75 research outputs found

    Network simulation for professional audio networks

    Get PDF
    Audio Engineers are required to design and deploy large multi-channel sound systems which meet a set of requirements and use networking technologies such as Firewire and Ethernet AVB. Bandwidth utilisation and parameter groupings are among the factors which need to be considered in these designs. An implementation of an extensible, generic simulation framework would allow audio engineers to easily compare protocols and networking technologies and get near real time responses with regards to bandwidth utilisation. Our hypothesis is that an application-level capability can be developed which uses a network simulation framework to enable this process and enhances the audio engineer’s experience of designing and configuring a network. This thesis presents a new, extensible simulation framework which can be utilised to simulate professional audio networks. This framework is utilised to develop an application - AudioNetSim - based on the requirements of an audio engineer. The thesis describes the AudioNetSim models and implementations for Ethernet AVB, Firewire and the AES- 64 control protocol. AudioNetSim enables bandwidth usage determination for any network configuration and connection scenario and is used to compare Firewire and Ethernet AVB bandwidth utilisation. It also applies graph theory to the circular join problem and provides a solution to detect circular joins

    The remote configuration of devices within home entertainment networks

    Get PDF
    This thesis examines home entertainment network remote configuration solutions. It does so by inspecting four home entertainment networking solution specifications - HAVi, Jini, AV/C and UPnP. Two of these (AV/C and UPnP) are implemented partially for a system allowing a TV to configure an AudioNideo Receiver (AV/R) remotely on the network (a process known as remote configuration). The two implementations are then more closely investigated and several implementation differences in the approach between the remote configuration method of device configuration and other methods of device configuration are discerned. These different approaches are then categorised into one of two theoretical models of communication for configuring devices on home entertainment networks - the Rendering model and the Programmed model. By classifying a particular method of device configuration into one of the two models, manufacturers can quickly determine the inherent strengths and weaknesses of that methodKMBT_363Adobe Acrobat 9.54 Paper Capture Plug-i

    A high speed Tri-Vision system for automotive applications

    Get PDF
    Purpose: Cameras are excellent ways of non-invasively monitoring the interior and exterior of vehicles. In particular, high speed stereovision and multivision systems are important for transport applications such as driver eye tracking or collision avoidance. This paper addresses the synchronisation problem which arises when multivision camera systems are used to capture the high speed motion common in such applications. Methods: An experimental, high-speed tri-vision camera system intended for real-time driver eye-blink and saccade measurement was designed, developed, implemented and tested using prototype, ultra-high dynamic range, automotive-grade image sensors specifically developed by E2V (formerly Atmel) Grenoble SA as part of the European FP6 project – sensation (advanced sensor development for attention stress, vigilance and sleep/wakefulness monitoring). Results : The developed system can sustain frame rates of 59.8 Hz at the full stereovision resolution of 1280 × 480 but this can reach 750 Hz when a 10 k pixel Region of Interest (ROI) is used, with a maximum global shutter speed of 1/48000 s and a shutter efficiency of 99.7%. The data can be reliably transmitted uncompressed over standard copper Camera-Link® cables over 5 metres. The synchronisation error between the left and right stereo images is less than 100 ps and this has been verified both electrically and optically. Synchronisation is automatically established at boot-up and maintained during resolution changes. A third camera in the set can be configured independently. The dynamic range of the 10bit sensors exceeds 123 dB with a spectral sensitivity extending well into the infra-red range. Conclusion: The system was subjected to a comprehensive testing protocol, which confirms that the salient requirements for the driver monitoring application are adequately met and in some respects, exceeded. The synchronisation technique presented may also benefit several other automotive stereovision applications including near and far-field obstacle detection and collision avoidance, road condition monitoring and others.Partially funded by the EU FP6 through the IST-507231 SENSATION project.peer-reviewe

    An Open-Source Research Kit for the da Vinci ® Surgical System

    Get PDF
    Abstract-We present a telerobotics research platform that provides complete access to all levels of control via opensource electronics and software. The electronics employs an FPGA to enable a centralized computation and distributed I/O architecture in which all control computations are implemented in a familiar development environment (Linux PC) and lowlatency I/O is performed over an IEEE-1394a (FireWire) bus at speeds up to 400 Mbits/sec. The mechanical components are obtained from retired first-generation da Vinci R Surgical Systems. This system is currently installed at 11 research institutions, with additional installations underway, thereby creating a research community around a common open-source hardware and software platform

    Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft

    Get PDF
    http://dx.doi.org/10.1016/j.actaastro.2010.08.012This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decision logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the NAval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption

    Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft

    Get PDF
    http://dx.doi.org/10.1016/j.actaastro.2010.08.012This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decision logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the NAval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption

    Communication Infrastructure for high-dynamic Parallel Kinematic Machines

    Get PDF
    Ziel dieser Arbeit ist die Konzipierung, Realisierung und Erprobung einer zentral organisierten Kommunikations-Infrastruktur zur Unterstützung von Steuerungssystemen aus dem Bereich hochdynamischer Roboteranwendungen. Dabei erfolgt die Integration aller an der Steuerung beteiligten Softwaremodule über eine einheitliche, modulare und echtzeitfähige C-Programmierschnittstelle unter dem Betriebssystem QNX Neutrino. Hintergrund dieser Arbeit ist der Sonderforschungsbereich (SFB) 562, in dem methoden- und komponentenbezogene Grundlagen zum Entwurf von Parallelrobotern erarbeitet werden. Der Einsatz von Parallelrobotern stellt dabei hohe Anforderungen an die Leistungsfähigkeit der verwendeten Robotersteuerung: Kinematisch gekoppelte Strukturen und die bei ihrer Bewegung zu berücksichtigenden Bewegungs- und Orientierungs-Singularitäten führen zu einer Steigerung des Umfangs und der Komplexität notwendiger Steuerungsfunktionalitäten; struktur- und gelenkintegrierte Sensoren erhöhen das notwendige Datenaufkommen bei dem Versuch, die kinematische Komplexität zu reduzieren; Synchronisationsanforderungen der gekoppelten Achsantriebe erfordern reaktionsschnelle Kommunikationsmechanismen; zusätzliche Anforderungen an Platziergenauigkeit, Beschleunigung und Geschwindigkeit der Arbeitsplattform liegen weit oberhalb derer serieller Roboteranwendungen. Kommerziell verfügbare Lösung für eine derartige Steuerung existieren derzeit noch nicht oder nur mit Einschränkungen Gegenstand dieser Arbeit ist zunächst die Untersuchung grundlegender Mechanismen aus den Bereichen Softwaretechnologie und Kommunikationstechnik, um eine Auswahl zur Realisierung geeigneter Funktionalitäten für Prozessorganisation, Kommunikation, Synchronisation, Konfiguration und Darstellung hinsichtlich eines passenden Steuerungssystems zu treffen. Im Hauptteil der Arbeit erfolgt die detaillierte Konzipierung sowie die Erläuterung der vollständig in Hard- und Software umgesetzten Realisierung dieser Kommunikations-Infrastruktur. Sie besteht aus drei Hauptkomponenten: Middleware MiRPA-X, Kommunikationsprotokoll IAP und Kommunikationssystem FireWire (Standard IEEE 1394). Die Verbindung bildet eine leistungsfähige Plattform, um allen in der Steuerung verwendeten Funktionsmodulen zu jeder Zeit transparente, modulare, einheitliche und echtzeitfähige Kommunikations- und Synchronisationsmechanismen zur Verfügung stellen. Die Integration erfolgte dabei soweit möglich unter Verwendung von Standardkomponenten (PC-Hardware, Betriebssystem, Programmiersprache). Innerhalb des SFB hat sich der praktische Einsatz der hier erarbeiteten Lösung als essenzieller, unverzichtbarer Bestandteil der Steuerung gezeigt, so dass ein breiterer Einsatz dieser Infrastruktur innerhalb anderer PC-basierter Robotersteuerungen außerhalb des SFB denkbar und sinnvoll erscheint.The goal of this thesis is the concept development, implementation and testing of a centrally organized communication infrastructure. It aims to support the development of control systems for high-dynamic robot applications, and thus provides a uniform, modular and real-time capable application programming interface (API) for all software modules involved. The development and application is performed using the operating system QNX Neutrino together with C/C++ programming language. The background of this thesis is the Collaborative Research Center (CRS) 562. Here, foundations for the development of parallel kinematic machines (PKMs) are worked out regarding necessary methods and components. The application of PKMs make high demands on the performance of robot control: coupled kinematic structures together with resulting special singularities require more and efficient control functions for motion control; additional sensors (integrated within the robot structure) increase the necessary data traffic while aiming to reduce calculational complexity; requirements for the synchronisation of drives necessitate high-speed communication mechanisms. Additional requirements regard the performance of the overall robot system: positioning accuracy, acceleration and velocity of the robot end-effector, which are expected to outsell those realised with conventional (serial) robot structures. Commercially available solutions for control systems do not suit all of these demands which calls for a unique control system design from standard components (computer hardware, operating system, communication system and programming language). The object of this thesis is, at first, the examination of fundamental mechanisms from the domain of software and communication technology in order to select suitable mechanisms for process organisation, inter process communication, synchronisation, configuration and presentation of data flow. These are to be provided for the control function modules in a uniform way. In the main part of this thesis the concept of the communication infrastructure is introduced in detail as well as the overall description of its implementation in hardware and software. The infrastructure consists of three main components which work together as a functional unit: the middleware MiRPA-X, the communication protocol IAP and the FireWire communication system (IEEE 1394). They form an efficient framework in order to provide transparent, modular and uniform communication and synchronisation mechanisms for the development of powerful and real-time control functionality. Within the project work in the Collaborative Research Center this novel communication infrastructure proved of indispensable value. For other robot control systems outside the CRS, it should thus be considered when using standard components

    Augmented reality device for first response scenarios

    Get PDF
    A prototype of a wearable computer system is proposed and implemented using commercial off-shelf components. The system is designed to allow the user to access location-specific information about an environment, and to provide capability for user tracking. Areas of applicability include primarily first response scenarios, with possible applications in maintenance or construction of buildings and other structures. Necessary preparation of the target environment prior to system\u27s deployment is limited to noninvasive labeling using optical fiducial markers. The system relies on computational vision methods for registration of labels and user position. With the system the user has access to on-demand information relevant to a particular real-world location. Team collaboration is assisted by user tracking and real-time visualizations of team member positions within the environment. The user interface and display methods are inspired by Augmented Reality1 (AR) techniques, incorporating a video-see-through Head Mounted Display (HMD) and fingerbending sensor glove.*. 1Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. At present, most AR research is concerned with the use of live video imagery which is digitally processed and augmented by the addition of computer generated graphics. Advanced research includes the use of motion tracking data, fiducial marker recognition using machine vision, and the construction of controlled environments containing any number of sensors and actuators. (Source: Wikipedia) *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat; Microsoft Office; Windows MediaPlayer or RealPlayer

    An investigation into the application of the IEEE 1394 high performance serial bus to sound installation contro

    Get PDF
    This thesis investigates the feasibility of using existing IP-based control and monitoring protocols within professional audio installations utilising IEEE 1394 technology. Current control and monitoring technologies are examined, and the characteristics common to all are extracted and compiled into an object model. This model forms the foundation for a set of evaluation criteria against which current and future control and monitoring protocols may be measured. Protocols considered include AV/C, MIDI, QSC-24, and those utilised within the UPnP architecture. As QSC-24 and the UPnP architecture are IP-based, the facilities required to transport IP datagrams over the IEEE 1394 bus are investigated and implemented. Example QSC-24 and UPnP architecture implementations are described, which permit the control and monitoring of audio devices over the IEEE 1394 network using these IP-based technologies. The way forward for the control and monitoring of professional audio devices within installations is considered, and recommendations are provided.KMBT_363Adobe Acrobat 9.54 Paper Capture Plug-i

    A Design and Prototyping of In-Network Processing Platform to Enable Adaptive Network Services

    Get PDF
    The explosive growth of the usage along with a greater diversification of communication technologies and applications imposes the Internet to manage further scalability and diversity, requiring more adaptive and flexible sharing schemes of network resources. Especially when a number of large-scale distributed applications concurrently share the resource, efficacy of comprehensive usage of network, computation, and storage resources is needed from the viewpoint of information processing performance. Therefore, a reconsideration of the coordination and partitioning of functions between networks (providers) and applications (users) has become a recent research topic. In this paper, we first address the need and discuss the feasibility of adaptive network services by introducing special processing nodes inside the network. Then, a design and an implementation of an advanced relay node platform are presented, by which we can easily prototype and test a variety of advanced in-network processing on Linux and off-the-shelf PCs. A key feature of the proposed platform is that integration between kernel and userland spaces enables to easily and quickly develop various advanced relay processing. Finally, on the top of the advanced relay node platform, we implement and test an adaptive packet compression scheme that we previously proposed. The experimental results show the feasibility of both the developed platform and the proposed adaptive packet compression
    • …
    corecore