55 research outputs found

    Past, present and future of IP telephony

    Get PDF
    “Copyright © [2008] IEEE. Reprinted from International Conference on Communication Theory, Reliability, and Quality of Service, 2008. CTRQ '08. ISBN:978-0-7695-3190-8. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”Since the late 90's IP telephony, commonly referred to as Voice over IP (VoIP), has been presented as a revolution on communications enabling the possibility to converge historically separated voice and data networks, reducing costs, and integrating voice, data and video on applications. This paper presents a study over the standard VoIP protocols H.323, Session Initiation Protocol (SIP), Media Gateway Control Protocol (MGCP), and H.248/Megaco. Given the fact that H.323 and SIP are more widespread than the others, we focus our study on them. For each of these protocols we describe and discuss its main capabilities, architecture, stack protocol, and characteristics. We also briefly point their technical limitations. Furthermore, we present the Advanced Multimedia System (AMS) project, a new system that aims to operate on Next Generation Networks (NGN) taking the advantage of its features, and it is viewed as the successor to H.323 and SIP

    Foreword by guest editors for the Special Issue on the 2013 ICUFN Conferencs

    Full text link
    Jeong, S.; Rodrigues, JJPC.; Cano Escribá, JC. (2014). Foreword by guest editors for the Special Issue on the 2013 ICUFN Conferencs. Wireless Personal Communications. 78(4):1827-1831. doi:10.1007/s11277-014-2046-yS1827183178

    Quality of Service Controlled Multimedia Transport Protocol

    Get PDF
    PhDThis research looks at the design of an open transport protocol that supports a range of services including multimedia over low data-rate networks. Low data-rate multimedia applications require a system that provides quality of service (QoS) assurance and flexibility. One promising field is the area of content-based coding. Content-based systems use an array of protocols to select the optimum set of coding algorithms. A content-based transport protocol integrates a content-based application to a transmission network. General transport protocols form a bottleneck in low data-rate multimedia communicationbsy limiting throughpuot r by not maintainingt iming requirementsT. his work presents an original model of a transport protocol that eliminates the bottleneck by introducing a flexible yet efficient algorithm that uses an open approach to flexibility and holistic architectureto promoteQ oS.T he flexibility andt ransparenccyo mesi n the form of a fixed syntaxt hat providesa seto f transportp rotocols emanticsT. he mediaQ oSi s maintained by defining a generic descriptor. Overall, the structure of the protocol is based on a single adaptablea lgorithm that supportsa pplication independencen, etwork independencea nd quality of service. The transportp rotocol was evaluatedth rougha set of assessmentos:f f-line; off-line for a specific application; and on-line for a specific application. Application contexts used MPEG-4 test material where the on-line assessmenuts eda modified MPEG-4 pl; yer. The performanceo f the QoSc ontrolledt ransportp rotocoli s often bettert hano thers chemews hen appropriateQ oS controlledm anagemenatl gorithmsa re selectedT. his is shownf irst for an off-line assessmenwt here the performancei s compared between the QoS controlled multiplexer,a n emulatedM PEG-4F lexMux multiplexers chemea, ndt he targetr equirements. The performanceis also shownt o be better in a real environmentw hen the QoS controlled multiplexeri s comparedw ith the real MPEG-4F lexMux scheme

    Networking for the Metaverse: The Standardization Landscape

    Full text link
    New applications are being supported by current and future networks. In particular, it is expected that Metaverse applications will be deployed in the near future, as 5G and 6G network provide sufficient bandwidth and sufficiently low latency to provide a satisfying end-user experience. However, networks still need to evolve to better support this type of application. We present here a basic taxonomy of the metaverse, which allows to identify some of the networking requirements for such an application; we also provide an overview of the current state of balthe standardization efforts in different standardization organizations, including ITU-T, 3GPP, IETF and MPAI.Comment: To appear in ITU Journal on Future and Evolving Technologies J-FET December 202

    Distributed Coding/Decoding Complexity in Video Sensor Networks

    Get PDF
    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality

    Fast and Accurate Video PQoS Estimation over Wireless Networks

    Get PDF
    This paper proposes a curve fitting technique for fast and accurate estimation of the perceived quality of streaming media contents, delivered within a wireless network. The model accounts for the effects of various network parameters such as congestion, radio link power, and video transmission bit rate. The evaluation of the perceived quality of service (PQoS) is based on the well-known VQM objective metric, a powerful technique which is highly correlated to the more expensive and time consuming subjective metrics. Currently, PQoS is used only for offline analysis after delivery of the entire video content. Thanks to the proposed simple model, we can estimate in real time the video PQoS and we can rapidly adapt the content transmission through scalable video coding and bit rates in order to offer the best perceived quality to the end users. The designed model has been validated through many different measurements in realistic wireless environments using an ad hoc WiFi test bed

    Evaluate the Performance of Video Transmission Using H.264 (SVC) Over Long Term Evolution (LTE)

    Get PDF
    In recent years, the mobile Internet has increased dramatically with the development of 3G and 4G technologies. Especially th e usage of mobile broadband internet on the devices like cellular mobiles, Tablets and Laptops has skyrocketed. Among the multimedia applications video streaming is the most popular mobile application. But, making these services available to users in a cost effective way without compromising quality is a big challenge. The development of Long Term Evolution (LTE) technology in the mobile world made this task achievable. The features of LTE technology provide effective services in multimedia applications with high data rates and low latency. The aim of this paper is to evaluate the quality of service (QoS) performance over LTE

    Semi-synchronous video for deaf telephony with an adapted synchronous codec

    Get PDF
    Magister Scientiae - MScCommunication tools such as text-based instant messaging, voice and video relay services, real-time video chat and mobile SMS and MMS have successfully been used among Deaf people. Several years of field research with a local Deaf community revealed that disadvantaged South African Deaf people preferred to communicate with both Deaf and hearing peers in South African Sign Language as opposed to text. Synchronous video chat and video relay services provided such opportunities. Both types of services are commonly available in developed regions, but not in developing countries like South Africa. This thesis reports on a workaround approach to design and develop an asynchronous video communication tool that adapted synchronous video codecs to store-and-forward video delivery. This novel asynchronous video tool provided high quality South African Sign Language video chat at the expense of some additional latency. Synchronous video codec adaptation consisted of comparing codecs, and choosing one to optimise in order to minimise latency and preserve video quality. Traditional quality of service metrics only addressed real-time video quality and related services. There was no such standard for asynchronous video communication. Therefore, we also enhanced traditional objective video quality metrics with subjective assessment metrics conducted with the local Deaf community.South Afric

    VoIP security - attacks and solutions

    Get PDF
    Voice over IP (VoIP) technology is being extensively and rapidly deployed. Flexibility and cost efficiency are the key factors luring enterprises to transition to VoIP. Some security problems may surface with the widespread deployment of VoIP. This article presents an overview of VoIP systems and its security issues. First, we briefly describe basic VoIP architecture and its fundamental differences compared to PSTN. Next, basic VoIP protocols used for signaling and media transport, as well as defense mechanisms are described. Finally, current and potential VoIP attacks along with the approaches that have been adopted to counter the attacks are discussed
    • …
    corecore