4 research outputs found

    Detecting Phishing Sites Using ChatGPT

    Full text link
    The rise of large language models (LLMs) has had a significant impact on various domains, including natural language processing and artificial intelligence. While LLMs such as ChatGPT have been extensively researched for tasks such as code generation and text synthesis, their application in detecting malicious web content, particularly phishing sites, has been largely unexplored. To combat the rising tide of automated cyber attacks facilitated by LLMs, it is imperative to automate the detection of malicious web content, which requires approaches that leverage the power of LLMs to analyze and classify phishing sites. In this paper, we propose a novel method that utilizes ChatGPT to detect phishing sites. Our approach involves leveraging a web crawler to gather information from websites and generate prompts based on this collected data. This approach enables us to detect various phishing sites without the need for fine-tuning machine learning models and identify social engineering techniques from the context of entire websites and URLs. To evaluate the performance of our proposed method, we conducted experiments using a dataset. The experimental results using GPT-4 demonstrated promising performance, with a precision of 98.3% and a recall of 98.4%. Comparative analysis between GPT-3.5 and GPT-4 revealed an enhancement in the latter's capability to reduce false negatives. These findings not only highlight the potential of LLMs in efficiently identifying phishing sites but also have significant implications for enhancing cybersecurity measures and protecting users from the dangers of online fraudulent activities

    SoC-Cluster as an Edge Server: an Application-driven Measurement Study

    Full text link
    Huge electricity consumption is a severe issue for edge data centers. To this end, we propose a new form of edge server, namely SoC-Cluster, that orchestrates many low-power mobile system-on-chips (SoCs) through an on-chip network. For the first time, we have developed a concrete SoC-Cluster server that consists of 60 Qualcomm Snapdragon 865 SoCs in a 2U rack. Such a server has been commercialized successfully and deployed in large scale on edge clouds. The current dominant workload on those deployed SoC-Clusters is cloud gaming, as mobile SoCs can seamlessly run native mobile games. The primary goal of this work is to demystify whether SoC-Cluster can efficiently serve more general-purpose, edge-typical workloads. Therefore, we built a benchmark suite that leverages state-of-the-art libraries for two killer edge workloads, i.e., video transcoding and deep learning inference. The benchmark comprehensively reports the performance, power consumption, and other application-specific metrics. We then performed a thorough measurement study and directly compared SoC-Cluster with traditional edge servers (with Intel CPU and NVIDIA GPU) with respect to physical size, electricity, and billing. The results reveal the advantages of SoC-Cluster, especially its high energy efficiency and the ability to proportionally scale energy consumption with various incoming loads, as well as its limitations. The results also provide insightful implications and valuable guidance to further improve SoC-Cluster and land it in broader edge scenarios

    Cryptographic Security of SSH Encryption Schemes

    Get PDF
    corecore