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Stereo Vision Based SLAM 
Issues and Solutions 

D.C. Herath, K.R.S. Kodagoda and G. Dissanayake 
ARC Centre of Excellence for Autonomous Systems, University of Technology, Sydney 

Australia

1. Introduction 

1Simultaneous Localization and Mapping (SLAM) has been one of the active research areas 
in robotic research community for the past few years. When a robot is placed in an unknown 
environment a SLAM solution attempts to build a perfect map of the environment while 
localising the robot with respect to this map simultaneously. Traditionally SLAM utilised 
endogenous sensor data in the process. Successful SLAM implementations using laser 
(Guivant and Nebot, 2002), sonar and radar (Clark and Dissanayake, 1999) can be found in 
the literature, which prove the possibility of using SLAM for extended periods of time in 
indoor and outdoor environments with well bounded results.  
Recent extensions to the general SLAM problem has looked in to the possibility of using 3-
dimensional features and the use of alternative sensors to traditionally used lasers and 
radars. Cameras are competitive alternatives owing to the low cost and rich information 
content they provide. Despite the recent developments in camera sensors and computing, 
there are still formidable challenges to be resolved before successful vision based SLAM 
implementations are realised in realistic scenarios. Monocular camera based SLAM is 
widely researched (Davison et al., 2004; Kwok et al., 2005), however, binocular camera based 
SLAM is mostly overlooked. Some of the noted stereo implementations can be found in 
(Davison and Murray, 2002) and recently in (Jung, 2004). Lack of enthusiasm for research in 
this direction could possibly be attributed to the misconception that range and bearing 
information provided by the stereo vision system is directly utilizable providing a simplistic 
solution to SLAM which is academically less appealing or the apparent success in single 
camera SLAM implementations.  
However, after rigorous analysis and sensor modelling, we found that the standard 
extended Kalman filter (EKF) based SLAM with small base line stereo vision systems can 
easily become inconsistent (Herath et al., 2006a) . 
This chapter attempts to provide readers with an understanding of the SLAM problem and 
its solutions in the context of stereo vision. The chapter introduces the Extended Kalman 
Filter as applied to the generic SLAM Problem. Then, while identifying the prevailing issues 
inherent in solutions to the SLAM problem in stereo vision context, our solutions are 
presented with simulated and experimental evaluations. Several components of the stereo 
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vision system, including outlier rejection, sensor modelling, inconsistency analysis and 
alternate formulations of SLAM are discussed.  

2. Simultaneous Localisation and Mapping (SLAM) 

This section presents an introduction to the Kalman filter in the context of Simultaneous 
Localization and Mapping beginning with the derivation of the standard Kalman filter 
equations for a linear discrete system and then extending them to accommodate real world 
non linear systems, the Extended Kalman Filter (EKF) as implemented in majority of the 
SLAM solutions. 

2.1 Linear Discrete-Time Kalman Filter 

In order to derive the Kalman filter for discrete linear system, its process and observation 
models must be defined. The Kalman Filter consists of three recursive stages. (1) Prediction, 
(2) observation and, (3) update Stage. For a linear, discrete-time system the state transition 
equation (process model) can be written as follows 

( )  ( ) ( -1)  ( ) ( )  ( ) ( )k k k k k k k= + +x F x B u G v  (1) 

Where x(k) - state at time k, u(k) - control input vector at time k, v(k) - additive process noise, 
B(k) - control input transition matrix, G(k) - noise transition matrix and F(k) - state transition 
matrix. The linear observation equation can be written as  

( )  ( ) ( )  ( )k k k k= +z H x w  (2) 

where z(k) - observation made at time k, x(k) - state at time k, H(k) - observation model and 
w(k) - additive observation noise. Process and observation noise are assumed to be zero-
mean and independent. Thus 

[ ( )]= [ ( )] 0,E v k E w k k= ∀  and [ ] 0, ,T

i jE v w i j= ∀

Motion noise and the observation noise will have the following corresponding covariance; 

T[ ] , [ ]Ti j ij i i j ij iE v v E w wδ δ= =Q R

The estimate of the state at a time k given all information up to time k is written as ˆ ( / )k kx

and the estimate of the state at a time k given information up to time k-1 is written as 
ˆ ( / 1)k k −x and is called the prediction. Thus given the estimate at (k-1) time step the 

prediction equation for the state at kth time step can be written as 

ˆ ˆ( / 1) ( ) ( 1/ 1) ( ) ( )k k k k k k k− = − − +x F x B u  (3) 

And the corresponding covariance prediction; 

( / 1)  ( ) ( 1/ 1) ( ) ( ) ( ) ( )T Tk k k k k k k k k− = − − +P F P F G Q G  (4) 
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Then the unbiased (the conditional expected error between estimate and true state is zero) 
linear estimate is 

ˆ ˆ ˆ( / ) ( / 1) ( )[ ( ) ( ) ( / 1)]k k k k k k k k k= − − − −x x W z H x  (5) 

Where W(k) is the Kalman Gain at time step k. This is calculated as: 

1( ) ( / 1) ( ) ( )Tk k k k k−= −W P H S  (6) 

Where S(k)  is called the innovation variance at time step k and given by: 

( )  ( ) ( / 1) ( ) ( )Tk k k k k k= − +S H P H R  (7) 

and the covariance estimate is 

( / ) ( ( ) ( ) ( / 1)( ( ) ( )) ( ) ( ) ( )T Tk k k k k k k k k k k= − − − +P I W H P I W H W R W  (8) 

Essentially the Kalman filter takes a weighted average of the prediction ˆ ( / 1)k k −x , based on 

the previous estimate ˆ ( 1/ 1)k k− −x , and a new observation ( )kz  to estimate the state of 

interest ˆ ( / )k kx . This cycle is repeatable. 

2.2 The Extended Kalman Filter 

 Albeit Kalman filter is the optimal minimum mean squared (MMS) error estimator for a 
linear system, hardly would one find such a system in reality. In fact the systems considered 
in this chapter are purely non-linear systems. A solution is found in the Extended Kalman 
Filter (EKF) which uses a linearised approximation to non-linear models. The extended 
Kalman filter algorithm is very similar to the linear Kalman filter algorithm with the 
substitutions;

( )  ( ) and ( ) ( )
x x

k k k k→ →F f H h , where ∇fx(k)  and ∇hx(k) are non-linear functions of both 

state and time step, and fx(k), hx(k) are the process model and observation model 
respectively. Therefore the main equations in EKF can be summarized as follows; 
1. Prediction equations 

ˆ ˆ( / 1) ( ( 1/ 1) , ( ))k k k k k− = − −x f x u  (9) 

( / 1) ( ) ( 1/ 1) ( ) ( )Tk k k P k k k k− = ∇ − − ∇ +x xP f f Q  (10) 

2. Update equations 

ˆ ˆ( / ) ( / 1) ( )[ ( ) ( / 1)]k k k k k k k k= − + − −x x W z h  (11) 

( / ) ( / 1) ( ) ( ) ( )Tk k k k k k k= − −P P W S W  (12) 

Where

( ) ( ) ( / 1) ( ) ( )Tk k k k k k= ∇ − ∇ +
x x

S h P h R  (13) 
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2.3 Filter Consistency 

The SLAM formulation presented in the previous section represents the posterior as a 
unimodal Gaussian. Thus the state estimates are parameterized by what is known as the 
moments parameterization. An important ramification of this representation is that not only it 

represents the current mean ˆ ( / )k kx but also gives an estimate of the covariance ˆ ( / )k kP , and 

when the filter is consistent, the estimated covariance should match the Mean Square Error of 
the true distribution. As will be discussed in the following section this is widely used in 
interpreting EKF based SLAM results. 

However a more appropriate measure of consistency when the true state kx  is known could 

be arrived at using the normalized estimation error squared (NEES) as defined by (Bar-
Shalom et al., 2001), 

1ˆ ˆ( ) ( ( ) ( / )) ( / ) ( ( ) ( / ))Tk k k k k k k k kε −= − −x x P x x  (14) 

Under the hypothesis that filter is consistent and is linear Gaussian, 
k

ε is chi-square 

distributed with 
x
n degrees of freedom.  Where xn is the dimension of

k
x .

[ ( )] xE k nε =  (15) 

Using multiple Monte Carlo simulations to generate N independent samples, the average 
NEES can be calculated as 

1

1 N

k ik

iN
ε ε

=

=  (16) 

Then under the previous hypothesis ( )N kε  will have a chi-square density with xNn degrees

of freedom. Then the above hypothesis is accepted if 

1 2( ) [ , ]k r rε ∈  (17) 

where the acceptance interval is determined on a statistical basis. 

2.4 An Example 

 To illustrate the formulation of the standard EKF, lets consider an example where a simple 
differential driven robot traversing on a 2D plane. The robot is equipped with a sensor 
capable of making 3D measurements to point features in the environment (Fig. 1). The robot 

state is defined by [ ]TX x yr r r rϕ= , where xr and yr denotes location of the robot’s rear axle 

centre with respect to a global coordinate frame and r is the heading with reference to the 
x-axis of the same coordinate system. Landmarks are modelled as point features, 

T
x y zi i ii

=p  , i = 1,…,n. The vehicle motion through the environment is modelled as a 

conventional discrete time process model as in (9). 

( 1) ( ) T ( ) cos( ( ))

( 1) ( ) T ( ) sin( ( ))

( 1) ( ) T ( )

r r r

r r r

r r

x k x k V k k

y k y k V k k

k k k

ϕ

ϕ

ϕ ϕ ω

+ +

+ = +

+ +

 (18) 
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∆T is the time step, V(k) is the instantaneous velocity and (k) is the instantaneous turn-rate. 
The observation model can be represented as,  

( 1)

( 1) ( 1)

( 1) ( 1)

x

y

z fi

z k a

Z k z k b

z k z k

+

+ = + =

+ +

 (19) 

where

( ( 1) ( 1)) cos( ( )) ( ( 1) ( 1)) sin( ( ))

( ( 1) ( 1)) sin( ( )) ( ( 1) ( 1)) cos( ( ))

fi r r fi r r

fi r r fi r r

a x k x k k y k y k k

b x k x k k y k y k k

ϕ ϕ

ϕ ϕ

= + − + + + − +

= − + − + + + − +

It is to be noted that each feature is defined by a point in 3D space, ( ) [ ( ), ( ), ( )]
T

fi fi fi fi
k x k y k z k=X .

Figure 1. The robot in 3D world coordinates observing a feature in 3D space. 

Fig. 2 (a) shows a simulated environment with the path robot has taken amongst the 3D 
features. Fig. 2 (b) depicts the results of this example implementation on the simulated 
environment. The three graphs depict the three components of the robot pose. In the top 
graph of Fig. 2 (b), the middle line represents error between the EKF estimate and the actual 
value of the x-component of the robot pose against the time. The two outer lines mirroring 
each other are the 2-standard deviation estimates (2-sigma).  When the filter is well tuned the 
error lies appropriately bounded within these 2-sigma limits. Fig. 2 (c) illustrates a case of 
filter inconsistency where the filter has become optimistic.  

-2 0 2 4 6

-6

-4

-2

0

2

24

31

8

42

21
25

55

15

50

51 27

3039

26

2

29

53

49

22

57

44

16 19

36

48

10

33

7

35

4

46

38

54

60

28

3

11

40

43

52

56

47

14

32

6

12

23

9

45

41

37

59 58

5

20

18

13

34

17

1

X (m)

Y
 (

m
)

0 20 40 60 80 100 120 140
-0.5

0

0.5

X
 e

rr
o
r 

(m
)

0 20 40 60 80 100 120 140
-0.5

0

0.5

Y
 e

rr
o
r 

(m
)

0 20 40 60 80 100 120 140
-0.1

0

0.1

time (s)

P
s
i 
e
rr

o
r(

ra
d
)

0 20 40 60 80 100 120 140
-0.5

0

0.5

X
 e

rr
o
r 

(m
)

0 20 40 60 80 100 120 140
-0.5

0

0.5

Y
 e

rr
o
r 

(m
)

0 20 40 60 80 100 120 140
-0.2

0

0.2

time (s)

P
s
i 
e
rr

o
r(

ra
d
)

a.) b.) c.) 

Figure 2. (a) Simulated environment: solid line – true path, dashed line – odometry path, * - 
features. (b) State errors with estimated 2-sigma bounds for a well tuned filter (c) An 
inconsistent filter 
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3. Stereo Vision  

Generally, more precise the sensors used in SLAM more tractable and practical the solution 
is. Underlying characteristics of the sensor play an important role in determining the scale 
and practical use of the SLAM algorithm. Sensors such as laser have proven to be very 
precise in nature and have shown to work well in large environments for extended periods 
of time (Guivant, 2002; 2003; Wang, 2004). However vision is yet to prove its application in 
similar environments. In vision, successful implementations to date have used either large 
baseline stereo cameras (Davison, 1998; Jung, 2004), camera configurations with more than 
two cameras(Se et al., 2002) providing refined observations or single camera bearing only 
(Kwok and Dissanayake, 2003; 2004) methods. Principal aim of this section is to asses the 
performance of a small baseline binocular stereo camera equipped with wide angle lenses in 
the context of robotic SLAM.  

3.1 The Sensor 

Stereopsis or Stereoscopic vision is the process of perceiving depth or distances to objects in 
the environment. As a strand of computer vision research stereo vision algorithms have 
advanced noticeably in the past few decades to a point where semi-commercial products are 
available as off the shelf devices. However a more augmented approach is needed to realize a 
sensor useful in SLAM. Following list is an attempt to enumerate the essential components 
of such a sensor in the context of SLAM. 
(1.) Stereo camera-hardware for acquiring stereo images (2.) Calibration information-
contains intrinsic and extrinsic information about the camera necessary for correcting image 
distortion and depth calculation (3.) Interest point (features) selection algorithm-mechanism 
through witch naturally occurring features in the environment are selected for integration in 
the state vector (4.) Feature tracking algorithm-Image based mechanism used for data 
association (5.) Stereo correspondence algorithm-estimates the disparity at corresponding 
pixels (6.) Filtering-mechanisms used to remove spurious data. A schematic of the 
components along with interactions amongst each other is outlined in Fig. 3.  

3.2 Sensor Error Analysis 

As mentioned in the beginning of the chapter characteristics of a sensor dictates the limits of 
its applications. In the following sections a discussion of an empirical study of the particular 
sensor of interest is given based on two representative experiments conducted. It was found 
that even though quantitative error analyses of stereo, based on static cameras are available 
in the literature they do not necessarily represent the effects of a moving camera. This study 
fills a void on specific characterisation of noise performance of small baseline large field of 
view camera in respect to SLAM. In this context several robotic mapping experiments were 
carried out in order to understand the behaviour of sensor noise.  

From previous section on camera modelling the triplet [ ], ,
T

u v d=z  forms the principal 

observation z  by the sensor. Where (u,v) being the image coordinates of a feature and d is 
the disparity. Assuming that the errors in the observations to be additive z can be written 
as,

( , )true trueζ= +z z z  (20) 
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Where
true
z  being the true state of the observation and  being the additive noise component 

dependent on the sensor characteristics ξ  and on the true state itself as will be shown 

empirically later. Modelling and understanding the behaviour of  is the subject of 

discussion in sections 3.4 and 3.5. In section 3.6 the discussion continues on modelling the 

error behaviour of the projected form 
c
z  of this observation in to the 3D coordinate frame.  

Figure 3. The vision system for a SLAM implementation 

3.3 Mapping Experiments 

References are made to the two experiments described below in the following sections. 
Experiment 1- A pioneer robot mounted with the stereo camera was moved on a controlled 
path while capturing set of images at each 0.02m interval. The feature selection algorithm 
was allowed to select 30 features at the beginning of the sequence. The tracking algorithm 
attempts to track these features between consecutive images.  
Experiment 2- Again the robot was moved on a controlled path while observing artificial 
features laid on a large vertical planar surface. Features were laid out so as to cover the 
whole field of view of the cameras. A SICK laser was used to maintain parallel alignment 
between the camera and the surface and to measure the nominal distance between the robot 
and the surface. Robot was moved in 0.05m increments from a distance of 6m to 1m. 
In this experiment 20 features were initialised at each stop and were then tracked for 29 
consecutive images. For analysis of this data, at least 9 features were selected manually 
covering the widest possible area of the planar surface at each stop point. This set of features 
would then represent the expected sensor behaviour at the given distance. 
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Figure 4.  Rectified  images overlaid with features at (a) 5.4 m (b) 3.9 m (c) 2.4 m (d) 0.9 m 
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3.4 Uncertainty in Disparity 

In order to establish an error model for the disparity an analyses based on the finite data 
series from experiment 2 was performed. The data presents a unique perspective on the 
variance in disparity as observations are made at varying distances. In this case an 
approximate range between 1m and 6m inclusively. This depth range translates to an 
effective disparity range approximately between 1 and 15 pixels. The stereo correlation 
algorithm is set to search for a pixel range between 1 and 32.  
Following general statistical procedures it is possible to estimate a set of parameters that 
represent the disparity observation process based on this finite sequence of data. Fig. 5 (a) 
shows the overall variation in disparity. This is based on the calculated disparity at each 
individual feature that were manually selected in each initial image combined with all the 
points that were tracked consecutively are pooled together by subtracting the disparity 
means corresponding to each individual tracking sequence.  
Although by the analysis of the autocorrelation it is easily established that the process is 
‘white’ the general assumption of the distribution being Gaussian is an oversimplification of 
the true distribution. Especially in the case of small baseline cameras and wide-angle lenses 
this variation is a complex combination of local biases introduced in the image rectification 
process and stereo correlation mismatches undetected by the various filtering mechanisms. 
The distortions introduced by wide-angle lenses induce biases at each pixel in the image.  
Even though they are constant it is extremely difficult to accurately measure the individual 
component at pixel level. Also the area correlation algorithm used to estimate the disparities 
itself is prone to gross errors depending on the construct of the environment in which the 
images are captured.  
In order to understand these subtle variations it is best to analyse the variation in disparity 
at different depths independently. Fig. 5 (b) shows the variation in observed disparity 
against the expected disparity. Again the data from experiment 2 are used in the analysis. In 
this the disparities of the features selected at each distance along with the consecutively 
tracked points are pooled together and the resulting combined data are subtracted from the 
population mean.

a.) b.) c.) 

Figure 5. Disparity error. (a) Distribution (b) Zero mean error distribution with depth (c) 
Zero mean standard deviation (log scale). The spike in standard deviation is due to a stereo 
mismatch that was not detected by any of the heuristics applied in stereo correspondence 
algorithm 
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Several observations can be made. Firstly, data still contains many visible outliers that are 
difficult to be eliminated by the various smoothing operations. Secondly a rather intuitive 
observation is the correlation in the variance of the disparity distribution with the expected 
disparity. As would be expected variance is smaller for features seen from afar and it 
increases gradually with nearby features. For faraway features the disparity is small and 
also the discriminatory information contained within the correlation area is higher 
compared to a closer observation. This is especially true for environments where lack of 
texture persists. This gives a higher confidence to the disparity values estimated for features 
afar as opposed to ones closer. This is a better interpretation for the variance in disparity and 
based on this interpretation it is better to assume a varying disparity standard deviation 
correlated with the estimated disparity value as opposed to the general practice of assuming 
a constant disparity standard deviation. The observation standard deviation is shown in Fig. 
5 (c).  
It is difficult to estimate an exact relationship between the disparity variation with the 
estimated disparity. Thus an empirically generated curve based on the results shown in Fig. 
5 (b) is used. It was also observed that the variance estimated thus is slightly higher than the 
one shown above in Fig. 5 (a). This stems from the fact that the local biases are present in the 
data shown in Fig. 5 (b). This can be illustrated by scrutinising the local distributions present 
in the disparity data corresponding to each feature location at a given depth. Fig. 8 shows an 
example local distributions contributing to the overall distribution at a given depth. As can 
be noticed there are independent local distributions dispersed from the true expected mean. 
These are a combination of local biases in the image, stereo mismatches and any 
misalignments of the stereo hardware and the reference system. For practical purposes 
correcting these errors is difficult and an all encompassing error model is thus adapted. 

3.3 Uncertainty in u and v

In order to model the errors in u and v for SLAM a dynamic camera error model needs to be 
studied which would include the behaviour of the tracking algorithm as well as other 
dynamics involved with the camera motion. From experiment 1 and 2 it is possible to extract 
a representative set of data for this purpose. Again as discussed for the case of disparity 
error, u and v also carries components of local bias due to distortion effects and other 
misalignments. In addition the effects of the feature tracker also contribute when the 
augmented sensor representation is considered.  
For this analysis only a single image is considered at each depth. These images are then 
assembled from a depth of 1m to 6m. 16 features covering the entire image plane are then 
initialised in the image corresponding to 1m depth and are then consecutively tracked 
through to image at 6m depth. This while tracking a set of features at fixed locations in 
space will map to varying u,v coordinates. This essentially captures the overall behaviour of 
u,v in the entire image plane. 
Fig. 6 shows the results for both parameters where cumulative data for each point is 
subtracted by the expected values at each point and then combined together. Qualitatively 
these results resemble Gaussian distributions. However it is possible to observe various 
artefacts appearing in the tails of the distributions indicating that a considerable amount of 
spurious data is present for the reasons discussed earlier. This spuriousness in u,v and d 
pose considerable challenges to a successful implementation of a SLAM algorithm. Various 
issues arising from these observations are discussed in the next section  
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Figure 6. Error distribution (a) in u with standard deviation = 1.34 (b) in v with standard 
deviation =  1.53 

4. Issues and Solutions 

Primary goal of this chapter is to elucidate several theoretical and practical issues that have 
been noted during many implementations of stereo vision based SLAM. In this section a 
series of such issues that contributes to filter divergence, increase in computational burden 
and/or complete failure of the filter are illustrated. In each sub-section an issue is presented 
first with its effects on the algorithm and then possible solutions in averting the 
consequences are discussed.  

4.1 Limited Field of View 

One of the most fundamental issues that plague vision based SLAM is the limited field of 
view (FOV) of the sensor. When compared to traditional sensors like laser and radar the 
FOV of vision sensors are 20~40% narrower. Even though the 2D structure of the sensor 
affords more information the narrow FOV limits the ability to observe features for 
prolonged periods, a desirable requirement to reduce error bounds in the state estimations – 
a corollary of the results proven in (Dissanayake et al., 2001).  As noted in several 
works(Bailey et al., 2006; Huang and Dissanayake, 2006), notably the increase in heading 
uncertainty tends to increase the possibility of filter divergence. This has been observed in 
our implementations, especially in confined office like environments where many of the 
features observed vanishing from the FOV rapidly and re-observation of them delayed until 
a large loop is closed.  
Slight improvement to this situation is brought through the introduction of wide angle 
lenses. However, the choice is a compromise between the sensor accuracy and the FOV. 
Wide angle lenses suffer from noticeable lens distortion (Fig. 7 (a)) and the rectification (Fig. 
7 (b)) process introduces errors. One undesirable effect of using such lenses is the local 
biases in disparity calculation. To illustrate this consider a static camera observing a perfect 
plane which is parallel to the camera x-y plane. Disparity results of observing several 
features on this plane are plotted in Fig. 8. As can be seen the biases at various points are 
noticeable and are high as 2-pixels. This at most violates the fundamental assumption of 
Gaussian noise model in SLAM.In order to alleviate this issue it is necessary to estimate and 
apply radial distortion parameters in the rectification process. Also in severe cases, or when 
higher accuracy is demanded look-up tables are suggested.  
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a.) b.) 

Figure 7.An image from a wide angle lens. a.) raw. b.) rectified 
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Figure 8. Local biases in disparity (Expected mean disparity is 14.7) 

4.2 Number of Features 

Each feature added to the filter contributes new information. However with each new 
feature added to the state vector increases the computational burden. Even with 
sophisticated algorithms available computational complexity of SLAM still remains high 
and grows with each added state. Also depending on the data association mechanism used 
the ambiguity of features could increase leading to false association. This necessitates a 
reliable ranking mechanism (Shi and Tomasi, 1994) to optimize the number of features 
processed per image. The ranking criteria should not only look at which are “good features 
to track” but also its viability as a 3-D observation. Therefore it is possible to integrate other 
stereo confidence measures like uniqueness in to the ranking mechanism.  Such an 
integrated approach alleviates selecting features that are ineffective as 3D measurements.  
Another common issue seen especially in indoors with highly structured built environments 
is the lapses in suitably textured surfaces needed to generate reliable features and depth 
measurements. In extreme cases we have observed heavy reliance on other sensors such as 
odometry in filters. This is a limitation on point feature based implementations and 
alternative feature forms such as lines and curves would be more appropriate depending on 
the environment in which the application operates. 
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The minimum number of features per image is also dictated partially by the environment 
the application operates as well as the accuracy of the stereo algorithm. As shown earlier the 
depth accuracy correlates with the depth measured. Thus it is necessary to observe both 
features that are closer to the camera for short term translational accuracy as well as ones 
that are further away for long term rotational accuracy. An issue with most feature selectors 
is that they tend to cluster around small patches of highly textured areas in a scene. This 
may or may not result in satisfying the condition stated above. In our experience the best 
value for minimal number of features is thus selected by repeated experimentations in the 
intended environment.  

4.3 Spurious Features 

Spurious features occur not only due to structure (e.g. Occlusion) but also due to gross 
errors in stereo calculations. For instance in Fig. 9 (a) the pole marked with the arrow and 
the horizontal edge of the partition in the foreground are two distinct disjoint enteritis. 
However on the image plane the apparent intersection of the two edges is a positive feature 
location. Such occlusions results in physically non existent features. These features are 
catastrophic in a SLAM implementation. A possible method was discussed in (Shi and 
Tomasi, 1994) in identifying such occlusions by a measure of dissimilarity.

a.) b.) c.) 

Figure 9. Spurious observations.  (a) A rectified image showing several edge profiles. (b) 
Disparity image (c) Close-up view of the depth profile with a mismatch (see discussion for 
details) 
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Figure 10. Robot pose error with 2-sigma error bounds (a)  effects of spurious data (b.) with 
the RanSaC like filter applied 

Depending on the image composition it is possible to generate occasional mismatches (Fig. 
9(c)) in stereo correspondence.  Most stereo algorithms include multiple heuristics 
(Konolige, 1997 ) to alleviate this issue. However it is still advisable to include a statistical 
validation gate (Cox, 1993) for the occasional mismatch that is not filtered by such heuristics. 

Mismatch 
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A third set of spurious features were observed due to feature tracking mechanisms used. 
These features tend to drift arbitrarily in the image plane. Such features not only are harder 
to detect by conventional statistical validation gates but also tend to contribute to filter 
inconsistencies. A solution to such spurious features based on the RanSaC (Fischler and 
Bolles, 1981) algorithm was discussed in (Herath et al., 2006b). Fig. 10 shows SLAM results 
for a real data set with (Fig. 10 (b)) and without (Fig. 10 (a)) the RanSaC like filter while 
maintaining other filter parameters identical.   In this instance the consistency has improved, 
however, inflated observation noise parameters are used in both cases to accommodate the 
nonlinearities (see 4.5) in the observation model. 

4.4 Static vs. Dynamic Noise Parameters 

Most researchers tend to use static noise parameters in their SLAM implementations. These 
are the noise parameters obtained by observing static features through a static camera. 
However a more realistic set of values can be obtained by estimating these parameters 
through data obtained by a moving camera especially in the same application environment. 
An experiment of this nature was discussed in (Herath et al., 2006a). This encompasses not 
only the error variation in camera, but also the error variations in the feature tracker and 
other difficult to quantify dynamic factors. This invariably tends to increase the stereo noise 
parameters and in some cases is much higher than the theoretical sub-pixel accuracies 
quoted by stereo algorithms. 
Another aspect of noise parameters was illustrated in section 3.2. For a better estimate of the 
noise parameters it is possible to utilise the empirical knowledge of variation in disparity 
standard deviation with measured depth. Also in (Jung and Lacroix, 2003) presented 
another observation, where the variation in disparity standard deviation is correlated with 
the curvature of the similarity score curve at its peak. This knowledge can enhance the 
quality of the estimation process. 

4.5 Nonlinearity Issues 

Realistic SLAM problems are inherently non linear. While EKF implementations are shown 
to be able to handle this nonlinearity an emerging debate in recent years suggest that the 
nonlinearity could lead to filter inconsistency(Bailey et al., 2006; Huang and Dissanayake, 
2006; Julier and Uhlmann, 2001). 
These studies concentrate on eventual failure of the filter in large scale and/or long term 
SLAM implementations. On the other hand the few stereo vision based EKF solutions 
present in the literature altogether neglects the filter consistency analysis. It is well known 
that the standard geometric projection equations used in stereo vision are highly nonlinear 
and suffers from inherent bias (Sibley et al., 2006; 2005). It is imperative then that an analysis 
is carried out to estimate the effects of this nonlinearity in the context of EKF SLAM. For this 
reason a set of Monte Carlo simulations were conducted and were analysed using the NEES 
criterion presented in section 2.3. The simulated environment presented in section 2.4 (Fig. 2 
(a)) was used throughout these Monte Carlo runs.  N [=50] runs were carried out for each 

implementation with [2.36, 3.72] being the 95% probability concentration region for ( )kε  since 

the dimensionality of the robot pose is 3.  
In Fig. 11 (a) the average NEES for the example in 2.4 is shown to be well bounded. This 
indicates that for the small loop considered in this example a standard EKF yields consistent 
results.  For this simulation, the observation noise (R(k)) has components 
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( = = =0.05m)
x y z

σ σ σ  and process noise (Q(k)) will remain at ( =0.05m/s, =5deg/s)
v w

σ σ for all 

the simulations. 
In the second simulation while adhering to the previous formulation, the observations are 
now subjected to the geometric transformations of a standard stereo vision sensor. 

; ;
Bf Bu Bv

x y z
d d d

− −
= = =  (21) 

Where B is the camera baseline and f the focal length. As discussed in the previous section 
Gaussian noise can be assumed for (u,v,d) and a transformed noise matrix must be used 
(Herath et al., 2006a) for  R(k). For all the simulations following noise values 

( = = = )1.34, 1.53, 0.65
u v d

σ σ σ estimated from experimental analysis were used.  The average 

NEES results for this simulation are presented in Fig. 11 (b). The unacceptably large values 
for the statistics indicate that a straight forward SLAM implementation does not yield 
consistent results. An important parameter in this experiment is the small baseline (B) used.  
At a nominal 9cm this corresponds to a commercially available stereo head on which most 
of our real experiments are based on. It is possible to show through simulation that lager 
baselines give rise to lower nonlinearity effects. However it remains a key factor for most 
stereo heads used in indoor and outdoor scenarios.  

To further illustrate this phenomenon, consider the Gaussian random variable [ , ]
T

d u (only

two components used for clarity) representing the disparity and horizontal image 

coordinate for a given feature at 10
c
x m=  and 1

c
y m= . With B =0.09m and f = 150 pixels, 

this translates to mean disparity, d of 1.32 pixels and mean u  of 15 pixels. A Monte Carlo 

simulation can be carried out using (21) to transform Gaussian distributed [ , ]
T

d u

into [ ],
T

x y
z z . Fig. 12 (a) and (b) show the resulting distributions with 0.09m and 0.5m as 

baselines respectively. This clearly indicates the non Gaussian nature of the transformed 
observations when a small baseline camera is used (Fig. 12 (a)). The smaller the baseline is 
the shorter the range is at which the nonlinear effect manifest. 
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Figure 11. Average NEES of the robot pose (a) Standard EKF (b) Standard EKF with stereo 
observations
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a.) b.) 

Figure 12. Errors in projective mapping (a) B=0.09m (b) B=0.5m, linearized and 
approximated Gaussians are overlapping 

A different choice of observation model is tested that yields improved results. As shown 
above the main cause for the inconsistency is due to the highly nonlinear projective 
mapping. It is possible to derive a formulation where the principal observation becomes 
(u,v,d) instead of the widely used (x,y,z) as follows.  (Compare this with (19)) 

[ ]

ˆ ( 1)

ˆ ˆ( 1) ( 1)

ˆ ( 1)

u

T

v

d

z k
f

k z k y z B
x

z k

+

+ = + = − −

+

z  (22) 

where

ˆ ˆ ˆ ˆ( ( 1) ( 1)) cos( ( )) ( ( 1) ( 1)) sin( ( ))

ˆ ˆ ˆ ˆ( ( 1) ( 1)) sin( ( )) ( ( 1) ( 1)) cos( ( ))

ˆ ( 1)

fi r fi r

fi r fi r

fi

x x k x k k y k y k k

y x k x k k y k y k k

z z k

φ φ

φ φ

= + − + + + − +

= − + − + + + − +

= +

This alleviates necessity of the linearized transformation of the noise matrix (R(k)) as 
measurements are well represented with Gaussian models. Simulation results with the new 
observation model for average NEES are presented in Fig. 13 (a). Although the 
improvement over previous model is apparent, filter still remains optimistic. Finally the 
unscented Kalman filter (UKF) (Julier and Uhlmann, 2004) is implemented with the 
previous observation model. The UKF performs a derivative free transform of the states 
resulting in better estimates. UKF is shown to work well with highly non linear systems. 
However the Monte Carlo simulation results indicate (Fig. 13 (b)) that the improvement 
against consistency is minimal. 
These observations lead us to the belief that standard SLAM implementations could yield 
inconsistent results even for comparatively smaller loops given small baseline stereo 
cameras are used. An observation hitherto has not been studied. Current solutions for this 
issue remains at either in use of wider baseline cameras or in the implementation of small 
loops with sub map (Williams, 2001) like ideas. Better consistency could also be expected by 
improving the overall noise performance of the vision system. This includes improving the 
stereo correspondence, resolution of the images as well as improving the stability of the 
mobile platform.   
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Figure 13.  Average  NEES of the robot pose (a) (uvd)-observation model (b) UKF 

5. Conclusion 

In this chapter we have made an attempt to analyse the issues in stereo vision based SLAM 
and proposed plausible solutions. Correct sensor modelling is vital in any SLAM 
implementation. Therefore, we have analyzed the stereo vision sensor behaviour 
experimentally to understand the noise characteristics and statistics. It was verified that the 
stereo observations in its natural form (i.e. [u,v,d]) can safely be assumed to represent 
Gaussian distributions. Then several SLAM implementation strategies were discussed using 
stereo vision. Issues related to limited field of view of the sensor, number of features, 
spurious features, noise parameters and nonlinearity in the observation model were 
discussed. It was shown that the filter inconsistency is mainly due to inherent nonlinearity 
presence in the small baseline stereo vision sensor. Since UKF is more capable in handling 
nonlinearity issues than that of EKF, an UKF SLAM implementation was tested against 
inconsistency. However, it too leads to inconsistencies. This shows that even with 
implementations that circumvent the critical linearization mechanism in standard EKF 
SLAM as in UKF, the nonlinearity issue in the stereo vision based SLAM can not be 
resolved. In order to address the filter inconsistency a more elegant solution is currently 
being researched based on smoothing algorithms which shows promising results. 
In conclusion this chapter dwelt on some obscure issues pertaining to stereo vision SLAM 
and work being done in solving such issues. 

6. References 

Bailey, Tim, Juan Nieto, Jose Guivant, Michael Stevens and Eduardo Nebot. (2006). 
Consistency of the EKF-SLAM Algorithm. In International Conference on Intelligent 
Robots and Systems (IROS 2006). Beijing, China. 

Bar-Shalom, Yaakow, X.-Rong Li and Thiagalingam Kirubarajan. (2001). Estimation with 
Applications to Tracking and Navigation. Somerset, New Jersey: Wiley InterScience. 

Clark, S. and G. Dissanayake. (1999). Simultaneous localisation and map building using 
millimetre wave radar to extract natural features. In IEEE International Conference on 
Robotics and Automation: IEEE. 

Cox, Ingemar J. (1993). A review of statistical data association techniques for motion 
correspondence.  International Journal of Computer Vision 10(1):53-66. 



Stereo Vision Based SLAM Issues and Solutions 581

Davison, A.J. and D.W. Murray. (2002). Simultaneous localization and map-building using 
active vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):865 
- 880

Davison, Andrew J. (1998). Mobile Robot Navigation Using Active Vision. Thesis: University 
of Oxford. 

Davison, Andrew J., Yolanda Gonzalez Cid and Nobuyuki Kita. (2004). Real-Time 3D Slam 
with Wide-Angle Vision. In IFAC Symposium on Intelligent Autonomous Vehicles.
Lisbon.

Dissanayake, M.W.M.Gamini, Paul Newman, Steven Clark, Hugh F. Durrant-Whyte and M. 
Csorba. (2001). A Solution to the Simultaneous Localization and Map Building 
(SLAM) Problem. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION
17(3):229-241.

Fischler, Martin A. and Robert C. Bolles. (1981). Random Sample Consensus: A paradigm for 
model fitting with applications to image analysis and automated cartography. 
Communications of the ACM 24(6):381 - 395. 

Guivant, Jose E. (2002). Efficient Simultaneous Localization and Mapping in Large 
Environments. Thesis. Sydney: University of Sydney. 

Guivant, Jose and Eduardo Nebot. (2002). Simultaneous Localization and Map Building: Test 
case for Outdoor Applications. Sydney: Australian Center for Field Robotics, 
Mechanical and Mechatronic Engineering, The University of Sydney. 

Guivant, Jose, Juan Nieto, Favio Masson and Eduardo Nebot. (2003). Navigation and 
Mapping in Large Unstructured Environments. International Journal of Robotics 
Research 23(4/5): 449-472. 

Herath, D. C., K. R. S. Kodagoda and Gamini Dissanayake. (2006a). Modeling Errors in 
Small Baseline Stereo for SLAM. In The 9 th International Conference on Control, 
Automation, Robotics and Vision (ICARCV 2006). Singapore. 

Herath, D.C., Sarath Kodagoda and G. Dissanayake. (2006b). Simultaneous Localisation and 
Mapping: A Stereo Vision Based Approach. In IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS 2006). Beijing, China: IEEE. 

Huang, Shoudong and Gamini Dissanayake. (2006). Convergence Analysis for Extended 
Kalman Filter based SLAM. In IEEE International Conference on Robotics and 
Automation (ICRA 2006). Orlando, Florida. 

Julier, S. J. and J. K. Uhlmann. (2001). A counter example to the theory of simultaneous 
localization and map building. In IEEE International Conference on Robotics and 
Automation, ICRA 2001. 

Julier, S. J. and J. K. Uhlmann. (2004). Unscented filtering and nonlinear estimation. 
Proceedings of the IEEE 92(3):401-422. 

Jung, I.K. (2004). Simultaneous localization and mapping in 3D environments with 
stereovision. Thesis. Toulouse: Institut National Polytechnique. 

Jung, Il-Kyun and Simon Lacroix. (2003). High resolution terrain mapping using low 
altitude aerial stereo imagery. In Ninth IEEE International Conference on Computer 
Vision (ICCV'03). 

Konolige, Kurt. (1997 ). Small Vision Systems: Hardware and Implementation. In Eighth 
International Symposium on Robotics Research.



Vision Systems: Applications 582

Kwok, N. M. and G. Dissanayake. (2003). Bearing-only SLAM in Indoor Environments 
Using a Modified Particle Filter. In Australasian Conference on Robotics & Automation,
eds. Jonathan Roberts and Gordon Wyeth. Brisbane: The Australian Robotics and 
Automation Association Inc. 

Kwok, N. M. and G. Dissanayake. (2004). An efficient multiple hypothesis filter for bearing-
only SLAM. In 2004 IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS 2004)  

Kwok, N. M., G. Dissanayake and Q. P. Ha. (2005). Bearing-only SLAM Using a SPRT Based 
Gaussian Sum Filter. In IEEE International Conference on Robotics and Automation.
ICRA 2005. 

Se, Stephen, David Lowe and Jim Little. (2002). Mobile Robot Localization And Mapping 
with Uncertainty using Scale-Invariant Visual Landmarks. International Journal of 
Robotic Research 21(8). 

Shi, Jianbo and Carlo Tomasi. (1994). Good Features toTrack. In IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition (CVPR '94) Seattle: IEEE. 

Sibley, G., G. Sukhatme and L. Matthies. (2006). The Iterated Sigma Point Filter with 
Applications to Long Range Stereo. In Robotics: Science and Systems II. Cambridge, 
USA.

Sibley, Gabe, Larry Matthies and Gaurav Sukhatme. (2005). Bias Reduction and Filter 
Convergence for Long Range Stereo. In 12th International Symposium of Robotics 
Research (ISRR 2005). San Francisco, CA, USA. 

Wang, Chieh-Chih. (2004). Simultaneous Localization, Mapping and Moving Object 
Tracking. Thesis. Pittsburgh, PA 15213: Carnegie Mellon University. 

Williams, Stefan Bernard. (2001). Efficient Solutions to Autonomous Mapping and 
Navigation Problems. Thesis. Sydney: The University of Sydney. 



Vision Systems: Applications

Edited by Goro Obinata and Ashish Dutta

ISBN 978-3-902613-01-1

Hard cover, 608 pages

Publisher I-Tech Education and Publishing

Published online 01, June, 2007

Published in print edition June, 2007

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Computer Vision is the most important key in developing autonomous navigation systems for interaction with

the environment. It also leads us to marvel at the functioning of our own vision system. In this book we have

collected the latest applications of vision research from around the world. It contains both the conventional

research areas like mobile robot navigation and map building, and more recent applications such as, micro

vision, etc.The fist seven chapters contain the newer applications of vision like micro vision, grasping using

vision, behavior based perception, inspection of railways and humanitarian demining. The later chapters deal

with applications of vision in mobile robot navigation, camera calibration, object detection in vision search, map

building, etc.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

D.C. Herath, K.R.S. Kodagoda and G. Dissanayake (2007). Stereo Vision Based SLAM Issues and Solutions,

Vision Systems: Applications, Goro Obinata and Ashish Dutta (Ed.), ISBN: 978-3-902613-01-1, InTech,

Available from:

http://www.intechopen.com/books/vision_systems_applications/stereo_vision_based_slam_issues_and_solutio

ns



© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.


