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Abstract Multi-focal vision systems comprise cameras with
various fields of view and measurement accuracies. This
article presents a multi-focal approach to localization and
mapping of mobile robots with active vision. An
implementation of the novel concept is done considering a
humanoid robot navigation scenario where the robot is
visually guided through a structured environment with
several landmarks. Various embodiments of multi-focal
vision systems are investigated and the impact on
navigation performance is evaluated in comparison to a
conventional mono-focal stereo set-up. The comparative
studies clearly show the benefits of multi-focal vision for
mobile robot navigation: flexibility to assign the different
available sensors optimally in each situation, enhancement
of the visible field, higher localization accuracy, and, thus,
better task performance, i.e. path following behavior of the
mobile robot. It is shown that multi-focal vision may
strongly improve navigation performance.

Keywords multi-focal vision, foveated vision, gaze
control, robotics, navigation

1. Introduction

Multi-focal vision systems comprise cameras with various
fields of view and measurement accuracies. Typical
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examples are so called bi-focal or foveated systems with
telephoto and wide-angle cameras aligned in parallel. To
date only few works exist making use of the particular
characteristics of multi-focal vision and approaches
requiring locomotion of mobile or humanoid robots have
not been proposed yet.

This article proposes a multi-focal gaze control strategy in
combination with multi-focal localization and mapping
for a mobile robot. An implementation is done
considering a humanoid robot navigation scenario.
Evaluation studies are conducted investigating the
impact of the multi-focal concepts on navigation
performance considering various types of multi-focal
vision systems in comparison to a conventional mono-
focal embodiment.

With the help of velocity and yaw angle sensors, mobile
robots can update the internal knowledge about their
current position and orientation from a previous time
step; this process is commonly referred to as dead-
reckoning. Due to measurement errors and slippage
these estimations are erroneous and position accuracy
degrades over time causing a drift of the estimated
robot pose. To overcome the drift problem it is common
to take absolute measurements evaluating visual
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information, which are fused dynamically with the
odometry data by applying Kalman-filter or other
techniques, e.g. (Dissanayake et al., 2001). The use of
active vision systems for navigation is state-of-the-art
providing a situation-related selective allocation of
vision sensor resources, e.g. (Davison & Murray, 2002;
Seara et al., 2003; Vidal-Calleja et al., 2006). Active
vision systems comprising only one type of vision
sensor face a trade-off between field of view and
measurement accuracy due to limitations of sensor size
and resolution, and of computational resources. In order
to overcome this drawback the combined use of several
vision devices with different fields of view and
measurement accuracies is known which is called
foveated, multi-resolution, or multi-focal vision, e.g. cf.
(Dickmanns, 2003; Kiihnlenz et al.,, 2006; Ude et al.,,
2006). Thereby, the individual vision devices can be
independently controlled according to the current
situation and task requirements.

Multi-focal active vision for mobile robot navigation is
considered novel and provides various benefits shown
in this article which may strongly improve navigation
performance: flexibility to assign the different available
sensors optimally in each situation, enhancement of the
visible field, higher localization accuracy, and, thus,
better task performance, i.e. path following behavior.

The remainder of this article is organized as follows: In
Section 2 vision-based localization and mapping in the
context of humanoid robots is surveyed; Section 3 is
concerned with multi-focal camera coordination in
localization and mapping with active vision; evaluation
studies comparing various multi-focal concepts to
approaches
presented in Section 4; conclusions are given in Section 5.

conventional and vision systems are

2. Vision-based Localization and Mapping
for Humanoid Robots

Most state-of-the-art humanoid robots are equipped with
vision systems. The benefits of using these vision systems
for providing absolute measurements of the robot pose in
the environment are obvious: pose
landmarks is provided and no additional devices as, e.g.,
laser scanners are necessary. Being equipped with
internal sensors - angular sensors in the joints and widely
used gyros and accelerometers in the trunk — humanoid
robots are basically capable of dead-reckoning, i.e. the
ability to update position and orientation known from
previous measurements. Thus, common simultaneous
localization and mapping techniques are applicable
which are covered by common literature, e.g. (Sabe et al.,
2004; Ozawa et al., 2005; Thomson & Kagami, 2005; Stasse
et el., 2006).

information on
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Figure 1. Humanoid robot navigation scenario

A fundamental aspect in simultaneous localization and
mapping for humanoid walking is the formulation of a
state-space model accounting for the footstep sequences
of the robot. In vision-based SLAM, the system state, i.e.
the robot pose and environment point positions, are
predicted based on the dead-reckoning model of the
mobile robot. Common Kalman-filter techniques are
applied in order to obtain more accurate estimations
accounting for uncertainties in the robot locomotion.
Whenever visual measurements of environmental points
are taken, updates of the robot state are computed.
Changing ground contact situations of the feet, however,
result
reference frame to measured environment points. This
discontinuous movement of the humanoid robot requires
an adaptation of the filter formulation. In earlier works
we proposed a hybrid formulation of the state-space
model in order to capture this locomotion principle (Seara
et al., 2003). Thereby, the robot reference frame is placed
in the foot currently in contact with the ground and is
switched whenever the supporting foot changes. The
dead-reckoning model is expressed by

in different kinematic chains from a world

Xer1 =X (L= 7))+ fo (g g, dy )7k )

where state-vector x=[oxT r”]T contains the robot foot
pose estimate ox in world frame and the landmark
position estimates rx: in robot foot frame, d represents
system noise capturing dead-reckoning uncertainties, f:
computing the next estimates of the robot pose and
landmark positions with respect to the previous ones
(basically translation and rotation by u, and adding
system noise d), and ge€{0; 1} is a binary variable
indicating a change of the supporting foot when g=1. The
commanded step u is expressed by

uk=[FXsk Fysk Fqsk]T, (2)
including the commanded step position [rxs rys]” and
orientation rgs with respect to the current supporting foot

frame Sr. Figure 1 schematically shows a typical SLAM
situation of a humanoid robot with the reference frame
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currently placed in the left foot. The landmark positions
can be estimated solving a typical 3D reconstruction
problem whenever individual landmarks are visible in at
least one of the vision sensors yielding a nonlinear
measurement equation

Zi=fm(xk, 5Pk, VxK), 3)

with landmark projections in image space xx, matrix rPx
containing the projection matrices of the individual vision
sensors, and sensor noise vx.

In vision-based SLAM field of view restrictions of the
vision device strongly limit the number of landmarks to
be observed simultaneously. Yet, a larger field of view
can only be realized accepting a lower measurement
accuracy of the vision device mainly due to limitations of
sensor size and resolution. Therefore, we propose the use
of several vision devices which provide different fields of
view and accuracies and a novel gaze control concept for
coordinating the individual vision devices in order to
provide both, large field of view and high measurement
accuracy, simultaneously. These foveated active vision
concepts for robot navigation are discussed in the
following section.

3. Multi-focal Camera Coordination
3.1 Active Vision in SLAM

In order to gather an optimal situation-dependent
amount of information the control of the vision system
pose is common. To date, there are only few works in
the area of active vision-based SLAM, e.g. (Davison &
Murray, 2002; Se et el., 2002; Vidal-Calleja et el., 2006)
which are based on measures representing the
information gathered with respect to the SLAM task. All
these approaches are greedy strategies only evaluating
the current situation without considering future
planning steps. In order to obtain an optimal gaze
direction considering also some future planning steps,
we proposed a gaze direction planning strategy with
limited time horizon (Lidoris et al., 2006). Furthermore,
in earlier works (Seara et al., 2003) we introduced a gaze
control considering  concurrent tasks,

localization, and obstacle avoidance for humanoid

strategy

robots in order to account for navigation in physical
environments.

3.2 Foveated Active Vision

Vision systems comprising only one type of vision
sensors face a tradeoff between measurement accuracy
and field of view due to limitations of sensor size and
computational resources for image processing. Accuracy
and field of view are mainly determined by the focal-
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length of the lens or mirror optics, respectively. Within
the context of robot navigation this tradeoff implies a
compromise between localization accuracy and keeping a
large part of the scene in view.

With an active vision system this tradeoff could be
compensated providing that a sufficiently accurate map
of relevant landmarks or structures of interest to be
observed is known a priori. Then the highest available
focal-length and, thus, the highest measurement
accuracy could be chosen. If additionally very fast gaze
shifts can be realized, the narrow field of view would be
acceptable as attention directed
dynamically towards the most relevant structure in the

visual can be
current situation. Yet, in a variety of scenarios this
approach is unsuitable or even unrealizable. In at least
partially unknown environments and in exploration
scenarios a sufficient map is not available and thus has
to be created online. However, due to the strongly
limited field of view the detection of new objects of
potential interest is hardly possible. Another aspect are
potentially relevant or even dangerous objects or
activities in the local surroundings of the robot which
cannot be detected.

In order to overcome the common drawback of trading
field of view versus
combination of wide-angle and telephoto vision devices
has been suggested. Such systems provide at the same
time both, an observation of a large part of the
environment and a selective examination with high

measurement accuracy, the

accuracy. In common literature these systems are referred
to as foveated, multi-resolution or multi-focal systems.
The individual vision devices may be fixed with
respected to each other or may be independently motion
controllable in one or more degrees of freedom. Most
common embodiments of foveated systems are used in
state-of-the-art humanoid robots
different cameras combined in each eye which are aligned
in parallel, e.g. (Brooks et al., 1999; Ude et al., 2006;
Vijayakumar et al., 2004). Systems for ground vehicles,
e.g. (Apostoloff & Zelinsky, 2002; Maurer et al., 1996;
Dickmanns, 2003) are another prominent class. An

comprising two

upcoming area are surveillance systems which strongly
benefit from the combination of large scene overview and
selective observation with high accuracy, e.g. (Bodor et
al., 2004; Davis & Chen, 2003; Elder et al., 2004; Jankovic
& Naish, 2005; Horaud et al., 2006). An embodiment with
independent motion control of three vision devices with a
total of 6 degrees-of-freedom (DoF) is the camera head of
the humanoid robot LoLA developed at our laboratory
which is shown in Figure 2 providing more flexibility
and, due to directly driven gimbals, faster camera
motions than other known systems, cf. e.g. (Kiithnlenz et
al., 2006).
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Figure 2. Multi-focal vision system of humanoid LOLA (Kiihnlenz
et el. 2006)

Most known methods for active vision control in the field
of foveated vision are concerned with decision-based
mechanisms to coordinate the view direction of a
telephoto vision device based on evaluations of visual
data of a wide-angle device. For a survey on state-of-the-
art methods cf. (Kiithnlenz, 2006). A first approach
towards multi-focal view direction planning for mobile
robots has been investigated in our laboratory which is
presented in the following sections.

3.3 Considerations for Camera Coordination

In the area of foveated vision a large body of literature
exists covering mechanisms to assess peripheral visual
data in order to derive control commands to direct foveal
attention towards regions of potential interest. The most
prominent computational approaches in the biologically
inspired field are computational neuroscience models of
top-down modulated bottom-up attention weighting
particular visual features of the environment, e.g. (Koch &
Ullmann, 1984; Itti & Koch, 2001). In the technical field a
larger variety of different methods is known. Common
approaches solve optimization problems, assess the visual
information content, or evaluate the environment towards
particular visual features, e.g. (Bodor et al., 2004; Darrell,
1997; Pellkofer & Dickmanns, 2000; Scasselati, 1998; Shibata
et al.,, 2001). To date, only few works have been presented on
foveated and multi-camera attention considering locomotion
tasks. Prominent examples are the works of (Pellkofer &
Dickmanns, 2000) in the field of visual guidance of
autonomous ground vehicles and gaze control concepts for
the humanoid LOLA conducted in our laboratory (Kiithnlenz,
2006), where optimal view directions are determined by
maximizing the information gain.

In earlier works we proposed a task-related information

measure as quality measure termed incertitude (Seara et
al, 2003) which has been taken as the basis for the
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coordination of the two stereo-camera devices of LOLA
with different characteristics.
humanoid robot is a locomotion task to walk along a
certain path or to explore the world. A primary condition
for view direction planning, thus, has to consider the
quality of locomotion task accomplishment in order to
determine an optimal view direction for the next time
step. The concept of incertitude captures this task-
dependence by evaluating the predicted certainty of the
estimated robot foot pose. Therefore, the average of the
main axes lengths of the foot pose covariance matrix
confidence ellipsoid is computed

vo=3 D i @

The mission of the

where counter i covers the considered components of the
foot pose and e: are the eigenvalues of the predicted foot
pose covariance matrix Pux which is a submatrix of the
predicted covariance matrix of a possible target state as
estimated by the Kalman-filter, e.g. cf. (Dissanayake et el.,

2001)
) i i
szk:[P uu Pum], (5)

i i
Pl Plum

where Piuw is the error covariance matrix of the robot state
estimate, Pimm is the map covariance matrix of the
landmark state estimates and Pium is a cross-covariance
matrix between robot and landmark states. Low values of
the defined measure (4), thus, indicate a high certainty of
the robot pose estimation and, therefore, good task
performance for the task. Additional
measures to assess the performance of secondary tasks
have been proposed which also may have an indirect
impact on the performance of the primary (locomotion)
task, e.g. field of view limitations, presence of activities,
etc., (Kithnlenz, 2006). These measures are all extensions
to the central gaze control concept and, therefore, out of
scope of this article.

locomotion

Figure 3. Humanoid robot navigation scenario with (bi-focal)
multi-camera vision
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Given such measures to assess the task performance of
the humanoid robot the next task is to derive appropriate
view directions for the individual vision devices in the
following time step in order to achieve a particular
desired task performance. This gaze control concept is
topic of the following section.

3.4 Multi-focal View Direction Planning

Common approaches to optimal view direction planning
for mobile systems are based on a maximization of the
information gain, e.g. (Davison, 1998; Pellkofer &
Dickmanns, 2000; Seara et al., 2003), in order to determine
either a selected gaze shift or a sequence of gaze
behaviors. Particularly, in the field of foveated and multi-
camera vision also visibility conditions are considered,
e.g. (Pellkofer & Dickmanns, 2000; Kithnlenz, 2006).

The nonlinear measurement equation (3) is extended by
allowing for different sensor characteristics, e.g. different
projection matrices in rPr. The basic principle of multi-
camera coordination in this article is an information
maximization over a set of possible view directions of
independent vision devices. The assumed task of the
robot is to follow a path as closely as possible. As a
consequence the estimation error of the robot pose within
the environment during its motion has to be minimal in
order to complete the mission optimally. The presumed
objective for view direction planning is to gather the
largest possible amount of information with respect to the
task to be accomplished. An information gain
corresponds to a reduction of uncertainty. In order to
maximize the information gain the robot pose error has to
be minimized by selecting appropriate view directions of
the individual cameras of the foveated multi-camera
vision system. Following this, an optimal configuration of
view directions for the locomotion task in the next time
step satisfies the condition of minimizing the robot pose
estimation error. In terms of the task-related information
measure defined in the previous section this gaze control
strategy can be expressed by

O = argminvy, (6)

Q

where W=[pan tilt: ... pan tilts]" is a configuration of pan-
and tilt-angles of all vision devices, no is the incertitude
information measure defined in the previous section, and
(.)" denotes the optimal value. This method constitutes an
extension to our earlier works on gaze control for
humanoid robots (Seara et al., 2003) generalizing them to
multi-camera vision systems. In Section 6, a comparative
evaluation of this strategy is presented assuming a
humanoid robot navigation scenario with sparsely
distributed point landmarks.
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The presented gaze control considers a
preplanned path of the humanoid robot which is not
altered as the robot moves. The following section is
concerned with combined planning of gaze direction and
locomotion path in order to provide the mobile robot
with capabilities of exploring unknown environments.

strategy

4. Comparative Evaluation Study

In Section 3 novel concepts of multi-focal gaze control
and localization and mapping have been introduced. This
section is concerned with comparative evaluation studies
in order to assess the performance of the proposed multi-
focal approaches in comparison to conventional mono-
focal methods and vision systems.

4.1 Scenario Definition: Humanoid Robot Navigation

Considered is a typical locomotion task of a humanoid
robot with the robot walking along a planned path. It has
visual and odometrical capabilities such that it is able to
localize itself and other objects within the environment.
The robot is equipped with a foveated multi-camera vision
system consisting of two stereo-camera devices with
independently controllable pan- and tilt-angles, different
focal-lengths, and different fields of view. The robot's
mission is to follow the desired path. Therefore, it has to
localize itself continually evaluating odometry data and
visual information. Given a particular environmental
situation, i.e. configuration of observable objects and robot
pose, the objective is to dynamically select appropriate
view directions for both vision devices. Figure 3
exemplarily shows a situation in the considered navigation
scenario where a humanoid robot fixates two landmarks
with two vision devices of its foveated multi-camera vision
system in order to localize itself in the world.

In order to demonstrate the benefits of foveated multi-
camera view direction planning the proposed gaze
control approach is now evaluated in a structured
humanoid robot navigation scenario. Several vision
system configurations are evaluated by comparison of the
achieved navigation performances. The basic scenario is
shown in Figure 4. Four landmarks are distributed within
a rectangular environment. The mission of the robot is to
follow the planned path in x-direction. In order to
complete the mission successfully the robot has to localize
itself within the environment evaluating available visual
information on the positions of the identified landmarks.
The state-vector consisting of robot pose and landmark
positions is estimated dynamically fusing visual and
odometrical information using a Kalman-filter approach
depicted in Figure 6 considering the hybrid dead-
reckoning model (1) (for detailed description the reader
may refer to (Kithnlenz, 2007) ). In order to maximize the
information gain optimal of the
individual vision devices are selected dynamically based

view directions
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on the proposed approach in Section 3.4. The positions of
the landmarks are not known a priori nor is the number
of landmarks. Configurations of the vision system in the
considered scenario to be compared are: a) conventional
single stereo-camera, focal-lengths 20mm, aperture angles
30°, stereo-base 25c¢m; b) bi-focal stereo-camera with two
cameras per eye aligned in parallel, focal-lengths 2mm
and 40mm, respectively, aperture angles 60° and 10°,
respectively, stereo-bases 25cm; c) wide-angle stereo-
camera with aperture angles of 60°, focal-lengths of 2mm,
and a stereo-base of 25cm; d) the bi-focal vision system
with aperture angles of the wide-angle cameras 80°; e)
two independent stereo-cameras, focal-lengths 2mm and
40mm, respectively, aperture angles 80° and 10°,
respectively, stereo-bases 25cm. All cameras are ideal,
based on the pinhole camera model neglecting lens
distortion and quantization effects. Gaussian vision
sensor noise with a standard deviation of 1 pixel is
considered. Dead-reckoning errors are taken from
experiments with the humanoid robot JOHNNIE.
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Figure 4. Top-view of humanoid robot navigation scenario
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Figure 5. Real, estimated, and planned paths and footsteps

The navigation performance is rated assessing the
localization accuracy. Therefore, the covariance matrix of
the robot position is evaluated computing the areas of the
90%-confidence ellipses of the footstep position
uncertainties of the humanoid robot. Figure 5 contains a
cut-out of Figure 4 showing the planned and real paths, the
path estimated by the Kalman-filter, the foot step positions,
and their covariance ellipses. It is noted that due to dead-
reckoning errors the real path deviates increasingly from
the planned path as locomotion control is open loop. The
estimated path follows the real path well.

Figure 7 and Figure 8 show the resulting view directions

for each step of the robot for the individual vision
systems. The resulting fields of view on the ground plane
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within the environment are depicted in Figures 9, 10, 11,
and 12. The propagations of the areas of the confidence
ellipses are shown in Figure 13. Table 1 shows a
comparison of the means of the confidence ellipse areas
and the average number of landmarks visible for the
vision systems for all scenarios. The 90%-confidence
ellipses for three different vision systems at the same
respective step are depicted in Figure 14. These results
are discussed in the following.

Ma FXI| Kalman- x, P view direction
p filter planner
z s
Q
]
step U multi—focal
executor vision system

1ol

environment

Figure 6. Multi-focal gaze control and simultaneous localization
and mapping architecture; state-vector  x=[ox" rxi"]T, covariance
matrix P, controlled step ou, landmark positions ol, estimated
landmark positions rxi, estimated robot pose ox, measurements z,
vision sensors hi, and optimized configuration of view directions
W*; o(.) denoting world frame and r(.) denoting foot frame
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Figure 7. Pan-angles of the a) conventional stereo-camera
(system a) and b) of the bi-focal stereo-camera (system b) with
two aligned cameras per eye

4.2 Mono-Focal Localization Performance

Mono-focal vision systems, i.e. systems comprising only
one sensor type, suffer from a trade-off of accuracy versus
field of view. In robot localization not only measurement
accuracy, but also the number of visible landmarks is an
important factor in order to determine the current robot
position. Depending on the distribution of landmarks and
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the current situation it may be better to observe more
landmarks with lower accuracy in one situation and
fewer landmarks with higher accuracy in another. Thus,
mono-focal systems are always a compromise working
well only for a very limited class of environmental
conditions and situations, however, failing in others. This
problem is reflected by the results shown in Figure 6a and
Table 1. The upper two of the sparsely distributed
landmarks are not detected at the initial position and,
thus, the planner only considers the lower landmarks.
Most of the time only one landmark is visible and used
for localization.

An extreme case vision system which is not shown
comprising a telephoto camera with very narrow field of
view fails in most cases. If no a priori knowledge on
landmark positions is available and no landmark is
located within the field of view no information for the
view direction planner is available. The only possibility is
a continuous scan commanding the camera to rotate over
the whole range trusting to accidental detection of the
one or other landmark. However, this strategy is highly
unefficient and unflexible.

A conventional camera with medium accuracy and focal-
length has a better chance to capture landmarks. Figure
7a shows the resulting optimal view directions for this
scenario. It can be noted that in this case only one
landmark is detected at the starting position (see Figure
9) and only accidentally a second one is seen after shifting
the view direction (step #3). Thus, the planner only
considers the lower landmarks within the environment.
However, most of the time only one landmark is visible.

In consequence moving further through the environment
at some position the gaze has to be shifted towards
another landmark (due to joint limits) resulting in a
sudden increase of the robot position covariances (see
Figure 13, x=3m).

Interestingly, the wide-angle system shows a significantly
better performance which can be noted by the average
areas of the foot step confidence ellipses shown in Table 1.
Three landmarks are visible at the initial position and can,
thus, be considered for optimal view direction planning. In
most cases two landmarks are visible at a time.

4.3 Multi-Focal Localization Performance

The foveated vision systems provide much more
flexibility. Due to the large field of view of the wide-angle
device more landmarks are detected in the initial position
to be considered by the planner. So, at each step two or
more landmarks are used for localization whereas at least
one landmark is focused with telephoto cameras resulting
in a significantly higher certainty of the estimated

www.intechopen.com

footstep positions of the humanoid robot as shown in
Figure 13 and Table 1.

One of the main contributions and benefits of multi-focal
vision is the possibility to allocate sensor resources
flexibly depending on environmental conditions and
current situation. As can be seen in Figure 11 a variety of
different configurations of view directions are selected by
the planner in order to satisfy the current situational
requirements optimally. At each step measurements of
two or three landmarks are taken. The significantly better
performance is obvious which is noted by the much
lower areas of the footstep confidence ellipses compared
to all other vision system configurations, see Figure 12
and Figure 13.

The multi-focal vision systems with aligned cameras, i.e.
systems with large field of view and small central high-
resolution region, which are used in many state-of-the-art
robot heads, however, yield very different performances.
The considered foveated scenarios vary in the field of
view of the wide-angle camera. Looking at the
performance measures in Table 1 the average number of
visible landmarks differs by more than one landmark at
each step. This results in a much higher localization
uncertainty for the vision system with slightly smaller
wide-ang]e field of view shown in Table 1.

T T
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Figure 8. Pan-angles of bi-focal vision system with two
independent stereo cameras (system e); a) telephoto and b) wide-
angle stereo-camera

The confidence ellipse areas for this multi-focal system
only reach the values of a conventional camera (see Figure
13) while the one with the larger field of view performs
almost equally to the multi-focal system with independent
cameras, see also Table 1. This can be explained by the fact
that the wide-angle region is always shifted with the
telephoto region. There is no possibility to adjust the wide-
angle pose such that a sufficient number of landmarks is
captured. Thus, the number of visible landmarks depends
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strongly on the field of view of the wide-angle camera. In
the scenario with smaller wide-angle field of view only
occasionally the wide-angle camera captures more than
one landmark which can be seen in Figure 10. At most
steps a configuration as seen in step #12 is given. So at
many steps merely one landmark is visible.

Assessing these results, the advantages of multi-focal
active vision in mobile robot navigation are obvious.
Localization accuracy is strongly improved and in case of
multi-focal vision with independent cameras sensor
resources can be flexibly allocated depending on the
current task and situational requirements. In case of multi-
focal active vision with aligned cameras a certain field of
view has to be provided depending on the environmental
setting in order to achieve similar performance.

4.4 Discussion

The concept of multi-focal view direction planning for
mobile robot navigation has been introduced in order to
overcome various drawbacks of conventional strategies
comprising only one type of or kinematically coupled
vision devices. The performance of various vision system
embodiments has been investigated based on a standard
navigation scenario localizing a humanoid robot walking
on a straight path through a structured environment. It
has demonstrated that multi-focal
outperforms all other vision system embodiments due to
its flexibility in resource allocation and additional high-
accuracy sensors resulting in significantly improved
mission performance, i.e. localization accuracy, of the

been vision

mobile robot. Foveated devices which are increasingly
used perform similarly only if a sufficient field of view of
the wide-angle camera is provided.

The main reason for the weaker performance of mono-focal
system configurations is the trade-off between field of view
and accuracy which substantially reduces the number of
reference objects to be observed or the accuracy of object
position measurements. A certain field of view is needed in
order to continually make out next reference objects along
the robot’s path strongly limiting accuracy. In the extreme
case of a telephoto camera with very narrow aperture
angles no objects are detected at all. The foveated version,
i.e. a multi-focal system with relative sensor poses fixed,
suffers from the shortcoming that the view direction has to
be determined based on the foveated region which
potentially prevents objects to be detected by the wider-
angle region if its aperture angles are too small.

Even though a relatively straight forward perception
model has been used generalization to more complex
models with distortions, quantization, etc., is possible.
However, also in terms of nonlinear distortions a better
performance of multi-focal vision can be expected as
distortions in higher-resolution devices are comparably
small due to narrow aperture angles. In this work only
point landmarks have been considered. In order to
evaluate the impact of quantization effects on multi-focal
vision performance also the impact of image processing
algorithms has to be considered.

step #2 landmark step #3
5 P 5 P 5 step #19
O O O O O
—_ head
E o S 0 0
>
fieldof ~ O " 0 A
-5 view -5 _5
seen
-5 0 5 -5 0 5 -5 0 5
x [m] x [m] X [m]

Figure 9. Projections of the field of view of a conventional vision device (system a) of footsteps #2, #3, and #19 of Figure 6 and Figure 9a
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Figure 10. Projections of the field of view of a bi-focal vision device (system b) with cameras aligned in parallel of footsteps #2, #3, and

#19 of Figure 4 and Figure 7b
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Figure 11. Projections of the field of view of a bi-focal vision device with independent cameras (system e) of footsteps #2, #3, #8, #11, #19,
and #23 of Figure 4 and Figure 8
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Figure 12. Projections of the field of view of a wide-angle vision device (system c) of footsteps #2, #3, and #21 of Figure 4.
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Figure 13. Comparison of the areas Aw of the 90%-confidence ellipses of the footstep position covariance matrix using a conventional
and a foveated vision system
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Figure 14. Comparison of the 90%-confidence ellipses of the footstep position estimates at step #12 using a a) conventional (system a), b)
wide-angle (system c), and c) bi-focal (system e) vision system with three measurements per step
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average number
Vision system As [104m?2] of visible
landmarks
a) conventional 2.7 1.1
b) bi-focal (60°) 2.4 1.3
¢) wide-angle 2.1 1.8
d) bi-focal (80°) 1.7 2.3
e) bi-focal (ind.) 1.6 2.4

Table 1. Mean of the areas As of the 90%-confidence ellipses of
the footstep covariance matrix and average number of visible
landmarks

5. Conclusions

This article presents a multi-focal active vision planning
concept for robot navigation in order to overcome
drawbacks of conventional active vision when trading
field of view versus measurement accuracy. This is the
first approach of task-related control of multi-focal,
respectively, foveated active vision in the context of
mobile robots, humanoid robots as well as localization
and mapping. In a typical robot navigation scenario the
benefits vision have been
accuracy
combined with an extended visible field compared to
conventional active vision, and higher flexibility of sensor
resources allocation. As a generic information
maximization principle has been used the gaze control

strategy is generalizable to other scenarios depending on

of multi-focal active

demonstrated: an improved localization

the definition of the task-related information measures,
thereby, allocating vision sensor resources optimally.
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