35 research outputs found

    Dual-fisheye lens stitching for 360-degree imaging

    Full text link
    Dual-fisheye lens cameras have been increasingly used for 360-degree immersive imaging. However, the limited overlapping field of views and misalignment between the two lenses give rise to visible discontinuities in the stitching boundaries. This paper introduces a novel method for dual-fisheye camera stitching that adaptively minimizes the discontinuities in the overlapping regions to generate full spherical 360-degree images. Results show that this approach can produce good quality stitched images for Samsung Gear 360 -- a dual-fisheye camera, even with hard-to-stitch objects in the stitching borders.Comment: ICASSP 17 preprint, Proc. of the 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, March 201

    On Foveated Gaze Control and Combined Gaze and Locomotion Planning

    Get PDF
    This chapter presents recent research results of our laboratory in the area of vision an

    Sharing spaces, sharing lives - The impact of robot mobility on user perception of a home companion robot

    Get PDF
    Syrdal D.S., Dautenhahn K., Koay K.L., Walters M.L., Ho W.C. (2013) 'Sharing Spaces, Sharing Lives – The Impact of Robot Mobility on User Perception of a Home Companion Robot', In: Herrmann G., Pearson M.J., Lenz A., Bremner P., Spiers A., Leonards U. (eds) Social Robotics. ICSR 2013. Lecture Notes in Computer Science, Vol 8239. DOI: 10.1007/978-3-319-02675-6_32 Paper presented at the International Conference on Social Robotics, (ICSR) 2013, Bristol, UK, 27-29 October 2013. © Springer-Verlag Berlin Heidelberg 2013This paper examines the role of spatial behaviours in building human-robot relationships. A group of 8 participants, involved in a long-term HRI study, interacted with an artificial agent using different embodiments over a period of one and a half months. The robot embodiments had similar interactional and expressive capabilities, but only one embodiment was capable of moving. Participants reported feeling closer to the robot embodiment capable of physical movement and rated it as more likable. Results suggest that while expressive and communicative abilities may be important in terms of building affinity and rapport with human interactants, the importance of physical interactions when negotiating shared physical space in real time should not be underestimated

    New framework for simultaneous localization and mapping: Multi map SLAM

    Get PDF
    The main contribution of this paper arises from the development of a new framework, which has its inspiration in the mechanics of human navigation, for solving the problem of Simultaneous Localization and Mapping (SLAM). The proposed framework has specific relevance to vision based SLAM, in particular, small baseline stereo vision based SLAM and addresses several key issues relevant to the particular sensor domain. Firstly, as observed in the authors' earlier work, the particular sensing device has a highly nonlinear observation model resulting in inconsistent state estimations when standard recursive estimators such as the Extended Kalman Filter (EKF) or the Unscented variants are used. Secondly, vision based approaches tend to have issues related to large feature density, narrow field of view and the potential requirement of maintaining large databases for vision based data association techniques. The proposed Multi Map SLAM solution addresses the filter inconsistency issue by formulating the SLAM problem as a nonlinear batch optimization. Feature management is addressed through a two tier map representation. The two maps have unique attributes assigned to them. The Global Map (GM) is a compact global representation of the robots environment and the Local Map (LM) is exclusively used for low-level navigation between local points in the robot's navigation horizon. ©2008 IEEE

    Kinematics parameters estimation for an AFM/Robot integrated micro-force measurement system.

    No full text
    International audienceThis paper introduces a novel atomic force microscope (AFM) and parallel robot integrated micro-force measurement system whose objective is the measurement of adhesion force between planar micro-objects. This paper is mainly focused on the kinematics parameters estimation between the objects to be measured, the parallel robot and the AFM system in order to position both objects during measurement. A substrate is placed on the end-platform of the parallel robot system, on which three markers are utilized as the reference information to the kinematics parameters estimation. The markers are identified by the AFM scanning in order to identify the kinematics parameters of the whole system. Based on the classic Gauss-Newton algorithm, the position and orientation can be solved. Finally, the effectiveness of the proposed method is demonstrated through the experiments on the prototype of the micro-force measurement system. The parameters estimation methodology outlined is generic and also can be extended to a variety of applications in calibration of micro-robots

    Multi-focal Vision and Gaze Control Improve Navigation Performance

    Get PDF

    Veröffentlichungen und Vorträge 2006 der Mitglieder der Fakultät für Informatik

    Get PDF
    corecore