29 research outputs found

    Optical layer monitoring schemes for fast link failure localization in all-optical networks

    Get PDF
    Optical layer monitoring and fault localization serves as a critical functional module in the control and management of optical networks. An efficient monitoring scheme aims at minimizing not only the hardware cost required for 100{%} link failure localization, but also the number of redundant alarms and monitors such that the network fault management can be simplified as well. In recent years, several optical layer monitoring schemes were reported for fast and efficient link failure localization, including simple, non-simple monitoring cycle (m-cycle) and monitoring trail (m-trail). Optimal ILP (Integer Linear Program) models and heuristics were also proposed with smart design philosophy on flexibly trading off different objectives. This article summarizes those innovative ideas and methodologies with in-depth analysis on their pros and cons. We also provide insights on future research topics in this area, as well as possible ways for extending the new failure localization approaches to other network applications. © 2005 IEEE.published_or_final_versio

    Survivable design in WDM mesh networks

    Get PDF
    This dissertation addresses several important survivable design issues in WDM mesh networks;Shared backup path protection has been shown to be efficient in terms of capacity utilization, due to the sharing of backup capacity. However, sharing of backup capacity also complicates the restoration process, and leads to slow recovery. The p-cycle scheme is the most efficient ring-type protection method in terms of capacity utilization. Recently, the concept of pre-cross-connected protection was proposed to increase the recovery speed of shared path protection. We overview these protection methods. The recovery time of these schemes are compared analytically. We formulate integer programming optimization problems for three protection methods in static traffic scenario, considering wavelength continuity constraint;We develop a p-cycle based scheme to deal with dynamic traffic in WDM networks. We use a two-step approach. In first step, we find a set of p-cycles to cover the network and reserve enough capacity in p-cycles. In second step, we route the requests as they randomly arrive one by one. We propose two routing algorithms. Compared to the shared path protection, the p-cycle based design has the advantage of fast recovery, less control signaling, less dynamic state information to be maintained. To evaluate the blocking performance of proposed method, we compare it with shared backup path protection by extensive simulations;We propose a path-based protection method for two-link failures in mesh optical networks. We identify the scenarios where the backup paths can share their wavelengths without violating 100% restoration guarantee (backup multiplexing). We use integer linear programming to optimize the total capacity requirement for both dedicated- and shared-path protection schemes;The recently proposed light trail architecture offers a promising candidate for carrying IP centric traffic over optical networks. The survivable design is a critical part of the integral process of network design and operation. We propose and compare two protection schemes. The survivable light trail design problem using connection based protection model is solved using a two-step approach. (Abstract shortened by UMI.

    A Novel Framework of Fast and Unambiguous Link Failure Localization via Monitoring Trails

    Full text link

    On Signaling-Free Failure Dependent Restoration in All-Optical Mesh Networks

    Get PDF
    Failure dependent protection (FDP) is known to achieve optimal capacity efficiency among all types of protection, at the expense of longer recovery time and more complicated signaling overhead. This particularly hinders the usage of FDP in all-optical mesh networks. As a remedy, the paper investigates a new restoration framework that enables all-optical fault management and device configuration via state-of-the-art failure localization techniques, such that the FDP restoration process. It can be implemented without relying on any control plane signaling. With the proposed restoration framework, a novel spare capacity allocation problem is defined, and is further analyzed on circulant topologies for any single link failure, aiming to gain a solid understanding of the problem. By allowing reuse of monitoring resources for restoration capacity, we are particularly interested in the monitoring resource hidden property where less or even no monitoring resources are consumed as more working traffic is in place. To deal with general topologies, we introduce a novel heuristic approach to the proposed spare capacity allocation problem, which comprises a generic FDP survivable routing scheme followed by a novel monitoring resource allocation method. Extensive simulation is conducted to examine the proposed scheme and verify the proposed restoration framework

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Optimization Methods for Optical Long-Haul and Access Networks

    Get PDF
    Optical communications based on fiber optics and the associated technologies have seen remarkable progress over the past two decades. Widespread deployment of optical fiber has been witnessed in backbone and metro networks as well as access segments connecting to customer premises and homes. Designing and developing a reliable, robust and efficient end-to-end optical communication system have thus emerged as topics of utmost importance both to researchers and network operators. To fulfill these requirements, various problems have surfaced and received attention, such as network planning, capacity placement, traffic grooming, traffic scheduling, and bandwidth allocation. The optimal network design aims at addressing (one or more of) these problems based on some optimization objectives. In this thesis, we consider two of the most important problems in optical networks; namely the survivability in optical long-haul networks and the problem of bandwidth allocation and scheduling in optical access networks. For the former, we present efficient and accurate models for availability-aware design and service provisioning in p-cycle based survivable networks. We also derive optimization models for survivable network design based on p-trail, a more general protection structure, and compare its performance with p-cycles. Indeed, major cost savings can be obtained when the optical access and long-haul subnetworks become closer to each other by means of consolidation of access and metro networks. As this distance between long-haul and access networks reduces, and the need and expectations from passive optical access networks (PONs) soar, it becomes crucial to efficiently manage bandwidth in the access while providing the desired level of service availability in the long-haul backbone. We therefore address in this thesis the problem of bandwidth management and scheduling in passive optical networks; we design efficient joint and non-joint scheduling and bandwidth allocation methods for multichannel PON as well as next generation 10Gbps Ethernet PON (10G-EPON) while addressing the problem of coexistence between 10G-EPONs and multichannel PONs

    Design and protection algorithms for path level aggregation of traffic in WDM metro optical networks

    Get PDF
    Wavelength Division Multiplexing (WDM) promises to offer a cost effective and scalable solution to meet the emerging demands of the Internet. WDM splits the tremendous bandwidth latent in a fiber into multiple non-overlapping wavelength channels, each of which can be operated at the peak electronic rate. Commercial systems with 128 wavelengths and transmission rates of up to 40 Gbps per wavelength have been made possible using state of the art optical technologies to deal with physical impairments. Systems with higher capacities are likely to evolve in the future. The end user requirements for bandwidth, on the other hand, have been ranging from 155 Mbps to 2.5 Gbps. Dedicating a wavelength for each end user will lead to severe underutilization of WDM channels. This brings to forefront the requirement for sharing of bandwidth in a wavelength among multiple end users.;The concept of wavelength sharing among multiple clients is called grooming. Grooming can be done purely at the optical layer (optical grooming) or it can be done with support from the client layer (electronic grooming). The advantage of all optical grooming is the ease of scalability due to its transparency as opposed to electronic grooming which is constrained by electronic bottlenecks. Efforts towards enhancing optical grooming is pursued through increasing optical switching speeds. However, technologies to make optical switches with high speeds, large port counts and low insertion losses have been elusive and may continue to remain so in the near future.;Recently, there have been some research into designing new architectures and protocols focused on optical grooming without resorting to fast optical switching. Typically, this is achieved in three steps: (1) configure the circuit in the form of a path or a tree; (2) use optical devices like couplers or splitters to allow multiple transmitters and/or receivers to share the same circuit; and (3) provide an arbitration mechanism to avoid contention among end users of the circuit. This transparent sharing of the wavelength channel utilizes the network resources better than the conventional low-speed circuit switched approaches. Consequently, it becomes important to quantify the improvement in achieved performance and evaluate if the reaped benefits justify the cost of the required additional hardware and software.;The contribution of this thesis is two fold: (1) developing a new architecture called light-trails as an IP based solution for next generation WDM optical networks, and (2) designing a unified framework to model Path Level Aggregation of Traffic in metrO Optical Networks (PLATOONs). The algorithms suggested here have three features: (1) accounts for four different path level aggregation strategies---namely, point to point (for example, lightpaths), point to multi-point (for example, source based light-trails), multi-point to point (for example, destination based light-trails) and multi-point to multi-point (for example, light-trails); (2) incorporates heterogenous switching architectures; and (3) accommodates multi-rate traffic. Algorithms for network design and survivability are developed for PLATOONs in the presence of both static and dynamic traffic. Connection level dedicated/shared, segregated/mixed protection schemes are formulated for single link failures in the presence of static and dynamic traffic. A simple medium access control protocol that avoids collisions when the channel is shared by multiple clients is also proposed.;Based on extensive simulations, we conclude that, for the studied scenarios, (1) when client layer has no electronic grooming capabilities, light-trails (employing multi-point to multi-point aggregation strategy) perform several orders of magnitude better than lightpaths and (2) when client layer has full electronic grooming capabilities, source based light-trails (employing point to multi-point aggregation strategy) perform the best in wavelength limited scenarios and lightpaths perform the best in transceiver limited scenarios.;The algorithms that are developed here will be helpful in designing optical networks that deploy path level aggregation strategies. The proposed ideas will impact the design of transparent, high-speed all-optical networks.</p

    Architectures and protocols for sub-wavelength optical networks: contributions to connectionless and connection-oriented data transport

    Get PDF
    La ràpida evolució d’Internet i l’àmplia gamma de noves aplicacions (per exemple, multimèdia, videoconferència, jocs en línia, etc.) ha fomentat canvis revolucionaris en la manera com ens comuniquem. A més, algunes d’aquestes aplicacions demanden grans quantitats de recursos d’ample de banda amb diversos requeriments de qualitat de servei (QoS). El desenvolupament de la multiplexació per divisió de longitud d’ona (WDM) en els anys noranta va fer molt rendible la disponibilitat d’ample de banda. Avui dia, les tecnologies de commutació òptica de circuits són predominants en el nucli de la xarxa, les quals permeten la configuració de canals (lightpaths) a través de la xarxa. No obstant això, la granularitat d’aquests canals ocupa tota la longitud d’ona, el que fa que siguin ineficients per a proveir canals de menor ample de banda (sub-longitud d’ona). Segons la comunitat científica, és necessari augmentar la transparència dels protocols, així com millorar l’aprovisionament d’ample de banda de forma dinàmica. Per tal de fer això realitat, és necessari desenvolupar noves arquitectures. La commutació òptica de ràfegues i de paquets (OBS/OPS), són dues de les tecnologies proposades. Aquesta tesi contribueix amb tres arquitectures de xarxa destinades a millorar el transport de dades sub-longitud d’ona. En primer lloc, aprofundim en la naturalesa sense connexió en OBS. En aquest cas, la xarxa incrementa el seu dinamisme a causa de les transmissions a ràfega. A més, les col·lisions entre ràfegues degraden el rendiment de la xarxa fins i tot a càrregues molt baixes. Per fer front a aquestes col·lisions, es proposa un esquema de resolució de col·lisions pro actiu basat en un algorisme d’encaminament i assignació de longitud d’ona (RWA) que balanceja de forma automàtica i distribuïda la càrrega en la xarxa. En aquest protocol, el RWA i la transmissió de ràfegues es basen en l’explotació i exploració de regles de commutació que incorporen informació sobre contencions i encaminament. Per donar suport a aquesta arquitectura, s’utilitzen dos tipus de paquets de control per a l’encaminament de les ràfegues i l’actualització de les regles de commutació, respectivament. Per analitzar els beneficis del nou algorisme, s’utilitzen quatre topologies de xarxa diferents. Els resultats indiquen que el mètode proposat millora en diferents marges la resta d’algorismes RWA en funció de la topologia i sense penalitzar altres paràmetres com el retard extrem a extrem. La segona contribució proposa una arquitectura híbrida sense i orientada a connexió sobre la base d’un protocol de control d’accés al medi (MAC) per a xarxes OBS (DAOBS). El MAC ofereix dos mètodes d’accés: arbitratge de cua (QA) per a la transmissió de ràfegues sense connexió, i pre-arbitratge (PA) per serveis TDM orientats a connexió. Aquesta arquitectura permet una àmplia gamma d’aplicacions sensibles al retard i al bloqueig. Els resultats avaluats a través de simulacions mostren que en l’accés QA, les ràfegues de més alta prioritat tenen garantides zero pèrdues i latències d’accés molt baixes. Pel que fa a l’accés PA, es reporta que la duplicació de la càrrega TDM augmenta en més d’un ordre la probabilitat de bloqueig, però sense afectar en la mateixa mesura les ràfegues sense connexió. En aquest capítol també es tracten dos dels problemes relacionats amb l’arquitectura DAOBS i el seu funcionament. En primer lloc, es proposa un model matemàtic per aproximar el retard d’accés inferior i superior com a conseqüència de l’accés QA. En segon lloc, es formula matemàticament la generació i optimització de les topologies virtuals que suporten el protocol per a l’escenari amb tràfic estàtic. Finalment, l’última contribució explora els beneficis d’una arquitectura de xarxa òptica per temps compartit (TSON) basada en elements de càlcul de camins (PCE) centralitzats per tal d’evitar col·lisions en la xarxa. Aquesta arquitectura permet garantir l’aprovisionament orientat a connexió de canals sub-longitud d’ona. En aquest capítol proposem i simulem tres arquitectures GMPLS/PCE/TSON. A causa del enfocament centralitzat, el rendiment de la xarxa depèn en gran mesura de l’assignació i aprovisionament de les connexions. Amb aquesta finalitat, es proposen diferents algorismes d’assignació de ranures temporals i es comparen amb les corresponents formulacions de programació lineal (ILP) per al cas estàtic. Per al cas de tràfic dinàmic, proposem i avaluem mitjançant simulació diferents heurístiques. Els resultats mostren els beneficis de proporcionar flexibilitat en els dominis temporal i freqüencial a l’hora d’assignar les ranures temporals.The rapid evolving Internet and the broad range of new data applications (e.g., multimedia, video-conference, online gaming, etc.) is fostering revolutionary changes in the way we communicate. In addition, some of these applications demand for unprecedented amounts of bandwidth resources with diverse quality of service (QoS). The development of wavelength division multiplexing (WDM) in the 90's made very cost-effective the availability of bandwidth. Nowadays, optical circuit switching technologies are predominant in the core enabling the set up of lightpaths across the network. However, full-wavelength lightpath granularity is too coarse, which results to be inefficient for provisioning sub-wavelength channels. As remarked by the research community, an open issue in optical networking is increasing the protocol transparency as well as provisioning true dynamic bandwidth allocation at the network level. To this end, new architectures are required. Optical burst/packet switching (OBS/OPS) are two such proposed technologies under investigation. This thesis contributes with three network architectures which aim at improving the sub-wavelength data transport from different perspectives. First, we gain insight into the connectionless nature of OBS. Here, the network dynamics are increased due to the short-lived burst transmissions. Moreover, burst contentions degrade the performance even at very low loads. To cope with them, we propose a proactive resolution scheme by means of a distributed auto load-balancing routing and wavelength assignment (RWA) algorithm for wavelength-continuity constraint networks. In this protocol, the RWA and burst forwarding is based on the exploitation and exploration of switching rule concentration values that incorporate contention and forwarding desirability information. To support such architecture, forward and backward control packets are used in the burst forwarding and updating rules, respectively. In order to analyze the benefits of the new algorithm, four different network topologies are used. Results indicate that the proposed method outperforms the rest of tested RWA algorithms at various margins depending on the topology without penalizing other parameters such as end-to-end delay. The second contribution proposes a hybrid connectionless and connection-oriented architecture based on a medium access control (MAC) protocol for OBS networks (DAOBS). The MAC provides two main access mechanisms: queue arbitrated (QA) for connectionless bursts and pre-arbitrated (PA) for TDM connection-oriented services. Such an architecture allows for a broad range of delay-sensitive applications or guaranteed services. Results evaluated through simulations show that in the QA access mode highest priority bursts are guaranteed zero losses and very low access latencies. Regarding the PA mode, we report that doubling the offered TDM traffic load increases in more than one order their connection blocking, slightly affecting the blocking of other connectionless bursts. In this chapter, we also tackle two of the issues related with the DAOBS architecture and its operation. Firstly, we model mathematically the lower and upper approximations of the access delay as a consequence of the connectionless queue arbitrated access. Secondly, we formulate the generation of the virtual light-tree overlay topology for the static traffic case.Postprint (published version

    Multicast routing from a set of data centers in elastic optical networks

    Get PDF
    This paper introduces the Multi-Server Multicast (MSM) approach for Content Delivery Networks (CDNs) delivering services offered by a set of Data Centers (DCs). All DCs offer the same services. The network is an Elastic Optical Network (EON) and for a good performance, routing is performed directly at the optical layer. Optical switches have heterogeneous capacities, that is, light splitting is not available in all switches. Moreover, frequency slot conversion is not possible in any of them. We account for the degradation that optical signals suffer both in the splitting nodes, as well as across fiber links to compute their transmission reach. The optimal solution of the MSM is a set of light-hierarchies. This multicast route contains a light trail from one of the DCs to each of the destinations with respect to the optical constraints while optimizing an objective (e.g., minimizing a function). Finding such a structure is often an NP-hard problem. The light-hierarchies initiated from different DCs permit delivering the multicast session to all end-users with a better utilization of the optical resources, while also reducing multicast session latencies, as contents can be delivered from such DCs closer to end-users. We propose an Integer Linear Programming (ILP) formulation to optimally decide on which light-hierarchies should be setup. Simulation results illustrate the benefits of MSM in two reference backbone networks.Peer ReviewedPostprint (author's final draft

    Cost-effective routing in wavelength division multiplexing (WDM) optical networks using super lightpaths

    Get PDF
    Cataloged from PDF version of article.In this study, we analyze the routing and wavelength assignment problem for one of the most recent applications of wavelength division multiplexing (WDM) networks, namely super lightpaths. We assume that the traffic is static and each node has the wavelength conversion capability. We try to determine the number of fibers to open for use on each physical link and the routing of the given traffic through super lightpaths so as to minimize the network cost, composed of fiber and wavelength usage components. The problem is proved to be NP-Hard and an integer linear program is proposed as an exact methodology to solve the problem for small scale networks. For larger network sizes, different heuristic approaches are developed. To evaluate the quality of the heuristic solutions, where optimal values are not available, the LP relaxation of the proposed model is strengthened through the use of valid inequalities. The heuristics are tested on a large set of varying network topologies and demand patterns. In terms of the deviation from lower bounds, the heuristic solutions attained are promising.Yalçın, BurakhanM.S
    corecore