITLE PAGE 3. Recipient's catalog No.
1	AND SUBTITLE ntion and Application of Sk	ylab Experiences		5. REPORT DATE August 1974
to Fi	iture Programs			6. PERFORMING ORGANIZATION CODE
7. AUTHOF V. G	. Gillespie and R. O. Kell	У		8. PERFORMING ORGANIZATION REPORT #
	MING ORGANIZATION NAME AND AD			TO, WORK UNIT NO.
	ge C. Marshall Space Flig hall Space Flight Center,			11, CONTRACT OR GRANT NO.
				13. TYPE OF REPORT & PERIOD COVERED
Natio	oring Agency NAME AND ADDRESS nal Aeronautics and Space			Technical Memorandum
44 4 5 11	ington, D.C. 20546		l l l l l l l l l l l l l l l l l l l	14. SPONSORING AGENCY CODE
16. ABSTR J techniqu	his document has been pr es and procedures develor	epared to summarize bed on the Skylab pro	e the problems gram, and to s	s encountered and special
discrepa	ncy reports were reviewe	d to formulate this d	se on future pi ocument.	rograms. A total of 2,250
T mechanie by three	he document is divided in cal problem section, and a indices:	to three major section a special techniques (ons: an electr section. Each	ical problem section, a problem section is prefaced
. 1	. Hardware Index - Clas switches, etc.	sifies the problems l	by type of hard	lware such as valves,
2	. Problem Index — Lists error, maintenance, m	the problems with th anufacturing, and pr	e hardware re ocedure factor	sulting from design, human s.
3	Condition Index — Deno occurrence.	tes the physical cond	ition of the ha	rdware after problem
refined d ing and te	hirty special techniques a uring the Skylab program. est phases of the Skylab pr ophisticated spaceflight s	These techniques a rogram and include b	and procedures	ere either developed or s came from all manufactur- GSE items from component
17. KEY WO	ROS		STRIBUTION STATE	
			nclassified-un	liimited
			17	

covald R. Herda 19. SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF. (of this page) 21, NO. OF PAGES 22. PRICE Unclassified

Unclassifed

, i

MSFC - Form 3292 (Rev December 1972)

For sale by National Technical Information Service, Springfield, Virginia 22151

142

NTIS

TABLE OF CONTENTS

÷

Section		Page
	ABBREVIATIONS	vii
	SUMMARY	1
	INTRODUCTION	2
,	CONCLUSIONS AND RECOMMENDATIONS	3
1	ELECTRICAL	5
	HARDWARE INDEX ELECTRICAL	7
·	Batteries Cables, Harnesses, and Wire Capacitors, Resistors, Potentiometers,	7 7
	Circuit Breakers, and Switches	7
	Connectors	7 8
•	Integrated Circuits and Printed Circuit Boards	9
	Power Supplies	9
•	Relays	9
	Semiconductors	10
	Transducers	10
	Umbilicals	10
· ·	Miscellaneous	10
	GRAPH OF PROBLEMS BY HARDWARE CATEGORIES	
	(ELECTRICAL)	11
	PROBLEM INDEX	12
	Design	12
	Human Error	14
	Maintenance	15
	Manufacturing	16
	Procedures	20
	GRAPH OF PROBLEMS BY CAUSE (ELECTRICAL)	21

TABLE OF CONTENTS (Continued)

Section		Page
CONDITI	ON INDEX (ELECTRICAL)	22
A	djustment/Calibration Improper	22
А	ssembly/Installation Improper	22
В	Broken, Cracked, Punctured, Split	23
E	Broken/Damaged Wire	23
· C	Contaminated, Corroded	23
C	Cracked/Defective Solder Connections	24
D	Defective Bond, Conformal Coating, Potting	24
D	Defective Weld Joints	24
It	nadequate/Improper Design	25
· It	ntermittent/Incomplete/Erroneous Operation	26
L	loose, Weak	27
Ν	lismatched, Misalignment	27
Ν	Aissing Parts	27
N	lot to Drawing/Specification	27
Ċ	Open	27
C	overheated, Heat Damage	28
	Pressure/Vacuum Leak	28
R	ecessed/Damaged Contacts/Sockets	28
	etention Clip Damage	28
S	horted	28
S	tuck, Seized, Bonding	29
W	Vrong Material	29
GRAPH	OF PROBLEMS BY CONDITIONS (ELECTRICAL)	30
ELECTR	RICAL PROBLEM SUMMARY	31
2 MECHAI	NICAL	71
HARDWA	ARE INDEX MECHANICAL	73
F	Fittings, Hoses and Tubing	73
	Lubricants and Liquids	73
	Aeasuring Device	73
	Aount Assembly	73

TABLE OF CONTENTS (Continued)

2

Section		Page
	HARDWARE INDEX MECHANICAL (Concluded)	73
	Pumps	73
÷	Quick Disconnects	73
	Regulators	74
	Seals	74
	Structural	74
	Valves and Modules	74
•	Miscellaneous	74
	GRAPH OF PROBLEMS BY HARDWARE CATEGORIES	
	(MECHANICAL)	76
	PROBLEM INDEX MECHANICAL	77
	Design	77
	Human Error	78
	Maintenance	78
	Manufacturing	79
	Procedures	80
. •	GRAPH OF PROBLEMS BY CAUSE (MECHANICAL)	82
	CONDITION INDEX (MECHANICAL)	83
	Assembly/Installation Improper	83
	Broken/Damaged Wire	83
	Broken, Cracked, Punctured, Split and Cut	83
	Contaminated, Corroded	83
	Defective Bond	83
	Defective Weld Joints	84
	Fatigue Cracks	84
	Faulty/Damaged Insulation	84
	Inadequate/Improper Design	84
	Intermittent/Incomplete/Erroneous Operation	85
	Loose/Weak	85
	Mismatched/Misaligned	85

v

TABLE OF CONTENTS (Concluded)

•

Section		Page
	CONDITION INDEX (MECHANICAL) (Concluded)	83
	Not to Drawing/Specifications	85
	Pressure/Vacuum Leak	85
	Stuck, Seized, Binding	86
	Warped, Shrunk, Growth	86
	Worn, Stripped	86
	Wrong Material	86
	GRAPH OF PROBLEMS BY CONDITIONS (MECHANICAL)	87
	MECHANICAL PROBLEM SUMMARY	89
3	TECHNIQUES	109
	TECHNIQUE INDEX	111
	SPECIAL TECHNIQUES AND PROCEDURES	113

.

ABBREVIATIONS

ACE .	Automatic Checkout Equipment
AMP or A	Ampere
A& PCS	Attitude & Pointing Control System
ATM	Apollo Telescope Mount
BPMD	Blood Pressure Measuring Device
CBRM	Charger, Battery Regulator Module
CDC	Control Data Corporation
CEI	Contract End Item
CFE	Contractor Furnished Equipment
CMĞ	Control Moment Gyro
CRT	Cathode Ray Tube
DC	Direct Current
DCS	Digital Command System
DIP	Dual Incline Packages
DVTU	Design Verification Test Unit
ECE	Electrical Checkout Equipment
EIDD	End Item Description Document
EMI	Electro Magnetic Interference
E. O.	Engineering Order
EPC	Experiment Pointing Control
F	Fahrenheit
FBU	Flight Backup Unit (ATM)
G	Gravity
GFE	Government Furnished Equipment
GSE	Ground Support Equipment
H ₂ O	Water

vii

ABBREVIATIONS (Concluded)

IC	Integrated Circuits
ICD	Interface Control Document
IP&CL	Instrumentation Program & Components Listing
IPS	Inches per Second
KSC	Kennedy Space Center
LED	Light Emitting Diode
MDA	Multiple Docking Adapter
MLU	Memory Loading Unit
MSFC	Marshall Space Flight Center
OWS	Orbital Work Shop
P.C.	Printed Circuit
PCM/DDAS	Pulse Code Modulation/Digital Data Acquisition System
РМС	Post Manufacturing Checkout
PSIA	Pounds per Square Inch Absolute
PPM	Parts per Million
PSI	Pounds per Square Inch
RF	Radio Frequency
RFI	Radio Frequency Interference
s/c	Space Craft
SEM	Scanning Electron Microscope
S_1O_2	Silicone Dioxide
VDC	Volts, Direct Current
VSWR	Voltage Standing Wave Ratio

TECHNICAL MEMORANDUM TM X-64853

RETENTION AND APPLICATION OF SKYLAB EXPERIENCES TO FUTURE PROGRAMS

SUMMARY

A total of 2,250 Skylab Discrepancy Reports were reviewed to formulate this document. All duplications, unverified failures, GSE problems, and minor defects were eliminated. Only functional failures and major defects reported from post-manufacturing checkout through launch were included. Of the resulting 216 problem entries, 150 or 69 percent were electrical problems, and 66 or 31 percent were mechanical problems. The problems in each section were collated and indexed by type of hardware. Electrical/electronic assemblies experienced the greatest number of problems in the electrical section and accounted for 41 percent of the reported problems, while capacitors, resistors, and pots, etc., were next with 13 percent. In the mechanical section, valves experienced the largest number of problems and accounted for 27 percent of the reported problems.

The problems were indexed into five major categories of problem orientation. Overall, 32 percent were design oriented problems, 10 percent were human error, 1 percent were maintenance, 44 percent were manufacturing, and 13 percent were procedural problems. In the electrical section, design accounted for 31 percent of the problems, human error 11 percent, maintenance 1 percent, manufacturing 49 percent, and procedures 8 percent. In the mechanical section, design accounted for 36 percent of the problems, human error 8 percent, maintenance 2 percent, manufacturing 33 percent, and procedures 21 percent.

The problems were also indexed according to the hardware physical condition. In the electrical section, the physical condition of inadequate/ improper design accounted for 22 percent of the problems while improper assembly/installation accounted for 14 percent. Each of the other physical conditions in the electrical problem section accounted for 10 percent or less. In the mechanical section, inadequate/improper design accounted for 21 percent of the problems while improper assembly/ installation accounted for 14 percent. Each of the other physical conditions were 10 percent or less. Thirty special techniques and procedures are identified that were either developed or refined during the Skylab program. These techniques and procedures came from all manufacturing and test phases of the Skylab program and include both flight and GSE items from component level to sophisticated spaceflight systems.

Similar data on Saturn Experiences have been published in NASA TM X-64574, Retention and Application of Saturn Experiences to Future Programs.

INTRODUCTION

This document has been prepared to summarize the problems encountered and special techniques and procedures developed on the Skylab program, and to summarize the experiences and practical benefits obtained for dissemination and use on future programs. A total of 2,250 discrepancy reports were reviewed to formulate this document.

The document is divided into three major sections: an electrical problem section, a mechanical problem section, and a special techniques section. Each problem section is prefaced by three indices:

- 1. Hardware Index Classifies the problems by type of hardware such as valves, switches, etc.
- 2. Problem Index Lists the problems with the hardware by the following types of problems:

Design –	Problems resulting from inadequate design.
Human Error 🗕	Problems resulting from human error, workman- ship, etc.
Maintenance -	Problems resulting from the lack of maintenance/ preventive maintenance and inadequate processing controls subsequent to manufacture.
Manufacturing -	Problems resulting from the manufacturing process, excluding procedural and human error problems.
Procedures _	Problems resulting from deficient procedures.

3. Condition Index — Denotes the physical condition of the hardware after problem occurrence.

 $\mathbf{2}$

Each individual entry in the electrical and mechanical problem summaries as referenced by the indices contains the following information:

Item Number	Problem Description	Problem Effect
Hardware Nomenclature	Problem Cause	Remarks/
		Suggestions

All duplication has been eliminated in the document in that items with the same hardware nomenclature, problem, and cause appear only once; however, where the problem or cause is not the same, the item is again identified. The entries are collated into hardware families or similiar hardware families and it should be noted that the figures and numbers reflected on the hardware, problem and condition graphs relate only to the contents of this document.

Contained in section three of this document are thirty special techniques and procedures that were developed or refined during the Skylab program. These techniques and procedures came from all manufacturing and test phases of the Skylab program and include both flight and GSE items from component level to sophisticated space-flight systems.

CONCLUSIONS AND RECOMMENDATIONS

It is not the intent of this handbook to make conclusions and recommendations concerning design changes, procedural changes, etc.; however, it is recommended that these data be used in future programs to minimize occurrence of similar problems. This document can have broad application in future space activities — from the designer making a part selection for a specific application to the test engineer or technician in the identification of a particular failure cause. The new techniques identified in the document should prove invaluable for future programs requiring an end product as complex as that delivered under the Skylab program, since the use of these techniques will enhance product quality and reliability and decrease cost and manpower requirements. Use of the document will also allow greater management emphasis to be placed upon potential problem areas.

PRECEDING PAGE BLANK NOT FILMED

SECTION 1. ELECTRICAL

HARDWARE INDEX ELECTRICAL

HARDWARE	Page
BATTERIES	######################################
Battery	32
Battery Rack	32
CABLES, HARNESSES, AND WIRE	
Cable	33
Cable, Interconnect	33
Harness Assembly	33
Wire	34
CAPACITORS, RESISTORS, POTENTIOMETERS, CIRCUIT BREAKERS, AND SWITCHES	
Capacitors	35
Capacitors, Tantalum	36
Inductor	36
Potentiometers	36
Resistors	37
Switches	37
Switch, Magnetic	38
Switch, Assembly, Micro	38
Switch, Video	38
CONNECTORS	
Connector	39
Connector, Coax	39
Connector, RF	40

PRECEDING PAGE BLANK NOT FILMED

 $\overline{7}$

HARDWARE	Page
ELECTRICAL/ELECTRONIC ASSEMBLIES	
Attitude & Pointing Control Assembly	41
Blood Pressure Measuring Device	41
Charger, Battery	42
Control & Display Console	42
Control Moment Gyro Inverter Assembly	43
Control Thermostat	43
D.C. Amplifier	43
Electronic Interface Unit	. 44
Ergometer	. 44
Experiment Support System	. 44
Expiration Spirometer	45
Filter	. 46
Fire Sensor Control Panel	. 46
Generator, Tone	. 47
High Intensity Light	. 47
Intercom Box Panel	. 47
Inverter	. 47
Mass Spectrometer	. 47
Master Measuring Device	. 47
Metabolic Analyzer	. 48
Oscillator, RF	. 48
PCM/DDAS	. 48
Pre-Amplifier Accelerometer	. 48
Pulse Height Analyzer	. 49
Rapid Pressure Loss Detector	. 49
Receiver/Decoder	. 49
Signal Conditioner ••••••••••••••••••••••••••••••••••••	• 49

HARDWARE Page ELECTRICAL/ELECTRONIC ASSEMBLIES (Concluded) Sky lab Medical Environmental Altitude Test 50 50 S054 Experiment Speaker, Intercom 51Spectroheliometer 51 Summer Assembly 5151 Tape Recorder...... 52Thermal Conditioning Fan 54 Thermal Control 54Timer, Electronic 55 Timer, Portable 55 55 INTEGRATED CIRCUITS/PRINTED CIRCUIT BOARDS Integrated Circuit 56 Micro Electronic Circuit..... 56Micro Circuit 57 Printed Circuit Boards 57POWER SUPPLIES Power Supply..... 60 RELAYS 61

HARDWARE INDEX ELECTRICAL

HARDWARE	Page
SEMI-CONDUCTORS	
Diodes	62
Transistors	63
TRANSDUCER	
Transducer	66
Transducer, Pressure	67
UMBILICALS	
Umbilicals	68
MISCELLANEOUS	
Brush Material	69
Drive Assembly	69
Motorized Door	69

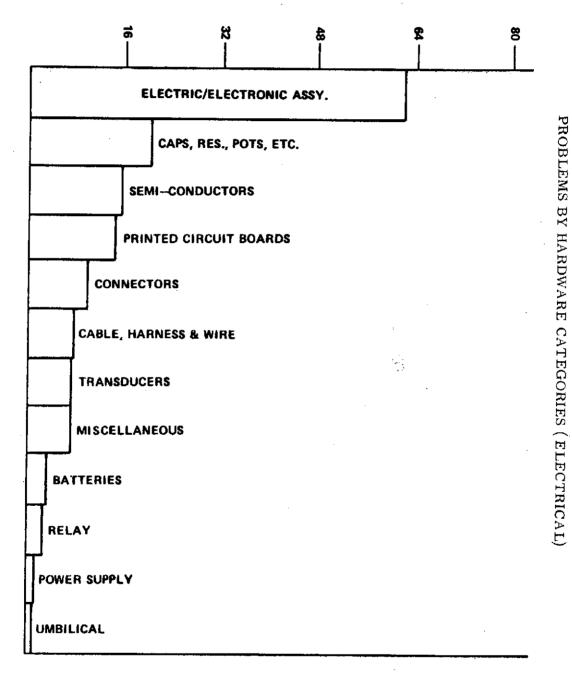
Photo Coupled Isolator

Water Heater

.

69

69


70

70

HARDWARE INDEX ELECTRICAL

.

NUMBER OF PROBLEMS

DESIGN	Page	(Item)
BATTERIES		<u></u>
Battery	32	(1)
CABLES, HARNESSES & WIRE		
Cable	33	(2)
Cable · · · · · · · · · · · · · · · · · · ·	33	(3)
Cable, Interconnect	33	(5)
Cable, Interconnect	33	(6)
CAPACITORS, RESISTORS, POTENTIOMETERS, CIRCUIT BREAKERS, AND SWITCHES		
Capacitor	35	(4)
Potentiometer	37	(11)
Resistor	37	(13)
Resistor	37	(14)
Switch	38	(16)
Switch, Magnetic	38	(18)
CONNECTORS		
Connector · · · · · · · · · · · · · · · · · · ·	39	(2)
Connector · · · · · · · · · · · · · · · · · · ·	39	(4)
Connector · · · · · · · · · · · · · · · · · · ·	39	(5)
Connector, Coax	40	(7)

.

PROBLEM INDEX ELECTRICAL

.

DESIGN Page (Item) ELECTRICAL/ELECTRONIC ASSEMBLIES (2)Attitude and Pointing Control 41 (5) Blood Pressure Measuring Device 42 Blood Pressure Measuring Device 42 (6) Charger, Battery (7)42Control and Display Console (8)42Electronic Interface Unit 44 (13)44 (14)Ergometer 44 (15)High Intensity Light 47 (26)Inverter, Environmental Control 47(28)(29)47Master Measuring Device 47 (30)(31)Metabolic Analyzer 48 Rapid Pressure Loss Detector 49 (37)Receiver Decoder 49 (38)Signal Conditioner 50 (41)(48)Sun End Canister 51 (49)Tape Recorder 52Tape Recorder 52(51)Tape Recorder 52(52)Tape Recorder 53 (54)Tape Recorder (57)54 (59)54 55 (62)

PROBLEM INDEX ELECTRICAL

DESIGN	Page	(Item)
INTEGRATED CIRCUITS, PRINTED CIRCUIT BOARD	s	
Micro Circuit	57	(6)
Printed Circuit Board	57	(10)
RELAYS		
Relay	61	(1)
SEMICONDUCTORS		
Diode	63	(7)
Transistor	64	(10)
MISCELLANEOUS		
Drive Assembly	69	(2)
Water Heater	70	(7)
HUMAN ERROR	Page	(Item)
BATTERIES		
Battery	32	(2)
CABLES, HARNESSES AND WIRE		
Cable	33	(1)
Cable	33	(4)
CONNECTORS		
Connector	39	(1)
Connector	39	(3)

PROBLEM INDEX ELECTRICAL

HUMAN ERROR	Page	(Item)
ELECTRICAL/ELECTRONIC ASSEMBLIES		
Blood Pressure Measuring Device	41	(4)
D.C. Amplifier	43	(12)
Experiment Support System	45	(19)
Intercom Box Panel	47	(27)
PCM/DDAS	48	(34)
Signal Conditioner	49	(39)
Timer, Electronic	55	(60)
Timer, Portable	55	(61)
POWER SUPPLIES		
Power Supply	60	(1)
SEMICONDUCTOR		
Transistor	63	(9)
TRANSDUCERS		·
Transducer	66	(1)
MAINTENANCE	Page	(Item)
ELECTRICAL/ELECTRONIC ASSEMBLIES	"	
Tape Recorder	54	(56)
MISCELLANEOUS		
Operation Mechanism	69	(4)

PROBLEM INDEX ELECTRICAL

MANUFACTURING	Page	(Item)
BATTERIES		
Battery Rack	32	(3)
CABLES, HARNESSES, AND WIRE		
Harness Assembly	33	(7)
Wire	34	(8)
CAPACITORS, RESISTORS, POTENTIOMETERS, CIRCUIT BREAKERS, AND SWITCHES		
Capacitor	35	(1)
Capacitor	35	(2)
Capacitor	35	(3)
Capacitor	35	(5)
Capacitor, Tantalum	36	(6)
Capacitor, Tantalum	36	(7)
Inductor	36	(8)
Potentiometer	36	(10)
Resistor	37	(12)
Switch	37	(15)
Switch	38	(17)
Switch, Assembly, Micro	38	(19)
Switch, Video	38	(20)
CONNECTORS		
Connector, Coax	39	(6)
Connector, RF	40	(8)

Connector, Zero G

Shorting Plug

(9)

(10)

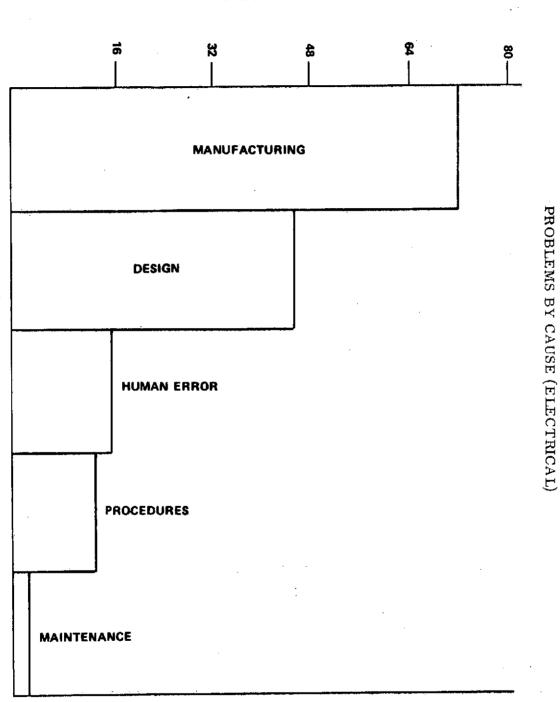
40

40

HARDWARE INDEX ELECTRICAL

.

MANUFACTURING	Page	(Item)
ELECTRICAL/ELECTRONIC ASSEMBLIES		
Blood Pressure Measuring Device	41	(3)
Control Moment Gyro Inverter	43	(9)
Control Thermostat	43	(10)
Ergometer	44	(16)
Experiment Support System	44	(17)
Expiration Spirometer	45	(20)
Expiration Spirometer	46	(21)
Filter EMI	46	(22)
Fire Sensor Control Panel	46	(23)
Fire Sensor Control Panel	46	(24)
Generator, Tone	47	(25)
Metabolic Analyzer	48	(32)
Oscillator, RF	48	(33)
Pre-Amplifier	48	(35)
Signal Conditioner	50	(42)
Skylab Medical Environmental Altitude Test	50	(43)
Speaker Intercom	51	(45)
Spectroheliometer	51	(46)
Tape Recorder	53	(53)
Tape Recorder	53	(55)
Thermal Conditioning Fan	54	(58)


MANUFACTURING Page (Item) INTEGRATED CIRCUITS, PRINTED CIRCUIT BOARDS (1)Integrated Circuit 56 Integrated Circuit 56 (2)Integrated Circuit (3)56 Micro Electronic Circuit..... (4)56 Micro Electronic Circuit..... (5) 56 Micro Circuit (7)57 57 (8)(9)57 Printed Circuit Board (11) 58 58 (12)RELAYS (2)61 SEMI-CONDUCTOR (1)62 $\mathbf{62}$ (2)(3)62 (5)62 (6)63 (8)63 Transistors..... (11)64Transistors..... 64 (12)Transistors..... (13)64 Transistors..... (14)65 Transistors..... (15) 65

MANUFACTURING	Page	(Item)
TRANSDUCERS		
Transducer	66	(2)
Transducer	66	(3)
Transducer	66	(4)
Transducer	67	(6)
Transducer, Pressure	67	(7)
UMBILICALS		
Umbilical	68	(1)
MISCELLANEOUS		
Brush Material	69	(1)
Motorized Door	69	(3)
Photon Coupled Isolator	69	(5)
Stub Antenna	70	(6)

PROBLEM INDEX ELECTRICAL

.

PROCEDURES	Page	(Item)
CAPACITORS, RESISTORS, POTENTIOMETERS, CIRCUIT BREAKERS AND SWITCHES		
Potentiometer	36	(9)
ELECTRICAL/ELECTRONIC ASSEMBLIES		
Attitude and Pointing Control	41	(1)
D. C. Amplifier	43	(11)
Experiment Support System	45	(18)
Pulse Height Analyzer	49	(36)
Signal Conditioner	50	(40)
S054 Experiment	50	(44)
Summer Assembly	51	(47)
Tape Recorder	52	(50)
INTEGRATED CIRCUITS - PRINTED CIRCUIT BOARD	S	
Printed Circuit Board	58	(13)
Printed Circuit Board	59	(14)
SEMI-CONDUCTORS		
Diode	62	(4)
TRANSDUCERS		
Transducer • • • • • • • • • • • • • • • • • • •	66	(5)

NUMBER OF PROBLEMS

CONDITION	Page	(Item)
ADJUSTMENT/CALIBRATION IMPROPER		<u></u>
Transducer • • • • • • • • • • • • • • • • • • •	66	(1)
ASSEMBLY/INSTALLATION IMPROPER		
Cable	33	(1)
Capacitor	35	(3)
Capacitor	35	(5)
Capacitor, Tantalum	36	(6)
Capacitor, Tantalum	36	(7)
Connector	40	(8)
Connector, Coax	39	(6)
Filter, Electro-Magnetic Interference	46	(22)
Inductor	36	(8)
Intercom Box Panel	47	(27)
Metabolic Analyzer	48	(31)
Metabolic Analyzer	48	(32)
PCM/DDAS Assembly	48	(34)
Potentiometer	36	(9)
Potentiometer	37	(11)
Power Supply	60	(1)
Signal Conditioner	50	(42)
Stub Antenna	70	(6)
Tape Recorder	52	(55)
Thermal Conditioning Fan	54	(58)
Transducer, Pressure	67	(7)

Page (Item) CONDITION BROKEN, CRACKED, PUNCTURED, SPLIT OR CUT Battery (2)32 Diode (7)63 Fire Sensor Control Panel (23)46 (7)57 Timer, Electronic (60)55 BROKEN/DAMAGED WIRE Blood Pressure Measuring Device (3)41 (1) 33 (4) 33 69 (3) Timer, Portable (61)55 Transducer (6)67 Umbilical (1) 68 (8)34CONTAMINATED/CORRODED Capacitor (2)35 Diode (8)63 Micro Electronic Circuit 56 (4)Micro Electronic Circuit (5) 56 (2)61 38 (20)Tape Recorder 54 (56)Transducer (4) 66

CONDITION	Page	(Item)
CONTAMINATED/CORRODED (Concluded)		<u>سن بالمح</u>
Transducer	66	(5)
Transistor	64	(12)
Transistor	64	(13)
CRACKED/DEFECTIVE SOLDER JOINTS		
Brush Material	69	(1)
Control Thermostat	43	(10)
Generator, Tone	47	(25)
Oscillator, RF	48	(33)
Printed Circuit Board	57	(8)
Printed Circuit Board	57	(9)
Skylab Medical Environmental Altitude Test	50	(43)
Transistor	65	(15)
DEFECTIVE BOND, CONFORMAL COATING, POTTIN	G	
Diode	63	(6)
Experiment Support Systems	43	(17)
Integrated Circuit	56	(1)
Photon Coupled Isolator	69	(5)
Printed Circuit Board	58	(12)
Printed Circuit Board	59	(14)
DEFECTIVE WELD JOINTS		
Pre-Amplifier Accelerometer	48	(35)
Transducer	66	(2)

CONDITION	Page	(Item)
INADEQUATE/IMPROPER DESIGN		
Attitude and Pointing Control	41	(2)
Battery	32	(1)
Blood Pressure Measuring Device	42	(5)
Blood Pressure Measuring Device	42	(6)
Cable	33	(2)
Cable, Interconnect	33	(5)
Cable, Interconnect	33	(6)
Charger, Battery Regulator Module	42	(7)
Connector	39	(2)
Control and Display Console	42	(8)
Drive Assembly	69	(2)
Electronic Interface Unit	44	(13)
Ergometer	44	(14)
Experiment Support System	45	(18)
High Intensity Light	47	(26)
Inverter, Environmental Control	47	(28)
Mass Spectrometer	47	(29)
Master Measuring Device	47	(30)
Micro Circuit	57	(6)
Printed Circuit Board	57	(10)
Pulse Height Analyzer	49	(36)
Rapid Pressure Loss Detector	49	(37)
Relay	61	(1)
Resistor	37	(13)
Resistor	37	(14)

CONDITION	Page	(Item)
INADEQUATE/IMPROPER DESIGN (Concluded)		
Tape Recorder	52	(49)
Tape Recorder	52	(51)
Tape Recorder	52	(52)
Tape Recorder	53	(54)
Tape Recorder	54	(57)
Thermal Control	54	(59)
Transmitter	55	(62)
Transistor	65	(14)
INTERMITTENT/INCOMPLETE/ERRONEOUS OPERATIO	NC	
Attitude and Pointing Control	41	(1)
Blood Pressure Measuring Device	41	(4)
D.C. Amplifier	43	(11)
D.C. Amplifier	43	(12)
Diode	62	(3)
Diode	62	(4)
Ergometer	44	(16)
Expiration Spirometer	45	(20)
Expiration Spirometer	46	(21)
Resistor	37	(12)
Signal Conditioner	50	(40)
5054 Experiment	50	(44)
Summer Assembly	51	(47)
Switch	38	(16)
Tape Recorder	52	(50)

.

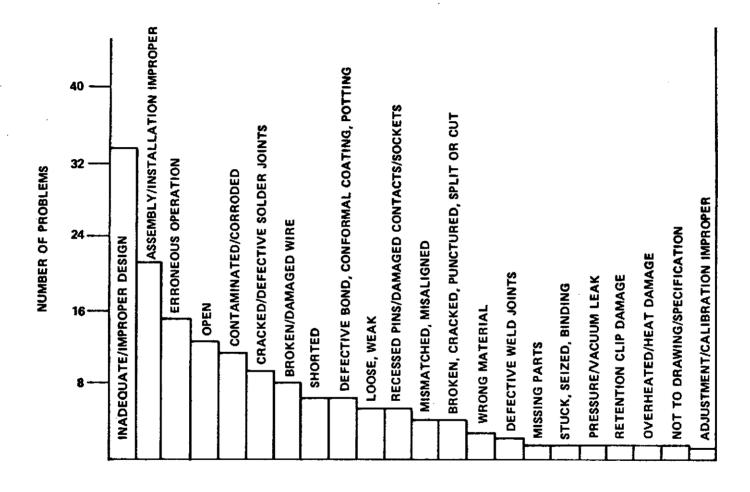
CONDITION INDEX ELECTRICAL

.

 $\mathbf{26}$

t

.


.

CONDITION Page (Item) LOOSE/WEAK Ergometer (15) 44 (10)Potentiometer 36 Speaker, Intercom (45) 51Sun End Canister (48)51 Switch Assembly, Micro (19) 38 MISMATCHED, MISALIGNED Connector, Coax (7)40Diode (1)62 Signal Conditioner (41)50 Switch, Magnetic (18) 38 MISSING PARTS 69 (4)NOT TO DRAWING/SPECIFICATION Water Heater (7)70 OPEN (9)43(2)62 (5) 62 Integrated Circuit (2)56 Integrated Circuit (3) 56 Printed Circuit Board (13)58 Receiver/Decoder 49 (38)Shorting Plug (10)40

CONDITION INDEX ELECTRICAL

CONDITION	Page	(Item)
OPEN (Concluded)		
Spectroheliometer	51	(46)
Tape Recorder	53	(53)
Transistor	63	(9)
Transistor	64	(10)
OVERHEATED/HEAT DAMAGE		
Capacitor	35	(1)
PRESSURE/VACUUM LEAK		
Transducer	66	(3)
RECESSED/DAMAGED CONTACTS/SOCKETS		
Connector	39	(1)
Connector	39	(3)
Connector	39	(4)
Connector	39	(5)
Fire Sensor Control Panel	46	(24)
RETENTION CLIP DAMAGE		
Connector, Zero G	40	(9)
SHORTED		
Battery Rack	32	(3)
Capacitor	35	(4)
Harness Assembly	33	(7)
Printed Circuit Board	58	(11)
Signal Conditioner	49	(39)
Transistor	64	(11)

CONDITION	Page	(Item)
STUCK, SEIZED, BINDING	, i. M. ć,	<u></u>
Switch	38	(17)
WRONG MATERIAL		
Experiment Support System	45	(19)
Switch	37	(15)

30

PROBLEMS BY CONDITIONS (ELECTRICAL)

ELECTRICAL PROBLEM SUMMARY

 $\mathbf{31}$

			· · · · · · · · · · · · · · · · · · ·		BATTERIES	· · · · · · · · · · · · · · · · · · ·
32	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	1	Battery	Cell leakage at terminal seals and pressure relief valves.	vendor manufac-		Revise terminal stud seal design and assure adherence to drawing. Add rigid epoxy around stud to enhance seal. Vacuum leak test cells prior to installing in battery case.
	2	Battery	Seal leakage	• ••	Loss of battery functions.	Implement handling procedures.
	3	Battery Rack	CBRM's will not power up.	•	Degradation of battery.	Assure adequate inprocess manufacturing and inspection controls exist.

.

·				5, HARNESSES, AND	REMARKS/SUGGESTIONS
NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGES HONS
1	Cable	Open circuit in cable.	Cable mishandl- ing.	Primary Acquisition Sun Sensor would not turn off.	Motivate all personnel to have a sense of awareness against handling damage.
2	Cable	Noise on experi- ment cables.	Cables not grounded; shields not terminated.	Out of tolerance voltage readings.	Assure complete design review is accom- plished prior to test of system.
3	Cable	Antenna cable caught in wing, stretched and pulled out of clamps.	Improper routing of cable.	Damaged cable.	Initiate design review to assure proper cable routing.
4	Cables	Strain gage cable has an open circuit.	Broken wire.	Part fails to function as intended.	Caution personnel in proper handling pro- cedures for delicate strain gages and cables.
5	Cable, Interconnect	Open circuit in coax cable.	Coax center con- ductor too small.	Loss of signal from temperature sensor.	Initiate design review to assure adequate current carrying capability of conductors.
6	Cable, Interconnect	Connector pin posi- tion reversed.	Drawing error.	Improper operation and/or component damage.	Perform design review of drawings prior to release.
7	Harness Assembly	Wire shorting to ground shield.	Sharp point at shield-to-wire splice penetrated wire insulation.	Improper operation of cuff assembly.	Initiate inspection under magnification of wire/shield splices.

CABLES, HARNESSES, AND WIRE

ယ္သ

34	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	8	Wire	Wire insulation damaged and shorted to clamp.	Manufacturing error.	Low resistance reading resulting in malfunction of solar wing.	Initiate training program for mfg. personnel on proper methods of wire/cable routing and clamping. Initiate 100 percent inspection of mfg. operations.
				-		

CABLES, HARNESSES, AND WIRE (Concluded)

د.... م

.

•

•

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
1	Capacitor	Short	Excessive heat during retinning or installation.	Reflow of internal solder.	Subject printed circuit boards to radio- graphic examination in accordance with MSFC-STD-355B. Interpret radiographs in accordance with MSFC solid tantalum capacitor X-ray inspection criteria.
2	Capacitor	Electrolyte leakage.	Acid leakage occurring under, around, or through the brazing mate- rial used for final sealing.		Inspection for electrolyte leakage with thymol blue as specified in MIL-C-39006. Also, do a litmus paper test to check the presence of acid.
3	Capacitor	Intermittent conditions.	Inadequate con- trolled drilling of "green" ceramic and inadequate inspection.	Cracking of ceramic and separation between ceramic and palladium-silver frit.	Perform 100 percent neutron radiographic inspection.
4	Capacitor	Short	Application of high ripple cur- rents, or low level reverse voltage.	Silver "bridge" across teflon seal from case to tanta- lum slug.	Inspect for presence of silver plating on case, seal, and anode. If there is enough silver to justify replacement, select from MIL-C-39006/09B Part Nos. M39006/09- 4411 through 5025.
5	Capacitor	Acidic leakage	Excessive etching of leads during cleaning operation	Internal leakage.	Tighten manufacturing process and sub- sequent inspection controls. Institute screening test techniques.

CAPACITORS, RESISTORS, POTS, CIRCUIT BREAKERS AND SWITCHES

CAPACITORS, RESISTORS, POTS, CIRCUIT BREAKERS AND SWITCHES (Continued)

3	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	6	Capacitor, Tantalum	Capacitor failed.	Capacitor soldered to wrong terminal.	Reverse polarity voltage applied to capacitor causing it to explode.	Initiate 100 percent inprocess inspection to verify correct assembly of piece parts.
	7	Capacitor, Tantalum	Solder pellet in bottom of case had not been flowed to attach slug to case.	Inadequate process control.	Capacitor failure.	Use capacitors that meet MIL-C-39003 failure rate level P or better and have been X-rayed in accordance with MSFC Solid Tantalum capacitor X-ray inspection criteria.
	8	Inductor	Inductors cracked and open.	Mechanical stress on inductor body caused by thermal shock.	Failure to function as intended.	Perform engineering analysis to assure parts are not overstressed by improper bonding or conformal coating. Also, verify leads have stress relief bends.
		Potentiom- eter	Bus number 2 adjustment pot gives erratic readings.	- · · •	Improper function of pot.	Assure proper torque procedures are available and require inspection to witness all torque operations.
	- 1	Potentiom- eter	Pin three loose at lead-case interface.	Lead stresses too great.	Erratic offset bias and unstable output of signal conditioner.	Assure mounting operation does not over stress leads. Impose thermal cycling to screen for defective parts at pre-potting where components can be replaced without scrapping entire assembly.

~

I		CAPACITORS, RES	SISTORS, POTS, CI	RCUIT BREAKERS AF	VD SWITCHES (Continued)
NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
11	Potentiom- eter	Potentiometer could not be set to lower resistance values.	entered the case	High output amplifier gain reading in the signal conditioner.	Assure that receiving inspection plans include criteria for inspection for surface defects and are compatible with procurement and military specifications.
12	Resistor	Resistors in power supply changed values causing high indicator readings.	Process deviation in manufacture of resistors.	Erroneous readings.	Periodically evaluate supplier's process controls.
13	Resistor	Parts exhibited a max + 0.02 percent resistance drift while on the shelf.	Resistance may increase for a period that may exceed 250 hrs. after completion of manufacturing and screening processes.	Resistance value shifted positive with time.	Specify the necessary stabilization period prior to final resistance measurement for applications where amount of resistance error would be of concern.
14	Resistor	Unstable parts.	Metal migration of resistive film due to presence of contaminants.	Increased resistance when subjected to about 25 percent rated power.	Perform engineering evaluation of parts to determine they are adequate for intended function.
15	Switch	Broken and bent contact springs.	Improper stress relief annealing of contact springs.	Open condition	Initiate qualification/life testing of piece parts.

CAPACITORS, RESISTORS, POTS, CIRCUIT BREAKERS AND SWITCHES (Continued)

CAPACITORS, RESISTORS, POTS, CIRCUIT BREAKERS AND SWITCHES (Concluded)

₩ 88	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	16	Switch	No talk back from thermal control system bypass valve in radiator position.	Failure of the valve talk back switch.	Refrigerator loop could not respond to temperature control demands, which would cause transfer to secondary loop and cause loss of redundancy.	Do not include talk back position switches on valves unless they are absolutely necessary, especially where they can introduce unwanted system failure modes.
	17	Switch	Sticking push buttons on OAS keyboard.	Mechanical buildup of tolerances.	Does not perform as intended.	Ensure 100 percent inspections of switches for proper operation.
	18	Switch, Magnetic	Meteoroid shield magnetic switch mislocated.	Drawings did not identify correct position of magnet portion of switch.	Inability to latch meteoroid shield after deployment.	Ensure drawings callout correct dimensions and clearance. Incorporate verification checks as part of checkout sequence.
	19	Switch Assembly, Micro	Micro switch loose in mounting bracket.	Mounting screws not tight due to absence of torque requirements.	Failure of micro switch to operate, over driving CMG.	Assure proper torque requirements are imposed.
	20	Switch, Video	Unable to adjust bias trim pot.	Trim pot would not turn because it was contaminated with potting material.	Failed to function as intended.	Initiate adequate inspection to verify parts are functional prior to use.

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
1	Connector	Connector pins bent.	Handling damage.	Erroneous operation of unit.	Motivate personnel to be more careful in handling critical hardware.
2	Connector	RF connector has loose rear bushing.	No locking device provided other than 8-10 in./lbs of torque.	Possibility of loosen- ing up and losing continuity.	Provide locking devices for critical circuit connectors.
3	Connector	No continuity through pin C of connector.	Improper mating caused pin C to be bent flush to its own base.	Lack of continuity.	Implement training for personnel in connector mating and restrict mating to qualified personnel.
4	Connector	Contacts could not be inserted in con- nector holes.	Manufacturer reduced contact shoulder size from 0.136 in. max. to 0.133 in. max.	Potential inter- ference fit.	Inspect all pin and socket contacts for CV connectors to maximum shoulder dimension of 0.133 in.
5	Connector	Power lost at transmitter signal/ power connector.	Socket contacts (split time, open entry type) spread. Test pin falls out.	Loss of continuity with mating pin contacts.	Test for pin withdrawal force. Specify closed entry socket contact for new designs.
6	Connector, Coax	Pins recessed and loose connectors.	Improper manu- facturing tech- niques.	Intermittent/open circuit causing loss of circuit function.	Assure adequate manufacturing and inspec- tion procedures to prevent poor workman- ship and inspection escapes.

CONNECTORS

				CONNE	CTORS (Concluded)	
40	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	7	Connector, Coax	Two types of coax contacts which do not intermate exist for same connector body.	Solder version has pin center contact in receptacle hous- ing and socket center contact in plug housing. Crimp version has socket center con- tact in receptacle housing and pin center contact in plug housing.	mating.	Verify that compatible contacts are specified to assure mating of connectors during system integration. MSFC prefers crimp- type version of coaxial contact.
	8	Connector, RF	Intermittent contact (spread socket) or a short (segment of socket broken off).	not captivated and	Socket damage.	Inspect Series "N" RF cable connectors with noncaptivated center contacts for proper position. Check for adequate withdrawal forces. For future applications use only connectors with captivated center contacts per MIL-C-39012.
	9	Connector, Zero G	Polarizing index pins fell out.	Insufficient retention.	Inability to complete circuit.	Assure connectors are adequately tested and qualified prior to use on flight hardware.
	10	Shorting Plug	Shorting plug is open.	Wiring error during fabrication.	Failed its intended function.	Assure adequate testing of shorting plugs prior to release for use.

1

.

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
1	Attitude and Pointing Control	"Start" commands issued prior to power on sequence.	Test procedure error.	"Power on" indica- tions off when bus power is applied.	Assure adequate test procedure review is accomplished.
2	Attitude and Pointing Control	CMG 2 inner gim- bal tachometer does not remain at null when outer gimbal is torqued.	Design change incomplete.	Out of tolerance condition.	Initiate configuration control to assure specifications and procedures are updated to be compatible with engineering changes.
3	Blood Pressure Measuring Device	Defective inter- grated circuit on PC Board No. 1 in Blood Pressure Measuring Device (BPMD).	Bridging of the conformal coating induced stress which caused a wire to break.	LED displays on the BPMD will not update or change when readings change.	Maintain proper thickness of conformal coating through better application methods and inprocess inspection.
4	Blood Pressure Measuring Device	Degraded opera- tional amplifier on PC Board No. 1.	Electrical over- stress received during bench analysis by pos- sible shorting of the output to B+.	Systalic displays read low.	Stress need for extreme care during fault isolation of delicate electronic devices.

ELECTRICAL/ELECTRONIC ASSEMBLIES

42	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
2	5	Blood Pressure Measuring Device, Automatic	The automatic blood pressure measuring system cuff fill time was too great at an environment of 2 psia and 116°F.	Design error;	The slow fill rate would have no effect on experiment or	Orifices should be sized and specifications set to meet the space requirement and not ambient conditions.
	6	Blood Pressure Measuring Device, Automatic	Plugable PC boards backed out of their respective con- nectors.	compression pad inadequate	Plugable P.C. boards lose contact that results in loss of function.	Perform design review and sufficient testing to verify plug-in modules are adequately held in position.
	7	Charger, Battery, Regulator Module	Preregulator tran- sistor damaged.	Excess power dis- sipation during certain startup conditions.	Assembly will not function as intended.	Perform in-depth design reviews and adequate testing to weed out marginal design problems.
	8	Control and Display, Console	Power system meters stick when input lines are open.	inputs are open, a negative voltage is	Erroneous bus cur- rents and battery temperature indica- tions.	Update design to add resistance to meter circuitry for meter bias compensation.

-

ELECTRICAL/ELECTRONIC ASSEMBLIES (Continued)

.

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
9	Control Moment Gyro Inverter Assembly No. 2.	Amplifier output stage bias resis- tors burned open.	Poor heat conduc- tion from output transistors to heat sink during ther- mal vacuum test- ing. Transistor Belleville springs were improperly heat treated and would not hold tension.	Loss of output from amplifier.	Assure proper vendor control during manufacturing of critical component parts.
10	Control Thermostat.	Thermostat inoperative.	Cold solder joints.	Improper operation.	Perform 100 percent inprocess inspection and verify adequate assembly/inspection procedures/requirements.
11	D.C. Amplifier.	Negative portion of D.C. Amplifier square wave output out of tolerance from zero reference.	Electrical tol- erance buildup. Test specification is not compatible with circuit design.	Improper operation.	Assure that test specifications are compat- ible with design limits of the hardware.
12	D. C. Amplifier	Open channel in D.C. Amplifier.	Electrical over- stress externally applied as result of test error.	Loss of one of the 14 thrusters and pos- sible loss of CMG mode in astronaut maneuvering equip- ment.	Assure test procedure is sufficiently detailed to reduce possible operator error.

``

ſ	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	13	Electronic Interface Unit	Incorrect operation of teleprinter.	Condition caused by power transient	Voltage spike is sufficient to reset teleprinter.	Provide in-depth design reviews and more thorough EMI testing to assure protection from unwanted noise spikes.
	14	Ergometer	Circuit sensitive to shape of input pulse.	• •	Low heartbeat indications.	Provide for and perform meaningful reliability/design reviews early in program. Perform test program to verify design.
	15	Ergometer	Excessive current draw due to mechanical shift in zero adjust potten- tiometer.	No requirement for lock tite on adjustment screw.	Assembly will not function as intended.	Ensure design provides for application of locking/sealing material to adjustable pots to prevent mechanical shift.
	16	<u> </u>	Water condensing internal to electro- nic module causing slow response to input signals.	Condensation dur- ing humidity testing.	Slow response to signals and eventual short circuit.	Do not test equipment in environment more severe than that in which it is to be used. Add caution note to procedure to avoid sub- jecting component to dew point. If dew point occurs, take steps to dry component prior to further testing.
	17	Experiment Support System	Power monitor signal conditioner voltage output will not stablize.	Defective zener diode — excessive voids in eutectic bond between chip and header and between header and external lead.	Improper operation of power signal conditioner.	Replace 1N4611 zener diodes with S1N827A zener diodes.

.

-

.

ELECTRICAL/ELECTRONIC ASSEMBLIES (Continued)

N	10.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	.8	Experiment Support System.	Lack of inter- changeability between acclusion cuffs and elec- tronics modules.	controls on flight	Out-of-tolerance blood pressure readings.	Implement and enforce an adequate configura- tion control system.
	19	Experiment Support System	Nonflight hardware used in flight back- up unit.	There were no serial numbers required for this item until after assembly and functional test. Mfg. inspection records were inadvertently exchanged for the flight unit and trainer prior to serialization.	Out of specification isolation resistance between 28 VDC return on the events timer and the secondary display.	Assure clear markings for nonflight articles and effective records control to prevent mixing.
	20	Expiration Spirometer	Position switch on the expiration spirometer does not operate consistently.	Auxiliary actuator arm was mis- aligned. Manufac- turing error due to failure to com- ply with EO before installation.		Provide adequate inspection points to assure all outstanding EO's are worked correctly.
			×			

F				LECTRICAL/ELEC	TRONIC ASSEMBLIES	(Continued)
5	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	21	Spirometer	Expiration spiro- meter exhibited excessive noise in the 6 and 7 liter position. Position indicator lock down screw turns with nut, preventing proper lock down of potentiometer.	Potentiometer drive cable im- properly installed and position indi- cator lock down screw also im- properly installed.	Improper operation of expiration spirometer.	Implement inprocess inspection to assure proper assembly.
		,	Shorted inductor in EMI filter.	Inductor miswired.	Input short in the EMI filter which would cause a high current draw at the next higher assembly.	Impose more stringent inprocess inspection.
	23		Relay did not func- tion properly.	Overstress on relay terminals cracking glass header.	Damage/contamina- tion of internal parts of relay.	Implement 100 percent vendor inspection requirements. Ensure personnel are properly trained and are using correct assembly procedures.
	24		Relay would not operate.	Armature leaf spring in relay was bent and interfered/ restricted move- ment of armature assembly.	Relay inoperative.	Assure adequate inprocess inspection during relay buildup and test.

.

•

46

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
25	Generator, Tone.	Defective solder joints.	Inadequate assembly and inspection procedures.	Tone generator does not operate properly.	Assure adequate assembly and inspection procedures exist.
26	High Intensity Light.	Energizing high intensity light caused excessive ripple voltage on bus.	No RFI filters used.	Possible interfer- ence to equipment using this bus as a power source.	Use RFI filters where necessary.
27	Intercom Box Panel.	Master alarm indication incorrect	Wires reversed on panel lamps.	Incorrect alarm indication.	Perform continuity testing after installation of critical flight hardware.
28	Inverter, Environ- mental Control System.	Loss of filter capacitor.	Capacitor lead fatigue during vibration.	Failure of component to perform intended function.	Perform design review to assure drawings require piece parts to be staked to P.C. boards.
29	Mass Spectro- meter.	Mass Spectro- meter buffer amplifier satura- tion.	Inadequate mag- netic shielding.	Metabolic analyzer display reads out of specification.	Assure design checklist contains provisions for checking magnetic shielding requirements.
30	Master Measuring Device	Power supply failed.	Diode failed as result of thermal stress — momen- tary surge of 40A.	Failure of com- ponent to perform intended function.	Perform design review to assure proper component selection.

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
31	Metabolic Analyzer	Improper function.	Split-ring lock washer used to mount transistor stud to heat sink pierced mylar insulation and shorted collector to chassis.	Collector transistor in power supply regulator shorted to chasis.	Perform design review to assure lock washers are not used in direct contact with insulated coating on chasis for transistor installations.
32	Metabolic Analyzer	Loose connections on PC board caus- ing defective trigger circuit in metabolic analyzer.	Poor workman- ship.	The oxygen consumed parameter failed to indicate expected values.	Increase training and implement inprocess inspection.
33	Oscillator, RF	Failure to oscillate.	Poor wetting of solder to con- nector pins.	Loss of transmitted data.	Initiate soldering/inspection certification program.
34	PCM/DDAS Mod 301	Defective transistor transistor.	Heat conductor washer missing from transistor mount.	Transistor over- heated and failed.	Verify engineering drawings are correct/ complete. Impose 100 percent assembly inspection.
35	Pre- Amplifier Acceler- ometer	Pre-Amplifier Assembly non- operational.	Defective weld on feed thru wire.	Loss of intended function.	Initiate welding certification program.

1.12

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
36	Pulse Height Analyzer	Voltage compara- tor failed.	inoperative due to	to perform intended function.	Upgrade inspection and fabrication procedure to assure proper cure time is maintained prior to unit going to test.
37		Rapid pressure loss detector alarm received.	Internal instability of detector assembly.	Alarm initiated in error.	Conduct frequent design reviews to assure compatibility of equipment.
38	Decoder,	DCS secondary receiver does not process data properly.	Open diode caused by cold shock.	Diode failed.	Review test requirements to assure proper test criteria.
39		Shorted zener diode in signal condi- tioner.	Inadvertent reversal of ± 10 VDC power, causing excessive heat and reflow of solder bridging zener diode.	Loss of 2.5 VDC offset voltage for the assembly.	Assure test tools and associated circuitry provide protection from inadvertent power reversals.

50	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	40	Signal Conditioner	Cardiotachometer signal conditioner was out of specifi- cation during acceptance testing.		Possible erroneous output.	Assure that acceptance test procedures provide for in-system calibration when necessary.
	41		Common mode out- put voltage too high.	Improperly matched zener diodes.	Improper signal levels.	Perform design/engineering reviews to assure when matched components are necessary; this requirement is highlighted on drawings.
			Signal conditioner had no output.	Loose connection.	Loss of data.	Impose inprocess inspection prior to potting.
		Skylab Med- ical Environ- mental Altitude Test	tuning fork in		Vibration/tempera- ture cycles resulted in intermittent operation.	Assure all types of soldering techniques/ materials used are qualified/certified.
		S0–54 Experiment	Misapplication of voltage (over- stress) on S0-54 telescope during receiving inspec- tion.	techniques during	Thermal controller for forward housing failed to operate properly.	Initiate training program to ensure receiving inspection personnel use proper test methods/techniques.

.

ELECTRICAL/ELECTRONIC ASSEMBLIES (Continued)

50

.

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
45	Speaker Intercom.	Select knob is mis- aligned.	Jam nuts on selector switch loose.	Incorrect operation of selector switch.	Apply retaining compound (i.e., lock tite) on jam nuts.
46	Spectro- heliometer.	Resistor improp- erly connected.	Manufacturing error — techni- cian failed to solder connection.	Unit fails to operate as intended.	Initiate "flight awareness" program, upgrade inspection performance.
47	Summer Assembly.	Output was improper.	Input transistor elements in the operational ampli- fier were damaged by excessive voltage by using the wrong ohm meter during post pot test.	maneuvering equip-	Assure that test procedures specify adequate test equipment for each test.
48		Aperture door lever retaining nut and bushing on motor carriage loose.	Design deficiency. No safety locking feature.	Damage to assembly.	Initiate design reviews to look for safety/ locking features and provide for same as required.

52	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	49	Tape Recorder.	Loss of sync dur- ing data dump from tape recorder.	impropol (form	Incorrect data transmission.	Conduct design review to assure compati- bility of equipment.
	50	Tape Recorder.	Tape recorder inoperative.	Incorrect pro- cedures for pre- run adjustments and operation.	Tape recorder damaged.	Develop detail procedures to assure proper pre-run adjustments are made correctly — equipment is operated properly.
	51	Tape Recorder.	Hard over stop not machined properly on tape recorder.	Machining instruc- tions and changes were not clearly reflected on the drawings.	Supply compliance arm locked in hard over against the spring position.	Assure that drawings clearly define machin- ing instructions and also assure that inprocess inspection is sufficient to expose such occurrences.
	52	Tape Recorder.	Surface roughness of tape recorder carrier brake was not to specification and some adhesive was left on braking surface.	During rework after redesign the grit blast treat- ment was inadvertently omitted.	Tape recorder will not operate due to sticking of the brake surfaces.	Assure that rework instructions and drawing notes are adequate to prevent omissions of process steps. Also, assure that adequate inspection and testing is performed to verify recertification after rework.

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
53	Tape Recorder.	High resistence on two tracks of tape recorder.	An open and cracked resistor on each of two printed circuit boards caused by improper handling during installation and from thermal stress due to insufficient strain relief in resistor leads.		Inspect all resistors with 40X magnification prior to mounting. Revise drawings to require adequate strain relief and perform DC impedance check before and after com- formal coating.
54	Tape Recorder.	In the 60 in. per second (ips) record mode, tape speed was below normal.	A combination of pinch roller actuator adjust- ment and a worst case reel brake loading caused brake drag, result- in an inability to reach operating speed.	Distortion of data.	€ Design pinch roller actuator circuitry to effectively control brake drag and perform adequate testing to assure proper operation in all possible environments.
55	Tape Recorder.	Transistor marginally conductive.	Improperly installed swage terminal, result- ing in high resis- tance.	Failure to start/ record.	Perform design review to assure roll type swage terminals are not used on PC boards.

HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
Tape Recorder.	Loss of tape recorder data.	Contamination of record head.	Failure to record.	Assure proper/complete maintenance procedures identify cleaning frequency and method.
Tape Recorder Sleep Monitoring System.	Switch for tape recorders No. 1 and No. 2 was wired in reverse.	Wiring diagram error.	Improper operation.	Implement drawing reviews prior to drawing release to assure drawing accuracy.
	-	Fan wires con- nected to wrong terminals, incor- rect setting on elapsed time delay relay.	Fan would not come up to speed.	Perform continuity testing after installation and verify procedures are adequate for proper setting of relays.
Thermal Control.	Simultaneous heat exchanger com- mands received regardless of switch position, all four heat exchangers.	Spacecraft thermal control system circuitry creates a back bias condi- tion, causing on and off lamps to light simultane- ously.	Possible loss of thermal control system.	Perform adequate circuit analysis to prevent such incompatabilities within a system. Also, provide adequate testing to reveal such shortcomings in circuit design.
	Tape Recorder. Tape Recorder Sleep Monitoring System. Thermal Conditioning Fan.	Tape Recorder.Loss of tape recorder data.Tape RecorderSwitch for tape recorders No. 1 and No. 2 was wired in reverse.Monitoring System.Fan did not operate properly.Thermal Conditioning Fan.Simultaneous heat exchanger com- mands received regardless of switch position, all four heat	Tape Recorder.Loss of tape recorder data.Contamination of record head.Tape RecorderSwitch for tape recorders No. 1 and No. 2 was wired in reverse.Wiring diagram error.Sleep Monitoring System.and No. 2 was wired in reverse.Wiring diagram error.Thermal Conditioning Fan.Fan did not operate properly.Fan wires con- nected to wrong terminals, incor- rect setting on elapsed time delay relay.Thermal Control.Simultaneous heat exchanger com- mands received regardless of switch position, all four heat exchangers.Spacecraft thermal control light simultane-	Tape Recorder.Loss of tape recorder data.Contamination of record head.Failure to record.Tape Recorder.Switch for tape recorders No. 1 and No. 2 was wired in reverse.Wiring diagram error.Improper operation.Sleep Monitoring System.and No. 2 was wired in reverse.Wiring diagram error.Improper operation.Thermal Conditioning Fan.Fan did not operate properly.Fan wires con-

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
60	Timer, Electronic.	Timer failed to operate.	Toggle switch handle damaged — personnel mis- handling of equipment.	Mechanical internal binding — causing intermittent clock operation.	Provide "proper handling of equipment" procedures.
61	Timer, Portable.	Malfunction of electronic timer assembly.	Wire broken and damaged due to handling.	Timer would not operate upon signal, operation intermit- tent.	Establish program to motivate personnel to be more cautious in handling flight critical equipment.
62	Transmitter.	Transmitter output did not meet specification requirements.	Low transmitter output caused by variable capacitor.	When variable capac itor is adjusted to extreme low end, it bottoms out causing resistance short.	Perform design reviews to assure variable components are selected to operate in the mid-range rather than to the high or low side.

ទទ

56	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	1	Integrated Circuit.	Integrated circuit in transmitter had an internal short due to lifted die bond, allowing lead to short against another lead.	Inadequate bond due to low bonding temperature caused by inade- quate preheat at startup.	mitter from a	Assure procedures and processes are adequate and adhered to, especially temper- atures at the start of a production run. Screen 100 percent of all received integrated circuits used in flight systems.
	2	Integrated Circuit.	Failure to switch and out of tolerance	-	Severe metallization cracks.	Procure high reliability flight hardware to MSFC specifications. This will assure wafer traceability and SEM analysis of the metallization at wafer level.
	3	Integrated Circuit.	No output.		Failed to perform as intended.	Initiate 100 percent screening of IC's and perform acceptance testing to verify manufacture process.
	4	Micro Electronic Circuit.	Particle contamina- tion.	Inadequate manu- facturing procèsses.	Microelectronic circuit failure.	Use parts that have passed the monitored vibration/shock test.
	5	Micro Electronic Circuit.	Lid sealing tech- niques using solder (gold-tin preform).	200000 8410 1000	Short circuit across the metallization inside the package.	Use quartz passivated devices qualified to hi-rel. spec. 85M03766.
	·					

INTEGRATED CIRCUITS PRINTED CIRCUIT BOARDS

56

.

	INTEGRATED CIRCUITS PRINTED CIRCUIT BOARDS (Continued)						
NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS		
6	Micro Circuit.	Cracks in insulat- ing material between lead and lid seam or at lid attach junction in Dual Inline Packages (DIP's).	Temperature cycling on con- formal coated P.C. boards, where con- formal coating surrounded DIP.		Where possible, use device in flat package, or if pin requirement permits, the round can package. These packages may be con- formal coated without destroying package integrity.		
7	Micro Circuit.	Open input.	Cracking of glass seal which allowed fine leak.	Formation of den- drites due to cor- rosion of molyb- denum.	Consider using new design which replaces molybdenum with titanium-tungsten alloy and has layer of $S_{i 2}^{0}$ over the metallization.		
8	Printed Circuit Board.	Record Amplifier Board has inter- mittent output.	Overstressed solder joints due to a combination of conformal coating and exposure to -40° F.	Possible loss of channel on recorder.	Extreme care should be exercised when using conformal coated P.C. Boards at low temperature.		
9	Printed Circuit Board.	CBRM regulator will not turn on.	Solder bridge between two P.C. Boards.	No output from CBRM.	Initiate 100 percent inspection of printed circuit boards during fabrication.		
10	Printed Circuit Board.	Extra wire on P.C. card in logic dis- tributor.	Design error.	Fuse blown.	Assure adequate design review.		

INTEGRATED CIRCUITS PRINTED CIRCUIT BOARDS (Continued)

; [NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	11	Printed Circuit Board.	Short circuit, signal to ground.	Ground plane layer of multi- layer P.C. Board misaligned.	Failed to function in intended manner.	Improve inprocess inspection techniques of P.C. Board. Improve P.C. Board test procedures.
	12	Printed Circuit Board.	Excessive current leakage through conformal coating at elevated temperatures.	Resistance of the conformal coating is a function of thickness. The coating in this case was very thick and at eleva- ted temperature leakage was excessive.	Diastolic pressure reading would be inaccurate.	Clean prior to coating and apply coating thinly to reduce current leakage. Assure that specification limits are realistic and can be met at higher operating temperatures.
	13	Printed Circuit Board.	Open circuit on P.C. board.	Electrical over- stress caused when P.C. Board was plugged into set while power was "on."	Damage to PCB circuit.	Assure test procedures are reviewed by quality control to verify power is "off" dur- ing insertion/removal of P.C. Boards.

INTEGRATED CIRCUITS PRINTED CIRCUIT BOARDS (Continued)

ļ	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	14	Printed Circuit Board.	Cracks in conformal coating.	Inadequate process procedures.	Possible moisture contamination.	Revise manufacturing process procedures to incorporate the following changes:
		board.				(1) Vacuum de-aeration of coating for five to ten minutes at two to four mm Hg at 140°F, plus or minus five degrees, after application and prior to cure.
						(2) A pre-cure of two hours, plus or minus ten minutes, at 145°F, plus or minus five degrees, followed by curing at 175°F for 16 hours.
÷.						
						\$

INTEGRATED CIRCUITS PRINTED CIRCUIT BOARDS (Continued)

59

....

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
1	Power Supply.	Power supply circuit breaker tripped and would not hold closed.	Ground wire missing on pre- regulator card.	Interruption to experiment power supply.	Perform continuity testing to assure proper installation.
		1 Power	1 Power Power supply Supply. circuit breaker tripped and would	1PowerPower supplyGround wireSupply.circuit breakermissing on pre-tripped and wouldregulator card.	1PowerPower supplyGround wireInterruption toSupply.circuit breakermissing on pre-experiment powertripped and wouldregulator card.supply.

.

.

POWER SUPPLIES

¦					
NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
1	Relay.	Relay failed during testing.		Misapplication or relay.	Perform design review to prevent misapplication of parts.
2	Relay.	Contamination.	metallic particles.	Particles lodge between moveable contact and result in no contact closure.	Since it is impossible to eliminate particles of this small size, assess effects of relay contacts failing to make contact and, where a critical application is found, consider adding redundancy.

RELAYS

	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	1	Diode	Fractured glass and misaligned studs on diode	Handling and/or installation damage	Improper output of next higher assembly	Caution personnel on proper handling and installation and provide adequate pre-pot visual inspection
	2	Diode	Diode open	Manufacturing defect, faulty lead to diode contact	An open circuit to the leg band calibra- tion assembly	Review failure history of part to determine if problem is vendor or personnel related and take appropriate action
	3	Diode	Diode failed reverse voltage requirements	Flow in silicon lattice structure subsequently aug- mented by forward conduction stresses	Failure of next higher assembly	Procure diodes of planar construction instead of mesa type
	4	Diode	Zener diodes exhibiting early breakdown current in protective circuit	Lack of screening of diodes prior to installation to assure adequate parameters	Telemetry error for oxygen consumed	Provide screening requirements for use of selected piece parts
	5	Diode	Separation of cathode lead and die	-	Stresses induced by temperature changes caused the cathode lead-to-die bond to open	Devices in critical applications should be 100 percent screened (burn-in, etc.) in accordance with MSFC Drawing 85M02713

SEMICONDUCTORS

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
6	Diode.	Failed open during manufacturing test.	Compression bonding with glass body material holding chip and lead studs together mechani- cally.	Open at connection between chip and studs.	Use S1N parts per MSFC Drawing 85M03895.
7	Diode.	Low reverse resistance.	Microcracking of silicon chip on anode region close to silver button contact.	Metal migration through cracks.	On silver anode contact G.E. double heat- sink diodes older than 1970, determine whether single failure point can cause unacceptable performance degradation. If so, replace with silicon contact diode.
8	Diode.	Reverse breakdown voltage.	Contamination	Improper operation of device.	Assure adequate inprocess controls to prevent contamination. Implement tighter screening requirements.
9	Transistor	Transistor open.	Output was grounded acci- dentally, over- stressing the part.	Open base to emitter.	Assure that personnel have been properly trained and cautioned, and assure that sufficient separation of circuits exists to permit measurements.

SEMICONDUCTORS (Continued)

ĥ4	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	10	Transistor.	Electrical open condition between emitter bond wires and bonding pads.	Embrittling impurity (sulfur, oxygen and silver) in the grain boundaries of the wire.	Horizontal cracks along full length and width of bonds. Wires sheared hori- zontally at wire bond interface and moved away from bonding pad, leaving part of bonded wires adher- ing to pads.	For switching applications select parts with low saturation voltage and low leakage current. This results in low power dissipa- tion during the on condition, with reduced thermal stress.
	11	Transistor.	Electrical short.	Conductive par- ticle across chip's base metallization and collector region. Weld expulsion was observed in region of header cap weld.	Collector-to-base short.	Implement suitable form of loose particle detection, such as acoustic particle detec- tion.
	12	Transistor.	Intermittent or permanent shoring.	Weld splatter during sealing.	Splashes of metal particles become loose during vibra- tion tests.	Use "Weld Splash Barrier Ring" or any other method which will prevent occurrence or spread of weld splatter.
	13	Transistor.	Shorted collector to base.	Internal metallic contamination.	Failed to function as intended.	Initiate 100 percent screening to verify manufacturer's process.

SEMICONDUCTORS (Continued)

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
14	Transistor.	Bond failures.	Excessive bonding pressure, inadequate wire service loop and distortion of bond.	Cracking and separa- tion of bonded wire at heel of bond.	Do not use transistors built with 1-mil AL TC-wedge bonds in future space applications Observe safe application limits recom- mended in ALERT MSFC-69-10B for hardware already installed.
15	Transistor.	High leakage current.	Cracked dies, exposed junctions and lifted metal- lization.	Instability of parts.	Measure all high power mesa transistors at periodic intervals to ensure stability.

SEMICONDUCTORS (Concluded)

r	·	r	T	RANSDUCERS	
NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
1	Transducer.	Out of tolerance output levels on transducers.	Calibrated with 24K ohm output load instead of 1 megohm.	Did not function as intended.	Assure proper calibration procedures are used. Require procedure review for completeness and correctness.
2	Transducer.	Loss of output voltage regulation.	Open weld in voltage adjust resistor.	Component malfunc- tioned during test.	Assure that source inspection and manufac- turing requirements are adequate for weld- ing process.
3		Out of tolerance readings on transducer.	Slow leak in transducer case.	Incorrect operation of transducer.	Assure adequate improcess inspection dur- ing buildup and test.
4		Transducer read- ings did not correspond to flow rates.	transducer wiring by conductive sub- stance.	Caused conductive path between termi- nal A and case resulting in unstable operation of transducer.	Assure proper cleanliness requirement are observed during installation and operation.
5	Transducer.	Pressure transducer offset.	accumulated in the transducer during humidity test.	Degradation or shift of absolute blood pressure data but no effect on relative readings after failure.	Do not perform humidity tests on items susceptible to condensation unless it is required. Take precautions to protect item from condensation.
	·				

.

-

-

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
6	Transducer.	No output voltage on one secondary winding.	Broken wire and cold solder joints at winding to terminal connec- tions inside the case.	Open winding.	Revise transformer design to incorporate a stress relief service loop in the winding-to- terminal leads. Extend winding leads through the terminals and wrap externally to provide inspectability of solder joints.
7	Transducer, Pressure.	Coolant pump pressure decay.	Transducer out- put intermittent.	Incorrect pressure readings.	Improve inprocess inspection and manufac- turing techniques to assure reliable parts.
· ·					
-			-		

TRANSDUCERS (Concluded)

UMBILICALS

68	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	1	Umbilicals.	Broken wire at umbilical cable connector pin.	Stress induced during previous rework.	Intermittent open.	Assure that care is taken to prevent over- stressing wires during rework.
			· · · · · · · · · · · · · · · · · · ·			

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
1	Brush Material.	Poor mechanical bond between brush block and holder.	soldering	Separation of the brush block from the brush holder.	Initiate change to soldering technique for this type brush material.
2	Drive Assembly.	Drive assembly binding of rotor to starter.	Marginal design including eccen- tricity of rotor and thermal expansion.	Binding and eventual seizing of drive assembly.	Design in dimensional allowances for thermal expansion.
3	Motorized Door.	Aperture door primary motor winding shorted to case.	Motor brush leads too long, allowing leads to short electrically to case.	Loss of motor.	Assure fabrication and inspection techniques are adequate to prevent this type discrepancy.
4	Operation Mechanism.	Aperture door primary motor winding grounding to structure.	Screw missing in switch bracket allowing movement which shorted motor winding.	Loss of motor.	Initiate periodic maintenance inspection of motors, etc.
5	Photon Coupled Isolator.	Erratic operation during temperature cycling.	Poor internal bond in the parts.	Erratic pulse width modulator output/ operation.	Institute a precap visual inspection on all parts and a sample bond pull-to-distruct on each lot of parts.

MISCELLANEOUS

70	NO,	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	6	Stub Antenna.	High VSWR.	Improper antenna assembly.	Failed to perform as intended.	Verify adequate assembly and inspection procedures are available.
	7	Water Heater.	Water temperature below specified requirements.	test specification	Water temperatures below specification requirements.	Assure that specification requirements for interfacing equipment are compatible.

-

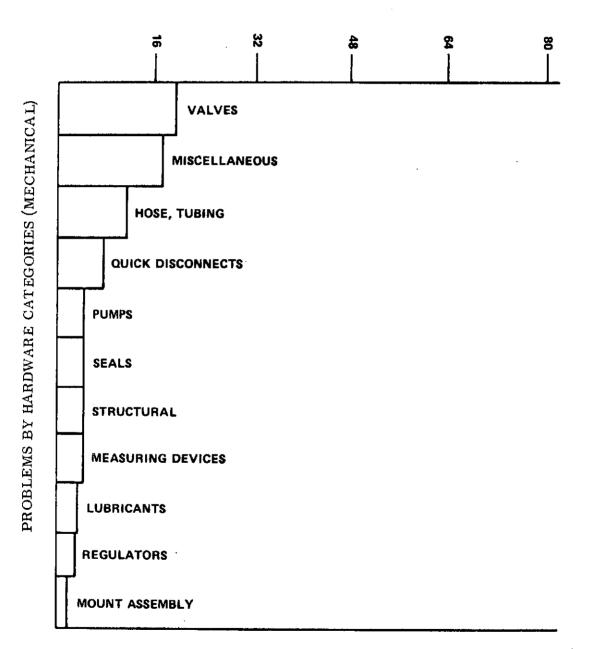
MISCELLANEOUS (Concluded)

~

SECTION 2. MECHANICAL

Page intentionally left blank

HARDWARE INDEX MECHANICAL


	HARDWARE	••	Page	
FITTINGS,	HOSES AND TUBING	• • • • • • • • • • • • • • • • • • •		
Fitting			90	
Hose Assembly			90	
Tube Assembly			91	
Tubing			91	
Urine Hose			91	
LUBF	ICANTS/LIQUIDS			
Leak Detector Liquid			92	
Lubricant			92	
MEA	SURING DEVICE			
Flow Meter			93	
Gauge, 0-20 psi H_2O			93	
Gauge, Strain			93	
MOUL	IT ASSEMBLIES			
Mount Assembly		• • • • • • • • • •	94	
	PUMPS			
Methanol/Water Pump			95	
Water Pump			95	
QUICK DISCONNECTS				
Quick Disconnect	••••••		96	
· · ·				

HARDWARE INDEX MECHANICAL

HARDWARE	Page		
REGULATORS			
Oxygen Supply Pressure Regulator	98		
Regulator	98		
SEALS			
Sealing Device	99		
Seals	99		
STRUCTURAL			
Film Retrieval Door	100		
Meteoroid Shield	100		
OWS Structure Assembly	100		
VALVES AND MODULES			
Identification Module	101		
Astronaut Safety Valve	101		
Chiller Control Valve	101		
Evacuation Valve	101		
Relief Valve	101		
Solenoid Valve	102		
Valve	103		
Vacuum Vent Valve	104		
MISCELLANEOUS			
Camera Magazine	105		
Canister Boom	105		
Detonating Cord	105		

HARDWARE INDEX MECHANICAL

HARDWARE	Page
MISCELLANEOUS (Concluded)	
Diffraction Grating	105
Extension Tube	105
Film Camera	105
Pedal Shaft	106
Retention Snaps • • • • • • • • • • • • • • • • • • •	106
Sleeve	106
Snap Ring	106
S056 Experiment	107
Tape Reel	107
Torsion Rod	107
Water Sampler	107
Zoom Lens Assembly	107

NUMBER OF PROBLEMS

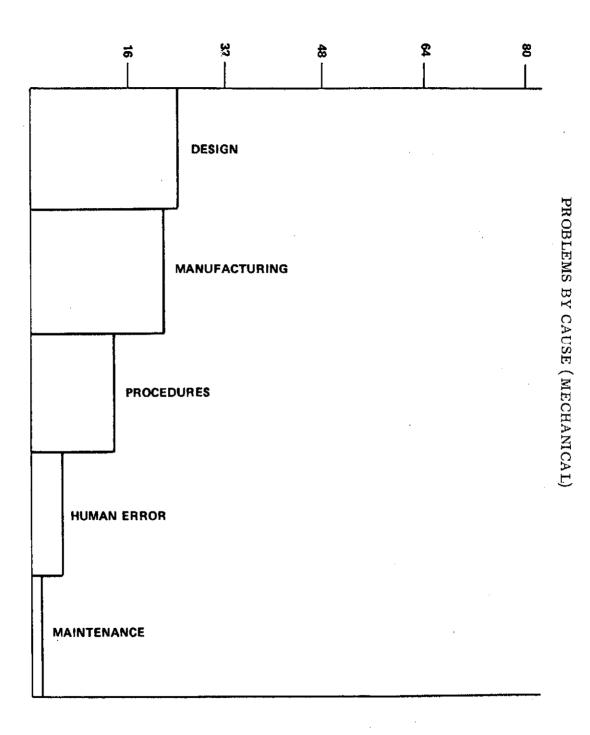
DESIGN	Page	(Item)
FITTINGS, HOSES AND TUBING		<u></u>
Fitting	90	(3)
Urine Hose		
MEASURING DEVICE		
Gauge, Strain	93	(3)
MOUNT ASSEMBLIES		
Mount Assembly	94	(1)
PUMPS		
Methanol/Water Pump	95	(1)
Water Pump	95	(2)
QUICK DISCONNECT		
Quick Disconnect	96	(1)
Quick Disconnect	96	(5)
STRUCTURAL		
OWS Structure Assembly	100	(3)
VALVES AND MODULES		
Astronaut Safety Valve	181	(2)
Evacuation Valve	101	(4)
Relief Valve	102	(6)
Solenoid Valve	102	(7)
Valve	103	(11)
Valve	104	(14)
Valve	104	(16)

DESIGN (Concluded)	Page	(Item)
MISCELLANEOUS		
Camera Magazine	105	(1
Detonating Cord	105	(3
Diffraction Grating	105	(4
Extension Tube ••••••••••••••••••••••••••••••••••••	105	(5
Retention Snaps	106	(8
Snap Ring	106	(10
Таре Reel	107	(12)
Zoom Lens Assembly	107	(15)
HUMAN ERROR	Page	(Item)
FITTINGS, HOSE AND TUBING		
Hose Assembly	90	(6)
PUMPS		
Water Pump	95	(3)
STRUCTURAL		
Film Retrieval Door	100	(1)
MISCELLANEOUS		
Film Camera	106	(6)
S056 Experiment	107	(11)
MAINTENANCE	Page	(Item)
MEASURING DEVICE		
Flow Meter	93	(1)

.

MANUFACTURING	Page	(Item)
FITTINGS, HOSES AND TUBING		<u>, , , , , , , , , , , , , , , , , , , </u>
Fitting	90	(1)
Fitting	90	(2)
Fitting	9 0	(4)
Tube Assembly	91	(7)
Tube Assembly	91	• (8) •
LUBRICANTS/LIQUIDS		
Leak Detector Liquid	92	(1)
Lubricant	92	(2)
QUICK DISCONNECTS		
Quick Disconnect	96	(2)
Quick Disconnect	96	(3)
Quick Disconnect	97	(6)
REGULATORS		
Oxygen Supply Pressure Regulator	98	(1)
SEALS		
Sealing Device	99	(1)
Seals	99	(2)
Seals	99	(3)

79


ŧ

MANUFACTURING	Page	(Item)
VALVES AND MODULES		
Identification Module	101	(1)
Relief Valve	101	(5)
Solenoid Valve	102	(9)
Solenoid Valve	102	(10)
Valve	103	(12)
Valve	103	(13)
Valve	103	(15)
MISCELLANEOUS		
Pedal Shaft	104	(7)
PROCEDURES	Page	(Item)
FITTINGS, HOSES AND TUBING	<u> </u>	
Hose Assembly	90	(5)
Tubing	91	(9)
MEASURING DEVICE		
Gauge 0-20 psi H ₂₀	93	(2)
QUICK DISCONNECTS		
QUICK DISCONNECTS	96	(4)
	96	(4)

PROCEDURES		Page (Item)	
STRUCTURAL			
Meteroid Shield	100	(2)	
VALVES/MODULES			
Chiller Control Valve	101	(3)	
Solenoid Valve	102	(8)	
Valve	104	(17)	
Vacuum Vent Valve	104	(18)	
MISCELLANEOUS			

Canister Boom	105	(2)
Sleeve	106	(9)
Torsion Rod	107	(13)
Water Sampler	107	(14)

NUMBER OF PROBLEMS

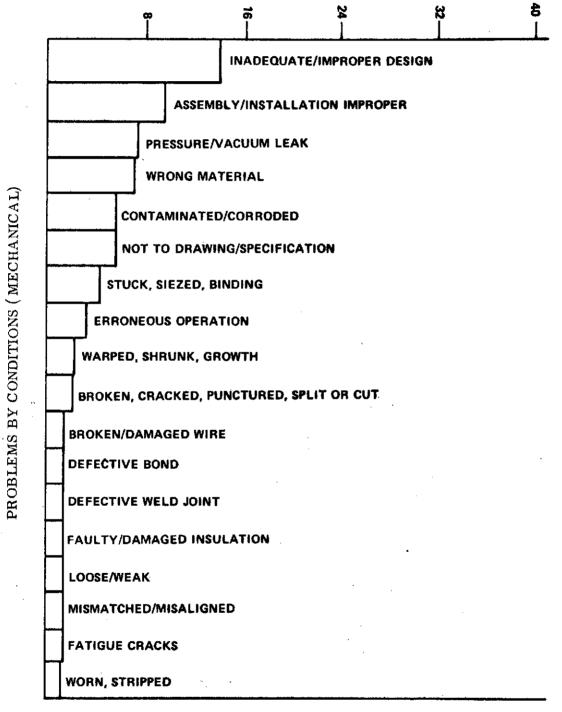
CONDITION	Page	(Item)
ASSEMBLY/INSTALLATION IMPROPER		
Film Retrieval Door	99	(1)
Gauge, 0-20 psi H ₂ O	93	(2)
Hose Assembly	90	(6)
Identification Module	101	(1)
Meteoroid Shield	100	(2)
Solenoid Valve	102	(8)
Solenoid Valve	102	(9)
Tube Assembly	91	(8)
Water Sampler	107	(14)
BROKEN/DAMAGED WIRE		
Water Pump	95	(3)
BROKEN, CRACKED, PUNCTURED, SPLIT, AND CUT	ı	
Quick Disconnect	96	(2)
Quick Disconnect	97	(6)
CONTAMINATED/CORRODED		
Relief Valve	101	(5)
Tubing	91	(9)
Valve	103	(12)
Valve		(13)
Water Pump	95	(2)
DEFECTIVE BOND		
Mount Assembly	94	(1)

CONDITION INDEX MECHANICAL

83

Page (Item) CONDITION DEFECTIVE WELD JOINTS . Fitting 90 (2)FATIGUE CRACKS Leak Detector Liquid (1) 92 FAULTY/DAMAGED INSULATION Solenoid Valve 102(10)INADEQUATE/IMPROPER DESIGN Astronaut Safety Valve 101 (2)Camera Magazine..... (1)105 Evacuation Valve (4) 101 Extension Tube (5) 105 Fitting 90 (3)Gauge, Strain (3) 93 Retention Snaps 106 (8)Relief Valve (6)101 106(10)Tape Reel..... 107(12)(10)91 Valve 103 (11)Valve 103 (14) Valve 103 (16)

CONDITION INDEX MECHANICAL


CONDITION	Page	e (Item)
INTERMITTENT/INCOMPLETE/ERRONEOUS OPERATION	s	
Hose Assembly	91	(7)
Regulator	99	(2)
Valve	103	(15)
LOOSE/WEAK		
S056 Experiment	107	(11)
MISMATCHED/MISALIGNED		
OWS Structure	100	(3)
NOT TO DRAWING/SPECIFICATION		
Chiller Control Valve	101	(3)
Pedal Shaft	106	(7)
Sealing Device	99	(1)
Seals	99	(2)
Vacuum Vent Valve	104	(18)
PRESSURE/VACUUM LEAK		
Canister Boom	105	(2)
Oxygen Supply Pressure Regulator	98	(1)
Quick Disconnect	96	(3)
Quick Disconnect	96	(4)
Quick Disconnect	96	(5)
Seals	99	(3)
Tube Assembly	91	(7)

CONDITION INDEX MECHANICAL

Page (Item) CONDITION STUCK, SEIZED, BINDING Film Camera (6) 105 Fitting (1) 90 96 (1) Quick Disconnect 107 (15) Zoom Lens Assembly WARPED, SHRUNK, GROWTH (3)Detonating Cord 105 107 (13) Torsion Rod WORN, STRIPPED (1)93 Flowmeter WRONG MATERIAL Diffraction Grating (4) 105 90 (4) 92 (2) Lubricant 95 (1) Methanol/Water Pump (9) 106(7) Solenoid Valve 102 104 (17)

CONDITIONAL INDEX MECHANICAL

NUMBER OF PROBLEMS

MECHANICAL PROBLEM SUMMARY

PRECEDING PAGE BLANK NOT FILMED

90	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	1	Fitting	Fitting would not lock		Fitting locking feature was binding and not locking	Assure procedures address proper pre- cautions regarding the painting of devices with locking features.
	2	Fitting	Transducer to bottle braze joint has an audible leak	Lack of fillet and edge melt	Loss of pressure	Assure all braze joints are made according to established procedures (especially on pressure vessels), visually inspected and X-rayed prior to installation into system.
	3	Fitting	Vacuum source port fitting loose	Torque values not high enough	Possible loss of structural integrity	Assure torque values high enough to pre- clude loosening are specified.
	4	Fitting	Cracked swivel nut	Wrong material	Stress corrosion	Verify use of proper material by eddy current method.
	5	Hose Assembly	Hose failed pres- sure decay test at user site	site	Hose rejected in error due to differ- ence in test method between supplier and user	Assure adequate and proper test methods are used and are compatible with supplier test methods and engineering requirements.
	6		Hose failed in fatigue		Hose assembly rendered unfit for application	Assure personnel are trained in proper handling, and installation of critical flight hardware.

FITTINGS/HOSE/TUBING

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
7	Tube Assembly	Decay of pressure during test	Conical seal in tube assembly defective. Tube was twisted during torque operation	Leakage rate above specified rates	Assure proper procedures exist for torque- ing. Operation should require witness by inspection.
8	Tube Assembly	Loose "B" nut on tube assembly — scratch on sealing surface	Improper handling and torque appli- cation	Coolant leaked out	Assure proper procedures exist for inspection and installation of tubing.
9	Tubing	Corrosion	Inadequate con- trol of pickling, rinsing, or drying procedures	Strains and pits on inner surface	Visually do 100 percent inspection at receiving inspection and again when issuing to production. Sample inspect with eddy current and borescope. Pickle and passiva passivate tubing after forming. If tubing is to be brazed, then pickle and passivate prior to brazing.
10	Urine Hose	Collection funnel on UVMS hose would not allow circulation	Football value prevented recirculation	Funnel overflow — spacecraft contami- nation	Provide for and perform meaninfgul reliability/design reviews early in program. Perform test program to verify design.

FITTINGS/HOSE/TUBING (Concluded)

92	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	1	Leak Detector, Liquid.	Leakage.	Stress corrosion due to a high temperature environment in presence of chlorides.	Cracks in 321 stain- less steel.	Use leak detection liquids in accordance with MSFC-SPEC-384A which limits chloride concentration to 10 PPM or use other methods of leak detection such as mass spectrometer analysis for space vehicle systems.
	2	Lubricant.	Inspiration spirometer drive motor noisy and rough operation.	Incompatibility of lubricant and seal.	Noisy and rough spirometer opera- tion.	Assure that lubricants are compatible with seal material.

.

•

.

.

LUBRICANTS/CHEMICALS

				CALICE		
N	<u>u.</u>	HARDWARE	PROBLEM	CAUSE	ÉFFECT	REMARKS/SUGGESTIONS
	1	Flow Meter.	Operation of flow meter was erratic.	Bearings worn causing binding of turbine.	Flow meter indica- tion erroneous.	Assure maintenance procedures are adequate and require inspection of units based on operating life of parts.
4	2	Gauge, 0-20 psi H ₂ O.	Pressure gauge damaged.	Gauge pressurized to 50 psi due to procedure error.	Gauge destroyed.	Assure complete procedure review prior to implementation.
5	3	Gauge, Strain.	Deployment cable strain gauge read- ing not repeatable.	Strain gauges not located properly.	Inaccurate solar wing assembly deployment data.	Ensure through test program that deployment cable strain gauges are properly located to achieve repeatability as well as proper deployment.
		· ·				
20					;	

MEASURING DEVICE

94	r		1	MOU	NT ASSEMBLY	
94 **	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	1	Mount Assembly.	Mount hub debonded from rub- ber shock mount core.	Debond of poly- mer material due to insufficient material in the mount housing.	Core rotation resulting in improper alignment of the guide pin.	Perform design review to determine proper bonding area required.
			•	-		

	PUMPS								
	NO.	HARDWARE	PROBLEM	CAUSE -	EFFECT	REMARKS/SUGGESTIONS			
·	1	Methanol/ Water Pump.	Methanol/water pump bearing/ shaft tolerance too tight.	Fiberite bearing material swells in methanol/water solution.	Failure of pump.	Perform design evaluation to determine proper bearing/shaft size and proper bear- ing material for use in methanol/water solution.			
	2	Water Pump.	Pump failed to meet output requirements.	Pump would not operate due to contaminant (nickel urthosi- licate).	Contamination pre- vented movement of rotor assembly.	Assure coolant fluid is compatible with pump design selected.			
	3	Water Pump.	Pump stopped operating.	Lead wires pinched and shorted to ground when pump cage was installed.	Pump would not operate.	Assure adequate installation instructions and caution notes exist. Upgrade inspection and test procedures to verify proper instal- lation prior to power up.			
95									

0n	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	1	Quick Disconnect.	Quick disconnect would not lock auto- matically in con- nected position.	Standard $2\frac{1}{2}$ coil sleeve spring was too long and forced sleeve to bind.	Quick disconnect had to be manually locked.	Designer should review standard parts used in special applications to assure proper operation.
	2	Quick Disconnect.	Quick disconnect leaks.		System unable to maintain pressure.	Assure proper cleaning, deburring and inspection of critical parts.
	3	Quick Disconnect.	Quick disconnect leaks.	"O" ring groove in body of coupler oversize.	System unable to maintain pressure.	Assure adequate inspection procedures exist to verify all parameters are checked prior to acceptance of part.
	4	Quick Disconnect.	Quick disconnect leaks.		System unable to maintain pressure.	Assure adequate procedures exist that require proper inspection and lubrication of "O" rings.
			Missing ''O'' ring fragment.		Separation of frag- ment.	Perform evaluation to determine consequen- ces of "O" ring migration into system.

.

QUICK DISCONNECTS

96

.

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
6	Quick Disconnect.	Flange distorts and may fail ''in bearing.''	Thinning down the poppet stem flange so that it doesn't bottom against seat sealing sur- face and carry part of poppet compressive load- ing due to pres- sure.	poppet valve.	Do not use 0.75 in. Quick Disconnects manufactured between 5/12/72 and 12/31/73. Also, check any larger size since they could have same problem.

QUICK DISCONNECTS (Concluded)

2.

86	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	1	Oxygen Supply Pressure Regulator.	Pressure regulator leaks.	.	Regulator would not maintain pressure.	Assure adequate inspection procedures and techniques exist to verify all parameters are checked prior to stocking or using parts.
	2	Regulator.	Unable to purge regulator.	Test procedure error.	Unable to complete regulator purge.	Assure adequate test procedures are available and are compatible with component to be tested.

REGULATORS

Ľ		SEALS						
1	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS		
	· 1	Sealing Device.	Tab locking device does not operate properly.	Tab dimensions are not in accord- ance with drawing requirements.	Device failed to seal.	Upgrade inspection to assure components are manufactured to drawing/engineering requirements.		
	2	Seals.	Hatch seals have voids and soft spots.	Insufficient control of mater- ial by vendor during seal manufacture.	Lost sealing capability.	Impose process controls during manufacture. Treat sealing surfaces and seals to prevent sticking after installation.		
	3	Seals.	Leakage at scientific airlock window seal.	Very minor dis- crepancies in frame and a tool or die mark in one corner of seal.	Possible loss of positive pressure in OWS.	Specify helium leak test after proof pres- sure test. Rework any leaks that occur during acceptance test. Maintain age control records on seals and assure that seals are compatible with all process chemicals and sealing compounds.		
8								

SEALS

100	NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
_	1	Film Retrieval Door.	Door latch mechanism jammed in open position.	Improper torque during assembly.	Unable to close film access door.	Assure adequate torque and inspection procedures.
	2	Meteoroid Shield.	Bulb seal rolled under forward swing links.	Tension straps at main tunnel mis- located 0.08 in. too high.	Inability to latch meteoroid shield after deployment.	Ensure processing and installation instruc- tions provide necessary detail to achieve proper bulb seal fit and clearance.
	3	OWS Structure Assembly.	Panel assembly calfax fasteners will not align with mating framework.	Buildup of toler- ances between fairings and structure.	Unable to assemble panel cover.	Assure that cumulative tolerances have been considered; fit check early in fabrica- tion process to verify proper fit.

.

.

•

STRUCTURAL

-

			VALVES/M	ODU LES	
NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
1	Identifica- tion Module.	High resistance from test point to chassis ground.	High resistance due to iridite coating on chassis.	Erroneous identifica- tion signals.	Perform drawing review to assure all non- conductive coatings are removed from areas where continuity is required.
2	Astronaut Safety Valve.	Valve deactivates at incorrect level.	Permanent set in valve spring.	Incorrect activation level.	Perform adequate life testing to verify spring is of proper size and material to last through intended life.
3	Chiller Con- trol Valve.	Chiller control valve failed to regulate tempera- ture as required.	Suspect age hardening of the vernotherm valve seat was due to dry storage.	Improper operation.	Perform reviews of storage requirements. Vernotherm valve seat material should be stored wet.
4	Evacuation Valve.	Failure of valve to close on command. Valve seat leaks.	Design defici- encies.	Unable to evacuate control moment gyro.	Perform design review and testing to assu valve operates properly for intended use.
5	Relief Valve.	Contamination.	Inadequate cleanliness requirements.	Improper valve seating.	Assure adequate cleanliness requirements exist.
6	Relief Valve.	Valve shaft length too short to lock setting properly.	Design deficiency.	Valve relief pressure setting subject to change.	Assure proper design of component prior selection and use.

NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
7	Solenoid Valve.	Valve failed to close properly.	- U	Improper valve operation.	Valve redesigned, replacing teflon seal with "O" ring to achieve metal to metal contact of flange to valve body.
8	Solenoid Valve.	Valve failed to close properly.		Improper valve operation.	Verify adequate procedures are written to assure proper alignment.
9	Solenoid Valve.	Short circuit.	wires pass through a slot in the armature and	Stud thru armature and guide assembly chaffed insulation off one of coil wires adjacent to electrical connector.	X-ray or visually and dimensionally check clearance between armature stud and wires.
10	Solenoid Valve.	Low D.C. resist- ance and insulation resistance.		Shorted solenoid coil.	Inspect all seals at assembly.

VALVES/MODULES (Continued)

NO,	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
11	Valve.	Valve inoperative.	Valve failed due to high tempera- tures caused by low resistance coil.	Valve failure.	Verify engineering release system is effec- tive in updating manufacturing routings to assure latest level parts are used.
12	Valve.	Excessive leakage at the poppet of pressure relief valve.	Contamination in the seal area due to either the machining or crystallized grease (versilube G-300).	Degraded perform- ance in telescope assembly.	Improve machining and inspection methods. Use noncrystallizing grease. (Changed versilub G-300 to braycoat lube).
13	Valve.	Vacuum shutoff valve failed leak test.		Degradation and pos- sible loss of experi- ment.	Exercise caution when reworking flight equipment. Keep valves closed and covered when not in use.
14	Valve.	Pressure control valve did not meter properly.	Ofifice too large.	Improper operation of metabolic analyzer.	Perform adequate engineering analysis to verify design.
15	Valve.	Spirometer valve failed to function.	Excessive sealant on spirometer diaphragm and screws causing limit switch to react.	Partial loss of experiment.	Provide adequate assembly instructions and implement inprocess inspection points.

VALVES/MODULES (Continued)

104 NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
16	Valve.	Bellows spring rate below design tolerance.	Design deficiency in retainer.	Lock became dis- engaged when safety valve was adjusted to spec.	Assure qualification test procedures validate performance specifications.
17	Valve.	Low pressure valve seat material used in high pressure system.	Inadequate con- figuration control	Leakage.	Stiffen configuration control requirements.
18	Vacuum Vent Valve.	Breakaway torque incorrect.	Procedures do not agree with drawing require- ments.	Improper operation of valve.	Perform design review and verify procedures and drawings are compatible.

.

.

.

•

.

VALVES/MODULES (Concluded)

	MISCELLANEOUS						
NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS		
1	Camera Magazine.	Camera magazine jammed.	Inadequate design.	Loss of camera and experiment.	Assure adequate design review for proper materials and lubricants.		
2	Canister Boom.	Experiment canis- ter boom has excessive leak rate.	Contamination from metal chips in "O" ring seals and grooves.	Improper operation.	Clean "O" ring grooves and lubricate "O" rings.		
3	Detonating Cord.	Long term shrinkage.	Gradual stress relief of com- posite sheath.	Assemblies too short to install.	Design for possible $1\frac{1}{2}$ percent preinstalla- tion shrinkage in cord length, or a possible $\frac{1}{2}$ percent if thermal conditioning preshrink process is used. Shrinkage can be mini mized by refrigerating cord assemblies (50° F max.), if further control is desired.		
4	Diffraction Grating.	Severe degradation.	Overcoating a gold coated main dif- fraction grating with a thin film of aluminum.		Do not use an aluminum overcoat on any noble metal such as gold, platinum, etc., when reflective surfaces are required.		
5	Extension Tube.	Inner rod of exten- sion tube assembly broken off at the thread base.	Overtorquing com- bined with margin- al design and improperly machined thread relief.	Loss of two experi- ments.	Allow an adequate safety margin when choos- ing materials. Use caution when drilling holes and locating roll pins near threaded ends of rods. Inspection assure that thread rollout and relief are machined to drawing requirements and are not dressed down.		
6	Film Camera.	Camera inoperative	Camera shutter bent.	Loss of experiment.	Design protective covers for delicate instruments and instruct personnel on handling procedures.		

MISCELLANEOUS

ŝ NO). HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS
	' Pedal Shaft	Ergometer pedal assembly had full complement needle bearing substituted for caged bearing. Unsuitable bearing lubricant was used and the pedal shaft			Implement inprocess inspection to assure proper assembly.
		and retaining pin had dimensional errors.			
8	Retention Snaps	Data retention snap assemblies would not engage properly.	Unit head depth in the male snap was too high and pre- vented proper engagement.	Inability to hold down data in the MDA.	Assure that drawings specify proper mount- ing hardware and specify a fit check with mating female snap following installation.
9	Sleeve	Incoming raw stock was not being tested.	Raw.stock was from an unquali- fied source.	Parts did not meet the Rockwell range of hardness.	Require manufacturer and subcontractor, if applicable, to meet MSFC-SPEC-143C.
10	Snap Ring	Snap ring lost spring force and came loose during test.	Inadequate design makes it possible to damage the snap ring during installation.	Leakage and possi- ble damage due to loss of snap ring retainer.	Assure that proper snap ring is specified for each application and that installation procedures are adequate to assure proper installation.

MISCELLANEOUS (Continued)

 MISCELLANEOUS (Concluded)									
NO.	HARDWARE	PROBLEM	CAUSE	EFFECT	REMARKS/SUGGESTIONS				
11	S056 Experiment	Camera shutter did not open.	Loose screw retaining decoding magnet on idler shaft.	Magnet oscillated giving false signals to decoding reed.	Improve inprocess inspection.				
12	Tape Reel	Interference between tape reel and canister of tape reel return canister.	Design tolerances too close.	Removal of tape reels is difficult.	Assure design tolerances leave room for removal of items which must be changed out.				
13	Torsion Rod	Twisted torsion rod.	Overtorque	Piece part degrada- tion.	Revise procedures to include proper torque instructions and inspection witness of torque operation.				
14	Water Sampler	Excessive leakage	Inadequate packing material.	Excessive leakage of water sampler port.	Assure assembly procedures are adequate. Update engineering requirements to utilize packing material which will not take permanent set.				
15			Telescope will not function as intended.	Inadequate design review and testing of hardware.					

SECTION 3. TECHNIQUES

PRECEDING PAGE BLANK NOT FILMED

 $\sqrt{2}$

TECHNIQUE INDEX

Technique

1. Design for Troubleshooting, Repair, and Replacement.... 113 2. Design for Modular Construction 113 3. Data Processing Provisions 114 4. Digital Event Evaluator 114 5. Design for Maintainability..... 115 Biomedical Integrated Systems Verification Tests (BISV) 6. 115 Bakeout Facility Gas Sampling 7. 1168. Module Testing with Automatic Checkout Equipment 117 9. Test Data Processing 11810. Design for Testability 119 Design for Operations and Maintainability 11. 121 Cryosorption Pumping 12. 122 13. Zero G Test Fixture for A& PCS Verification 123 Flight Computer Memory Load 14. 12315. Sun Simulator System 124 16. 124 Color Anodizing 17. 125 Silicone Contamination 18. 125Part Identification at Installation 19. 126Time/Cycle Data Maintenance 20. 12621. Crew Interface Fit Check Verification 12722. Discrepancy Report Accountability 128 Configuration Verification 23. 12824. Flurel Tubing 130 Super Insulation Blanket Fabrication 25.

PRECEDING PAGE BLANK NOT FILMED

~ 4

111

130

Page No.

TECHNIQUE INDEX (Concluded)

Technique

Page No.

26.	Contamination of Magnetic Tape	131
27.	Laminated Vs. Hardtip Heads on Ground Recorder	131
28.	Use of Modified Commercial Hardware for Space Application	132
29.	Command Coding	133
30.	Teleprinter	133

DESIGN FOR TROUBLESHOOTING, REPAIR, AND REPLACEMENT OSE: To improve ease of repair after assembly and during the mission by location of equipment. To has proven the need to design future orbiting vehicles t troubleshooting, repair, or replacement of parts and ablies can be done after spacecraft assembly or during ission. With the advent of the Space Shuttle, both ed and unmanned spacecraft should receive this con- ation.	The repa futur capa cons	DESIGN FOR MODULAR CONSTRUCTION RPOSE: To improve ease of repair after assembly and during the mission by modulerizing construction. Skylab Program demonstrated that the astronauts can do air work in space. Now is the time to design into all ure long duration manned space stations or vehicles the ability for repairing in flight through the use of modular struction. Redundant components would be used in the
during the mission by location of equipment. has proven the need to design future orbiting vehicles t troubleshooting, repair, or replacement of parts and ablies can be done after spacecraft assembly or during ission. With the advent of the Space Shuttle, both ed and unmanned spacecraft should receive this con-	The repa futur capa cons	during the mission by modulerizing construction. Skylab Program demonstrated that the astronauts can do air work in space. Now is the time to design into all ure long duration manned space stations or vehicles the ability for repairing in flight through the use of modular
t troubleshooting, repair, or replacement of parts and ablies can be done after spacecraft assembly or during ission. With the advent of the Space Shuttle, both and unmanned spacecraft should receive this con-	repa futur capa cons	air work in space. Now is the time to design into all are long duration manned space stations or vehicles the ability for repairing in flight through the use of modular
 a. Mount as many black boxes on the inside of ed spacecraft as possible to prevent the necessity of o troubleshoot, repair, or replace hardware. b. Design test point panels on or in spacecraft for eshooting anomalies. c. Simplify the removal/replacement of hardware by a type of quick-disconnect mounting bolt and a rd tool for removal of all mounting hardware. 	com the r faile capa repl The spac resu	cical application and the system designed so that the failed apponent could be removed and replaced without disturbing redundant component that was operating. After the ed component was replaced, the astronaut would have the ability of switching the system manually back to the laced component to verify that it is functioning properly. Is space modules would not have to be kept onboard the ce station but could be sent up to the station on the upply flights.
d. Consider resupply in early design stages.		
	rd tool for removal of all mounting hardware.	rd tool for removal of all mounting hardware.

114	3	DATA	PROCESSING PROVISIONS	4	DIGITAL EVENT EVALUATOR
I d n T e e w W T c c t t t t t t t t t t t t t t t t t	Proveeve nent Thes ffec arly vare the consi hecl rans ng to rovi omp	isions opmen s and t e perso tive ap visibi develo early p der da cout fac missio elephon de nea uter sy	Early planning for data processing and personnel. should be made early in the computer software t stage for testing and data reduction require- he involvement of flight data reduction personnel. onnel can learn and contribute to the more proach for data acquisition that will provide lity to flight data reduction programs and hard- pment. lanning of the test and checkout facility should ta transmission capability between the test and cility and the data processing facility. This data n capability should make maximum use of exist- e or coax lines. The capability is required to r-real-time data reduction requiring large scale stems. onsider early development of the data processing a the software is a long lead-time item.	A Di criti Cons chan resp digit prin the c esse Alth a nu its f	RPOSE: Use of Digital Recorder to evaluate both commands and responses between major items of flight hardware. gital Event Evaluator (DEE) was connected to the cal interface between the ATM and the ATM C&D sole. It was programmed to record discrete event ges of both commands from the C&D Console and oonses (talk-backs) from the ATM. On-Off discretes and al commands were processed every 4 milliseconds and ted for post-test analysis. This technique supplemented lata recording capability of the ACE station and provided ntial data not normally available through telemetry. ough the DEE has been utilized on several programs for mber of years, the value of the machine together with lexibility and record of maintenance-free operation e it well worth considering for all future programs.

5	DESIGN FOR MAINTAINABILITY	6	BIOMEDICAL INTEGRATED SYSTEMS VERIFICATION TESTS (BISV)
PUR	POSE: Accessibility to C&D Panels and components for troubleshooting and maintenance.	PUI	POSE: To build and test to flight specifications to avoid configuration problems.
orie such This inte mai the was This and	initial design of the C&D Console for the ATM was ented toward installation in a modified LEM and, as h, required an extremely compact structure. Is structure later seriously restricted the access to rior portions of the console for trouble-shooting, ntenance, and component changeout. In some cases, removal of two or three panels and several components required merely to gain access to a faulty component. Is requires excessive demating/mating of connectors handling of components that could be avoided if greater ntion to maintainability was observed during the design se.	sysi vehi inst time The Ver bly wer inco tota proj war	 a. Integrated Systems Level Test — In this test gram, all Biomedical subsystems were integrated into a tem and verified prior to installation into the flight icle drawings. As a result of this type integration, allation in the flight vehicle was flawless, and checkout e and procedure preparation time were minimized. b. Systems Level Test on Development Hardware — integrated systems level tests were performed on Design ification Test Unit (DVTU) hardware prior to the assem- of flight hardware. A number of design modifications e precipitated by this program, ICS's were found to be impatible and some of the subsystems were found to be lly inoperative in conjunction with others. On all future grams, systems level tests on development type hard- e should be strongly considered. Some of the problems attified in this program could have been identified only by
	· . ·	sys flig	tems level tests and had they not been identified until the hardware, the schedule impact and configuration nges necessitated would have been prohibitive.
$\frac{f_{\rm f}}{F}$			c. Preparation of Systems Level Test Procedures Manned Systems in Astronaut Language and Format and ticipation by Astronauts in Test Program — In the BISV procedures were written with crew participation in mind. ncluded on next page)

·. · · ·

115

.

116	6	BIOMEDICAL INTEGRATED SYSTEMS VERIFICATION TESTS (BISV) (Concluded)	7 BAKEOUT FACILITY GAS SAMPLING
			PURPOSE: Sampling without contamination. In the ATM Bakeout Facility, problems were experienced with Residual Gas Analyzers that were exposed all the time. As a result, a special sampling chamber was designed and built. This sampling chamber was attached to the main vacuum chamber through a valve. This small chamber was heated to 250° C and had cryosorption roughing and ion pumps for high vacuum. This pumping system produced the least contamination possible. The combination of heat and high vacuum made the sampling head of the analyzer self-cleaning. When it was desired to sample the main vacuum tank, the coupling valve was opened and then closed. The analyzer ran a scan and then the self-cleaning action operated until the next sample. Additionally, the sample chamber could be used on small samples even when the main chamber was not under vacuum.

8	MODULE TESTING WITH AUTOMATIC CHECKOUT EQUIPMENT	8	MODULE TESTING WITH AUTOMATIC CHECKOUT EQUIPMENT (Concluded)
Acco com ward subs man Larg in re ACF CDC men	 RPOSE: Provide an improved automatic checkout system. eptance Checkout Equipment - Spacecraft (ACE-S/C) uputers and associated equipment and computer soft- e were used to verify ATM system performance. a. This hardware can accommodate independent systems and/or integrated systems testing in either a uual, semiautomatic, or automatic operational mode. ge quantities of test data can be processed and displayed eal time, as well as recorded for post test data analysis. E-S/C utilizes two programmable decommutators, two C-160G computer modules with independent and common nory, digital and analog recording, and various direct en displays. 	co de ou eq pr ov	 splay, event light, recorder, or meter. The downlink mputer is in a constant data review mode, with timing termined by the data cycle time. d. The CDC-160G uplink computer controls stimuli tput to the module under test and associated support uipment per preestablished guidelines. Uplink also ovides the recording of output commands and control er the system software program tape. e. Thus, the hardware is capable of performance complete closed loop operations using the common emory for communication.
supp for a purp requ are reco lishe	 b. The two decommutators are used to provide bessed data from the ATM (flight data) and ground bort equipment. This provides a complete interface all incoming data. As the decommutators are special bose computers, they can be modified for changes aired in data format or telemetry rate. These signals then routed to the response or downlink computer. c. The CDC-160C downlink computer processes and bords, in a compressed format, all data per preestabled guidelines. Measured values are routed after any tial processing to the designated output device: CRT 		

- {	T					
110	9	TEST DATA PROCESSING	9	TEST DATA PROCESSING (Continued)		
	Computer programs for Test Data Processing were developed to be compatible with computer facilities			NOTE: On the ATM program for Skylab there were two separate pursuits for data processing capability that allowed compatibility between Centers and thus lessened development costs: The MSFC Central Processing Computer Facility software development was designed to be compatible with the JSC Central Processing computer facility.		
	of d test test	data input, data reduction requests, and presentations ata output were standardized to permit a continuity of operations and a minimum of transitional effort by the engineers to learn how to obtain the required data at h site.	com facil	The ACE Computer Facility data processing soft- e, although late in getting developed, did provide for patibility and lower cost since it was utilized at KSC test ity (O&C Building) after having been developed for use SFC and JSC thermal vacuum facility. Throughout test-		
		b. Characteristics of How it Works The NASA Center having Data Processing	ing o of da ible	of ATM at the three NASA center, a considerable library ta reduction programs was developed that was compat- for use on the ACE facility computer. These developed rams became useable for data reduction on the sub-		
	com	uirements coordinates the development of necessary aputer software with other centers, early in the con-	sequ	ent testing of the ATM Flight Backup Unit (FBU).		
	syst	tual stage, to determine the similarity of computer tems, programming languages, and possible modifica- s necessary to effect a compatible operating program.	Spac	c. Previous Background on Data Processing for a e Vehicle:		
	Soft ence equi othe prog	ware development considerations may include differ- es in computer memory size and various optional ipment found on one computer system but not on the er. Trade-offs for the extra involvement of computer grammer time spent to modify a program vs. new elopment are made.	inder	Each Center or Facility, whereby a space ele article was tested, pusued the test data reduction bendent of other Centers' efforts. Duplication of effort costly and data format presentation to engineers was not lard.		

9 TEST DATA PROCESSING (Concluded) DESIGN FOR TESTABILITY 10 d. The Need for the Compatiability Between Data PURPOSE: Reduced time and labor costs of testing. **Processing Facilities:** Module Systems (1) A savings in computer programming manpower was mandatory due to the late start in software a. Electromechanical Operations - Design for development. one-g to meet test and checkout and prelaunch and launch operations, as well as the flight environment. The test personnel testing the space vehicle article (ATM) conducted the testing at the varied centers b. Ground Scheme and required standard processing formats in order to relate test results from one center's testing to another. (1) The grounding scheme should be such that isolation verification is facilitated. e. Application to Future Programs: (2) An actual ground bus rather than a frag-Compatible pool test data processing programs mented bus in several distributors is preferred. could save considerable money. Software development and upkeep costs are a very substantial cost factor. (3) Systems ground returns should be the Computer compatibility is necessary, however, and is the minimum number required (preferably one or two for least costly in the overall cost picture considering software redundancy). Multiple returns through different distributors programming manpower costs for automatic testing and should specifically be eliminated. data processing. c. Circuit Interlocks - Use simplest circuits with the minimum number of components which meet requirements. Do not use circuits which are susceptible to high frequencies to do low frequency jobs. d. Electronics Location – Location of low level logic, control and measuring electronics should minimize cable lengths between components.

119

SPECIAL TECHNIQUES AND PROCEDURES

_				
120	10	DESIGN FOR TESTABILITY (Continued)	10	DESIGN FOR TESTABILITY (Continued)
	per aga: circ The man	 e. <u>Pulsor Circuits</u> - Limit use to where decidedly antageous. Design for maximum response time missible. Suppress/isolate both input and output inst pulse widths narrower than what is required for cuit performance. f. <u>Fuses</u> - Fuses must be readily replaceable. y should be rated at maximum current while providing datory protection; i.e., do not over protect to the 	testing of the CEI's within Module – In the acceptance testing of the CEI's prior to module assembly, insure inter- face control and data lines are checked for unintentional responses as well as intentional responses. Shielding, bonding, bus isolation, ICD requirements must be checked prior to assembly. Isolation to ground and resistance values between buses should be recorded in log book for possible subsequent use. k. Data Systems Interfaces – Completeness, accuracy and understandability of control documents, such as ICD's, IP& CL's, EIDD's, is essential in this area. Insure adequacy of communication and mutual understanding on:	
	shou Whe side mocl	nt of being susceptible to normal system variations transients. g. <u>Measurement Sensor/Systems</u> - Accuracy and not be materially affected by interconnecting cabling re this is not practical from cost, size, or other con- rations, the actual measurements harness should be ked up and characteristics measured prior to assembly		
	verif	corrections to be applied to calibration curves. h. <u>Measurements</u> — Capability to functionally y each measurement at the ground checkout location Id be provided for within the design.	range telem	(2) Relationship of points on measurement of or checkout and flight operations to the limits of the netry system.
	scnee	dule parts selection to be finished prior to major		 (3) Grounding, shielding, and isolation of urements. (4) Filtering and expected line drops on both of interface.
	······		Conti	nued)

10	DESIGN FOR TESTABILITY (Concluded)	11	DESIGN FOR OPERATIONS AND MAINTAINABILITY
iten tha for and use dis cap con strusho Pro and mea har		PUF Ope cam and mod clea what tion. data data to po med cons data	 a. Operations - Replacement items like film a. Operations - Replacement items like film era magazines should be easily and readily accessible should not require major operations, such as roll of ule, to gain access. b. System Alignment - Specifications should be r and realistic. The specifications should also recognize t is practical in the one-g environment for test verifica-
		vehi	concurrently thereby preventing having to correlate the cle attitude at time xx with the data taken at time xx. he data was available in one place, on film.
		(Con	tinued)

122	11	DESIGN FOR OPERATIONS AND MAINTAINABILITY (Concluded)	12	CRYOSORPTION PUMPING
	firs ope ope		Use a 10 The cont: from upon pump ent t lique The requi Pump free excep It is	 POSE: To provide the cleanest possible method of pumping. of a Cryosorption Pump to evacuate a vacuum system in K environment. pump consists basically of a vacuum tight enclosure aning an absorbent material which evacuates the air a chamber by physical absorption of gas molecules the absorbent. Pumping action is initiated by filling the preservoir with liquid nitrogen, which chills the absorboate a temperature near - 195°C, thereby approaching the faction temperature of the gases to be evacuated. Cryosorption Pump was selected to meet the stringent frements of a 10K environment. The Cyrosorption point of oil, vibration, and requires no electrical power of for instrumentation and regeneration. Ideal for use with vacuum systems where strict clean rements exist.

1	ZERO G TEST FIXTURE FOR A& PCS VERIFICATION	14	FLIGHT COMPUTER MEMORY LOAD
	PURPOSE: To simulate a zero-g condition for testing. The Zero-g Test Fixture was used in the verification of the ATM Altitude and Pointing Control System. In particu- ar, it was used to allow positioning of the ATM Canister with respect to the rack in a one-g environment. The rincipal component in the zero-g Test Fixture is a large in bearing which allowed three degrees of freedom (360° the roll, ±2° in pitch and yaw). This was a first attempt of ero-g simulation of this type on any space vehicle system testing at MSFC. This particular fixture was required in rder to be able to prove the positioning capability of the Experiment Pointing Control (EPC) actuators in position- ag the ATM Canister and the overall A& PCS pointing ccuracies in a one-g environment. Since the ATM A& PCS was designed to operate in zero-g conditions, it could not ave been tested without the use of this fixture.	The com required its p com veri com cedu min futu Pro com inop high The	RPOSE: Memory loading in shortest possible time. ground computer is used to load and verify flight puter memory. The ground computer reads the data nired to load the flight computer memory from magnetic b. The data is transmitted to the flight computer through memory load/verify interface to load or verify the flight puter. The flight computer memory could also be fied by performing memory dump and using a ground puter to perform memory compare. Use of this pro- ner allowed new programs to be loaded and verified in a imum test time. This capability should be designed into re systems. grams and hardware were developed to allow the flight puter to maintain control if part of the memory is merative. This was accomplished by designing low and a core such that the program could be loaded into either. se programs could be loaded by MLU/tape recorder or uplink.

124	15	SUN SIMULATOR SYSTEM	16	STAR SIMULATOR SYSTEM
	PUI	POSE: Provide a means of verifying the operation of the fine-sun sensor and the acquisition sun sensor.	PURI	OSE: Provide a means of verifying operation of the star tracker.
	and veri sun 12-i The lamp and pland lamp lense 0.5 d mate micr tilteo	xenon arc lamp was selected over the carbon arc because of its cleanliness, time-uniform intensity, low RFI generation. Uniform intensity across the test of ± 5 percent was achieved by combining the two images and integrating them with the selected by	The s is cap and 7(+4 ma than 5 star s dynam star tr	arc sec. The star simulated star angular diameter is less arc sec. The star simulator null fixture aligns the imulator lamp for star tracker null tests, and the ic fixture provides a 300 deg circular offset pattern for cacking test. The star simulator system can be used in programs for testing gimballed or strap down star

÷

Т

· · · · · · · · · · · · · · · · · · ·			
17 COLOR ANODIZING	18	8	SILICONE CONTAMINATION
PURPOSE: Reduce cost of color anoc	lizing. P	PURPOSE: Provide controls to prevent contamination.	
17COLOR ANODIZINGPURPOSE: Reduce cost of color anodizing.The interior of the OWS Spacecraft utilized color anodizing of aluminum hardware surfaces to obtain the required interior color coordination finish. Excessive hardware rejections of color/shading appearance resulted due to an extremely stringent color criteria. A large amount of hardware required rework and inspection which increased operational time/cost without always achieving required results.Corrective action initiated was the establishing of a more practical inspection criteria utilizing color "chips" as a guide with respect to shading. In addition, an alodining process was utilized. This process was simplier and pro- vided better color results. Hardware color and shading anomalies were real long term fabrication problems affecting cost and schedules. These problems required top manage- ment attention during the OWS-1 manufacturing cycle (ground activity) but as recently demonstrated during the OWS-1 mission, were not flight significant and had no adverse effects on the astronauts's performance in space.It is recommended that future programs requiring color anodizing/aloding recognize the problem of color shading and the personnel interpretation associated with same. A suita- ble and practical (cost effective) manufacturing and inspection criteria should be established early in the program to mini-		utili com expa epox easi fabr fabr fabr fabr foase As a repl rols orog ion surf rair	cone, applied by brush and/or dip application, was zed in fabrication of the OWS electrical modules to appensate for the differences in the coefficient of thermal ansion between electrical components and the basic and the basic sy module material. Since silicone is colorless and can ly be transmitted to other pieces of hardware during ication buildup and handling, silicone contamination of module baseplates resulted, causing a poor bonding ace. This condition is directly related to the module eplate temperature — separation problem (cracking). a result, a large number of modules were rejected and aced. Separate silicone application facilities and con- s were established to prevent reoccurrence. Future grams should recognize the potential silicone contamina- problem of work areas, due to poor component bonding aces, emissivity hardware problems, etc. Personnel ning and creation of isolated manufacturing silicone ication areas appear essential to maintain the necessary ware fabrication controls.

126	19	PART IDENTIFICATION AT INSTALLATION	20	TIME/CYCLE DATA MAINTENANCE
	PURI	POSE: Provide permanent part identification.	PU	RPOSE: Real time, time/cycle data.
1	Hardware installed within the OWS did not have permanent identification which conformed to outgassing, flammability, and internal workshop (living quarters) appearance require- ments. This required utilizing packaging and/or tag identi- fication prior to hardware installation. After installation,		cyc enh	e recording, maintenance and reporting of time and ele data on limited operating life items was significantly nanced on OWS Backup by implementing the following anges:
1	nanu Ind s	a necessary to rely on relating hardware drawings to facturing paper and utilizing the latter to establish part erial number identity in support of tests, inspection,	Coi	a. Integration of Time/Cycle data forms into Test ntrol Procedures.
l a	nd pa roble	art replacement operations. To prevent potential ems, stringent controls were imposed on hardware flow		b. Recording running time and cycles in real time.
(pera hardv	tions and upon hardware installation requirements ware verifications, special buyouts, etc.).	pub	c. Computerizing the OWS time/cycle report and lishing weekly.
	To prevent this problem from recurring on future programs, t is recommended that engineering, early in the program, perform investigations and/or tests necessary to specify	fro	d. Reassigning the time/cycle recording function m the operating agency to Quality Assurance.	
	7pe a lentii f per	n investigations and/or tests necessary to specify d location of hardware identification (i.e., locate cation on back of part, etch, or utilize other methods anent identification, etc.) which will conform to all environmental requirements.	tact test seq was The	e system previously used on OWS-1 involved after-the- c retrieval of the data following completion of a given (TCP). When tests were delayed or conducted out of uence, the retrieval of the associated time/cycle data delayed and the interim status was frequently unclear. new system provides the real time visibility necessary ssure that time/cycle allocations are not exceeded.
	. <u></u>			

21	CREW INTERFACE FIT CHECK VERIFICATION	21	CREW INTERFACE FIT CHECK VERIFICATION (Concluded)
The show Equi (GF) verifice been fit cl chect in th docu Chect until appr of fit simp On the rece ual the out a was clean	 POSE: Combine fit check and checkout into one operation. OWS Fit Check Matrix is prepared and maintained to the interface verification for Contractor Furnished pment (CFE) and Government Furnished Equipment E) to CFE. The task of performing, documenting, fying and statusing fit checks of interfacing hardware has greatly simplified by incorporating and integrating the heck requirements into the test procedure (TCP) that ks out the hardware. As the test results are recorded e as-run TCP, the fit check results are concurrently mented and verified by Quality Assurance in the Fit the Matrix. The checkout TCP is not considered complete all fit check requirements have been met. This oach affords positive control, provides real time status to check progress, and eliminates duplication of tasks by for the purpose of fit checks. OWS-1 the requirement for fit check verification was not ived until well along in the checkout cycle. The individ-blocks of the Fit Check Matrix were, therefore, filled fiter the fact and verified by researching as-run TCP's complicated because the TCP's were not structured to rly identify fit check requirements and necessitated nning and reverification of these requirements. 	ma ing pr	ture programs should recognize the fit check require- ents early and provide for meeting them by clearly call- g for fit check verification in applicable checkout ocedures and installation paper.

128	22	DISCREPANCY REPORT ACCOUNTABILITY	23	CONFIGURATION VERIFICATION
i i i i i i i i i i i i i i i i i i i	A new been track the span of the separ ng an nteri s hel ssued f dis nto a o ref. nal d oncom ainta his n ocks hich o	of discrepancy forms to functional departments and deferred positive accountability until the tags had been and routed to Quality files. Interim status was plished by physically locating and reviewing individual	A new seria provi confi ratio engin "OK if the in the in the la run. of cor subse The p paper releas of the compa engine tion pr reacco	POSE: Provide on-the-spot verification of part configuration. ar real time system for configuration verification of blized parts has been developed for OWS Backup which ides for improved control and visibility of the as-build guration. A computer tab run of the mandatory configu- n is prepared by Quality Engineering from released eering and provided to floor inspectors. Prior to any to Install" on the original installation of a component, aspector verifies the hardware configuration matches test mandatory configuration called out on the QE tab The tab run is revised weekly. A similar verification affiguration is made for replacement hardware which is quently installed. rior approach relied on pre-planned manufacturing which may not have logged the latest engineering e. After final assembly, a configuration verification overall spacecraft was then performed by review and rison of as-built manufacturing paper with released ering. This resulted in late recognition of configura- coblems. Removal and replacement of hardware and omplishment of testing which may have been invalidated en required to bring the configuration into compliance.

23CONFIGURATION VERIFICATION (Concluded) The technique of real time configuration accountability is strongly recommended for future programs because it offers the potential for substantial cost savings by minimizing post assembly configuration changeouts.

SPECIAL TECHNIQUES AND PROCEDURES

ы С				
	24	FLUREL TUBING	25	SUPER INSULATION BLANKET FABRICATION
i f f f f f f f f t	Due to prior a flexi Two co tubing tubing lexible ear of Althoug ound t uent i o coat		The bland one J This A unit blank proce blank ''Swift devic attach purch Swifts manuf The a thickn higher Install	POSE: Provide a better means of attaching the blanket. Multiple Docking Adapter has an exterior insulation ket made of ninety layers of aluminized mylar and ninety- ayers of dacron netting with a total thickness of $1\frac{1}{2}$ in. blanket is in turn covered by the meteoroid shield. ique method was utilized in securing the 91 layers of the set. Conventional means is by use of hand ties. This

. .

.

• •

130

.

•

26 CONTAMINATION OF MAGNETIC TAPE	27 LAMINATED VS. HARDTIP HEADS ON GROUND RECORDER
 PURPOSE: Provide a screening technique to determine tape contamination. The original method was a visual inspection of both sides of the tape as it was being wound from a supply reel to a takeup reel. Present method consists of using a FR1928 ground recorder reproducer, a bit error rate counter and associated cables. Bit error rate counter is set up to give a printout every 20 feet. Any increase in bit error rate over the established baseline is identified as to location by review of the printout This enables Quality to determine what areas of tape, if any, will require a visual examination. During development of the above technique, it was discovered that in addition to picking up small amounts of foreign material, that minute flaws in the oxide side of the tape would show up as an increase in bit error rate. 	 PURPOSE: Provide best type head for this application. Magnetic tape screening was accomplished on FL1928 recorders which utilized laminated type record and reproduce heads. All flight tape and flight backup tape was required to meet bit error rate of five errors or less per ten million bits per track on all 28 tracks for any 7300 continuous, unspliced, feet of tape. Approximately 240 reels of magnetic tape was processed to get a total of 50 flight quality tapes. Hard tip heads, which were developed and procured late in the program were discovered to have at least 20 percent improvement in performance, plus the reliability was greatly improved over the laminated type. The above has resulted in flight data being reduced utilizing the hard tip heads. Yield of flight tapes would have been much higher if hard tip heads had been available early in the program, when the tape quality screening was accomplished. This also resulted in flight tape, as delivered to the government, being approximately 20 percent higher in quality than what requirements called for.

131

28 USE OF MODI SPACE APPL	FIED COMMERCIAL HARDWARE FOR CATION	28	USE OF MODIFIED COMMERCIAL HARDWARE FOR SPACE APPLICATION (Concluded)
designe The following items when a commercial upgraded to space fill P.C. Boards were of to which was added coating. When the p recorder, it was dis between the coating the connector on the	t out problems in adapting parts not d for a specific application. are examples of difficulties encountered y designed and fabricated assembly is ight status (conformal coating). of commercial design and construction, a requirement for PR 1538 conformal olug-in boards were installed in the scovered that there was interference around the plug-in board connector and mother board. Resolution was to mask the connector, as well as the connector	form duri coat form	to delete the use of silicon type lubricant prior to con- nal coating, mask off the component requiring lubricant ng conformal coating, add the lubricant after conformal ing, and touch up any exposed areas with type II con- nal coating. (Silicon type lubricant was used as a heat sfer agent.)
During conformal coating of large mother boards, which had connectors for the plug-in boards, it was discovered that if the area around the connector and the connector itself was not masked off, the conformal coating could flow into the connector and contaminate the pins. Silicon type lubricant was used during the manufacturing cycle of the P.C. Boards. This resulted in many problems during conformal coating process. This type of lubricant			
formal coating woul	ible to clean off the boards, and con- d not adhere to the surface of any board sed to this type of lubricant. Resolution		

4

.

•

SPECIAL TECHNIQUES AND PROCEDURES

29 COMMAND CODING 30 TELEPRINTER	
 PURPOSE: To allow transmission of any command or its complement. A coding technique was used that allowed the transmission of any command or its complement. The complementary message concept allows mission control to issue a command decoder, the switch selector, or both. The mission operator simply transmits the complement of the message he has unsuccessfully tried. An all 1's test and all zero test was also implemented for diagnostic purposes. This diagnostic procedure is very helpful in case of a transmission of a faulty command. The all 1's transmission allows the operator to cancel the last message if an execute command has not been issued. PURPOSE: To convey written messages to the A teleprinter was developed for use in the Air teleprinter is used for conveying written mess astronauts in the Skylab. This frees the astrons productive work. It also reduces the possibili since mission operations can double check the transmission of a faulty command. The all 1's transmission allows the operator to cancel the last message if an execute command has not been issued. 	lock. This ages to the naut from approach has aut for other ty of errors, data prior to

APPROVAL

RETENTION AND APPLICATION OF SKYLAB EXPERIENCES TO FUTURE PROGRAMS

By V. G. Gillespie and R. O. Kelly

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

E. G. Hoard

Chief, Reliability Branch

Chief, Reliability and Engineering Office

10/16/74

C. O. Brooks Director, Reliability and Quality Assurance Office

Rein Ise, Manager Skylab Program Office OCT 29 1974

☆ U.S. GOVERMENT PRINTING OFFICE 1974 - 640-447 / 139 REGION NO. 4