
The Remote Configuration of Devices within

Home Entertainment Networks

THESIS

Submitted in fulfilment of the requirements for the Degree of

Master of Science (Applied Computer Science)

by

Colin Dembovsky

January

2002

Supervisor: Prof. R. Foss

Abstract
This thesis examines home entertainment network remote configuration solutions. It does so by

inspecting four home entertainment networking solution specifications - HAVi, Jini, AV/C and

UPnP. Two of these (AV/C and UPnP) are implemented partially for a system allowing a TV to

configure an AudioNideo Receiver (AV/R) remotely on the network (a process known as remote

configuration).

The two implementations are then more closely investigated and several implementation

differences in the approach between the remote configuration method of device configuration

and other methods of device configuration are discerned. These different approaches are then

categorised into one of two theoretical models of communication for configuring devices on

home entertainment networks - the Rendering model and the Programmed model. By

classifying a particular method of device configuration into one of the two models, manufacturers

can quickly determine the inherent strengths and weaknesses of that method.

Keywords: remote configuration, home entertainment networking, HAVi, Jini , AV/C, UPnP

Acknowledgements
I would like to tharik all first and foremost my supervisor, Richard Foss for all his support, ideas

and patience - thanks for supervising so well! Thanks are also due to Digital Harmony

Technologies in Seattle for funding my MSc, for flying me to Seattle for three weeks and for

providing me with a DHIVA. Thanks especially to Walt Jones for his ideas and input which

essentially decided the direction of this thesis and to the other DHT guys who helped me at

various stages. Brad Klinkradt and Dave Sieborger for their assistance with the DHIVA and the

DHT stack. Peter Clayton and the Rhodes University Computer Science department for their

continued support over the years.

Table of Contents
TABLEOFCONTENTS __ I

CHAPTER 1 - INTRODUCTION _______________________________________ 9

l.l A NEW GENERATION OF HOME ENTERTAINMENTNETWORKING ______________ _____ 9

1.2 PROJECT OBJECTfVES 10

CHAPTER2-HOMENETWORKS __ 12

2.1 [NTRODUCTION ______ ___ _ ______ _ _______________ 12

2.2 THE ECONOMICS OF HOME NETWORKS 12

2.2.1 The IEDMM 13

2.3 HOME NETWORK ELEMENTS 13

2.3. I Electrodomestic Network Devices (ENDs) 14

2.3. 2 The IAN 15

2.3.3 The Residential Gateway 15

2.3.4 Home Entertainment Networks 16

2.4 HOME ENTERTAINMENT NETWORKING SOLUTIONS 16

2.4.1 IEEEI394 17

2.4.2 HAVi 18
2.4.2.1 Introduction ___ 18

2.4.2.2 Physical Medium 18

2.4.2.3 Abstraction of Devices and Services 19

2.4.2.4 Locating Other Devices and Services 20

2.4.2.5 Using Services 20

2.4.2.6 Detecting Device State Changes 21

2.4.2.7 User Interfaces 21

2.4.2.8 Other Features 21

2.4.2,9 HAVi and Java 22

2.4.3 Jini 22

2.4.3.1 Introduction ___ 22

2.4.3,2 Physical Medium 23

2.4.3.3 Abstraction of Devices and Services 24

2.4.3.4 Locating Other Devices and Services 24

2.4.3,5 Using Services 25

2.4.3.6 Detecting Device State Changes 25

2.4.3.7 User Interfaces 26

2.4.3.8 Other Features 26

2.4.3.9 Jini and HAVi 26

2.4.4 UPnP 26

2.4 .4.1 Introduction ___ 26

Co!in Dembovsky - Rhodes University

2.4.4.2 Physical Medium _____ ______ __________________ 27

2.4.4.3 Abstraction of Devices and Services 28

2.4.4.4 Locating Other Devices and Services 29

2.4.4.5 Using Services 29

2.4.4.6 Detecting Device State Changes 30

2.4.4.7 User Interfaces 30

2.4.4 .8 UPnP 's Control Mechanism 31

2.4.5 A VIC 31

2.4.5 .1 Introduction ____ _ _ _______ _______ ____ _ _ _ _ _ ____) I

2.4.5.2 Physical Med ium) I

2.4.5.3 Abstraction of Devices and Services 33

2.4 .5.4 Locating Other Devices and Services 34

2.4.5.5 Using Services 34

2.4.5.6 Detecting Device State Changes 34

2.4.5.7 Use r Interfaces 35

2.5 COMPARISON OF COMMUNICATION SOLUTIONS 35

2.5.1 Physical Medium 35

2.5.2 Abstraction o/Devices and Services 35

2.5.3 Locating Other Devices and Services 36

2.5.4 Using Services 36

2.5.5 Detecting Device Stale Changes 37

2,5.6 User interfaces 38

2.6 SUMMARY 38

CHAPTER 3 - REMOTE CONFIGURATION ON HOME ENTERTAINMENT NETWORKS ____ 40

3.IINTRODUCTION _ ________________________ _________ 40

3.2 D EFINING REMOTE CONFIGURATION 40

3.3 USER INTERFACES 41

3.3.1 The VIA 42

3.3.2 Desirable VIA Features/or Home entertainment networks 44

3.4 SOLUTIONS TO REMOTE CONFIGURATION 45

3.4.1 HA Vi's Solution to Remote Configuration 45

3.4.1.1001 Elements 45

3.4.1.2 Navigation Through the DOl Hierarchy 47

3.4.1.3 Notification Scope for Target DDI Changes 48

3.4.1.4 Data Driven Interaction 49

3.4 .1.5 The DOl Output Device Model 50

3.4.1.6 The DOl Input Device Model 51

3.4.2 Jini's Solution to Remote Configuration 5 J

3.4.2. 1 Separating UI and Functionality 52

3.4.2.2 User Adapters 52

3.4.2.3 A Closer Look at Jini' s Service Uis 54

Colin Dembovsky - Rhodes University

ii

3.4.3 The A VIC Solution to Remote Configuration _____________________ 55

3.4.3.1 The Panel Subunit 55

3.4.3.2 The AV/C Panel Subunit Model 55

3.4.3.3 Input and Output Device Models 57

3.4.3.4 GUI Layout and Presentation 58

3.4.3.5 GUT Navigation 60

14.4 The UPnP Presentation Mechanism Solution to Remote Configuration 60

3.4.4.1 Setting Up a Device to Offer Services on a UPnP Network 60

3.5 COMPARING REMOTE CONFIGURATION SOLUTIONS 63

3.6 SUMMARY 63

CHAPTER 4 - THE A VIC PANEL SUBUNIT SOLUTION TO REMOTE CONFIGURA TION ____ 6S

4.1 INTRODUCTION _______________________________ 65

4.2 THE PANELSUBUNITTV-AVIR 65

4.3 THE OUI XML GRAMMAR 68

4.3.1 Selecting the GUI Elements Required 69

4.3.2 The XML Document Type Definition 70

4.3.3 An Example - The ImagiRadio 72

4.4 THE GUIBulLDER 75

4.4.1 GuiBuilder Design 76

4.4.2 GuiBuilder Scenarios 80

4.4.3 GuiBuilderSequence Diagrams 80

4.5 THE XML-GUI PARSER 84

4.5.1 Grammars 84

4.5.1.1 Checking Semantics 84

4.5.1.2 Performing Syntactic Actions 85

4.5.2 The XML-GUI Grammar 87

4.6THEDHIVA 89

4.6.1 DHlVA Ward/Mellor Diagrams 90

4.6.2 OpenlClose AV/C Panel Subunit Messages 93

4.6.3 Panel Data Request Messages 94

4.6.4 User Configuration Command Messages 98

4.7 THE CONTROLLERAPP 99

4.7.1 Features of the ControllerApp 99

4.7.2 ControllerApp Design lOa

4.8 SUMMARY 109

CHAPTER S THE UPNP PRESENTATION MECHANISM SOLUTION TO REMOTE

CONFIGURATION _ _ _________________________ III

5.1 INTRODUCTION _ _____________________________ 111

5.2 THE UPNP TV-A VIR 112

Colin Oembovsky - Rhodes University

iii

5,2,1 UPnP Modules ____________________________ 113

5.2.2 The UPnP Presentation Mechanism Process 115

5.2.3 The Device Description Document J 16

5.2.4 The Service Description Document 1 J 7

5.2. 5 The Presentation Document 1 J 9

5.2.6 The Presentation Process 120

5.2. 7 Modifying the Device and UDevice Modules 122

5,3 SUMMARY 126

CHAPTER 6 - TWO COMMUNICATION MODELS FOR DEVICE CONFIGURATION _____ 130

6 ,1 INTRODUCTION ______________________________ 130

6,2 CONTROL SOLUTIONS 130

6.3 COMPARISON PARAMETERS 13 1

6,3,1 Device Knowledge 131

6,3.2 Location oj User InterJaces 133

6,3,3 Command Sets 133

6.4 Two MODELS 133

6,5 CONSULTANTVS, POSTMAN 134

6,5, 1 The Consultant 134

6,5,2 The Postman 134

6,6 ADVANTAGES AND DISADVANTAGES OFTHE MODELS 135

6,6,1 AmountoJProgramming 135

6,6,2 Addition oJNew Device Types 135

6,6,3 Back-ward Compatibility 135

6,6.4 Complexity 136

6,6,5 Flexibility and Functionality 136

6,6,6 Cost 136

6,7 SUMMARY 136

CHAPTER7-CONCLUSION _______________________ 138

7, I HOME ENTERTAINMENT NETWORKING SOLUTIONS __________________ 138

7,2 REMOTE CONFIGURATION 138

7,3 CONTRIBUTIONS TO DEVICE MANUFACTURERS 139

7.4 CONTRIBUTIONS TO THE HOME ENTERTAINMENT NETWORKING F IELD 140

APPENDIX A - XML DTD ________ _______________ 141

APPENDIX B - XML GRAMMAR _ _ ____________________ 143

APPENDIX C - XMLGUI.ATG _______________________ 145

APPENDIX D - UPNP AVJR SCPD __________________ ____ ISO

Colin Dernbovsky - Rhodes University

iv

APPENDIX E- UPNP PRESENTATION PAGE (HTML) _______________ 154

APPENDIX F - UPNP "DEVICE" MODULE LISTING 161

APPENDIX G - UPNP "UDEVICE" MODULE LISTING 169

REFERENCES 173

Colin Dembovsky - Rhodes University

v

List of Figures
Figure 1 - Elements of a typical home network. _ _ _ _

Figure 2 - Software elements in a typical FAV

Figure 3 - The Jini stack

_ _ _ _ _ 14

19

23

Figure 4 - The UPnP high-level architecture 28

Figure 5 - The UIA interfaces for a VCR (left) and a hi-fi (right) _______________ 44

Figure 6 - An example of how 001 elements are arranged in panels and groups _______ 47

Figure 7 - The 001 hierarchy is navigable from the root element (Panel 1 in this case) _ ___ _ 48

Figure 8 - The Typical 001 Message Sequence Scheme 50

Figure 9 - A user interacting with a service via an UI Object 52

Figure 10 - Interaction between the User, UI Renderer, UI object, Service Object and Device _53

Figure 11 - The Panel Subunit model _________ ______ 56

Figure 12 - A VCR Panel containing two groups of elements ________ _________ 59

Figure 13 - Components of a Device Offering Services on a UPnP Network 61

Figure 14 - The UPnP HTML presentation page for an AV/R 62

Figure 15 - Components of the AV/C Panel Subunit TV-AV/R Remote Configuration System _66

Figure 16 - The GUI layout as specified by the ImagiRadio manufacturer ________ ____ 73

Figure 17 - The Use Case diagram for the GuiBuilder 77

Figure 18 - A screen shot of the GuiBuilder application 78

Figure 19 - An example of a panel containing four elements

Figure 20 - The properties that are shown for Slider elements

_____ _ 79

79

Figure 21 - GuiBuilder Sequence diagram for Scenario 1 - The manufacturer clicks on an empty

element slot 80

Figure 22 - GuiBuilder Sequence diagram for Scenario 2 - The manufacturer clicks on a panel

tab ______ _______ _____________ _____________ 81

Figure 23 - GuiBuilder Sequence diagram for Scenario 3 - the manufacturer changes the

properties of an element 81

Figure 24 - GuiBuilder Sequence diagram for Scenario 4 - the manufacturer exports the GUI to

XML _ _________ _ _____________ _____________ 82

Figure 25 - The GuiBuilder object model _______ ___________________ _ 83

Figure 26 - An annotated picture of a DHIVA 89

Figure 27 - The DHIVA's Digital Harmony Protocol Stack 90

Figure 28 - The high level Ward/Mellor diagram of the DHIVA AV/C Panel Subunit system _ 91

Figure 29 - Detail of Transform 2 of the Ward/Mellor diagram of the DHIVA AV/C Panel Subunit

~m ~

Colin Oernbovsky - Rhodes University

vi

Figure 30 - Detail of Transform 3 of the Ward/Mellor diagram of the DHIVA AV/C Panel Subunit

~m ~

Figure 31 - The plugs of the panel subunit and its re lation to its unit and the Controller ____ 93

Figure 32 - Interactions between Controller and Target to allow the Controller to obtain GUI data

95

Figure 33 - The format of the Push GUI Data packet ___ _

Figure 34 - The format of the User Action packet

96

98

Figure 35 - The Device Driver interacts between the IEEE1394 Network and the ControlierApp

100

Figure 36 - The Use Case Diagram for the ControllerApp _________________ 101

Figure 37 - An example panel for the AV/R system _ ___________________ 101

Figure 38 - The sequence diagram for the ControlierApp Scenario 1 103

Figure 39 - The sequence diagram for the ControlierApp Scenario 2 103

Figure 40 - The sequence diagram for the ControlierApp Scenario 3 104

Figure 41 - The sequence diagram for the ControlierApp Scenario 4 105

Figure 42 - The sequence diagram for the ControllerApp Scenario 5 106

Figure 43 - The sequence diagram for the ControlierApp Scenario 6 106

Figure 44 - The sequence diagram for the ControllerApp Scenario 7 107

Figure 45 - The complete object model for the ControlierApp 108

Figure 46 - The UPnP TV-AV/R system 111

Figure 47 - Components of a UPnP Server 112

Figure 48 - The organisation of UPnP modules 113

Figure 49 - Interactions between the control point (TV) and device offering services (AV/R)

during a UPnP Remote Configuration session 116

Colin Dembovsky - Rhodes University

vii

List of Tables
Table 1 - Comparison of the common features of the four communication solutions _________ 39

Table 2 - The main differences between Remote Configuration Solutions ____________ 64

Table 3 - The properties associated with GUI elements _ __ _____________ __ 70

Table 4 - Comparison of Rendering and Programmed Communication Models ________ 134

Colin 'fT!LolI~ky - R~10dt:s UnJvcrs'ty

viii

Chapter 1 - Introduction

1.1 A New Generation of Home Entertainment

Networking

Think of the devices that most people live with - from televisions to DVD-players and hi-fi 's.

Most of these devices contain embedded microprocessors and technology people know very

little about. However, users prefer their devices this way - they want devices that simply plug in

and work. How DVD-players get their streams to TVs, how resources on the network are

managed and other such problems are of little consequence to the people who use these

devices. Hence more and more intelligence must be placed into these devices to make the

devices themselves handle all the low-level hassles of networking.

The importance of properly designing the next generation of computer-enhanced devices and

appliances is becoming more and more noticeable. Manufacturers are being required to place

enough intelligence into these devices to make them operate "invisibly" - users plug them in and

they simply work. But the problem is deeper - users can now purchase a whole range of

different devices from a multitude of manufacturers. What if they purchase several devices from

different vendors? The devices are going to have to connect to each other and "understand"

each other even if they are produced by different manufacturers. This means that

manufacturers are going to need to produce devices that implement home entertainment

networking solutions that are "open" - that any other manufacturer can implement - in order to

remain competitive in a user-driven market.

However, there exist many such home entertainment networking solutions and just which

solution is implemented is a difficult question for a manufacturer. How does a manufacturer go

about deciding which home entertainment networking solution is best suited to its suite of

devices?

Since the challenges of this ideal interconnected digital world - where every device can "speak"

to every other device regardless of manufacturer, make or model - are varied and many, this

thesis focuses on one aspect of home entertainment networking - the configuration of home

entertainment devices. Configuration involves changing or selecting features or setting up the

device in order to utilise certain functionali ty of the device. This can be achieved in an number

Chapter t

9

of ways. Remote configuration involves connecting two devices on a home entertainment

network and then allowing the user to configure one of the devices (remotely) via the other

device. For example, if a user connects a hi-fi and a TV together, remote configuration would

allow the user to configure the hi-fi by simply interacting with its user interface displayed on the

TV. The user never has to physically touch the hi-fi itself. Other methods of configuring devices

include utilising device and service specifications and control messages inherent in home

entertainment network standards.

1.2 Project Objectives

This project seeks to investigate some of the home entertainment networking solutions that are

currently being widely used, and ultimately provide the manufacturer of home entertainment

devices with a comprehensive aid for enabling their devices to be configured on home

entertainment networks, especially by the method of remote configuration. Two current home

networking entertainment solutions are partly implemented to demonstrate remote configuration

and these systems are fully functional and able to be used commercially.

There are many home entertainment networking solutions available, and this thesis begins by

examining four of the most popular ones in Chapter 2 - HAVi, Jini, AVIC and UPnP. This

inspection gives rise to several theoretical differences between these networking standards.

The theoretical differences include connection medium, the location and use of services on the

network and what type of user interface the home entertainment networking solution provides.

While comparing these features provides a fair understanding of the differences between the

solutions, many questions are still left unanswered. For instance, how difficult is it to place the

correct command (semantics) into the syntax that the solution requires? Are the graphical

element types defined in the solution sufficient for any arbitrary user interface? Questions like

these can only be answered by implementing the solutions and comparing the implementations.

However, since implementation of an entire home networking solution was not possible given

certain time constraints, it was decided that a small sub-section of each home networking

solution would be implemented. This section focuses on the configuration of devices on the

network, and especially remote configuration of devices, and each home entertainment

networking solution 's approach to remote configuration is discussed in detail in Chapter 3.

--.--._._-_._-_.
Chapter 1

10

Chapters 4 and 5 detail the implementation of two of the home entertainment networking

solutions remote configuration systems - the AV/C Panel Subunit and UPnP presentation

mechanism respectively. The same system is implemented by both home entertainment

networking solutions - a TV is connected to an AudioiVideo Receiver (AV/R) in such a manner

that the AV/R can be remotely configured by a user from the TV. Another subsidiary goal

emerges in the AV/C implementation - a set of tools for manufacturers to use for further remote

configuration systems with other devices is provided. HAVi and Jini were not implemented at all

since there were no HAVi or Jini components in place already. AV/C was selected because of

the availability of an AV/C stack and UPnP because of the availability of Microsoft's UPnP

Development Kit.

Chapter 6 discusses the differences experienced between configuring devices remotely and

using other methods of control. The comparison and contrast leads up to two models of

communication for home device configuration - Rendering and Programmed. While these

models vary significantly, the main difference appears in the amount of knowledge of devices on

the network is programmed into a control point. Programmed model approaches to device

configuration characteristically involve controllers that have intimate knowledge of the

capabilities and services of the devices on the network, while Rendering model approaches

involve control points that possess little to no foreknowledge of the devices on the network.

These models (or approaches) aid manufacturers in analysing methods of device configuration

available' in different home entertainment networking standards and allow manufacturers to see

immediately their inherent advantages and disadvantages.

Finally, Chapter 7 draws some conclusions about remote configuration of devices on home

entertainment networks from the experience and findings of the previous chapters.

Chapter 1

11

Chapter 2 - Home Networks

2.1 Introduction
Home networking is a young, dynamic and emerging industry that stimulates research. This

chapter will examine three main topics: the economics of home networks, the elements of home

networks, and popular home entertainment networking solutions. By examining these three

topics, a foundation is laid for further detailed discussion of home networks and remote

configuration on these networks.

2.2 The Economics of Home Networks

The market for home networks is growing . According to Parks Associates, a research firm

based in Dallas, the year 2000 $150 million market is expected to grow to $3.4 billion by 2004

[19]. People today are becoming increasingly interested in home networks.

For many years technologists, as well as media and market strategists, have been hailing in the

digital revolution in home networking. They have painted bold and creative pictures about how

computing could change the way people live. Hence people are no longer content to be

confined to one room or one TV set. Many users wish all their devices to communicate with

each other, as well as to be able to control lights, air conditioners and security systems from

anywhere in the house.

Most of the devices in a modern home have some sort of computing power in them - there are

embedded microprocessors in washing machines and alarm systems. Most of these computers

are invisible to the user - they are ubiquitous. Ubiquitous computing was a phrase coined by Dr.

Mark Weiser of PARC (Palo Alto Research Centre). The vision of the ubiquitous computing

research group at PARC was to move computing "back into its place, to reposition it in the

environmental background" [1]. Ubiquitous computing is an important concept relevant to the

way users interact with devices in the home.

Computers and intelligent devices (devices that have embedded microprocessors built into

them) are also pervasive - they seem to inhabit every part of peoples' lives. Today's users do

not want to have to install drivers for their fridges and microwave ovens. Users expect their

Chapter 2

12

networks to be intelligent enough to configure and communicate without human interaction while

at the same time be robust enough to work correctly all the time.

This means there exists a wide scope for creating a new generation of devices that make use of

computing to enhance their functionality as well as their usability. Ian O'Sullivan names these

devices Electrodomestic Network Devices (ENDs) [2].

2.2.1 The IEDMM

The Information Economy Derivative Market Model (IEDMM) [3] is a model that O'Sullivan

defines as a guide for key players in the Home Networks Industry and provides a framework for

identifying sources of value in this industry. He defines four tiers that identify major points of

value.

• Tier 1: Infostructure - this tier is the substructure of the physical system enabling the

delivery of content and services to users. The key players in this tier are Telco's, cable

operators and Internet Service Providers.

• Tier 2: ENDs - this tier is responsible for the rendering of the content and services to the

user. The key players on this tier are obviously device manufacturers - but also standards

bodies.

• Tier 3: Digital Media Commodities - th is tier encompasses the raw content - anything that

is rendered to digital format; from songs and voice messages to movies, text and graphics.

• Tier 4: Services - this tier is primarily concerned with co-ordination and consolidation of the

content of Tier 3, as well as the maintenance of the customer-vendor relationship.

Tiers 3 and 4 are derivative markets, since they rely on Tiers 1 and 2 to provide the

infrastructure on which content and services operate. They are poised to generate larger profit

margins in the value market.

This thesis presents work important to Tier 2. What intelligence devices posses and how they

communicate with each other is determined in Tier 2, and is critical to Tiers 3 and 4.

2.3 Home Network Elements

At a high level, the task of home networks is to connect anything and everything in a home

together. Obviously the most visible components of a home network are the ENDs. There must

be a connection medium that connects the devices. Furthermore, there needs to be software

Chapter 2

13

that will allow meaningful interaction between devices (a home networking solution). In order to

make the network able to interact with the outside world, some sort of residential gateway needs

to exist.

Figure 1 shows the typical components of a home network.

END ..._-__...

Communication
Software

Network Interlace

---..........~~l ,.
E ectrodomesbc
Network Device
(END)

"'----- END

Figure 1 - Elements of a typical home network.

2.3.1 Electrodomestic Network Devices (ENDs)

O'Driscol l [10) divides ENDs into three categories.

• Appliances - these are devices that are mechanical in nature (for example a fridge)

• Electronics - these are devices that are both physical and logical in nature (for example a

digital TV)

• Computers - these devices are logical in nature (for example a PC)

Generally users lack the technical know-how to be able to install or set up the networks

themselves - they will therefore primarily interact with the ENDs. It is therefore imperative to fit

these devices with sufficient intelligence to be able to configure themselves onto the home

network.

Chapter 2

14

For the purpose of this thesis, only devices that are used for entertainment are considered.

These devices are mainly audio/visual in nature. These devices form a subset of the entire

home network called the home entertainment network (see § 2.3.4). Home lighting,

temperature and security networks are examples of other subsets that may be part of a home

network.

2.3.2 The IAN

The connection medium for a home entertainment network is called the Information Appliance

Network (IAN) by O'Sullivan [2] . It is a high-speed home data network that allows ENDs to

connect to one another. Most current networking solutions do not cater for all the requirements

of a typical home network. Typical solutions are anything from existing copper power and

telephone cabling, to new digital cabling, to wireless solutions. The connection media of future

home networks will most likely be a mix of these solutions.

Successful IANs have several important features (note that some of the features are inherent in

the devices connected on the IAN rather than the IAN itself):

• Leveraging existing technologies - users are not inclined to rewire their entire houses for

new technology. Use must be made of existing wiring as far as possible. Another alternative

gaining popularity is wireless solutions.

• High Bandwidth - this applies especially to AN networks that stream media.

• Intelligence - the network needs to be 'plug-and-play'. Users cannot afford to get

professionals to set up their network. The devices need to be intelligent enough to configure

themselves.

• Robustness - the network must be able to handle traffic, hot-plugging of devices and errors

efficiently and invisibly.

• Interoperability - the devices on the network must be able to communicate meaningfully

with one another.

• They must be future-proof - users will probably not upgrade if professional intervention is

required. Devices must be able to upgrade via internet downloads or other user-friendly

means.

2.3.3 The Residential Gateway

The residential gateway is a device that links the home network with the rest of the world,

effectively providing a bi-directional interface between every device in the home and the rest of

the world. They are important devices for home networking as without them, the devices in the

Chapter 2

15

home are completely isolated from the rest of the world. The simplest gateway device is a

modem, but gateway devices with far more capabilities are being developed and marketed.

Residential gateways increase the value of broadband services by allowing broadband data

(such as video) to be distributed to a multitude of devices around the home instead of to just one

PC (as in the case of a modem).

2.3.4 Home Entertainment Networks

There exists a subtle difference between home networks and home entertainment networks. For

the purposes of clarity, this thesis defines home networking to mean the entire plethora of

networked appliances in a household. Furthermore, it defines a subset of home networking

called home entertainment networking. Home entertainment networking defines the connection

and networking of audio/visual (AN) devices such as TVs and DVD players. Generally

speaking, AN devices usually have a high degree of complexity inherent in them, and so many

of the princip les that work for such devices can be scaled down to work for other non-AN

devices.

2.4 Home Entertainment Networking Solutions

Central to the success of future home entertainment networks is the ability for devices to

communicate with each other - this means that they must be able to discover each other, use

each others' services and share network resources regardless of their make and model. This

has far reach ing implications for manufacturers.

Manufacturers of ENDs are faced with the fact that the vast majority of home networks will be

multi-vendor networks. Various manufacturers make the devices on a typical home

entertainment network. Hence, in order for the devices to be able to communicate with each

other, they must 'speak' some common language. This shows the importance of open

communication standards (or home entertainment networking solutions). Open home

entertainment networking solutions are solutions that are public and are usually developed by

teams of manufacturers and researchers rather than by one company.

There are many home entertainment networking solutions that deliver some answers to the

challenges of home entertainment networking. This section concentrates on some of the more

widely adopted solutions. Manufacturers are faced with the decision of which solution(s) to

embed in their devices. This is a complex challenge since there are many solutions.

Chapler 2

16

These solutions differ in their approach to home entertainment networking and thus also in their

approach to a specific part of home entertainment networking known as remote configuration

(discussed in more detail in Chapter 3) . The solutions can be analysed in terms of common

features and unique features. The common features are physical medium, abstraction of

functions or services, locating other devices and services, using services, detecting device state

changes and user interfaces.

2.4.1 IEEE1394

One of the main emerging digital connection standards is IEEE1394-1995 [9J. It is used by three

of the four home entertainment networking solutions examined in this section.

IEEE1394-1995 (or just IEEE1394) is a low cost, high bandwidth, serial bus standard that allows

the multiplexing of several streams of audio and video simultaneously. It does not rely on a PC

being present and allows devices to be hot-plugged and unplugged.

Presently, IEEE1394 supports bi-directional transport of up to 400 Mbps (megabits per second)

and will soon support up to 1.6 Gbps (gigabits per second). IEEE1394 has two communication

modes - isochronous and asynchronous. Isochronous communication guarantees delivery of

data packets at fixed intervals even if some packets must be dropped. An example of

isochronous communication would be streaming video at 30 frames per second . Asynchronous

communication on the other hand, guarantees that all packets will arrive at their destination, but

makes no guarantee of when they will arrive. Asynchronous communications are typically used

to send control messages on the network.

Enhancements to the IEEE1394-1995 standard have been made and are specified in the

IEEE1394b-2000 standard. These enhancements include bus speeds of up to 1.6 Gbps, more

advances bus arbitration methods and severa l clarifications to ambiguities in the IEEE1394-1995

standard.

Chapter 2

17

2.4.2 HAVi

2.4.2.1 Introduction

HAVi [8J stands for Home AudioNideo Interoperability and was started by Grundig , Hitachi,

Phillips and other companies, More companies have joined in their efforts since HAVi was

started, It is an open , platform independent home entertainment networking solution,

HAVi specifies a number of APls that allow manufacturers to develop HAVi compliant devices,

HAVi provides a common interface that allows interoperability between devices from different

manufacturers - in other words the devices can detect and use the funct ionality of other devices

on the network, It focuses mainly on the delivery and processing of digital AN content between

devices,

2.4.2.2 Physical Medium

HAVi is designed for, but not limited to, the IEEE1394 serial bus as its transport medium,

The HAVI architecture employs a number of managers or software elements that manage

different facets of the network, Each software element is a self-contained entity consisting of

data and the functions to manipulate that data and has a unique name and identifier (the

Software Element identifier or SEID) , Software elements expose their functionality through well

defined interfaces, The software elements use SEIDs and a messaging system to

communicate, The implementation of the messaging system differs depending on the

manufacturer, but the messaging format is common to all devices on a HAVi network, There

exist several device classifications in the HAVi specification, Ful l AudioNideo Devices (FAVs)

support the entire HAVi protocol (see § 2.4,2,3 for more about HAVi device classification),

Figure 2 shows the software elements (managers) in a typical FAV,

Chapter 2

18

FAV

I Application II Havlet I
,--- - r--

0 en ::0 ~
tTl " <;' w " < w 1394 " "

0 en

S os "
.,

Network and t::l ~
.., n IJQ
" ~ 5') n ~ ~ " Registry

0
~ ., ~ ~

IJQ

§ os en
'"

.,
'< ., os

IJQ IJQ ., w

" c; " .., IJQ ..,
" 8 ..,

'--- - '--- '---

Figure 2 - Software elements in a typical FAV

One of these managers is the communication media manager (CMM). The CMM is basically a

transcoding proxy - it allows any physical communication medium to talk to the HAVi network.

The CMM provides two services - transport of data between devices and abstraction of network

activities from the HAVi home entertainment networking solution.

The CMM allows HAVi to be dynamically aware of network changes that occur. It can detect

and act upon topology changes that occur as a result of devices being hot-plugged and

unplugged.

The interface from the network to the device is called a Device Control Module (OCM) . The

OCM also acts as a container for Functional Control Modules (FCMs). FCMs encapsulate

services within the device (see § 2.4.2.3 for more details).

2.4.2.3 Abstraction of Devices and Services

HAVi ENDs can be separated into four categories:

• Full AN devices (FAV) - supports 1394 and the full HAVi specification. Usually has a rich

set of resources.

• Intermediate AN devices (IAV) - supports 1394 and only a limited subset of HAVi

• Base AN devices (BAV) - supports 1394, but does not run the HAVi solution directly. This

device contains a Java-based control module that is uploaded to a FAV in order to allow the

FAV to control this BAV.

Chapter 2

19

• Legacy AN devices (LAV) - these are devices that don't support either 1394 or HAVi.

HAVi realises that the transition from existing legacy devices to new ENOs is going to be

gradual and supports the legacy devices by allowing them to be part of the network through

a FAVor IAV gateway.

HAVi views the system in terms of controllers and controlled devices. A controller is an

application that serves as a host to controlled devices - it contains the hardware resources

necessary to run software home entertainment network appl ications.

Each OCM in a device has zero or more Functional Control Managers associated with it. The

FCMs represent functional components within a device, and each device may have any number

of FCMs. HAVi applications can only communicate with functional components via their FCMs.

Each FCM and OCM has a unique identifier called a HAVi unique identifier (HUIO).

HAVi have defined a number of FCMs such as tuner, VCR, clock, camera, AN disc, amplifier,

display and AN display. HAVi also define APls to help manufacturers develop custom HAVi

applications, OCMs and FCMs.

Besides providing APls for the device, a OCM may also contain a device-specific application

called a "havlet". Havlets are developed by the device manufacturers to provide a means of

utilising any specialised function on the device.

2.4.2.4 Locating Other Devices and Services

All managers, OCMs and FCMs register themselves with a distributed, system-wide database

called a registry.

The registry is a directory (present on all FAVs and IAVs) of objects available on the HAVi

network. It provides APls for registering and searching for objects. Objects register with the

registry in order to be contacted. Their SEIOs (in the case of managers) or HUIOs (in the case

of OCMs and FCMs) and attributes are stored in the registry. The registry also provides a query

mechanism that allows objects to search for other objects according to a set of criteria .

2.4.2.5 Using Services

A device wishing to use services will query the registry to find a OeM or FCM that can perform

the service. Thereafter, OCMs and FCMs are obtained via a OCM code unit present on each

device. This code unit may be written in Java byte-codes or in native code and is related to the

Chapter 2

20

particular device. The OeM management system is responsible for installing and uninstalling

OeM code units. The OeM code unit is then run on the requesting device.

2. 42 6 Detecting Device State Changes

Events are delivered through a service called the event delivery service (present on all FAVs

and IAVs). The local event manager distributes events posted by objects to all interested

objects. Objects register for notification about certain events with their local event manager.

Each event manager contains a list of events and the objects that wish to know of such events.

When an event is posted via a well-defined interface to the event manager, the event manager

checks its table and posts event notifications to all objects that have reg istered for notification of

this event. Objects who have not registered for event notifications do not receive any. If events

are posted globally, the event manager also notifies all other event manages of the event.

Events have buffers that can optionally be used to convey information about the event.

2.427 User Interfaces

The goal of a HAVi UI is to provide the user with a comfortable operating environment. Besides

being able to control HAVi devices traditionally (as in front panels or remote controls) HAVi

allows manufacturers to specify GUls that can be rendered on various displays ranging from

text-only to high-level graphics displays. The GUls can also be rendered on remote devices,

potentially from different manufacturers.

In order to support this , HAVi defines two mechanisms:

• Level 1 UI - this is the encoding of user interface elements which can be loaded and

displayed and which generate messages in response to user actions.

• Level 2 UI - this level consists of APls based on Java.

2.4.2.8 Other Features

Resources on a HAVi network are managed by two software elements - the stream manager

and the resource manager. The stream manager manages the connections and bandwidth of

the network. The resource manager deals with the allocation and de-allocation of hardware

resources. The resource manager is used to perform "scheduled actions" (such as recording a

programme at a specified time). The resource managers on a network will work together to

prevent deadlock.

--_._------------
Chapter 2

21

2.4.2.9 HAVi and Java

HAVi specify the Java programm ing language for the development of OeMs and home

entertainment networking applications. Java has several benefits for HAVi

• It is object oriented

• It has strong typing

• It has support for standard computing functions such as 110, networking and graphics

• It is platform independent

• It includes security through code verification

• It is widely adopted and supported

Programmers compile their code into Java bytecodes. These are similar to machine code

except that they are processor independent. Bytecodes are verified before they are executed by

the Java virtual machine present on a HAVi device.

All FAVs have a Java virtual machine capable of running any Java programme. This allows

devices to be future-proof - new applications can simply be downloaded without having to

recompile.

2.4.3 Jini

2.4.3.1 Introduction

Sun Microsystems have been developing Jini [20], their home entertainment networking

software solution, for many years. It is the logical extension of Java. Jini relies on ENDs being

able to interchange objects (data and code). Jini dispenses with the need for device drivers

because each device suppl ies its own interfaces ensuring compatibility and reliability.

Some of the core features of Jini systems are:

• Robustness - Jini allows and encourages the development of highly reliable systems

• Effortless "plug and play" - Jini makes ENDs intelligent enough to discover one another,

connect and communicate automatically

• It is future-proof - upgrades for Jini software on devices is easy and can be done by the

users themselves

• Support - over 40 of the key home entertainment networking companies are behind Jini -

besides all the support available for the underlying Java environment

Chapter 2

22

2.4.3.2 Physical Medium

Jini is not bound to any specific medium. It can be used in limited bandwidth environments (for

example cellular networks) or in broadband environments, such as home entertainment

systems . Figure 3 shows the Jini stack. The operating system interfaces with the transport

layer (the interface to the physical medium). Java (which is hardware and operating system

independent) is the layer above the operating system. The next layer up is Jini, and the network

services on the devices sit on the Jini layer.

Network Services
I

t
Jini

!
Java

t
Operating System

t
Transport Layer

Figure 3 - The Jini stack

To ensure integrity of data on a Jini network, each series of communications between devices is

grouped into an indivisible transaction. The transactions themselves may comprise many back

and-forth communications and acknowledgements.

Transactions are useful because, in the case that one of the devices is removed or crashes, the

other does not continually try to contact it. A transaction will either succeed or fail. If a

transaction succeeds, the device stops trying that transaction. If a transaction fails , it is

attempted again at a later time.

Chapler 2

23

2.4.3.3 Abstraction of Devices and Services

Jini is based on the simple model that devices connect together in communities. The formation

of these communities requires no device drivers. no new cabling. no operating systems and no

human intervention. The devices on a Jini network are abstracted simply to devices that offer

services.

2.4.3.4 Locating Other Devices and Services

Before devices on a Jini network can interact with one another they each must join at least one

Jini community. The device does so by finding a lookup service (basically a name server) that

keeps track of the resources of that community. Finding the lookup service is called discovery.

Jini supports two forms of discovery - serendipitous and direct. Serendipitous discovery means

the lookup service and services in the community find each other without any advance

knowledge of each others' whereabouts. Direct discovery is like "hard-wiring" a service to make

use of a particular lookup service (which may not be local).

Jini uses three discovery protocols for different scenarios:

• Multicast Request Protocol - used when a service first becomes available to find nearby

lookup services

• Multicast Announcement Protocol - used by lookup services to announce their presence

• Unicast Discovery Protocol - used by a service that knows the address of a lookup service

when it starts up

A device that is performing the discovery on the Jini network ultimately ends up being passed

one or more references to any lookup services present. Once a device application has

discovered a lookup service, it can query the lookup service to locate another device that offers

any required service. The application is given a reference to the service it requires.

The lookup service itself is like a very advanced name server, allowing the applications on the

network to search for particular types of objects. The lookup service returns object references to

applications querying it. Devices use the lookup service to publish services and to find services.

Each service in the Jini network has a proxy object - this is the object that is downloaded to

other devices and enables those other devices to interact with the service. Each service

publishes a reference to its proxy object with all the lookup services it can see. This process is

called publishing a service.

Chapter 2

24

Devices find the lookup service itself during discovery. Searches performed by the lookup

service can be done by proxy object, by a specific unique service identifier or by the attributes of

a particular service.

2.4.3.5 Using Services

Once a reference to a service has been obtained from the lookup service, the device requesting

the service downloads a Java object that is used to interact with the other device . This means

that no device drivers are necessary - the service is available via its own native interface (which

is running on the device requesting the service) and so compatibility is guaranteed.

When devices register on the community, they publish their services in the registry. Other

devices can then make use of the lookup service to find these services and then use them. But

what happens if a device that has registered a service is suddenly removed from the network

without being able to de-register? The network will still think that the device is connected and

this may cause the network to hang or even crash.

To work around this problem, Jini employs leasing. Thus instead of granting access to a

resource indefinitely, services can only register for certain amounts of time. The grantor of the

lease (the lookup service) may deny a lease or prematurely terminate a lease. Services can

also prematurely terminate a lease. Leases all have an expiry date and if a service wishes to

remain registered , it must attempt to renew its lease. So if a device is suddenly removed from

the network, its lease will eventually expire and the service will no longer be registered. The Jini

network will continue as if the device had properly de-registered. Leasing enables a Jini network

to be very robust by providing a way of freeing unused or unneeded resources.

2.4.3.6 Detecting Device State Changes

Jini services need to know about external state changes (events) that occur on the network from

time to time. For example, a DVD player may need to be notified that the TV is off and it can

stop streaming.

There are many other examples of remote events on a Jini network. As an illustration, O'Oriscoll

[10] uses the example of a digital camera that is connected to the network. If the user wished to

print photos by sending them from the camera to a printer on the network, the camera would

simply search a lookup service for a printer and be able to print. But what if the camera was

connected to the network first? Then when a printer is plugged in, it would generate a remote

-------_.
Chapter 2

25

event to tell the camera that a printer is available. The camera could have a print button that is

greyed out when a printer is not present, and when one comes on-line, the button would become

clear and the user could print.

2.4.3.7 User Interfaces

Jini Uls are based on the functionality provided by the service. The Uls are objects called User

Adapters and are discussed in detail in section 3.4.2 .

2.4.3.8 Other Features

Jini offers many benefits to users of home entertainment networking technologies and to

developers and manufacturers. Here are some of them :

• Device agnosticism - Since devices come bundled with their own interface and no device

drivers are required , Jini can support just about any device - from a full Multimedia PC to a

light switch . Jini does not require devices to even have Java-compatible code embedded in

them - as long as another device on the network can act as a proxy for it, it can successfully

participate in the network.

• Simplicity - No device drivers, no human intervention required for network setup, hot

plugging and unplugging - these features make the Jini network easy for users to utilise.

• Reliability - Because of Jini's advanced lookup server, networks form "spontaneously".

Services close together automatically form communities without user interaction. Also, the

Jini network is largely self-healing - leasing and a natural redundancy inherent in the

infrastructure reduce the effect of key AN devices failing.

• Small footprint - The code required to implement Jini on a device is extremely small - it

can be placed on devices with hardly any resources - such as lighting devices.

2.4.3.9 Jini and HAVi

Since both Jini and HAVi both use Java technology, they can naturally work together quite

effectively using a HAVi-to-Jini bridge. Early in 2000, Phillips, Sony and Sun announced plans

to work towards connecting the HAVi architecture with Jini.

2.4.4 UPnP

2.4.4.1 Introduction

Microsoft sponsors Universal Plug and Play (UPnP) [11], an open, cross-industry home

entertainment networking solution. The UPnP architecture defines a set of common interfaces

Chapter 2

26

that allows users to plug any device into their home entertainment network without having to

install drivers or change configuration settings. Importantly, UPnP leverages existing

technologies and industry standards.

Some of the core features of UPnP are:

• Open Standards - by leverag ing existing, widely used standards, UPnP can work on a wide

range of devices and eliminates the need for large-scale testing to ensure proper

interconnectivity.

• Scalability - UPnP scales from small networks to larger networks.

• Plug and Play - UPnP provides automatic methods of discovery and connectivity that

involve no user interaction.

• Small Footprint - UPnP devices require minimal computing resources.

• Multivendor and Mixed Media Environment - UPnP supports mixed media and

multivendor environments by using its simple interfaces and the fact that it is network

medium independent.

• Integration of Legacy and Non-IP Devices - Although UPnP uses IP, it allows bridging

devices (devices that bridge between IP and some other transport mechanism) to be used

on the UPnP network.

2.4.4.2 Physical Medium

UPnP is independent of the transport medium. Figure 4 shows the high-level archi tecture of

UPnP. The physical medium utilises IP (Internet Protocol) [27]. This widespread protocol is

chosen as the transport protocol of UPnP since it forms the backbone of web software. UPnP

also utilises the HyperText Transfer Protocol (HTTP) [24], the Transfer Control Protocol [28] and

the User Datagram Protocol (UDP). HTTP is the de facto standard for transferring data across

the Internet between browsers and servers and all messages sent in UPnP are sent using HTTP

(other than messages sent while addressing - see next section). UDP is a connectionless

protocol allows a device to send information without having to establish a connection with the

target device. UPnP will use HTTP over TCP or over UDP, but ultimately all messages are

transferred using IP.

It must be noted that IP itself is independent of transport mechanism, and IP packets may be

transported on an IEEE1 394 network using the "IP over 1394" protocol [44].

Chapter 2

27

Home Applications

UPnP

r-- ,---- ,---- r--

> 0 0 .",

0- C1> n tr1 @
g- u;. en <: en

" " 0 C1> C1>
C1> 0 .g. '" g. a en <: q
en 5· 0>

5 C1> <t. ~ ~

'< 0 IJQ o·
OQ '" '"

L-- - L-- - L--

HTTP I IP

Physical Network

Figure 4 - The UPnP high-level architecture

2.4.4.3 Abstraction of Devices and Services

UPnP uses two terms to distinguish devices on a network. A control point or user control point

contains software elements that allow it to communicate with a number of devices offering

services on the network. Devices on the UPnP network offer services to the network (see next

paragraph) . Devices also contain software elements that allow them to communicate with user

control points. User control points always initiate the communication session. Devices may also

contain control points as well as provide services.

The software elements that a device contains are described using extensible Markup Language

(XML). Each device has a description XML file that contains vendor-specific information about

the device, such as model name and number. Devices may contain other logical devices as well

as services. Services are functional units that the device can offer to the network. The

description also contains Uniform Resource Locators (URLs) for control , eventing and

presentation. Each service is described by a list of actions (or commands) and their associated

parameters (or arguments) as well as a list of variables that represent the run-time state of the

service. These variables are described in terms of type, range and event characteristics.

Using the best available method (DNS [29], AutoIP[30] or Multicast DNS [31]), UPnP devices

obtain IP addresses when they first join the network. The choice between these methods

depends on whether or not a DNS server or Dynamic Host Configuration Protocol (DHCP) [32]

Chapter 2

28

server is connected to the network and what IP addresses have been hard-wired . Th is process

is called addressing and is followed by discovery.

Domain Name Server (DNS) is an Internet service that translates human-readable domain

names into IP addresses. The maps from domain names to IP addresses are stored on DNS

servers and DNS is the protocol that is used to manage these maps. When no DNS server is

present on the network, Multicast DNS is used to allow DNS requests to be multicast. Devices

can then listen for requests containing the ir own name and respond accordingly.

Normally, computers join ing an IP network obtain their IP address from a server using Dynamic

Host Configuration Protocol (DHCP). The DHCP server ensures that no two computers on the

same network have the same IP address. However, small home entertainment networks may

not have a DHCP server, and when one is not present, UPnP makes use of the AutolP protocol

to obtain IP addresses. Devices use AutolP to automatically choose an IP address without

conflicts with existing IP addresses.

2.4.4.4 Locating Other Devices and Services

During discovery, devices utilise the Simple Service Discovery Protocol (SSDP) [23] to discover

other services present on the network. SSDP allows control points to search for services and for

services to advertise their presence. SSDP makes use of Multicast IP [45] which allows one

message to be sent to many (or even all) nodes on the network.

When a control point initiates an SSDP search, the response it receives from a device contains a

URL corresponding to the device's device description document. The contro l point retrieves this

document using the URL provided by the SSDP search. Th is document proves the control point

with enough information about the target in order to establish a TCP/IP connection. Devices

offering services announce their presence to control points on the network. When control points

are added, they search for services already present on the network. Each device advertises

basic information about itself like type, identifier and a reference URL to a more detailed

description,

2.4.4.5 Using Services

Following discovery, control points are aware of the networked devices, but know very little

about them (assuming they do not possess any device or service specifications - see § 2.4.4.8

). The control point uses the reference URL it received during discovery to retrieve a device's

description document. This process is called description.

----- -.-.
Chapter 2

29

Once a control point has the address of the control URL of a device offering services (from its

description) it sends appropriate control commands (actions) to the device. Control messages

are described in XML using the Simple Object Access Protocol (SOAP) [25]. SOAP is used by

UPnP to invoke commands remotely over the network. The effects (if any) of the action are

described in the changes to the variables associated with the device. Actions on services

behave like remote function calls and return any action-specific values. This process is called

control.

2.4.4.6 Detecting Device State Changes

The description document of a device offering services includes a list of actions and run-time

variables. These devices publish updates when these variables change. Control points

subscribe to receive these updates (or event notifications). The event notifications are published

by sending event messages. Event messages are formatted in XML using the General Event

Notification Architecture (GENA) [26]. UPnP uses GENA to notify devices on the network of

events that occur. When a control point first subscribes to receive event notification from a

service, it receives a special event message that lists all the events and variables for that

service, allowing the control point to initialise its state model of the service. Subsequently, all

event subscribers are sent event messages for all events that occur within the service.

2.4.4.7 User Interfaces

A control point can present the user with a Web-like GUion a browser if it is present in a

device's description. This document is referred to as the presentation. Presentation pages are

written in HyperText Markup Language (HTML) [33] . HTML is a platform independent language

used to format pages on the World Wide Web.

The presentation page and control process can be linked. When this is the case, the

presentation page responds to user actions by generating control messages. These control

messages usually result in the device's state variables changing, and these changes are

reflected as the presentation automatically updates the variables that it is displaying to the user.

Th is is known as using the UPnP presentation mechanism.

The presentation page may also respond in other ways. For example, the page could respond

to the user's actions by linking to other URLs wi thin the device itself that cause the device to

perform some action.

Chapter 2

30

2.4.4.8 UPnP's Control Mechanism

UPnP's presentation mechanism is a complimentary (but not obligatory) mechanism that runs

alongside UPnP's control mechanism. When a control point already possesses device or

service specifications about certain devices, it can control it without having to rely on the

presentation mechanism.

Consider the example of a TV (that knows about a specific VCR already) gets connected to that

VCR. The UPnP process proceeds as normal from addressing to discovery. At th is point the TV

realises that a VCR that it possesses device and service specifications for is present on the

network. The TV could then display an interface to the user - this interface has not been

retrieved from the VCR (as would be the case if the presentation mechanism was utilised). The

user cou ld then interact with the interface and request that a certain programme be recorded .

The TV wou ld then issue the correct control command in order to perform the action. It would

know the correct control command from the device and service specifications for the VCR that it

already possesses.

The device and service specifications that the control mechanism would typically use are

specifications that particular UPnP working groups have created - they are "standard"

specifications for common devices and services.

2.4.5 AV/C

2.4.5.1 Introduction

The 1394 Trade Association (TA) is a voluntary, non-profit association that seeks to promote

and grow the market for IEEE1394 compliant devices. They have a number of specifications, or

standards, that the working groups within the TA have agreed upon. These standards document

methods of performing IEEE1394-based operations (such as establishing and managing

connections between devices).

2.4.5.2 Physical Medium

AV/C uses IEEE1394 as its physical medium. To abstract networking activities from the AV/C

home entertainment networking solution itself, AV/C makes use of the IEC 61883-1 standard,

Function Control Protocol (FCP) [13J. This allows AV/C to issue FCP "send" and "receive"

commands without hassling about bus arbitration and clocking on and off of packets - these

"low-level" operations are performed by FCP. The address space on the bus is specified in the

-----_._---_._------
Chapter 2

31

IEEE1212 standard [21]. This standard specifies 64-bit addressing and views all the memory of

all the devices on the network as a shared memory. The most significant 16 bits specify the

node address (comprised of 10 bits of bus id and 6 bits of physical id) and the remaining 48 bits

are used to address 256 teraby1es of data within each node. This massive block of memory is

divided into registers that reside at certain addresses (such as the configuration ROM which

resides in the second 1 k of memory on each device).

The IEEE 1394 architecture is divided into three layers - the physical layer, the link layer and the

transaction layer. The physical layer encodes and decodes between symbols from the link layer

and electrical impulses on the cable at the physical layer. The link layer provides addressing,

error checking and framing (placing a communication from higher layers into messages that will

be transported on the physical layer). The transaction layer implements a complete request

response protocol to perform IEEE1212 transactions. Transactions may be reads, writes or

locks of the registers in the shared address space.

FCP is used to abstract from the transactions of the transaction layer by encapsulating device

commands and responses within IEEE1394 asynchronous block write transactions. A device

wishing to send a command addresses the FCP packet to the FCP Command register (address

OxFFFF FOOO OBOO in the destination device's node address space). When the (low-level)

asynchronous block write has been performed, the transaction layer of the destination device is

notified and the FCP command reg ister is read to obtain the packet. The destination device

returns its response(s) to the FCP Response register (address OxFFFF FOOO ODOO in the source

device's node address space) to complete the transaction. The header of each FCP frame

includes the destination address of the device. The transaction layer of the network ensures that

the FCP frame is read by the destination device.

AV/C commands and responses are in turn encapsulated in FCP frames. Each AV/C header

includes a ctype, a subunit type, an id field and several (optional) opcodes. The ctype is one of

five command types (control , status, and specific enquiry, notify and general enquiry) or a

number of response types including accepted, rejected and not implemented. The subunit type

and id (see § 2.4.5.3) are used to form an AV/C address identifying either the destination or

source device (as is the case for commands and responses respectively). There exist several

opcodes for each subunit type and ctype. The opcode defines the operation to be performed or

the status being returned and may pertain to units, subunits or both.

Chapter 2

32

2. 4.5.3 Abstraction of Devices and Services

The AV/C home entertainment networking solution abstracts devices in terms of units and

subunits. Each' device has one unit that may contain several subunits. Each unit or subunit has

a type (such as video monitor, tape recorder/player or tuner) and an instance id that uniquely

identifies it. Every subunit defined by the TA has a specification that documents the services

and commands to access those services that the subunit is supposed to provide.

Subunits are class ified according to the fol lowing criteria [12]:

• availability of a transport mechanism

• signal input

• signal output

• signal processing

• perhaps the subunit does not have any signal input or output and is a utility of some kind

• for devices that have video and audio capabilities, separate subunits are used to represent

these capabilities.

AV/C uses the terminology of controller and target devices. Controllers send commands to

targets in order to use services provided on the target device.

Use is made of the AV/C descriptor mechanism to describe the units and subunit on a device.

This mechanism supports the creation of various data structures (static and dynamic), which

contain useful information about the AV/C units, subunits and their associated components. The

structures are specified in such a manner that content navigation and selection of all media is as

general as possible. Th is means that controllers can discover and access the services or media

of a target - they need only know a litt le bit about the subunits that are present on the device -

enough to interpret the information in the descriptors - content navigation is then standardised.

A descriptor is an address space on a target that contains attributes or other descriptive

information . For example, the subunit identifier descriptor contains information unique to that

type of subunit. All subunits of the same type will have the same subunit identifier descriptor.

Most information in the descriptor structures is static, but may be change depending on the type

of subunit and the technology it implements.

Other important descriptor structures are object lists and the objects they conta in. Objects are

defined generically and are defined as needed. An object represents each service in a subunit.

Chapter 2

33

Objects may also be used to represent media. For example, objects could represent tracks on a

compact disc. Objects lists are generic conta iners that contain objects or other object lists.

Objects and object lists can be used to model relationsh ips where one entity is composed of

several sUb-entities. For example, an audio compact disc can be composed of the tracks on the

disc. Object lists are arranged hierarchically and can be continued to any arbitrary level of

complexity.

Each subunit identifier descriptor will have a reference to the root of the subunits object list

hierarchy. A subunit identifier descriptor may refer to several root lists. Importantly, all the

information contained in descriptor structures is stored in the device in a device-specific manner

- that is, the manner of storage is not specified by AV/C . AV/C only specifies how this

information is to be presented.

2.4.5.4 Locating Other Devices and Services

The IEEE1394 bus configures itself. When devices are added or removed from the network,

device ids are allocated to each device. These ids are unique to each device, but may change

when a bus reset occurs (bus resets occur when devices are plugged or unplugged, but can also

be generated by software). The root node of the network maintains a list of all the device ids on

the network so that any node can address any other node.

Controller devices use AV/C commands with various opcodes to obtain information about target

devices, such as unit and subunit information. Using descriptor search commands, the

controller can traverse the descriptor structure of the target and obtain object references to any

object it is interested in using.

2.4.5.5 Using Services

Once the type of subunit has been identified by the controller using the descriptor mechanism,

the controller issues commands to use the services provided by a specific subunit. For example,

if an audio subunit is present on a target, the controller can issue any AV/C Audio Subunit

Specification [22] control command.

2.4.5.6 Detecting Device State Changes

Device states are modelled by variables in the various subunits that it contains, and detection of

state changes can occur in two ways: either the subunit spontaneously sends a message to the

Chapter 2

34

controller to indicate the change, or the controller uses the status , general enquiry or specific

enquiry commands to detect changes in the subunit.

2.4.5.7 User Interfaces

The TA defines a subunit that implements user interfaces for units (each unit may only have one

of these) called the Panel Subunit. This specification is discussed in detail in section 3.4.3

2.5 Comparison of Communication Solutions

2.5.1 Physical Medium

All home entertainment networking solutions need to be able to support high bandwidth

applications and streams. This means that high bandwidth mediums must be utilized at the

physical layer. HAVi and AV/C comply immediately since they are solutions designed to operate

on IEEE1394 networks. UPnP and Jini, however, do not require a high bandwidth network at

the physical layer. Thus home entertainment networking solutions implementing UPnP (which is

IP based) must ensure that the physical layer can support high bandwidths. Jini uses Java

bytecodes, and hence can run on very limited networks. However, when used by home

entertainment network solutions, it must ensure a physical medium that has high bandwidth .

2.5.2 Abstraction of Devices and Services

The abstraction of devices and services is an important feature of home entertainment

networking solutions since the level of abstraction affects the amount of device-specific

knowledge that is required to discover and use devices and services on a home entertainment

network. For example, since AV/C abstracts its services at a fairly low level using defined

subunits, a fair deal must be known in advance about the capabi lities of the subunit in order to

utilize its services. UPnP, by using XML to describe its devices and services, draws on a higher

level of abstraction and hence very little information is required by a controller device to be able

to utilize its services. Similarly, HAVi and Jini, both using objects to abstract their devices and

services at a high level, allow a level of generality that AV/C does not provide.

Chapter 2

35

2.5.3 Locating Other Devices and Services

There are three methods used by the four home entertainment networking solutions to effect

device and service discovery on a home entertainment network: inherent discovery,

announcements and registries.

Inherent discovery is used by AV/C; devices become aware of each other at the physical layer

and from this knowledge can obtain further information about the devices and their services.

This inherent knowledge comes from the automatic network configuration performed by the

IEEE1394 network when devices are plugged and unplugged.

UPnP has two methods of discovery - announcements and searches. Each device broadcasts a

message to announce its presence on the network. This announcement simply contains an U RL

to the description document of the device. Other devices can then use this URL to obtain further

information about the services offered by the announcing device. Devices may also search the

network for devices that offer certain services. Both these methods utilize SSDP packets and

IP multicast addresses.

HAVi and Jini both make use of registries to implement discovery. In HAVi, all DCMs and FCMs

register with the system registry when they join the network. In Jin i, devices join a community as

soon as they are added to the network. The community has a lookup service, which is

conceptually the same as a registry. Devices on either network can then search the system

registry (the registry for HAVi or the lookup service for Jini) for services.

Inherent discovery, announcements and registries obviously have different advantages and

disadvantages. Inherent discovery and announcements are both fast and efficient methods of

discovery, but divulge very little information about the discovered devices. They also make

searching for specific services cumbersome (since all devices on the network must be queried

until a required service is discovered). Registries are more efficient when it comes to searching

for devices and services (since all the devices and services are registered in a central location),

but require overhead to manage the registries and ensure that registry information is valid.

2.5.4 Using Services

Once devices and services have been discovered, two methods of using services are employed

by the solutions: running and commanding.

Chapter 2

36

HAVi and Jini both download the service object and run it locally. All functions that are actually

performed on the target device are run like remote function calls. This method is called running

a service . Running services has the advantage that no device drivers are requ ired in order to

successfully use services, since the service code itself is exchanged. Only a Java Virtual

Machine is required for the services to be run .

UPnP and AV/C employ commanding in order to use services. Commanding happens when

commands are sent from the controller to the target, and requires drivers that "translate"

between the UPnP or AV/C commands and the native commands that perform the service.

2.5.5 Detecting Device State Changes

Each of the four home entertainment networking solutions uses a different mechanism for

detecting device state changes (events) .

HAVi uses its event manager for detecting events . This approach means that services requiring

event notifications must register to receive them, but has the advantage that only registered

services receive these event notifications.

Jini employs remote events, where services notify one another of events that have occurred.

This is useful to the lookup service, because when new services join the community, the lookup

service can send an event to notify the rest of the network that new services have been added.

This means that all devices will be able to see all the events on the network, which could

potentially flood the network.

Eventing occurs when a controller device registers to receive event notifications for certain

events from the target itself, as is the case in UPnP. This approach is limited, since all events

that occur in a service must be received - there exists no filtering mechanism to allow only

certain events generate notifications. However, th is method is the simplest of the four to

implement since it is inherent in the service descriptions.

AV/C controllers may poll targets for configuration changes using status, specific enquiry and

general enquiry commands or receive NOTI FY messages from targets . Polling usually reduces

network traffic (since polling can be less frequent than event notifications), it has the

disadvantage that it is difficult for the controller to gauge when exactly an event occurs.

Chapter 2

37

2.5.6 User interfaces

The Uls employed by the various solutions differ widely. Chapter 3 discusses the Uls in detail

and comparison is drawn between them in section 3.5

2.6 Summary

This chapter examines three important topics pertaining to home enterta inment networking : the

economics of home entertainment networking , elements of home entertainment networks and

popular home entertainment networking solutions.

Research shows that there is a demand for new and improved technology in the home

entertainment networking industry. It can be shown that better devices and improved

connectivity allow for more (and more complex) services to be provided. It is also shown how

different tier markets in the industry influence one another.

Core components of a home entertainment network include Electrodomestic Network Devices

(ENDs), connection mediums or Information Appliance Networks (lANS) such as IEEE1394 and

Ethernet, communication protocols and residential gateways.

This chapter also discusses the features of four primary home entertainment networking

solutions - HAVi, Jini , AV/C and UPnP. Table 1 shows a comparison of the common features of

these solutions.

Chapter 2

38

HAVi Jlnl UPnP AVle

I Physical Medium IEEE1394 Any (Java byte- Any (IP based) IEEE1394

code based)

Device/Service DCMs and Java Classes Device/Service Units and

Abstraction FCMs XML Descriptions Subunits

(Objects)

Locating Other Using Registry Using Community Using Addressing, Using

Devices/Services Lookup Service Discovery and Descriptor

Description Mechanism

Processes

Using Services Running a Leas ing Objects Using Control Using AV/C

DCM or FCM and Running Process Control

Java 8ytecodes Commands

Detecting Device Using Event Remote Events Using Eventing Using AV/C

State Changes Manager Process Status

Commands

User Interfaces Level 1 and 2 User Adapters Presentation HTML Panel

Uis File Subunit

Table 1 - Comparison of the common features of the four communication solutions

Chapter 2

39

Chapter 3 - Remote Configuration on Home

Entertainment networks

3.1 Introduction

Home networking involves many diverse areas - from connecting devices and communicating

between them to carrying data streams and providing bandwidth. Since there are so many

areas, this thesis inspects one area of home entertainment networking and attempts to discuss

home entertainment networking solutions in general from the experience and insights gained by

examining this area - device configuration and especially remote configuration.

The term remote configuration has many meanings throughout the field of computer science.

This chapter defines the meaning and use of remote configuration on home entertainment

networks, and presents some possible solutions manufacturers could use to implement remote

configuration.

3.2 Defining Remote Configuration

As far as it concerns home entertainment networks, remote configuration can simply be defined

as the ability of a home entertainment networking solution to aI/ow one device to change the

configuration state of another device.

A distinction is drawn between the configuration state of a device and a functional state of a

device. The functional state describes what the device is currently doing - for example, a video

cassette recorder (VCR) may be playing a tape - the functiona l state would be "playing". If the

VCR were rewinding, the functional state would be "rewinding". The configuration state

describes how the features of a device are currently configured. For example, the equalizer

settings of one configuration state of a Hi-fi might be set to "Rock", while another configuration

state (with different equalizer settings) might be "Jazz".

Configuration states are typically changed less frequently than the functional states of the

device. Users will press the "stop" and "play" buttons on a hi-fi (part of its functional state) far

more frequently than change its equalization settings (part of its configuration state).

Chapter 3

40

While functional state changes could be achieved remotely, this thesis focuses on configuration

changes.

Remote configuration can be done in various ways, but most commonly it is accomplished by a

device (the target) uploading an interface to its configuration onto another device (the controller).

The controller then presents this interface to the user, who then interacts wi th the interface. All

commands that are issued by the user are then transmitted from the controller to the target as

they happen and the target device changes its configuration state. In order to remain consistent

and ensure that the UI is always up to date, state changes occurring on the target device must

be communicated to the controller as they happen.

Hence, user interfaces (or Uls) become the core problem when considering remote

configuration . How Uls are specified , stored, transmitted, and displayed will affect the ability of a

device to offer remote configuration.

Importantly, remote configuration also allows properties of the target device to be altered that

cannot be altered by other control mechanisms.

303 User Interfaces

As industry moves from static devices to dynamic devices, the functionality and complexity of the

devices increases. For example, fridges present static "interfaces" - they always look the same

and people know what to expect from them. Now consider a fridge Electrodomestic Network

Device (END) (see § 2.3.1). Perhaps it can determine what vegetables have run out , and

perhaps it is linked to an on-line grocery store - at the touch of a button, the homeowner can

order replacement vegetables on-line. The fridge END is more functional, but also more

complex.

Th is means that in order to increase the user's ability to use the END, effective user interfaces

(Uls) are required. An advanced END will go unused if its user does not know how to interact

with it meaningfully.

Eustice et al. define a device called the Universal Information Appliance (UIAO) [4]. Every time

this device comes into (wireless) contact with any other device (the target), it serves the user the

• © Copyright 1999 by International Business Machines Corporation.

--------------------- ----
Chap!er 3

41

UI of the target and becomes the gateway between the user and the target. There are some

important features inherent in the UIA that are worth highlighting.

3.3.1 The UIA

Most devices we interact with on a day-to-day basis have static interfaces - coffee makers and

toasters always look more or less the same. Eustice et al. postulate that the electronic world

need not be constrained by physical limitations. They imagine users could interact with a device

that gives them custom interfaces to ATMs, televisions, alarm systems and any other system

requiring human interfacing.

They state that the components required to realise the UIA are:

• A platform independent interface to the digital domain - Eustice et al. develop a

wearable computer that the user carries around

• A wireless infrastructure - the device, being extremely portable, is kept connected

permanently or intermittently via a wireless link

• Communication middleware - this is a uniform method of accessing information and

services across heterogeneous networks (networks that are comprised of different

technologies) automatically and without user input

Eustice et al. point out that while physical systems have fixed interfaces (doors have doorknobs,

for example), electronic interfaces can have any appearance. The problem Eustice et al.

encounter is how to decide on the best interface to a logical function (such as redistributing

resources on a network of computers). They note that most Uls are based on the common

denominator of human experience and not on the multiplicity of human experience.

This has led to people being bombarded by a plethora of untailored, incompatible and non

uniform interfaces. Eustice et al. claim that the UIA transcends the general interface problem by

"extending the concept of remote interaction beyond direct control of televisions and video

cassette recorders (VCRs) to dynamic interaction with all electronic entities and digital

information sources in one's environment."[4] . Remote interaction encompasses all the remote

communication that occurs on a network, including remote configuration.

The architecture for the UIA revolves around events. As middleware, they use IBM's TSpaces

[5] . This allows them to implement eventing in a platform-independent manner.

Chapter 3

42

The middleware acts as messenger, database and file system. It stores a list of rules in a

database that register actions to events. The ru les have this format:

Rule = Client.EventClass (parameters) ~ Client.ActionClass (parameters)

In other words, "an event in entity A triggers an action in entity B". They further define "event"

very loosely - any unit of action that can be parameterised becomes an event. This allows any

client anywhere to register any event class and any event action at run time.

Eustice et al. define a language called MoDal (Mobile Document Application Language)[6] to

represent UIA applications and interfaces. Importantly, they use XML (eXtended Markup

Language [16]) to describe MoDAL, since XML is a relatively high level language and is also

platform independent. UIA applications and interfaces described in MoDAL are compact enough

to be dynamically retrieved over the network.

To illustrate the usefulness of the UIA in the field of remote configuration, consider the following

example: a user is watching a program on the television in the living room when guests arrive.

The user, wishing to record the rest of the program, retrieves the UI of the VCR in the bedroom

onto the UIA and quickly selects the program (changing the configuration state) and presses

record. The user then selects the hi-fi in the living room (retrieving its UI onto the UIA) and

changes the sound configuration to "JAZZ", changes the source to "CD Shuffler", and presses

play.

Without interacting directly with either of the target devices (the VCR and the hi-Ii), the user has

configured them quickly and easily. Using the UIA architecture, the UIA retrieves the interfaces

of the target devices by requesting their MoDAL UI descriptions. It then displays the UI of the

current target on its display. The UIA relays the user's commands back to the current target,

wh ich carries out the commands and changes its configuration state. Figure 5 shows how the

UIA's interface looks different for each device wh ile the scenario is being fulfilled .

Chapter 3

43

Figure 5 - The UIA interfaces for a VCR (left) and a hi-fi (right)

3.3.2 Desirable UIA Features for Home entertainment

networks

Most device interfaces with in home enterta inment networks are static, and as such differ

significantly from the dynamic interfaces of the UIA. However, the UIA highlights sdme features

that it possesses which are required for successful operation and which are useful to remote

configuration Uls:

• A high bandwidth connection to the network - in the case of the UIA, this connection is

wireless - most home entertainment networks will use some sort of cabling . The essential

requirement is a fairly high bandwidth with negligible latency.

• Platform independent middleware - different manufacturers manufacture the devices that

are communicating and if they are to understand each other they require a cross-platform

and platform independent message service (or middleware) . The middleware must also be

platform independent since it also serves as a database and file system on the network.

• Run time Interfaces - users do not want to wait for their devices to recompile for new

interfaces - new interfaces and applications must be able to be added to the system at run

time.

Chapter 3

44

• Compact document description - not only does a well defined and compact language

make implementing new applications and interfaces easier and faster, but it reduces network

traffic and latency.

• Uniformity - one of the aims of the U IA is to present the user with interfaces that are

uniform. Manufacturers can enhance the experience of the user and the usability of their

products if they use uniform interfaces.

3.4 Solutions to Remote Configuration

Having looked at some of the requirements of Uls on home entertainment networks, remote

configuration solutions must be found that conform to these requirements . This section views

some of the solutions contained in some of the popular home entertainment networking solutions

discussed in Chapter 2.

3.4.1 HAVi's Solution to Remote Configuration

HAVi caters for remote configuration by using a model called Data Driven Interaction (or DDI)

[8] . DDI defines a 001 Controller (the software element or device performing the controlling) and

a 001 Target (the software element or device being controlled). The controller uses a

description of the UI obtained from the target called 001 Data. The DDI Data consist of a set of

001 Elements. It must be noted that DDI can be used to configure as well as control devices

remotely.

3.4.1.1 DDI Elements

DDI Elements form the building blocks for the UI. They range in nature from simple text labels to

buttons, ranges and text entry boxes.

All the DDI elements on the target are arranged into a hierarchy. The hierarchy serves three

purposes:

• it allows "organised" navigation through the elements

• it indicates which elements logically belong together (and thus indicates that they should be

rendered together)

• it lets the target know which element changes the controller should be notified of

The first element in the hierarchy is said to be the root element. If the controller is given a

reference to the root element, it can use the root element to navigate to any arbitrary element in

the hierarchy.

Chapter 3

45

001 elements are divided into two types - organisational and non-organisational. Organisational

001 Elements are 001 elements that are used to determine the hierarchical organisation of the

other elements. There are two organisational elements: panels and groups.

Panels and groups are conceptually containers and both have (mandatory) lists of the element

ids of the elements they contain. Panel elements may not be contained in other panels or in

groups. However, panels are may be referenced in other panels by using the panel link

elements wh ich allows the user to navigate between panels. Groups may be contained in

panels and other groups.

The 001 Input Device Model is also modelled abstractly to allow for flexibility in the

implementation. Once of the ways this abstract modelling is achieved is to define whether or not

the user may modify elements or whether or not elements generate "UserAction" messages. If

elements have any user-modifiable attributes, they are termed user-modifiable (for example a

slider); otherwise they are non-user-modifiable (such as buttons and icons). 001 elements that

can be used by the control ler to send "UserAction" messages are termed interactive, while those

that do not are termed non-interactive (and are typically used to convey status or static

information to the user). Panels and groups are non-user-modifiable and non-interactive.

All elements (except panels and groups) are non-organisational elements. These elements

occupy "leaf" positions in the element hierarchy. Each element has attributes that suggest to the

controller

• how the element is to be rendered (displayed to the user)

• whether or not the element is interactive (and how)

• whether or not the element is user-modifiable (and how)

The 001 non-organisational elements defined thus far are: text, panel link, button, choice, entry,

animation, show range and set range.

Chapter 3

46

Panel

,----- -- ----------------- -- ----
: Gro--,,~_~

Element 1 8 ,

Em~ E=j
Figure 6 - An example of how 001 elements are arranged in panels and groups

Figure 6 shows an example of how non-organisational elements are contained within panels and

groups (organisational elements). Figure 7 shows how 001 elements are arranged in a 001

hierarchy and how the hierarchy can be navigated from the root element.

3.4.1.2 Navigation Through the DDI Hierarchy

Sometimes the controller either chooses not to render entire panels or is incapable of rendering

entire panels. When this happens, some of the elements in the panel are displayed (seen

elements) and the rest of the elements in that panel are not displayed (unseen elements). The

controller must provide some (implementation specific) method of bringing unseen elements into

view. It might do this by using scroll-bars, for example. However, the implementation specific

navigation may not generate "UserAction" messages, though it may cause the controller to

obtain further elements from the target. This process is called controller-driven navigation .

. __ ._-_._. __ ._-- ---_._----
Chapter 3

47

Group3

Panel 1 (root) I Element 3 I
Group_1 I Group 1

I

I I Group3 I I Element 4 I
I Group2 f f-+ I Panel Link 1 ~ ~ Panel2

I Element 1 I ~ I Group4 -
I Element2 I I Element5 I

Figure 7 - The DDI hierarchy is navigable from the root element (Panel 1 in this case)

A second method of navigating through the DDI hierarchy is defined in the DDI model. It

exploits a DOl element called a panel link element. This non-organisational element allows the

user to switch from the current panel to other panels by selecting it. When this type of

navigation is used, it is called user-driven navigation.

The DDI model allows a target to specify element hierarchies of arbitrary depth below the root

panel. It also places no topological restriction on targets for relations between panels (for

example cycles within the hierarchy are permissible).

3.4.1.3 Notification Scope for Target DDI Changes

At any time, a target may send "NotifyDDIChange" messages to a controller to notify the

controller of any state changes that may have occurred to any elements - it may also send these

messages in response to "UserAction" commands from the controller. However, this could lead

to large amounts of traffic on the network, and the 001 employs notification scope to reduce th is

traffic.

The controller will specify to the target a description of a portion of the DOl hierarchy that is

currently of interest - the current notification scope. The target will then only notify the controller

of changes that occur to elements in th is portion of the hierarchy. Any other elements may

change, but the target will not notify the controller of these changes. The controller may change

its notification scope at any time.

Chapter 3

48

3.4.1.4 Data Driven Interaction

Both the controller and target are HAVi software elements residing on Full AudioNideo (FAV) or

Intermediate AudioNideo (IAV) devices (see § 2.4.2.3). They may reside on the same or

different devices (obviously for remote configuration they would be on different devices) and are

implemented in Java byte codes or in native code. They interact by sending HAVi messages to

each other.

The controller interacts with a user by using the input and output devices (typically) of the device

on which the controller resides. The 1/0 is implemented in an implementation independent

manner. The target controls the device in which it resides in an implementation independent

manner as well . The 001 model specifies interactions in a generic manner - thus a controller

does not need to be implemented with a particular target in mind. 001 Data represent all target

dependencies.

Figure 8 shows the typical 001 message sequence scheme. Remote configuration begins by

the controller sending a "Subscribe" message to the target . The target notes the id of the

software element that sent the message. When any events occur on the target that will be of

interest to the controller (such as configuration state changes) , the target will use the id of the

subscribing controller to send it "NotifyDDIChanges" messages. It then returns the id of the root

001 element. The controller uses the "GetDDIElement(id)" operation to obtain any element it

requires by navigating through the 001 hierarchy from the root element. The controller renders

the 001 elements as they are retrieved from the target and sends any user commands that are

specified in the 001 Data to the target using "UserAction" operations. Once the controller has

unsubscribed, no more "NotifyDDIChange" messages are sent to it from the target.

The target responds to "UserAction" messages sent from the controller to the target. The

response includes any information about the success or fai lure of the command or state

changes that may have occurred in the target as a direct result of the action.

The "GetDDIElement" operation takes an element id as an argument and returns the actual

element. Other operations exist to return lists of element ids or lists of elements. "Large"

elements (such as bitmaps) are obtained by the controller by making use of the "GetDDIContent"

operation.

Chapter 3

49

Subscribe

root DDI element id I>,etum
value

GetDDIELement(id)

DDI element(s) [>
UserAction (element id,

action)

[>' .'

changed element ide s)

NotifyDDIChange
_L ~ p\p.m pnt irl!.'

DDI
I

DOl
Controller Unsubscribe Target ,

\ .

i +
U er U er
Input Display
Devi e Device

Figure B • The Typical 001 Message Sequence Scheme

It is possible for one target to be controlled by more than one controller and for more than one

target to be controlled by one controller. Typically, the controller acts as a U I-controller and the

target is typically a HAVi Device Control Module (DCM), although any application may act as

either controller or target

3.4.1.5 The DDI Output Device Model

The 001 defines an output model in an abstract way so as to allow application independence.

The 001 data that are presented to the controller are "suggestions" of how the UI should look

and feel. The device is responsible to render the elements as best it can.

Chapler 3

50

Each 001 element has a set of attributes (like size, position, colour, etc.). Some are mandatory

(these will always have values) and some are optional (they mayor may not have values).

Every 001 element furthermore has at least one mandatory label attribute (a string value).

There are three broad styles for a 001 controller to use when it presents a UI:

• Full capability - all of the elements are displayed as required by their attributes

• Intermediate - some of the elements are displayed

• Basic - only very few elements are displayed at any time; however, at least text string label

attributes are rendered

Many elements have attributes that describe their size and location on the display device. The

display device is assumed to be a rectangular array of discrete pixels. The elements are

arranged hierarchically within organisational elements (panels and groups).

3.4.1.6 The DDI Input Device Model

Controllers receive input from the user in an implementation-specific manner. Controllers must,

however, allow the user to somehow

• Change the value of a user-modifiable attribute of a user-modifiable element (for example

changing the va lue of a slider). This causes the controller to send a "UserAction" message

to the target with arguments depending on the nature of the element.

• Select any interactive element (for example press a button). This also causes the controller

to send a "UserAction" message to the target with arguments specifying the particular

selection

• Change the current panel to another panel. Th is causes a "UserAction" message to be sent

from controller to target and, typically, the controller to obtain the new 001 elements

contained in the new panel.

• Change the display to render elements that are not yet visible (for example scrolling down a

panel). This does not typically cause "UserAction" messages to be sent and may cause

visible elements to be "un-rendered" in order to make space on the display for new elements.

3.4.2lini's Solution to Remote Configuration

One of Jini 's unratified standards is the ServiceUI architecture [7]. This standard is a first

attempt at standardising how user interfaces are attached to Jini services. Remote configuration

on Jini networks then falls under th is standard, since a device might have a Jini service for

configuring it and then a ServiceUI attached to this service to allow a user to run the service.

-_. - .. ------------
Chapter 3

51

3.4.2.1 Separating UI and Functionality

Traditionally, Uls are designed to be built into applications. This results in a tight marriage of UI

and functiona lity. Jini 's ServiceUI architecture attempts to change th is paradigm by separating

UI from functionality.

The way this is done is by encapsulating UI and functionality into objects. The point of coupling

between the functionality and UI objects is the Service Object Interface. The Service Object

Interface describes "what" the service does. Furthermore, the only way to access the

functionality of the service is through the Service Object Interface.

3.4.2.2 User Adapters

Service Object Interfaces capture the entire functionality of the service that they provide an

interface for. In order to access the functions of the service, only a reference to the service

object interface is needed. The service object does not include any UI code whatsoever.

In order to supply a UI to the user, a separate UI object must be created. This UI object "adapts"

the service object interface into a form that the user can interact with. Figure 9 shows this

diagrammatically. The UI object is the only object the user directly interacts with (the user

interacts with the UI object by issuing commands using the UI). The Service object abstracts the

services that reside on the device.

t
User Service Interface

Figure 9 • A user interacting with a service via an UI Object

-----------------_._--------_._---
Chapter 3

52

The Jini ServiceUI standard notes that the UI object could display to the user a graphical UI

component, such as any AWT' UI component, but may not necessarily be graphical - it could be

a speech interface or any other kind of human interface,

The advantage of separating UI and functionality now becomes clear - many UI objects can be

associated with the same service, This allows Uls to be tailored to the preferences or

capabil ities of the user.

1 Request 8. Device
Ulobject state change

"
2. Provide

0

'> 7, Perform
Ulobject " action 3, Render UI Ci

~

" "'" t:
6, Translate "

4. Action ~ 5, Action action ~

0

~ - " ;:J ~

0 :E' " 0 :E'
0 " 0 - .~

10, Update UI ;:J 9. Update UI • " [/)

Figure 10 - Interaction between the User, UI Renderer, UI object, Service Object and

Device

Figure 10 shows the interactions between the user, the UI renderer, the UI object, the Service

object and the dev ice , The UI renderer is the device that the user directly interacts with, but

since the UI is not necessarily graphical in nature, the term "display" would be misleading, The

UI renderer renders the UI to the user - whether it is a graphical display or a speech interface,

The UI renderer requests the UI object from the device, The device then returns the UI object,

and the renderer uses the methods and attributes of the UI object (detailed in the following

section) to render the UI. The user then interacts with the UI, issuing commands, The UI

renderer relays these commands to the UI object, which "translates the action" by mapping the

action to an interface command that the Service object understands, The Service object in turn

relays the action to the device and the action is performed , Any state changes or events

, Java's Abstract Windowing Toolkit

._----- ----- ,
Chapter 3

53

occurring in the device are relayed to the service object which tells the UI object to update the

UI . The UI object then updates the UI.

3.4.2.3 A Closer Look at Jini's Se/Vice UIs

Each UI object has three elements:

• the UI itself

• a UI factory that produces the UI

• a UI descriptor that describes the UI

The factory produces and returns UI objects. The descriptor is a container for the factory and

objects that describe the UI produced by the factory. Each UI descriptor has four public fields:

• factory - a reference to the UI factory

• attributes - a list of attribute objects describing the UI produced by the factory

• toolkit - a string that gives the name of the package needed to create the UI

• role - a string giving the name of a Java interface type

Using the attributes, toolkit and role fields, cl ient programs can decide on the best suited UI -

once decided upon, the factory is invoked to create the UI object.

Of particular interest is the role field . So far, the Jini service object architecture defines only

three roles - MainUl , AdminUI and AboutUI. These roles have different relationships with the

functionality that the UI is interfacing to - the service that is being offered by the device to the

network. The MainUI is for interacting with this service; the AdminUI is for administrating the

service and the AboutUI gives information regarding the service.

Although anyone can potential ly create a role, programs that use the new roles will need some

prior knowledge of the roles if they are to use them . So the architecture suggests that only the

Jini consortium should make new roles , allowing programs to have advance knowledge of

standard roles.

When creating a UI object for a service, the descriptor of the UI object is included in the

attributes list of the service, thus linking the UI object to the service.

Chapter 3

54

3.4.3 The AV IC Solution to Remote Configuration

One of the subunits defined by the 1394 TA for the AV/C home entertainment networking

solution is the Panel Subunit [12] . It is this subunit that provides user interfaces to allow control

and configuration of devices from a remote location on a home entertainment network using

AV/C.

The panel subunit bases its Uls on panels. A panel is a container of elements or groups of

elements and usually has a caption . Each of the elements within a panel are graphical "widgets"

that allow the user to control the target device. Examples of elements are buttons and text entry

boxes.

3.4.3.1 The Panel Subunit

The AV/C Panel Subunit provides data structures that describe the GUI elements as well as a

user-manipulation command set for accessing these controls .

Users will use the controller device to interact remotely with a target device. The controller

obtains the description of the target's GUI (the panel data) from the target. It then renders the

panels and elements contained within the panel according to its capabil ities. The user then

manipulates the widgets and the corresponding actions are relayed to the target device . The

target device can also send updates of its current state to update the GUI.

3.4.3.2 The A VIC Panel Subunit Model

The AV/C Panel Subunit model describes a way of accessing physical or logical controls of a

device from a remote location . The AV/C Panel Subunit specification refers to devices as

control devices (devices that display GUls) and target devices (devices that are remotely

controlled). The AV/C Panel Subunit model uses asynchronous connections [15] (see § 4.6.2

for details of asynchronous connections) to pass GUI information from targets to controllers.

Each device is allowed only one panel subunit even if it has more than one logical or functional

unit.

The panel subunit does not directly deal with media streams - it is responsible for translating

user actions performed remotely to local internal actions. Sometimes these internal actions may

involve rnedia streams.

------------- -----------
Chapter 3

55

The AV/C Panel Subunit model defines two modes of operation - direct mode and indirect

mode. In the direct mode, the controller obtains a GUI description from the target and renders it.

The controller then conveys user actions to the target. In the indirect mode, the panel subunit on

the target receives user commands but does not care about the GUI that is be ing used - it acts

like a usual remote control. The GUI may be transmitted as a static bitmap image, and the

controller can recogn ise user actions by detecting which part of the bitmap the user is interacting

with.

The AV/C specification makes use of plugs. These plugs are logical, and represent points at

which streams of data can flow, either out of the device or into the device. The plugs have

associated attributes, such as id and information as to what sort of stream it supports. Plugs can

be source or destination plugs. Destination plugs are used for streams coming into the device ,

while source plugs are used to channel out flowing streams. Connecting a source plug to a

destination plug is known as establishing a connection between two plugs, and this connection

allows the stream to flow between the plugs. Each panel subunit has no destination plugs but

can support one or more source plugs (depending on implementation). The plugs are of the

format specified by the IEC in [13] and a controller uses them to establish an asynchronous

connection between itself and a target device.

Controller Target

9 psu
'" commands 'tl or
'< Panel Subunit Panel Subunit

Controller

GUI data

Figure 11 - The Panel Subunit model

Figure 11 shows the AV/C Panel Subunit model. Sessions occur as follows :

• The controller opens a session - the controller requests ownership of a source plug from

the target device's panel subunit.

• The controller establishes an asynchronous connection - the controller connects one of

its input plugs to the source plug of the target's panel subunit. The target can now push GUI

data onto this connection and the controller can pop this data off when it arrives.

Chapter 3

56

• The controller requests GUI information - the controller asks the target to push its GUI

onto the asynchronous connection .

• The target sends the GUI - the target sends GUI information - this could be an entire panel

(see section 3.4.3.4) or an individual GUI element, depending on the arguments passed by

the controller in the previous step.

• The user interacts with the GUI - the controller renders the GUI and the user interacts with

it. The controller sends any user actions performed to the target. The controller does not

explicitly know what happens as a result of these actions.

• The target sends any updates - any state changes that occur in the device that affect the

GUI are transmitted to the controller spontaneously by the target. Th is is how the controller

obtains any response to actions performed by the user.

• The controller closes the session - once the user has closed the GUI , the controller

breaks the asynchronous connection and closes the session with the target.

3.4.3.3 Input and Output Device Models

In order to allow controllers to implement GUI displays and read user inputs in device-dependant

ways, the AV/C Panel Subunit model defines input and output models in a general and abstract

way.

The AV/C Panel Subunit model defines three classes of panel subunit controller (the Output

Device Model):

• Fult capability controllers - these controllers have large, high resolution displays and can

render all GUI elements exactly as they are (size, position, colour, etc.).

• Intermediate controllers - these controllers cannot render all the GUI elements exactly.

Certain resolutions and/or attributes may be ignored (for example sound clips) .

• Basic controllers - these are controllers that can only manage text strings and no graphics.

Since the input mechanisms of controllers can also vary greatly, the AV/C Panel Subunit defines

its Input Device Model to allow general input mechanisms for its GUls. GUI elements can either

be

• Interactive - they invoke the controller to send user action commands to the target (for

example a button), or

• Non-interactive - they do not invoke any actions (for example a label).

Furthermore, GUI elements may be

• User-modifiable - (such as sliders) or

Chapter 3

57

• Non-user modifiable - (such as icons).

3.4.3.4 GUI Layout and Presentation

The AV/C Panel Subunit model defines the data structures necessary to communicate a GUI to

the user. The target "suggests" how the controller should render the GUI - but since the display

capabilities of controllers may differ greatly, the AV/C Panel Subunit model remains flexible on

this point. The model can guarantee that something will be displayed, but not how it will look.

For instance, a computer monitor could display all the graphics of a GUI, while a cell-phone LCD

display may only display text strings.

The layout rules for the GUI elements are based on relative geometric co-ordinates (x and y co

ordinates). GUI elements are arranged hierarchically and are positioned relative to their parents.

The elements are divided into panels (top level containers with no parents) and groups (of

elements). Groups are children of the panel they are in.

All GUI elements are of a certain type (button, panel, etc.) and have particular attributes (size,

colour, etc.) . Each element has mandatory and optional attributes associated with it as well as

at least one mandatory label attribute (a text string).

GUI elements are divided into organisational and non-organisational elements within a

hierarchy.

The GUI hierarchy serves three main purposes:

• Navigation - the hierarchy allows the controller to navigate through the GUI elements in an

organised way

• Display suggestion - the hierarchy groups certain elements together logically so that they

can be displayed together physically

• Clarity - it allows the target and controller to easily reference particular elements

There are two organisational GUI elements - the panel and the group. The panel is used to

represent, as a whole, a set of functions on the target that the user can control. Panels may not

be contained within other panels (although special buttons called panel links can be used to

navigate between panels) and the controller should render the elements within a panel together.

The panel element itself is made of its attributes (for example size) and lists of the elements and

groups that are contained within it.

Chapter 3

58

Groups are used to bundle a smaller set of related functions that appear on the target. Groups

may be contained within other groups. The group has its own ·attributes (for example size and

position) and a list of the elements contained within it. Groups are used primarily when the

controller is incapable of displaying the entire panel at once - it wil l then display groups and

allow the user to navigate between groups as opposed to between panels.

An example of how panels and groups are related is shown in Figure 12 - a VCR panel. The

panel could contain groups of functions for playback and for setting the timer to record . The

user would see one panel with two groups labelled Playback and Record.

VCRCO TROLS

Panel

Groups

Figure 12 - A VCR Panel containing two groups of elements

Non-organisational GUI elements occupy leaf nodes in the GUI hierarchy. All non-organisational

elements have mandatory and optional attributes that specify:

• Rendering - how the element should be rendered (including its size, position, etc.)

• Changes - if this element is user-modifiable, the new state of the element must be specified

• User actions - if this element is interactive, the description of the user action that is relayed

to the target must be specified

Non-organisational elements in the AV/C Panel Subunit model are text (strings) , button, icon,

an imation, choice, entry, show range, set range and panel link.

Chapter 3

59

3.4.3.5 GUI Navigation

Navigation refers to how a user moves between collections of GUI elements (specifically non

organisational GUI elements), selects on-screen controls for manipulation and the way the

controller shows the user that an element has been selected.

The controller handles navigation in a controller-dependant manner. The hierarchy of GUI

elements on the target suggests navigation to the controller, but the controller may tailor

navigation according to its capabilities .

The AV/C Panel Subunit specifies two modes of navigation:

• Controller-driven - this mode is used when a controller is unable to render a GUI element

(either a panel or group and its entire contents or individual GUI elements). The controller

must still use some suitable method to represent the un-rendered GUI elements to the user.

The controller may add GUI elements that are not specified by the target in order to

accomplish this (for example a controller with a small display could use scroll bars to allow

the user to scroll to unseen elements).

• User-driven - used when a controller can render complete panels and elements. Panels

may contain panel link elements. When a user selects a panel link element, it abandons

rendering the current panel and retrieves the new panel. Th is allows the user to navigate

between panels easily and is called user-driven navigation.

3.4.4 The UPnP Presentation Mechanism Solution to

Remote Configuration

The UPnP architecture is designed around ad hoc networks that allow devices to easily connect

to one another and use each others' services. Implementing remote configuration using UPnP is

relatively simple if UPnP's presentation mechanism is used. This simply involves the

manufacturer supplying the correct documents and some native functions in order to achieve a

UPnP remote configuration system (see Chapter 5 for more details).

3.4.4.1 Setting Up a Device to Offer Services on a UPnP Network

I n order for a device to offer services on a UPnP network, it must have the components shown in

Figure 13. The web server implements HyperText Transfer Protocol (HTTP). The XML parser

parses all the XML that is used to communicate between the server and client. There also

needs to be SOAP, SSDP and GENA parsers (see § 2.4.4 for more details). The device

dependent function block is an interface to the actual functionality of the device, and all the
--_._-----

Chapt",3

60

UPnP commands that are listed in its control document must be mapped therein. Finally, it

needs to have three UPnP documents - XML device and service descriptions and an HTML

presentation page.

Device
Dependent
Function

Block

Device
Description

(XML)

Service
Description

(XML)

Presentation
Page (HTML)

SOAP Parser

GENA Parser

SSDP Parser

XML Parser

Web Server

Figure 13 - Components of a Device Offering Services on a UPnP Network

Remote configuration using UPnP's presentation mechanism is then fairly simple. The process

is as follows (see § 2.4.4 for more details):

• The device offering services broadcasts its presence on the network

• The control point then requests the device description XML document from the device

offering services

• From the device description, the control point obtains the URL of the service description

document and requests this document from the device

• The control point then subscribes to any events it wishes to (events are services) using

SSDP

• The control point then requests the device's HTML presentation page from the device and

displays it to the user in a standard browser

• Any user commands are then transmitted from the control point to the device offering

services (using SOAP). The commands are parsed and passed to the device dependent

function block which carries out the command on the device

• Any events that occur on the device are transmitted from the device to the control point

(using GENA). The presentation page updates as necessary

An example of how the UPnP presentation mechanism could be used to implement remote

configuration is to consider a UPnP AudioNideo Receiver (AV/R). Once the control point has

--_ .. _-------_._--------_._-
Chapter 3

61

discovered the device, it requests a device description document. The device description

document has URLs to the service description document and the HTTP presentation document.

The control point obtains the service description document and the presentation page, which is

shown in Figure 14, and the control point displays the presentation page in a browser on its

display. The device has "exposed" some of its state variables (Input, Sound Mode, etc.) and

shows their current values. The control point obtains the current values by sending SOAP

messages to the device to query the variables. This occurs when the control point first displays

the presentation page. The buttons in the right-most column allow the user to change these

variables. Every time a button is pressed. a corresponding SOAP message is sent to the

device. The device updates the variable being changed and sends the new current value back

to the control point. The control point also subscribes to receive event notifications from the

device (which uses GENA to communicate the events). If the variables change state on the

device (a user may change the volume on the actual device for example). the device sends

GENA messages to the control point to notify it of the variable and its new current value. The

control point then updates its display to reflect the changes.

Chapter 3

A VIR Config State Table

Variable

Input

Sound Mode 1 Previous

Main Volume 12 Up

Sound Field 5 Next
-=-----~~:Y==-----I

Speaker RelaY_I-_O_ff-1F-T=O~9~g=le~ ___ --I

eaker Relay B On Toggle

Down Sleep 30 Up
~~----~==~====--~

Figure 14· The UPnP HTML presentation page for an AV/R

62

3.5 Comparing Remote Configuration Solutions
The AV/C Panel Subunit and HAVi's DDI model are strikingly simi lar. They define almost

identical input and output m·odels and define exactly the same GUI elements. Even the

sequence of transactions between controller and target are the same. Because they are so

similar, they are considered as one model (PS/DDI) for the purposes of further discussion.

The differences between PSIDDI , Jini 's ServiceUI and UPnP are varied, but five main

differences are worth noting (Table 2 summarises these differences):

o UI Type - this refers to the very nature of the UI - PS/DDI and UPnP are text/graphical

based, while Jini's ServiceUI allows abstraction away from text and graphics to allow for any

conceivable UI.

o Controller Type - this refers to the capabilities required by the controller for rendering the UI

(bearing in mind that Jini caters for more than just visual display). Most devices (even simple

LCD displays) can be used for PS/DDI and Jini Uls, while UPnP relies on an HTML browser.

o Inter-device Relationship - this refers to the relationship between the devices - for UPnP,

a typical client-server relationship is established, while the other models exploit peer-to-peer

relationships.

o Functionality/UI Coupling - this refers to the amount of abstraction away from the

functionality of the device the UI achieves, or in other words, how dependent on the UI is the

functionality of the device? For UPnP and PS/DDI, there is tight coupling between the UI

and the functionality of the device, while Jini separates these two.

o Target Specification - this refers to the way in which the UI and functionality of the device

is specified in the home entertainment networking solution. For PSIDDI, the UI is compiled

into the firmware of the device (so-called internal target specification). For Jini , the UI is an

object that is external to the communication layer (so-called external object). The UI and

functional ity of the device is specified using XML and HTML documents in UPnP and is thus

said to have external document target specification.

3.6 Summary

This chapter has defined remote configuration as "the ability of a home entertainment networking

solution to allow one device to change the configuration state of another device". It is shown

that an important consideration when providing remote configuration on devices is User

Interfaces. Furthermore, by looking at the Universal Information Appliance (the UIA), it has

Chapter 3

63

shown some desirable User Interface features such as run-time interfaces, a compact document

description language and uniformity.

Several alternatives exist for implementing remote configuration, and this chapter highlighted the

solutions inherent in the four primary home entertainment networking solutions. HAVi makes

use of Data Driven Interaction (001). Jini implements remote configuration using ServiceUI

objects. AV/C makes use of the Panel Subunit. Remote configuration is a subset of the

capabilities of UPnP.

The striking similarities between AV/C Panel Subunit and HAVi's 001 is noted , and the main

differences between the four methods of implemented remote configuration are highlighted and

summarised in Table 2.

PS/DDI Jini ServiceUI UPnP

cUI Type Text/Graphical Any Text/Graphical
-------- --
Controller Type Any Any HTML Browser

Inter-device Peer-to-peer Peer-to-peer Client-server

Relationship

Functionality/UI Coupled Separate Coupled

Coupling

Crarget Internal External Object External

Specification Document

Table 2 - The main differences between Remote Configuration Solutions

Chapter 3

64

Chapter 4 - The AV/C Panel Subunit Solution

to Remote Configuration

4.1 Introduction

In the previous chapter, four methods of implementing remote configuration were presented -

HAVi's Data Driven Interaction (001), Jini's ServiceUI object, AV/C's Panel Subunit and UPnP.

The following two chapters discuss how two of these methods are used to implement a simple

remote configuration system.

In order to better understand the inherent strengths and weaknesses of some of the potential

solutions, implementations must be attempted and analyzed. For this purpose, a simple remote

configuration system is implemented which allows remote configuration of an AudioNideo

receiver (AV/R) via a TV, both on an IEEE 1394 network.

The AV/R is a Yamaha RXV 1000. The AV/R itself cannot communicate with the IEEE1394

network directly. The AV/R has to be hosted by another device capable of interfacing with the

IEEE 1394 network on its behalf. The AV/R, however, does have an RS-232 serial port to allow

for serial interfacing . The commands that can be sent to this serial port closely map to the

infrared commands that its own remote control sends to it. The AV/R receives commands on

this serial port from the device that is hosting it. The hosting device is capable of interfacing with

the IEEE 1394 network and also has a serial port that enables it to communicate with the AV/R.

Once the hosting device has been sufficiently tested, it will be embedded into the AV/R itself,

enabling the AV/R to interface with the IEEE1394 network directly.

The first implementation (described in this chapter) makes use of the AV/C Panel Subunit

specification to implement the TV-A VIR remote configuration system.

4.2 The Panel Subunit TV-A VIR

The purpose of the TV-AV/R system is to allow the user to be able to configure the AV/R from

the TV without directly interacting with the AV/R itself. Hence some sort of interface to the AV/R

must be provided so that the user has some way of inputting commands to the AV/R. The TV

AV/R system does this by embedding a Graphical User Interface (GUI) on the AV/R (the GUI

----_._---_._-
Chapter 4

65

may be said to reside in the target, but it physically resides on the AV/R's host - more details of

how the GUI is stored in the target are given later). The controller (the TV) must then retrieve

this GUI and display it to the user. The user must then be able to interact with the GUI by being

able to change the configuration options displayed by the TV. All the user's actions must then

be relayed to the AV/R over the IEEE1394 network and the actions must be performed on the

AV/R. Any events occurring on the AV/R that change its state on the GUI (such as another user

changing the AV/R input physically) must then be relayed back to the TV and the GUI must be

updated.

IEEE1394
Connection

Controller

DHIVA

Serial
Connection

Figure 15 - Components of the AV/C Panel Subunit TV-AV/R Remote Configuration

System

Chapter 4

66

Some Digital TVs (DTVs) from manufacturers like Sony are capable of interfacing to IEEE 1394

networks. Since IEEE1394 is being adopted widely by manufacturers that produce TVs, it is

reasonable to expect many more TVs that will have IEEE1394 capability built into them to

emerge soon. For the purposes of th is thesis, a "super" TV with IEEE1394 serial communication

capabilit ies is simulated. Since the controller (the "super" TV) requires input and output

capabi lities to read user input and display the GUI to the user respectively, it was decided that a

PC using a Windows application would simulate the TV controller for the AV/C Panel Subunit.

This is because the PC (simulating the "super" TV) can read ily rece ive user input, provide user

output and is directly connected to the IEEE1394 network.

Physically, the AV/R is connected via a serial cable to a DHIVA (Digital Harmony Interface for

Video and Audio [42]). This is an embedded computer that has a 1394 protocol stack. The

DHIVA acts as host to the AV/R and is connected to the IEEE 1394 network. The controller

device (the PC) is also connected to the IEEE 1394 network. The components of the system are

shown in Figure 15. The hosting device (the DHIVA) stores the graphical elements and their

spatial positions and relationships as well as the serial commands necessary to carry out the

user's actions.

When designing the AV/C Panel Subunit implementation for the TV-AV/R system, two main

goals emerged . Firstly, a working implementation had to be obta ined. Secondly, a set of tools

had to be developed to aid manufacturers in developing further remote configuration applications

similar to this one (i.e. remote configuration systems for devices other than the TV and AV/R).

Bearing these goals in mind, the work done in order to realize the remote configuration TV-AV/R

system was five-fold . Each step was essentia l for the implementation, and a tool was created

for each step. Future systems need only use the tools created in order to quickly and easily

create a fully functioning remote configuration system. The five steps are:

• A Graphical User Interface (GUI) must be created (§ 4.4)

• The GUI must be represented in some hardware-independent manner (§ 4.3)

• The GUI must be stored natively on the target device (§ 4.5)

• The target device must be able to supply the GUI to the controller and respond to user

actions received from the control ler (§ 4.6)

• The controller must be able to request and display the GUI and send user actions to the

target (§ 4.7)

The tools used are detailed in each section as listed above. They are:

• The GuiBuilder

Chapter 4

67

• The GUI XML Document Type Defin ition (DTD)

• The GUI XML Parser

• The Panel Subunit

• The ControllerApp

4.3 The GUI XML Grammar
Specifying GUls can be a very complex problem. Manufacturers are faced with a trade-off

between abstraction of the GUI and specificity of the GUI. The abstraction of the GUI is the

manner in which the GUI is represented - the "language" used to describe the GUI. The

specificity of the GUI refers to how the GUI is implemented - how the "language" is used to

display an actual GUI.

An important factor that comes into consideration at this point is the equivalence of GUls. Two

GUls may appear different in terms of the colours, sizes and shapes that they display to the

user. However, these factors form part of the "Iook-and-feel" of a GUI and are not considered

when talking about equivalence of GUls, since it is reasonable to expect the look-and-feel of

GUls to differ on different implementations and on different platforms. What is considered is the

functionality of the GUI. For example, if on one GUI a user can only select one of several

alternatives, and on another GUI the user can select several of these alternatives, the GUls are

not equivalent.

The more abstract the GUI representation is, the less hardware independent the GUI becomes.

There is also a higher probability that different implementations reading the GUI "language" will

display different GUls - a situation that is undesirable since the manufacturer wishes consistency

of the GUI across different platforms and implementations. The less abstract the GUI

representation, the more consistency is gained at the cost of a complex and bloated GUI

"language", and less hardware independence. The ideal is to have a representation that is

abstract enough to be hardware-independent, while at the same time being specific enough that

equivalent GUls will be displayed even when the "language" is read by different implementations

or platforms.

The AV/C Panel Subunit specification goes some of the way towards th is ideal by specifying

what GUI elements are available and what properties they have . However, the specification only

spells out how this information is communicated and not how it is stored on the device.

Chapter 4

68

A method of specifying how the GUI is laid out and how it is stored in the target was created by

making use of an extended Markup Language (XML) [16] grammar. XML allows rigorous

representation of data without hardware dependence. This su its the representationa l problem

well, since the layout of the GUI must be well organized and hardware independent.

4.3.1 Selecting the GUI Elements Required

The AV/C Panel Subunit model is designed for remote control (as well as remote configuration)

of any device. For the purpose of the TV-AV/R system, however, not all the GUI elements

available are necessary. Hence only five elements are selected, and with these elements,

virtua lly all configuration operations can be achieved:

• Panels (these are organizational and serve as containers for the other elements)

• Labels (these are static text fields)

• Links (these are buttons that link panels, i.e. clicking a link brings up the panel this link points

to)

• Sliders (these allow a user to select a value within a well-defined range) . This element is

called a "Set Range" element in the AV/C Panel Subunit specification

• Scroller (these allow a user to scroll through a set of several alternatives, seeing only one at

a time) . This element is called a "Choice" element in the AV/C Panel Subunit specification

The AV/C Panel Subunit specification defines a number of GUI elements, each having it's own

properties. Not all of these properties are required to sufficiently specify the elements required

for the TV-AV/R system. Table 3 shows the elements and the attributes selected for them.

Mandatory Attributes Optional attributes

Panel width, height, caption, aspect ratio, Position

Label width, height, caption Position

Link width, height, caption, image, interactive', Position

panel-to-link-to

Slider width, height, caption, interactive', range Position, min caption, max

type, default value caption

Scroller width, height, caption, interactive', choice Position

type, chosen elements

Ctlapter 4

69

Table 3 - The properties associated with GUI elements

4.3.2 The XML Document Type Definition

The next step is to map these elements and their properties to XML notation. Formal methods

exist for checking the "correctness" of XML files. One of these methods is Document Type

Definitions, or DTDs. The DTD verifies that all the data in the XML files have correct tags, that

variables are of the correct type and that all requ ired data are present. The DTD file is listed in

Appendix A and shows the XML GUI grammar created.

In order to create XML tags for the GUI language, a hierarchical structure is used, since this fits

well with the nature of XML. Tags in XML can easily be nested, and this allows hierarchies to be

created simply by nesting tags appropriately. At the highest level of the hierarchy is the

PanelSubunit. The Panel Subunit consists of one or more Panels (i.e. the Panel tags are nested

within the PanelSubunit tags). In the DTD, this relationship is shown as follows:

<!ELEMENT PanelSubunit (Panel+»

The !ELEMENT precedes the name of the tag - in this case, PanelSubunit. Then (Panel+) is

used to show that one or more Panel tags are contained within the start and end tags for the

Panel Subunit «PaneISubunit> and </PaneISubunit> respectively).

Next, a list of the attributes of the PanelSubunit tag are specified:

<!ATTLIST PanelSubunit

name CDATA #REQUIRED>

In this case, there is only one attribute, name. Name is specified as mandatory (#REQUIRED)

and is character data (CDATA) . In the XML, the PanelSubunit tag must look as follows :

<PanelSubuni t name = "MyPSU" >

At least one Panel must follow this line of XML before the closing tag , </PaneISubunit> can be

used .

More complex relationsh ips between tags are possible. For example, a Panel consists of one or

more elements - Sliders, Serollers, Links or Labels. This is specified as follows:

<!ELEMENT Panel (Scro l ler I Slider I Link I Label)+>

Chapter 4

70

Another relat ionship exists in the Slider tag. The slider consists of exactly three tags - one

SliderMin, one SliderMax and one SliderStep. This is specified thus:

< !ELEMENT Slider (Slide rMi n , Slide rMax / Sl i de rSt e p»

Tags may also be empty (i. e. be able to contain no other tags) . For example, the Link element

cannot contain any other tags and is thus empty:

< !ELEMENT Link EMPTY>

The XML tags are relatively easy to decide on . At the top level is the PanelSubun it that consists

of one or more Panels. The Panels each contain at least one, but any combination of the other

elements. The PanelSubunit needs only one attribute - its name. The panel needs two

attributes - its name and its caption. The name is used "internally" to enumerate the panels,

wh ile the caption is displayed to the user.

The Slider, Scroller, Link and Label all have a caption and a position attribute. It was decided

that each panel should be divided into eight horizontal "slots" that elements could go into, one

under the other. The position then simply defines which "slot" the element goes into, and ranges

from one to eight.

The label needs no other attributes; while the Link needs an attribute (called "Iinkto") that holds

the name of the panel this Link refers (or links) to.

The attributes for the Scroller and Slider are more complex. The Scroller is a container for

several "choices" that are displayed to the user. Each choice has a caption, which is displayed

to the user, and a corresponding host action (i.e. the action to be performed in order to select

this "choice" on the actual AV/R) . Since there may be many choices, it was decided to make

each choice (with its attributes of caption and host action) a separate tag . These tags are then

nested within the Scroller tag - one tag for each choice.

The Slider, over and above its caption and position, needs a maximum value, a minimum value,

and a step value as attributes. It was decided that the display value need not necessarily be the

value the AV/R uses. This allows the manufacturer flexibility in what is displayed to the user

some users may not mind working in decibels, having their volume range from -100dS to OdS,

while other users may prefer their volume ranging from 0 to 100. Hence, for each value (min,

max and step) a separate tag is made to hold the display value as well as the host value and

host action (both of which are used by the AV/R to carry out the action) .

Ctlapter 4

71

4.3.3 An Example - The ImagiRadio

An example is useful to illustrate the usefulness of using XML to describe a GUI . Imagine that a

manufacturer installs remote configuration capabilities onto a device (called an ImagiRadio) and

wishes the GUI to have two panels that allow for configuring the type of input and some audio

features. The manufacturer sketches a picture of what the GUI should look like as shown in

Figure 16.

The manufacturer describes the root panel (or first panel in the hierarchy as a panel with two

panel link buttons that link to a further two panels called "Inputs" and "Audio" respectively. The

I nputs panel has a scroller called "Signal Select" and a panel link back to the root panel. The

Aud io panel has a scroller called "Sound Mode", a slider cal led "Dig ital NR" (for Digital Noise

Reduction) and a panel link back to the main panel. The slider ranges from 1 0 to 20. The

scrollers all have various options, of which the user is allowed to select only one - the currently

visible one.

---_.--_._-------
Chapter 4

72

T!llllgiR"~iQ !:;Qufil:

Inputs

Audio

/ ~
lnjruts Audio

Signal Sele t Sound Mode

Analogue .. I Dance .. I
Back to main

Digital.
10 I J.

1
20

Back to main

Figure 16 - The GUllayout as specified by the ImagiRadio manufacturer

Since the manufacturer's description of the GU I only lays out which elements go where and what

attributes each element has, the GUI can be represented fairly abstractly (that is, without

specifying look-and-feel).

Chapter 4

73

1 <?xml version::"1.0" encoding="UTF-8"?>

2 <!DOCTYPE PanelSubunit SYSTEM "describeguiformal.dtd" >

3

4 <PanelSubunit name::"ImagiRadio.xml" >

5 <Panel name="panelO" caption=HRadio Setup" >

6 <Link caption="Inputs" position="2 11 linkto="pane11" />

7 <Link caption="Audio" position="3 " linkto="panel2" />

8 </Panel>

9 <Panel name="panel1t', caption=ulnputs U >

10 <Scroller caption="Signal Select" position="21' >

11 <Scroll Val caption= UAnalogue" hostact ion="SS: 01 11 />

12 <ScrollVal caption="Digital" hostaction="SS:02" 13 />

13 <ScrollVal caption="DTS " hostaction="SS: 03" />

14 </Scroller>

15 <Link caption="Back to Ma in " position=1I3" linkto=lIpanelO" />

16 </Panel>

17 <Panel name =lIpanel2" caption="Audio li >

18 <Scro ller caption=IISound Mode" position="2" >

19 <ScrollVal caption="Hall 1" hostaction=IISM:01" />

20 <ScrollVal caption="Hall 211 hostaction="SM:02" />

21 <ScrollVal caption="Jazz" hostaction="SM:03 11 />

22 <ScrollVal caption="Dance" hostaction=IISM:04 u />

23 <ScrollVal caption="Theatre " hostaction="SM:'O S" />

24 </Scroller>

2S <Slider caption="Digital NRII position="3" >

26 <SliderMin va l ue="10 u hostaction="DNR: II hostvalue=1110" />

27 <SliderMax value =u20" hostaction="DNR: (I hostvalue="20" />

28 <SliderStep value="l" hostvalue="lll />

29 </Slider>

30 <Link caption='tBack to Main't position= 't4 tl linkto="panelO tt />

31 </Panel>

32 </PanelSubunit>

Listing 1 - An example of a GUI described in XML

Listing 1 shows the XML required to represent the GUI for the ImagiRadio. Line 1 of the

document specifies that it is an XML version 1 document using UTF-8 encoding. Line 2 is a

reference to the DTD of this document to allow any parser to verify the correctness of the XML.

Lines 5 - 8, 9 - 16 and 17 - 31 are the three panels with the various elements they contain

nested within the <Panel> and </Panel> tags. The Inputs scroller on panel one is seen in lines

-----_ .. _-----
Chapter 4

74

10 - 14. Lines 11, 12 and 13 show how the various options available to the user are specified

and how they are mapped to host actions - these are the serial codes transmitted to the AV/R

when its corresponding option has been selected. The Slider (lines 25 - 29) must contain a

SliderMin, a SliderMax and a Sliderstep element - these are used to specify both what appears

on screen to the user and what action is taken when the slider value is changed. The link

e lements (lines 6, 7, 15 and 30) are all empty tags since they do not need to contain any

elements themselves.

Notice that no information is given regarding what the elements look like - this achieves

hardware and system independence. However, the structure of the GUI (which elements go in

which panels and in which order they appear) is specified. This allows a GUI that is flexible in its

look-and-feel without losing the layout that the manufacturer originally intended .

This XML grammar as defined by its DTD is itself the tool for this step. Future systems do not

have to specify the DTD again; they simply use the DTD to specify the layout of the new GUI by

using the tags and replacing the values appropriately. The XML grammar is comparable with

the MoDAL system that Eustice et al. use to describe their UIA interfaces (see § 3.3.1).

However, since MoDAL is used for controlling devices as well as configuring them, it is a more

detailed and extensive grammar. The GUI XML grammar created for remote configuration is

simpler and smaller. However, the aim of using the XML grammar is the same: to specify an

interface to a service without having to specify the functionality of the service - i.e. separating

interface from functionality.

4.4 The GuiBuilder

Since not all manufacturers are fam iliar with XML, and specifying GUls in XML can be a rather

arduous procedure, there exists the need to automate the process of specifying the GUI. To

achieve this, the GuiBuilder application is created. The GuiBuilder is the tool for this step.

The GuiBuilder application is a WSIWYG environment that allows the manufacturer to layout

and specify a GUI using a graphical interface. Once the GUI has been la id out, the GuiBuilder

generates the XML file corresponding to the layout of the GUI. This gives the manufacturer

several benefits:

• Speed - since the layout is done graphically rather than by hand in XML

• Ease - since the manufacturer need not learn XML

----.. -.---.---... -.
Chapter 4

75

• Flexibility - GUI layouts can be saved and edited, allowing the manufacturer to easily

improve existing GUls

• Efficiency - since the XML is generated automatically, the manufacturer is guaranteed of an

XML file that is correct (in the grammatical sense)

The GuiBui lder is written in Visual Basic in a Windows environment since this environment lends

itself to rapid development of graphical applications.

4.4.1 GuiBuilder Design

The design of the system is object oriented. Object orientation is a widely adopted approach for

the construction of particular systems. Classes defined for one system can be re-used in other

systems. Similarly, improvements to existing systems can be made by modifying certain classes

without having to change the rest of the system. An important reason for using object orientation

for remote configuration systems is the fact that the object orientation lends itself to separating

core components of the system - in this case, the functionality can be separated from the user

interface since classes will exist for both components.

The designs of object oriented systems are usually modeled in a particular modeling language,

and for this thesis , UML (the Unified Modeling Language) [17] is used. UML is used to show the

attributes and functions that each class possesses as well as how the classes in a system

interact with each other.

Peter Coad et. al. [37] views any object oriented system as having four types of component.

The problem domain component contains objects that relate directly to the problem being

modeled . The human interaction component contains objects that provide an interface between

the problem domain component and humans. The system interaction component provides

interfaces from the problem domain to other systems, while the data management component

provides interfaces between the problem domain and databases or file management systems.

These are used to categorize the objects of the remote configuration system - specifically into a

problem domain component and a human interaction component, the functionality of the system

is separated from the user interfaces of the system. This is important since the user interface for

the AV/R may appear on several different controllers (TVs) and the separation aids in

implementing a hardware independent system.

Chapter 4

76

The design of the GuiBuilder (and the ControlierApp - see § 4.7) conforms to the following

sequence:

• Use case diagram (to show the broad functionality of the system)

• Scenarios (to set out clearly what events occur in the system)

• Sequence diagrams (to show interactions between classes)

• Object Model (to show the classes with their attributes and member functions)

Figure 17 shows the GuiBuilder Use Case diagram. The only actor in the system is the

manufacturer (who is an actor since the manufacturer is external to the system), and only two

use cases exist - DefineGUI and ExportXML. These use cases describe the broad functionality

of the system. Each use case may contain several paths of operation .

Manufacturer
.. _- DefineGUI

.....•

ExportXML

Figure 17 - The Use Case diagram for the GuiBuilder

Figure 18 shows a screen shot of what the GuiBui lder looks like' as it opens. The GUI elements

fill slots on the panels, and the entire "collection" of panels is exported to XML as the

Pane/Subunit. Figure 19 shows a panel with the name "Audio Setup" that contains four

elements. The first element slot contains a label with the caption "(Advanced)". The following

three element slots contain a Scroller with the caption "Surround", a Slider with the caption "Bass

Gain" and a link button with the caption "Back to Main". Figure 20 shows what appears in the

properties space when the manufacturer clicks on a Slider element. The Name box is the name

that will appear to the user when the GUI is displayed on the TV. The min, max and step values

(on the left, labeled "Display") are the slider values that will appear to the user. The rema ining

values (on the right, labeled "Host") and the "Host Action String" are used by the DHIVA to send

serial commands to the AV/R to perform the user's actions.

Chapler 4

77

- 1.Ul . tlM", t.J It'IIIIi''' It..D
Panel Tab

'nUl lilt

Figure 18 - A screen shot of the GuiBuilder application

Chapter 4

78

Ctlapter 4

AudiO Setup

[Advanced]

Figure 19 - An example of a panel containing four elements

Name slider
1!.....~~iiiiiiiiiiiiiiiiiiiiiiioOiiiiiiiiiioiiio~

MmValue

Disploy

Host

MaxVolue

Host

Figure 20 - The properties that are shown for Slider elements

79

4.4.2 GuiBuilder Scenarios

Several scenarios exist for the GuiBuilder system.

• Scenario 1: Add New Element. The manufacturer clicks an empty element slot and creates

a GUI element (a label, a link, a slider or a scroller) for that slot.

• Scenario 2: Display Next Panel. The manufacturer presses a "panel tab". The

corresponding panel with all its current elements is displayed to the manufacturer.

• Scenario 3: Enter Properties. The manufacturer cl icks on an element. The properties for that

element are displayed. The manufacturer modifies the properties of the element and the

element is updated.

• Scenario 4: Export to XML. The manufacturer selects "Export to XML" button. After obtaining

the filename for the XML file from the manufacturer, the program outputs the XML

corresponding to the GUI the manufacturer has just specified.

4.4.3 GuiBuilder Sequence Diagrams

The sequence diagrams correspond to the scenarios and look as follows:

I -
. ~~n~~jw'der I ~ . Element j

, Coll ecti oo

. Ma DLlt::~:SlctCI;'kll I I
;)0 1 ! I

: : I iAd dElament (type, pos, properties) ': I' - >n
1 ! I' I! i lc reate(,ype, pos, properties) I
I ' ' I '" : i I 'I il :., I T

I : i AddElemenl()

"I I I
i ' 'I I II
! i 'yl ~ I ii i
I I I I

I
I
I
I

1;1
I
I

Figure 21 - GuiBuilder Sequence diagram for Scenario 1 - The manufacturer clicks on an

empty element slot

Al l user interactions are done via the GuiBuilderWindow object. This class is the only class that

is in the Human Interaction Component.

Chapter 4

80

I : GUIBuilder
1 Window

: ManuBcturer

1 HandleNextP aneIClick() 1

: Parel
Collection

: Panel

~-----~ ~ 1

II ! I - III

GetPanel()

I ' GetElement() :;.1
-------------------7~: ~ite~ffi~t~iw~l~y----~

I i
I

, I

1

1

' ' D' I EI P rt ' () 'I t ISp ay. ement rope les 1"----_____ _
-<E--

I
I

1

1

T

Figure 22 - GuiBuilder Sequence diagram for Scenario 2 - The manufacturer clicks on a

panel tab

In the above sequence diagram, the GetElement function is called iteratively for all the elements

contained within the new panel. Each time an element is retrieved, its properties are displayed,

r
: Ma nUBcturer

: GUIBuilder '
W i1dow

; Panel
con ection

) , HandlePropertyClick(~

! r II I!:

GetPanel() 1

Y I i,1 i , 1,- GetE lement()

I i , i i
I jDisPlaYElementPIOFerties()
I' I ' I :

, I
! ,
1 :
i ! , ,

U
1

I k , .. .J I
I ! UpdateEl ement()

i i
l
1

: Pane;

1

1

11
1

1

1}
1

1

Figure 23 - GuiBuilder Sequence diagram for Scenario 3 - the manufacturer changes the

properties of an element

Chapter 4

81

In the sequence diagram above, the properties of the element are first displayed to the

manufacturer. The manufacturer is then free to change any properties, and once the changes

are complete, the element is updated to reflect the changes.

. GU!Bulider

. Manyfacturer -I HandleE xportCl lck() I
>. ,

; ,
i i

i!
! 1

I'

i I
U
I

i I
; I
i

,

ToXML()

~
Co Heciion

I
I ! GetPanel(), iterate P j

~ ! through all

I
! GelElemenl()

. Element

Figure 24 - GuiBuilder Sequence diagram for Scenario 4 - the manufacturer exports the

GUI toXML

In the above sequence diagram, all the panels are iterated through, and each panel iterates

through all of its elements, outputting XML for each one.

Ctlapter 4

82

The completed object model for the GuiBuilder appears as follows:

GUrBuilderWindow

~Slots
'bPropertyBox

_. -

. HandleS lotClickO
·HandlePropertyClickO
-HandleExportClickO

· HandleNextPanelClickO
.Dis play Elem entP roperties ()

I Scroller I

PanelCol1ection

'bP~meILis t _ .

1
• ToXMLO
· GetPanelO
. GetElementO

. "'AddElementO

I

!1..*
, Panel

; ' . Q,ElementList
.. !!bCaption
~Id

,

QAddElementO I

I ~~etElementO 'I
. UpdateE lementO

Element

~Caption l
~scrollerList I

.AddScroliValO r: --------~ '. ~Pos ltion

I
· AddPropertieso I
~etScrollValO I
• ToXMLO . I

. '

11 .. *

~:crol~
~aption I
~HostValue I -- -~.-

Il!ToXMLO i

'-'AddPropertiesO

~TOXMLO ...
i \

Label

f----. --- ' MdPropertiesO

' ToXMLO

Link

~inkTo
I

· AddPropertiesO ,
· ToXMLO '

Figure 25 • The GuiBuilder object model

In the object model, lines represent associations; arrows denote inheritance and a line with a

diamond head shows an aggregation relationship, So in the above diagram, the Scroller

contains one to many ScoliVals; the Scroller, Slider, Link and Label classes are specialisations

of the Element class (they inherit from the Element class) and the GuiBuilderWindow class is

associated with the Panel and Panel Collection classes (the association allows communication

between the classes and allows the classes to make use of public attributes and member

functions within associated classes).

Chapter 4

83

4.5 The XML-GUI Parser

Now that the manufacturer has specified the layout of the GUI in XML, the XML must be stored

in the target device where it will later be retrieved by the controller. In order to increase the

speed and efficiency of the target device, a parser was built that parses the XML and converts it

to native structures that can be stored on the target device. This prevents the target having to

implement an XML parser. It also makes the GUI data immediately available to the target,

instead of having to be parsed first.

The parsing could be done "by hand" - but this would be a very time-consuming activity and it is

far better to automate this process too. However, parsers are not easy to build, and building a

parser from scratch can be a complex problem. Hence a parser generator, Coco/R [18], was

used to build a parser.

Coco/R requires a grammar (a formal description of the form of a language) to be created.

Coco/R uses this grammar to generate a parser that can then be used to parse a file and

confirm syntactic correctness. Later, attributes are added to the grammar (making it an

attributed grammar) and these attributes are actions that perform semantic functions . Coco/R is

usually used in compiler creation, and in a sense the XML-GUI parser "compiles" the GUI XML.

However, instead of producing object code, it creates C structures that correspond to the GUI

layout described by the XML. The attributed grammar is shown in Appendix C. C structures are

chosen as the native storage medium since the target stack is written in C (see § 4.6).

4.5.1 Grammars

4.5.1.1 Checking Semantics

A grammar is a set of rules that define how certain words and symbols in a language (in this

case, the language is XML) may be put together legally. The grammar then allows a parser to

be able to parse a string (or sequence of symbols) to determine if it is an allowable string.

Malformed sequences generate errors.

These grammar rules are specified in Extended Backus-Naur-Form (or EBNF) [38] . The EBNF

rules have the form:

leftside = rightside

Chapter 4

84

The lefts ide expressions are "conceptual" (they are called non-terminals) - they describe

abstractly what their correspond ing rightside expressions define. For example, cons ider the

following rule :

Panel = "<Pane l>" El eme nt { El e me nt } "</ Panel> ".

The rule defines what a panel looks like (panel is here an "abstract" term). Each panel begins

with the string "<Panel>" and ends with the string "</Panel>" (these strings appear in the actual

XML file and are called terminals). Between these two strings, an Element must exist, followed

by an arb itrary number of other elements (th is is shown by the braces). Element is again an

"abstract" term, which has its own rule stating what it looks like in the form of strings that appear

in the XML file to be parsed.

The symbols for the GUI-XML include all the tags that have been defined in the Document Type

Definition (DTD) . Variable strings are enclosed in quotation marks. The grammar checks for

syntactic correctness by reading the XML file that is being parsed one character at a time. The

grammar is structured in such a way that reading only one character at a time, the parser is able

to determine whether or not that character is legal. This feature is called LL(1) formally. LL(1)

takes its name from the method of parsing employed - the input XML file is read from Left to

right and substitutes from the Left-most "abstract" term in the rightside of the rule, looking ahead

only one character at a time to determine if the string being parsed is legal.

4,5.1.2 Performing Syntactic Actions

Coco/R, using the grammar created, constructs the parser. Coco/R defines a function for each

production . Th is function is designed so that it exactly mirrors the production - and the function

checks that the correct terminals appear in a string - when they do not, the function reports that

it has a malformed string. The first (highest) function corresponds to the Start sentence (goal) of

the grammar, and every time a production is required to perform a substitution, a function lower

down (corresponding to the production being used) is called. These functions are usually

recursive in nature, and so the parsing is said to be by recursive descent.

For example, consider the following production :

Label = "<Label " Capt i on Position "/>".

The function that would "service" this production looks like this (in pseudo-code):

function Labe l

Chapter 4

85

sym = ReadSymbol(); II reads the next string

if (sym ! = "< Label") ReportError () ;

call Caption(): II parse the next expected string

call Position{):// parse the next expected string

sym = ReadSymbol(); II reads the next string

if (sym != "/ >") ReportError{) i

The attributes, once added to this production, perform specific actions and the production looks

as follows when it is attributed:

LabelcTLabel* &L. = (. c har c[20J, p[20J; .)

II c:::Label n Caption<.:c> Position<p>

(. int pos = a toi(p);

L = CreateLabel (c, pcs); .) 11/>".

The semantic actions that must be performed are enclosed by "(." and ".)" symbols. The angle

brackets are used to denote actual or formal parameters. The formal parameter is a type

declaration and is used to specify the arguments that must be passed to a function call. The

actual arguments are the variables that are passed. So in the above example, L is a formal

parameter (passed by reference to the "Label" function, while c, p and pos are all local variables

declared inside the Label function .

The function produced by Coco/R for the attributed grammar production Label , appears like th is:

function Label (Tlabel * &L) II L passed by reference

char c [20J, p [20J ;

sym = ReadSymbol(); II reads the next string

i f (sym != "<Label") ReportError();

call Caption(c) i /1 parse the next expected string

call Position(pl; II parse the next e x p e cted string

int pas = atoi(p);

L = CreateLabel ie, pos);

sym = Re a dSymbol() ; II reads the next string

if (sym != "/>") ReportError() i

Notice how the position of the attributes (contained within "(." and ".J" symbols) in the grammar

specify where they appear in the corresponding function. In this manner, any semantic actions

that must be performed are simply placed as they would appear in real code in the grammar.

Chapter 4

86

4.5.2 The XML-GUI Grammar

The productions of the XML-GU I grammar map simply to the XML tags defined, Since the

formatting of the tags is strictly defined by the OTO, the parser is able to determine which

production is being parsed by reading ahead only one character, This also allows the entire

XML file to be compiled (or parsed) by reading it from top to bottom once - formally, the

grammar is said to be LL(1) (see § 4,5.1,1), This inherent feature of the grammar allows the

parsing to be a very fast and efficient procedure,

The grammar for the parser is closely related to the OTO since both can check the XML for

syntactic correctness, The grammar, however, once attributed, produces code by Coco/R that

not only checks syntactic correctness, but actually converts the XML to native C structures, It

does this by creating a "blank" structure for each element and then filling in the properties

directly from the XML. The following code shows what the C structure for a label looks like:

typedef struct TLabel {

DH_PANEL_ELEMENT_ ID id;

char caption [STRLEN];

int POSi

TLabel;

The Label consists of a OH_PANEL_ELEMENT _1 0 (which is a unique 4-byte number that

identifies this label), a caption of chars and an integer value representing its position in the panel

(this integer ranges from 1 to 8), The following function shows how memory is allocated for the

label and how its caption and position are "filled in":

TLabel* CreateLabel (char* c, int p) {

TLabe l* L;

DH_FWSTATUS result = mpmMemBlockAllocate (si z eof (TLabel) , &L);

L->id.type = Oxl?; II panel subunit spec 1.0

L->id.id = idNum++;

strcpy (L - >capt ion, c);

L->pos = Pi

return L;

The function is called Create Label and returns a pointer to this label structure, It requires two

input parameters - a character string (the label's caption) and an integer (the label's position),

The function mpmMemBlockAliocate is used to allocate memory for the label. The id of the label

is generated by using two bytes for its type (which is Label and is given as Ox17 in the AVIC

Chapter 4

87

Panel Subunit specification) and two bytes for its unique id. The unique id is incremented each

time an element is created , thus ensuring that each element has a unique id. Finally, the caption

is copied into its place-holder and the position is assigned. The function then returns a pointer to

th is newly created label.

For an example as to how all this works, consider the following production:

Label = "<Label" Caption Pos ition "I>" .

This production states that the Label tag must begin with the terminal "<Label" and end with the

terminal "/>". Between these terminals, exactly one caption and one position element must

appear. Any deviations from th is are syntactically incorrect.

The following code is the same production, but now it is attributed (see the previous section for

more explanations on attributed productions):

Label<TLabel* &L> = (. char c [20], p [20]; .)

"<Labell! Caption<c> Posit ion<p>

(. i nt pos = atoi(p) ;

L = CreateLabel (c, pos) i .) 11 /> ".

Now consider a line from the XML file being parsed that looks like this:

<Label caption="Notice" position="2" I>

The code first parses the "<Label" terminal. If this termina l is not found or is incorrect, an error

message is generated . Next, there should be two strings following the "<Label" symbol - a

Caption and a Position. When the parser recognizes that it must parse a non-terminal (Caption

and Position are here both non-terminals), it calls the Caption function , passing to it the variable

c. If the function is completed successfully, c will contain the string "Notice". Similarly, the

Position function is called to parse the string following Caption and if it returns successfully, the

position will contain the string "2". If either function fails, it is because the caption or position was

specified incorrectly, and the parser generates an error message. Then the position p is

converted from a string to an integer called pos and the Label L is created (memory is set aside

for it and its caption and position are assigned) by calling the Create Label function shown above

and passing it the caption and position . Final ly, the terminal symbol "/>" is parsed and if this is

successful, the XML line is successfully parsed and all the corresponding semantic actions have

been performed.

Chapter 4

88

4.6 The DHIVA
Once the XML structure of the GUI is defined and parsed into C structures on the target, the

target must be able to receive AV/C commands from the controller and be able to respond to

them appropriately.

The target itself is a Digital Harmony Interface for Video and Audio (DHIVA) and is an IEEE1394

network interface with an embedded ARM7 RISC processor and an IEEE1394 protocol stack.

The protocol stack was developed by Digital Harmony Technologies, and implements audio,

MPEG/DV video and control mechanisms. At the time of the inception of this thesis, the

IEEE1394 stack had already been written in C, and so C is used to implement the AV/C Panel

subunit . Figure 26 shows what the DHIVA looks like, as well as annotating several of its

components.

o ern a

AI\J Trans-mitter ~O"''-''
('I trt: ned fbi in db)

AN Rec~iver Pori: ••
(\ot IUClfOra

DHIIIA-A1
Power

oar e fa reiilm

Uri< Layer Bus PtWer
Controller

PHY daugnmrboar(

PHY
(cable tJ.a:'lS cerver)

1314
Pons

Figure 26 • An annotated picture of a DHIVA

Figure 27 shows the DHIVA's Digital Harmony Protocol stack [43J. The module shaded in gray

is the Panel Subunit and the diagram shows where this module resides in relation to the other

modules on the DHIVA. The AV/C handler (the block directly below the Panel Subunit block)

receives AV/C packets from the FCP block, which in turn receives these packets from the link

layer. The FCP packet strips the FCP headers and passes the AV/C packet to the AV/C

handler. The AV/C handler then removes more headers and passes the packet to the relevant

subunit. All panel subunit packets are passed to the panel subunit in this manner.

-_ ... _----
Cha;Jter 4

89

Host Processor Interface

I
r--- - -

Host Application Interface Command Line Interface

c r--- .9
Command ~

u
E ~ N

~ .D

Host Behaviour Interfaces Engines -<
'" E .c
g ~

• ."l ~

t !! ~ •
/l, > 'i' "2 ~ ''@ 4

u 0 -< , u .~ " n ~ ~ .. \1 J II ,
oll "' .~ .;; J. • t

~ ~

0

~ 5 ~
~ ~ ~

" ~ "' "- .~ ,
~ g is ~ ~ '" >l 1! ll. u

~ 'E u u ~ '" u c ~ '"
0

~ 'fi u
AV/C .z ~ " '" "- il .0

Data Descriptors, Connect Input/Output ~ 0

~ ."l
Open, Read, Write Disconnect Plug signal C C N

U ~
to aU subunits Unit Info format ~ U E 'E .~ fi ~ N

~ on • :r:
v ~ ~
"'.;:E
",;:E 1:-

Serial Bus Manager Transport 0-
.... ~ 0
.cz::~8

~ ~

Q; FCP SBP-2 Asynch Connections IP "-;:E

" -• Q; c
C Q;

Q; rn

'" ~ ::; g
I I

rn " '" 1394· 1995 Transaction Layer c • rn ~ • ::; c >' c
::; • 0

~ ::; , u
Q; a

13 "' "' ~ Link Controller Hardware Abstraction I ~ >- , ~ 'C
0 0 OJ '" a
0.

'"
Z ~

u
a 1394 Hardware Interface !!1

Figure 27 - The DHIVA's Digital Harmony Protocol Stack

4.6.1 DHIVA Ward/Mellor Diagrams

Since the DHIVA system is not object oriented, some other method has to be used to show the

design of the AV/C Panel Subunit implementation. Ward/Mellor [34] provide a set of tools for the

analysis of structured, real-time systems such as the DHIVAs . These tools allow diagrams to be

drawn that show the flow of data (arrows) into and out of transforms (circles) that perform certain

funct ions. Data stores are also denoted (by parallel lines). Figure 28, Figure 29 and Figure 30

show the Ward/Mellor diagrams for the DHIVA AV/C Panel Subunit system.

Figure 28 shows the main data flows into and out of the DHIVA AV/C Panel Subunit system.

Only three types of command are sent to the DHIVA - open/close panel subunit messages,

panel data requests and user configuration commands. These panel subunit messages

originate at the controller and are transported on the IEEE1394 network in FCP frames (see §

---------------------------_ .. _--_.-
Chapter 4

90

2.4.5.2 for more details). The physical layer of the DHIVA recognizes that the messages are

addressed to its node (see § 4.7.1 for more details) and decodes the message. The packet is

passed to the FCP handler (a ca llback function) for further decoding. This function is called

every time an FCP packet arrives at the DHIVA. The FCP handler then decodes the headers of

the message and recognizes that an AV/C packet is encapsulated in the FCP packet. The FCP

header is stripped and the payload (the AV/C packet) is passed to the AV/C handler (another

cal lback function). Th is function then decodes the AV/C header and hands the payload to the

relevant function (specified by the opcode of the message) for further processing.

Open/Close Panel ~

Subunit Request I ' \ Open/Close
I 1 Openl .____---------------J Close ~nse

Panel Subunit
Data Request

/-------.--."i

User
Configuration

~!
.. ,/'" \

\ Panel i ~
\, Subunit !

.. --------...

2. Provide Panel Subunit
Data

....... ,----------

3. Execute
Configuration Command

Configuration
Command

Receipt

Panel Subunit
, Data)--_ .. - -_ .. -

Native Host
Configuration

\ Command
)....------..- --.. " , . .

...

...

Figure 28 - The high level Ward/Mellor diagram of the DHIVA AV/C Panel Subunit system

Chapte r 4

91

Panel Data
Request

--'----------\

Elemenl Dala (\

Request { ' ,.----------.
.-'".-'

"

Panel Data

2.1 Provide
Panel Data

.-------)/ "''''

. -------/
/

•

Panel Subunit
Data

;

Element Data

Figure 29 - Detail of Transform 2 of the Ward/Mellor diagram of the DHIVA AV/C Panel

Subunit system

User
(
,

Panel Subunit
Data

Configuration ~

Com~ ;~--...........,

~ --- ' "-(3 1 Execute \ AV/C Host
\ Configuration) Configuration
\, Command '/----- Command

... ~/~
J / '.. Native Host

~. (

\ Configuration
3.2 Convert)./""-----""" Command

.

Command to · ~'''''
Serial String

\ ,/ "-:. Command
Receipt '-_.-/'

Figure 30 - Detail of Transform 3 of the Ward/Mellor diagram of the DHIVA AV/C Panel

Subunit system

Chapter 4

92

4.6.2 Open/Close AV /C Panel Subunit Messages

If the message is an "open panel subunit message", ownership of one of the DHIVA's source

plugs [13] (a software object that al lows connection and transfer of streams of data - see §

3.4.3.2) is given to the controller. Once the controller obtains ownership of the plug, it

establishes a connection, or data pipe, between the controller and the target. All panel subunit

data that is transferred from the target to the controller is done on this data pipe. This data pipe

is an asynchronous connection [35]. Asynchronous connections enable transfer of large

amounts of data over a serial bus. An AV/C packet is returned to the controller indicating the id

of the source plug the control ler now owns. If no plug is available, the DHIVA returns an AV/C

packet with a REJECTED status and the controller will have to try to open the panel subunit

again at a later stage. When the controller sends a "close AV/C Panel Subunit message", the

source plug is freed. The panel subunit may have several source plugs, and controllers may

only own one of these plugs at a time.

Figure 31 shows how the panel subunit is contained within the unit on the device. One unit that

is present on each device represents that device, and the unit may contain several subunits that

divide its functional ity into logical "blocks". In the case of the AV/R, the unit and the panel

subunit both physical ly reside in the DHIVA. When the controller begins work ing with the ta rget,

it issues an AV/C command to establish a connection between the unit's asynchronous plug and

one of the panel subunit's free source plugs. Thereafter, it issues another command that

connects its asynchronous plug to the units asynchronous plug, and a channel is opened for the

transport of G U I data.

!'
Controller '\ !' Unit '\

Panel Subunit

Ir ~11< !'.:"]
:"!:i: In -I[,..,..-
/ /" +

/
Asynch plugs Source plugs

Plugs _ Ports 0

Figure 31 • The plugs of the panel subunit and its relati on to its unit and the Controller

Chapter 4

93

However, two implementation shortfalls prevent asynchronous connections being uti lized .

Firstly, the DHIVA does not yet support asynchronous connections. Secondly, the controller

requires a device driver that enables it to transmit and receive FCP packets. This driver,

however, only allows acknowledgement FCP packets to be read (see § 4.7.1 for more details).

I n other words, the only time the driver will allow an application to receive FCP packets is directly

after sending an FCP packet. These two factors combined to force the use of an alternative

method of transferring panel subunit data from the DHIVA to the controller.

The solution was to utilize the fact that the controller may only read acknowledgement FCP

packets. The DHIVA sends two acknowledgement packets - the first contains the panel subunit

data while the second contains the formal acknowledgement that the controller is really waiting

for. The device driver on the controller is simply requested to read the "incoming FCP

acknowledgement buffer" twice instead of once.

4.6.3 Panel Data Request Messages

While panels are AV/C Panel Subunit elements, the way they are treated is different from other

elements. A request by the controller (the TV) for an element will simply cause the element to

be returned by the target (the AV/R) . A request by the controller for a panel causes the panel

and the id's of all the elements it contains to be returned. Hence the transforms for the panel

data request and the element data request are different and this is shown diagrammatically in

Figure 29.

Chapter 4

94

r- r-

1. Root panel id request

~ 2. Root panel id returned

3. Root panel data request
•

..!l
0 " .)j bC

"- 4. Root panel data returned ~
0 I-U

5. Element/Panel data request
r

r-o-- 6. Element/Panel data returned

'----

Figure 32 - Interactions between Controller and Target to allow the Controller to obtain

GUI data

Once the controller opens the panel subunit, it will begin to request the target's GUI data. Figure

32 shows the interactions that occur between the controller and target when the controller at this

stage. The first request is for the id of the root panel (the first or main panel of the GUI) shown

in Step 1. The controller achieves this by requesting an element of the type "Panel" with the id

"root". The id of the root panel is then found in the panel subunit structures stored on the DHIVA

and returned to the controller in Step 2. The controller will then request the root panel data

(Step 3). The DHIVA searches the panel subunit structures and builds a packet containing the

root panel and the id's of all the elem~nts contained within the panel (Step 4). The controller

then iterates through each element id contained in the root panel, requesting the element itself

from the DHIVA (Steps 5 and 6). Steps 5 and 6 are repeated for all the elements in the root

panel.

The root panel will contain links to other panels. When a link's data is sent from the target to the

controller, the id of the panel that the link is referring to is included in that data. The controller

then requests the panel data using this panel id (Step 5). Once the panel data is returned (Step

6), the controller can iterate through all the id's of the elements contained in the new panel and

Chapter 4

95

by repeating Steps 5 and 6 can retrieve all the element data needed. If other panel links occur

in the new panel, the same process is repeated. In this manner the controller retrieves all the

GUI data starting from the root panel.

The controller sends "Push GUI Data" packets in order to retrieve information. The panel data is

in turn returned on the asynchronous connection. However, since the DHIVA is not capable of

asynchronous connections, the GUI data is returned in the correct format using an FCP

command. If this implementation is moved to a system capable of asynchronous connections,

the GUI data packets would not need to change - they simply need to be sent along the

asynchronous connection instead of by FCP.

opcode PUSH GUI DATA (7E,S)

operand[O] source_plug

operand[1] sub-function

operand[2] generation_number

operand[3]

operand[4] status

operand[5] indicator

operand[6]

operand[7] elemenUd

operand[8]

operand[9]

Figure 33 - The format of the Push GUI Data packet

Figure 33 shows the format of the Push GUI Data panel subunit packet. The opcode identifies

this packet as a Push GUI Data packet. The source_plug field identifies which source plug the

controller wishes the GUI data to be sent on. This source plug is specified to the controller by

the target when the controller initiates communication with the target. The sub-function field may

be one of two values: new and clear. When the controller wishes to obtain the GUI data for an

element, it uses the new sub-function and places the id of the element into the elemenUd field.

If for some reason, the controller wishes to cancel the request for data, it uses the clear sub

function , specifying which element it no longer wishes to receive data for using the elemenUd

field . Both the generation number and status fields are set to FF,S by the controller. The

indicator field is used to specify if the controller wishes the target to return all the elements that

are nested hierarchically in the element it is currently trying to obtain data for. For example, if

the element that the controller wishes to obtain is a panel , then the indicator field can be set so

Chapter 4

96

that the target will return just the panel , or it can be set to return the panel and all the elements

conta ined with in the panel too.

The GUI data specified by the controller is returned to the controller by the target along the

asynchronous connection (or in th is case, via and FCP packet). However, the AV/C Panel

Subunit specification mandates that the target returns a panel subunit packet reply to the

controller too. This packet is simply the packet that the controller sent, except that the status

and generation_number fields are changed to reflect the status of the panel subunit and the

current generation number. The generation number specifies the current generation of the GUI.

If GUI elements change in time , each change corresponds to an increment in the generation

number. It was decided that the GUI placed on the AV/R wou ld be static (since all the ranges

and choices are predefined and never change) and so for the TV-AV/R system, the generation

number is always O. The status of the panel subunit is one of the following:

• no error - the Push GUI Data command is accepted with no errors

• preparation - the panel subunit is preparing a GUI data packet to be sent

• source plug busy - the source plug is transmitting a GUI data packet

• no element - the element specified by the controller does not exist

• not connected - the panel subunit's source plug is not connected to the unit's asynchronous

plug

• not owner - the controller is not the owner of the specified source plug

• cancelled - the specified data transmission is cancelled

• not transmitting - there are no packets being transferred (i.e. nothing to cancel)

• any other error - there is some other internal panel subunit error

The elemenUd field is four bytes long . The fist two bytes specify the type of element (panel ,

link, scroller, etc.) and the second two bytes are a 16-bit unique identifier. Some special cases

exist - for instance, if the element type is "Panel" and the id is FF , 6, then a request is being

made for the root panel. In this case, no GUI data is transferred - the actual unique id of the

root panel is returned in the reply packet - say 00. The controller now knows the unique id of

the root panel and sends another Push GUI Data packet asking for the GUI data of the element

with type "Panel" and id 00. This time the GUI data of the panel is sent back to the controller.

Once the controller receives the data for all the panels, it displays the root panel to the user (see

§ 4.7.2 for more details). Thereafter, when the user presses a panel link button , the new panel

is displayed to the user.

Chap1.r 4

97

4.6.4 User Configuration Command Messages

Figure 30 shows how user configuration commands are handled by the DHIVA. The incoming

AV/C packet contains the id of the element the user is interacting with and any arguments that

need to be conveyed (for example, if the user changes the value of a slider, the user

configuration command message will contain the id of the slider as well as the value the user

has moved the slider to). In transform 3.1, the element is found in the panel subunit structures

and its corresponding "host command" is obtained (this host command is specified when

building the GUI - see § 4.3.1). If the element is valid, an OK AV/C message is transmitted

back to the controller. The argument of the configuration command is then used to modify the

host command and it is passed to transform 3.2. In transform 3.2, the command is converted to

the correct serial form and transferred to the device (the AV/R) via the serial host interface. This

is how the actual action is performed.

Figure 34 shows the format of the User Action command. The source_plug and

generation_number are as for the Push GUI data command (see previous section). The

elemenUd is the type and unique id of the element that the user is currently interacting with.

The action_type specifies what action id being performed and any action-specific data is

transferred in the action_specific_data field . For example, if the user changes a slider's value,

the new value is sent in the action_specific_data field . The action types specified are select,

press, release, seCvalue (used when a slider is changed), enter_data, choose_list (used when a

scroller is changed), selecUtem and selecCelemenl.

opcode USER ACTION (7F,.)

operand[O] source_plug

operand[1] generation_number

operand[2]

operand[3]

operand[4] elemenUd

operand[5]

operand[6]

operand[7] action_type

operand[8]

. " action_specific_data

" .

Figure 34 - The format of the User Action packet

Chapter 4

98

It must be noted that the controller (the TV) has no way of knowing if the command has

succeeded or not - the OK AV/C message from the target (the AV/R) confirms only that the

configuration request is syntactically correct.

4.7 The Control/erApp

4.7.1 Features of the ControlierApp

The fina l portion of the AV/C AV/R system to consider is the ControlierApp. The ControlierApp

is a program that resides on the controller device. The ControllerApp performs several

functions:

• initiates communications with the target

• obtains GUI information from the target

• displays GUI to user

• receives user input

• transmits user actions to the target

• receives state change information from the target and update GUI to reflect these changes

The ControlierApp must, therefore, firstly be able to interface with the IEEE1394 network. The

computer (the controller device) is connected to the IEEE1394 network via an IEEE1394

network interface card (NIC). The computer becomes a node on the IEEE1394 network. The

program interfaces to the NIC via a device driver. The device driver (written by Digital Harmony)

provides the program with Application Programming Interfaces (APls) . The APls provide

abstraction away from the actual networking protocol (which the driver handles). The driver

takes care of connecting the computer to the IEEE 1394 network automatically. The program

can then use the simple function calls defined by the APls to send FCP packets and receive

FCP acknowledgements on the IEEE1394 network. The relation between the program (the

ControlierApp), the device driver, the NIC and the IEEE1394 network is shown in Figure 35.

Chapter 4

99

Computer

ControllerApp

~ r-
~ ".

Device
Driver

11 -,, 7

Network
lEEEI394 , ~

·1 1
ctwork DHIVA

Interface .~
Card -

Figure 35 - The Device Driver interacts between the IEEE1394 Network and the

ControlierApp

Secondly, the ControlierApp must be able to issue and receive AV/C packets - and specifically

panel subunit packets. Thirdly, the ControlierApp must be able to display the GUI elements

dynamically - the GUI is built at run time from the GUI data received from the target (the DHIVA

and the AV/R). Fourthly, the ControllerApp must be able to interpret user inputs and issue

corresponding AV/C panel subunit user action commands.

The ControlierApp is written in Visual C++, since this environment allows all of the above

features to be implemented . It allows the device driver to be used to interface with the

IEEE1394 network (the driver APls are written in C++). It allows the panel subunit logic to be

programmed in order to send and receive panel subunit packets and also allows dynamic GUls

to be built at run time. Furthermore, Visual C++ is an object oriented environment and allows

rapid development of visual and object oriented applications.

4.7.2 ControlierApp Design

The design of the ControllerApp conforms to the following sequence:

• Use case diagram (to show the broad functionality of the system)

• Scenarios (to set out clearly what events occur in the system)

• Sequence diagrams (to show interactions between classes)

• Object Model (to show the classes with their attributes and member functi ons)

Chapter 4

100

·-.
~.,---- ---~

..

User ControlDevice Device

Figure 36 - The Use Case Diagram for the ControlierApp

Figure 37 - An example panel for the AV/R system

Figure 36 shows the Use Case Diagram for the ControllerApp. The core function of the

ControlierApp is controlling the device. There are two actors that influence the ControllerApp -

the user and the device. The ControlierApp responds to stimuli rece ived from these two actors.

The panels accessible to the user depend on the configuralion that the manufacturer of the

target device specifies in XML. An example of a panel for the AV/R system is shown in Figure

37. The panel's caption is "General" and it contains a slider (called "Main Volume", ranging from

o to 200), a scroller (called "Sleep" currently showing "Off' is selected) and a panel link labelled

"Back to Main". If the user slides the thumb of the slider, the main volume of the device this GUI

Chapter 4

101

represents is changed. Changing the currently selected sleep option will set the sleep timer.

Pressing the panel link will cause this panel to be replaced by the "Main" panel.

There are several scenarios for the ControlierApp. Scenario 1 shows how the ControlierApp

initiates communications with the target. Scenarios 2 and 3 show how the ControlierApp deals

with retrieving Panel data from the target. Scenario 4 shows how the ControlierApp displays (or

renders) the GUI. The remaining scenarios show how the ControllerApp interacts with the user.

• Scenario 1: Startup. The user starts the program. The program scans the network for all

attached devices.

• Scenario 2: Get Panel Data. The controller obtains all the panel data from the target. Each

panel retrieved contains the id's of all the elements it contains, as well as its name.

• Scenario 3: Get Element Data. The controller iterates through all the elements in the panel,

obtaining the element's data from the target by requesting passing the id of the element to

the target. Each panel link refers to another panel, and if the panel being referred to by the

link is not yet retrieved, the controller retrieves the panel.

• Scenario 4: Render Panel. The Controller displays the current panel.

• Scenario 5: Handle Link Press. The controller detects that the user has pressed a panel link.

The controller gets the name of the panel that is being referred to by the link, clears the

current panel off the screen and displays the new panel.

• Scenario 6: Handle Slider Change. The controller detects that the user has changed the

value of a slider. It notes the new value and the id of the slider. It then conveys a user

action command (using the new value and slider id) as arguments to the target.

• Scenario 7: Handle Scroller Change. The controller detects that the user has changed the

selection of a scroller. It notes the new selection and the id of the scroller. It then conveys a

user action command (using the new selection and scroller id) as arguments to the target.

Each scenario has a corresponding sequence diagram and they appear as follows:

Chapter 4

102

. Controller : FheW i- eNetwork ; : FCPOrher

Startup
' ,'---------------->~. , i' , .

I;
, I
I

i
,

, , ,
i'

T
1

i

i I
i I

1
: i
I'

Create

, ,

1

I
I SearchForDe~ce r Create

I ,
I

1

1

Figure 38 - The sequence diagram for the ControlierApp Scenario 1

When the FireWireNetwork object searches for devices on the IEEE1394 network, it enumerates

each one and creates a handle to each one. The FCPDriver object uses the handle to address

a particular node (the node with that handle) on the network.

: Controller

, ,
i

GatPano!()

I
AddPanel()

,~

:J-. GetPanol(rool)

I

! . FCPDrjYef I

I
. F!feWlra

>1
I,'

avcPa"loIUpdate()

11
I

avcPanalP ushGu Data()_ 1

l,
: < : P ",eP"k.~) 1

Create

Figure 39 - The sequence diagram for the ControlierApp Scenario 2

1 > . , I

l
1

1

The Controller object holds a list of panels. Since a GUI may contain several panels, and the

user may switch often between these panels, the GUI data for that panel and all its elements are

stored locally on the computer as they are received from the target. This prevents the

Chapter 4

103

ControlierApp from having to obtain the Panel data from the target again when the user switches

to that panel.

I

~ I
!

GetElementld() I
> I!

T
GelPackel(Elemenlld)

AddElemenl()
I------'--'------;"i I

r

I

-:~I

: - 1
I

.J I
: avd'.,.'PushGuData (Eleme"tld~

ParsePacket() I
~I
'-

create .. 1

I

~

Figure 40 . The sequence diagram for the ControlierApp Scenario 3

>;1

r
I
I

The ControllerApp receives each panel from the target. The panel at this stage hold only the id's

of the elements it contains. The ControllerApp must now retr ieve each element's data from the

target. As each element is retrieved, an object is created that encapsulated the functions and

attributes of that element and it is stored on the computer and added to the panel's list of

elements.

Chapter 4

104

: Controller : Controller : Panel : Widget
W indow

RenderPanel{Panel) I
- > I

Delet eWi dgets() I ,

r I ,
GetE lementO

"I I I
I

~
Create ,

AddWidget()

I I
DisplayWidget() I

i I I,
i

l I I
I I I

Figure 41 - The sequence diagram for the ControlierApp Scenario 4

Once all the elements in a panel have been retrieved from the target, the ControlierApp displays

the panel. It iterates through each element, telling that element to create for itself an on-screen

representation of itself (the Widget object) and to display that Widget. The Widgets are used to

determine when and how the user is interacting with a particular element. For instance, if the

element is a Scroller, the Scroller will create a drop-down box widget. The widget is displayed to

the user and its choices enumerated from the Scroller's properties, When the user changes a

selection, the widget reports that event to the element it is associated with so that it can then

generate the corresponding panel subunit user action command. Three user action types exi st -

the user can press a panel link button, change a slider or change the selection of a scroller. The

sequence diagrams for each of these actions follows :

Chapter 4

105

~.~.,

11
I ,

: i ,
i: , ,
T
I

t • Controller . Cootroller

l_ Window

Ha ndle l inkPress() J
!
I' I!
I

I,
i I
I!
! i
I

Haodlellnk Press(Jd)

i' RenderPanel(PaneU d)
, <E-
I' ,

I
>

i J

Ii
" I
i I
i i

GetE lemenl {ld) 1
): :

" GatLin,klnfo()

! hetpane,(paneUd)

I

I
I

<

Figure 42 • The sequence diagram for the ControlierApp Scenario 5

I
I

~
I

I
I

I
I
I

The HandleLinkPress occurs when a user presses a panel link button. The id of the panel being

linked to by the user is retrieved from the panel link's properties and the current panel is

removed and the new panel is displayed .

Chapter 4

(' .

: Controlier
W indow

: Controller

1 Hand lesliderChange()~ I

. FireWire
Network

. FCPDriver

II HandJeSlIderChange(ld , v~rue)
- >J 'I ,

, HandresliderChange(Eleme_nL~ , Value) I
: ~paCkel() !

I
I IS\oCpaneluserACliOO(packet) r- .-~

I
II

Figure 43 • The sequence diagram for the ControlierApp Scenario 6

106

: Controller
Window

~
!HandieScrol1erChange()1
I -- >1 1

: CootlOller : FireWire
Network

: FCPDriver

HandleScrollerChange(ld, hdex)

-11
HandleScrollerChange(ElemenUd, hdex) 1

ill MakePacke~) 1 I ~,'E2
,I ~
! I 1 a\C PaneIUserAclior(packet) I
! i
I'

T
1

II >r
1 1

1 1

Figure 44 . The sequence diagram for the ControlierApp Scenario 7

The last two sequence diagrams (Figure 43 and Figure 44) show how the ControlierApp sends

user action messages to the target when the user changes either a Slider or a Scroller

respectively, The element being interacted with is determined from the Widget that the user has

clicked. The elements properties include what user action command is to be sent to the target

as well as what arguments (the new Slider or Scroller value) will accompany the command. The

command is relayed to the target and the target then sends the appropriate serial string

command to the AV/R to perform the user's command (see § 4.6.4 for more details).

The complete object model for the ControllerApp is shown in Figure 45.

Chapter 4

107

t

I~
c:::-

ir-~
• •

i

i ~
.f::

"
lin ,t o

~

f

~ i~ -
,.. ~ ~ .. •

I ' I I
11 Ii . - c o

i-

UII-t
~ h,, 1

It 'I ~
,~2h

'-: - ~5 ~l
lO ~

!

o
Figure 45 - The complete object model for the ControlierApp

Chapter 4

108

4.8 Summary

This chapter details the implementation of a simple remote configuration system. The system

remote configuration of an AudioNideo receiver (AV/R) via a TV, both on an IEEE1394 network.

The AV/R is a Yamaha RXV 1000. The AV/R itself cannot communicate with the IEEE1394

network directly. The AV/R has to be hosted by another device capable of interfacing with the

IEEE1394 network on its behalf - the Digital Harmony Interface for Video and Audio (DHIVA).

The implementation of the system described in th is chapter makes use of the AV/C Panel

Subunit specification to implement the TV-AV/R remote configuration system.

A PC using a Windows application simulates the TV controller for the panel subunit so that the

controller can receive user input, can provide user output and is directly connected to the

IEEE1394 network.

When designing the AV/C Panel Subunit implementation for the TV-AV/R system, two main

goals emerged . Firstly, a working implementation had to be obtained. Secondly, a set of tools

had to be developed to aid manufacturers in developing further remote configuration applications

similar to this one (i.e. remote configuration systems for devices other than the TV and AV/R).

Bearing these goals in mind , the work done in order to realize the remote configuration TV-AV/R

system was five-fold. Each step was essential for the implementation, and a tool was created

for each step. Future systems need only use the tools created in order to quickly and easily

create a fully functioning remote configuration system. The steps followed were:

1. The abstraction of the GUI (the method of specifying how the GUI is laid out and how it is

stored in the target) is achieved by making use of an extended Markup Language (XML)

grammar. Only five graphical elements are selected, and with these elements, vi rtually all

configuration operations can be achieved: panels (these are organizational and serve as

containers for the other elements) , labels (these are static text fields), links (these are buttons

that link panels, i.e. clicking a link brings up the panel this link points to), sliders (these allow a

user to select a value within a well-defined range) and scrollers (these allow a user to scrol l

through a set of severa l alternatives, seeing only one at a time).

The next step is to map these elements and their properties to XML notation. This is done by

creating a Document Type Definition (DTD) that is able to verify the correctness of an XML GUI

Chapter 4

109

file. Each of the five elements named above have corresponding XML tags arranged

hierarchically.

2. A GuiBuilder tool is created. This allows manufacturers to specify the .Iayout of a GUI

graphically. The program, created in Visual Basic, can then output an XML file which

corresponds exactly to the manufacturer's GUI layout.

3. The XML-GUI Parser is now created to be able to parse the XML GUI f ile the manufacturer

has created. The parser is created using a compiler generator (Coco/R) and its function is to

create C structures for the elements. These structures are then stored on the DHIVA and the

DHIVA is now ready to interact with the TV.

4. The AV/C Panel Subunit is then implemented on the DHIVA in C code. The panel subunit

slots into the rest of the Digital Harmony stack already present on the DHIV A. The panel subunit

gets packets from the AV/C handler (which routes all AV/C messages to their intended

subunits). The panel subunit on the DHIVA is able to retrieve GUI data for any given element as

well as perform the user's actions by transmitting the actions to the AV/R across a serial port.

5. Finally, the ControllerApp is implemented on a PC that is connected to the AV/R via the

DHIVA on an IEEE 1394 network. The ControlierApp initiates communications wi th the AV/R,

obtains the GUI from the AV/R, displays the GUI to the user, receives user input and transmits

user actions to the AVIR and receives state change information from the AV/R and updates the

GUI to reflect these changes.

Chapter 4

110

Chapter 5 - The UPnP Presentation Mechanism

Solution to Remote Configuration

5.1 Introduction

In chapter 3, four methods of implementing remote configuration are presented - HAVi's Data

Driven Interaction (001), Jini's ServiceUI object, AV/C's Panel Subunit and UPnP's presentation

mechanism. Chapter 4 detailed the Panel Subunit solution to remote configuration for a TV

AV/R system on an IEEE 1394 network. This chapter discusses how UPnP's presentation

mechanism may be used to implement remote configuration for the same TV-AV/R system.

Ethernet

TV simulated on PC

Figure 46 - The UPnP TV-AV/R system

Chapter 5

111

Serial
Connection

For the UPnP presentation mechanism implementation, however, the AV/R needs to be able to

communicate using IP and all the other protocols that UPnP uses. In order to simplify the

system, a computer is used to host the AV/R. The computer communicates to the AV/R in the

same waY the DHIVA did in the AV/C Panel Subunit implementation - via a serial connection.

The computer hosting the AV/R is connected to the control point (a further computer simulating

the TV) by Ethernet cable. The AV/R's host computer acts as a UPnP "file server", serving the

description and presentation documents to the control point when requested to do so. The

system is shown in Figure 46.

5.2 The UPnP TV-A VIR

The UPnP presentation mechanism hinges on the description and presentation documents that

reside on the device offering services. The control point simply retrieves these documents from

the device and can immediately issue remote configuration commands or subscribe to events

pertaining to the state of the device.

Figure 47 shows the components of the UPnP "fi le server" that resides on the AV/R. The AV/R,

apart from providing the description and presentation documents, needs only to implement a

utility that is able to map from UPnP messages (specifically control commands, which include

remote configuration commands) to native commands that the AV/R understands. This is shown

in the "Device Dependent Function Block". The three documents that will be required by the

control point (the TV) are shown in the center block, while the UPnP stack is shown in the right

most block.

Chapter 5

Device
Dependent
Function

Block

Device
Description

(XML)

Service
Description

(XML)

Presentation
Page (HTML)

SOAP Parser

GENA Parser

SSDP Parser

XML Parser

Web Server

Figure 47 - Components of a UPnP Server

112

It was decided that implementing an entirely new UPnP stack was unnecessary, since Microsoft

have already implemented such a stack in their UPnP Development Kit. The Microsoft UPnP

Development Kit (available online at http://www.microsoft.com/hwdev/UPnP/) is used to

implement the UPnP presentation mechanism TV-AV/R system, since it includes the Microsoft

UPnP stack, The Development Kit is implemented in Visual C++, The source files are divided

into modules that implement various UPnP functions , Figure 48 [36] shows the modules that are

supplied with the Development Kit. The module marked "UDevice" contains device specific

function prototypes, Each UPnP command is mapped to a function in this module, The

functions reside in the module marked "Device" , The "Device" module's functions match the

device and service description that reside on the AV/R and include state variables for the device,

These two modules form the "Device Dependant function block" of Figure 47,

Legend

Module requires no
porting or device-
speCific changes

Figure 48 - The organisation of UPnP modules

5.2.1 UPnP Modules

Figure 48 shows the Microsoft UPnP Development Kit modules as they appear in the AV/R. All

UPnP messages for Eventing and Controlling (see § 2.4.4 for more definitions of these terms)

are processed through the Internet Information Server (liS) , The interface to the liS is achieved

Chapter 5

113

through Internet Services Application Programming Interfaces, or ISAPI. ISAPI allows web

services to be written. In the case of UPnP, the web-server on the AV/R must be able to serve

the UPnP documents to the control point and receive Control and Eventing messages from the

control point. The ISAPlctl module is the UPnP interface onto these APls, and so essentially

provides the interface between UPDIAG and ISAPI. Control provides services that allow a

device to be manipulated. The Winsock, Network and Mnetwork modules are used to publish

information about the device on the network. The Parser module allows UPDIAG to parse

SSDP (Simple Service Discovery Protocol) messages, and the SSDP module is used to send

the relevant SSDP messages that are required for the device and its services to rema in exposed

on the network. The XMLmain module is for parsing XML packets. The SOAP (Simple Object

access Protocol) module handles all SOAP messages, while the Event module handles

subscription to events and event notifications. The publish module is responsible for publishing

the services of the device using SSDP. The UDevice module contains prototypes for all the

native functions contained in the Device Module, and UDevice is responsible for reading the

device and description files. The Device module contains all the native services that are

published by the device. DoCmds does the actual simulation of the device, while UPDIAG

handles the device initia lization (it is the main program).

The Development Kit provides Visual C++ code for all the modules. Some of the modules need

to be ported if the system is implemented on a non-Windows platform, but since Windows is the

platform used for the implementation, no porting is necessary. Because all of the code is

supplied, only minor modifications need to be made in order to implement the system for the TV

AV/R - the following must be done on the AV/R:

• provide a device description document

• provide a service description document "

• provide a presentation document

• modify Device module

• modify UDevice module

Each device on the UPnP network that wishes to be remotely configured using the UPnP

presentation mechanism must contain three documents. The description document is an XML

document detailing features of the device, such as its name, model number and manufacturer.

Also embedded in this document are the URLs of the other two documents. The service

description document describes the services that are available on this device and how they are

used. This document is also called the Service Control Protocol Document, or SCPD. The final

document is the presentation document, which is an HTML document that specifies the user

Chapter 5

114

interface to the device's services. This document uses VBScript to perform UPnP functions, and

is detailed later in this chapter.

Apart from these documents, which are specific to each device, two Development Kit modules

must be specific to each device. These two are the UDevice module and the Device module.

Broadly, these two modules are responsible for mapping UPnP messages to native function

calls and the actual native functions themselves respectively. All other modules are generalized

and do not need to be modified for each device. The UDevice and Device modules are detailed

later in this chapter.

The control point (the TV) needs only a browser capable of sending and receiving HTTP, SOAP,

GENA and SSDP messages. The Windows Millennium operating system supports SOAP,

GENA and SSDP. Microsoft's Internet Explorer uses HTTP to obtain the documents and

VBScript to process SOAP, GENA and SSDP messages. Hence, since a computer is be ing

used to simulate the TV, this Windows ME and Internet Explorer are used to implement the

control point.

5.2.2 The UPnP Presentation Mechanism Process

In order for the system to work correctly, a specific sequence of operations performed between

the control point (the TV) and the device (the AV/R) must be followed. Figure 49 shows the

sequence of interactions diagrammatically. Firstly, the AV/R (the device offereing services)

broadcasts its presence on the network (this step is not shown on the diagram). This

advertisement is an SSDP message and contains a URL that points to the device's device

description document. The control point then requests this XML document from the AV/R. This

document is sent using HyperText Transfer Protocol (HTTP) over the network, as are all the

documents sent from the AV/R to the control point. From the device description the control point

obtains the URL of the service description document and requests this document from the AV/R.

The control point then subscribes to any events it wishes to (events are services or action) using

Simple Service Discovery Protocol (SSDP). The control point then requests the AV/R's

HyperText Markup Language (HTML) presentation page from the AV/R and displays it to the

user in a standard browser. Any user control or configuration commands are then transmitted

from the control point to the AV/R using Simple Object Access Protocol (SOAP). The

commands are parsed (using the XMLMain module) and passed to the device dependent

function block (the portion of the Development Kit that includes the UDevice and Device

modules), which carries out the command on the AV/R. Any events that occur on the AV/R are

Chapter 5

115

transmitted from the AV/R to the control point using General Event Notification Architecture

(GENA). The presentation page updates as necessary to reflect these events.

The three documents (the device description document, the service description document and

the presentation document), as well as the UDevice and Device modules are detailed below.

Reauest for device description

~ Device description I

Request for service description, URL specified

~ ~ Service description r
~ r-- <: > u ~

E-
.,

~ " Subscribe to events
.:;

~ .,
-0 Q

1:1
.",
~

0 Request for presentation, URL specified ~

U 0
l:l

m c:

~ Presentation Page r 0
u

r'
u

Control commands: Action (arguments)

Events: State variable, new value

Figure 49 • Interactions between the control point (TV) and device offering services (AV/R)

during a UPnP Remote Configuration session

5.2.3 The Device Description Document

The device description document is an XML document that details the device offering services

itself. It contains information about the device name, model, make and manufacturer and also

contains a globally unique id for the device. It contains an optional icon for the device.

Importantly, this document contains URLs to all the other documents required by a control point

in order to control or configure this device. Lines 29 to 38 of Listing 2 show these URLs.

Chapter 5

116

The device description document is formatted according to the layout that is specified by the

UPnP specification [11]. In the specification, an XML device description document is specified

with placeholders written in italics. In order to create a device description document, th is layout

is copied and the italics placeholders are replaced by the device-specific attributes.

Line 36 tells the control point where the Service Control Protocol Document (SCPD) res ides.

The SCPD describes all the services that the device offers and allows the control point to

subscribe to any events it wishes to.

5.2.4 The Service Description Document

The service description document is formally ca lled the Service Control Protocol Document

(SCPD). The SCPD for the AV/R is shown in Appendix D, and like the device description

document is created from a template in the UPnP specification [11] .

1 . .:::?xml version=1I1.O"?>

2. <root xmlns=lIurn:schemas-upnp-org:device - l-O u>

3 . <specVersion>

4 . <major>l</major>

5 . <minor>O</minor>

6. </specVersion>

7 . <device>

8. <UDN>uuid:8847be4e-72de-4e20-86cO-1dcbbeOf980b</UDN>

9. <friendlyName>Yamaha AV/R</friendlyName>

10 . <deviceType>urn:schemas-upnp - org:device:avrconfig:l</deviceType>

11. <presentationURL> .. /presentation/ rxvlOOO.hcml</presentationURL>

12 . <manufacturer>Yamaha</manufacturer>

13. <manufacturerURL>http : //www . yamaha.com/</manufacturerURL>

14. <modelName>RXV</mode l Name>

15. <modelNumber>lOOO</modelNumber>

16. <modelDescription>UPnP-RXV1000 Config Control</modelDescription>

17. <modelURL>http://www.yamaha.com/</modelURL>

20. <iconList>

21. <icon>

22. <mimetype>image/png</mimetype>

23. <width>16</width>

24. <height>16</height>

25 . <depth>2</depth>

Chapter 5

117

26. curl> .. /images/16 - 2.pngc/url>

27 . c/icon>

28. c/iconList>

29. cserviceList>

30. cservice>

31 . cserviceType>urn: schemas-upnp - org : service :avrconfig : 1

32. c/serviceType>

33 . cserviceld >urn: upnp-org : serviceld:avrconfigc/serviceld>

34. ccontroIURL> .. /control/isapict l .dll?avrconf i gc/controlURL>

35. ceventSubURL> .. /control/isapictl.dll?avr configc/eventSubURL>

36 . <SCPDURL> . . /SCPD/rxvlOOOscpd . xml</SCPDURL>

37. c/service>

38. </serviceList>

39 . c/device>

40. </root>

Listing 2 - The AV/R Device Description Document

Lines 9 - 58 show what services the device is exposing to the network. These services are

actions may be performed on the device. These are the names of the UPnP commands that the

control point will issue to the device when the user selects an action . When the control point

(the TV) requests the SCPD from the device (the AV/R) , this document is sent to the control

point. The control point now knows what services the device is offering. The rema inder of the

file documents the state table of the services - ranges , allowed values and current values of any

state variables the device wishes to publish.

The AV/R has a number of input options available. One of the remote configuration options is to

allow the user to select which input is desired . The following lines of code show the state

variable, called Input, is specified in the SCPD:

63. cstateVariable sendEvents="yesn>

64. cname>Inputc/name>

65. <dataType>string</dataType>

66. callowedValueList>

67. callowedValue>Phonoc/a l lowedValue>

68. callowedValue >CDc/allowedValue>

69 . callowedValue >Tunerc/allowedValue>

70. callowedValue>CD -Rc/allowedValue>

71. cal lowedValue>MD/Tapec/allowedValue >

72. cal lowedValue>DVDc/allowedVa lue>

73. cal lowedValue>O- TV/LD</allowedValue>

Chapter 5

118

74. <al lowedValue>CABLE/SAT</allowedVa l ue>

75. <allowedValue>VCR1</allowedValue>

76 . <allowe dValue >V- Aux</allowedValue >

77. </al lowedValue Lis t >

78 . <defaultValue>CD</defaultValue>

79 . </s t ateVariable >

Any time a state variable is changed by the control point (or physically on the device itself), it will

generate an event to notify any interested parties (control points that have subscribed for this

event notification) that it has changed. The ability for a state variable change to signal an event

is determined by the attribute "sendEvents" (line 63). If this attribute is set to "yes", then any

change of the variable on the device generates an event. If it is set to "no", no events will be

generated for this variable. The name of the variable is specified by <name> tags (line 64). The

type is specified by <data Type> tags (line 65). In this case, the names of the input options are

specified as strings, and so the data type is set to "string". A list of allowed values is then

specified between the <allowedValueList> tags (lines 66 - 77). Each value is specified within

<allowedValue> tags. Finally, a default value is set using <defaultValue> tags (line 78). This

element corresponds to a Scroller element in the Panel Subunit.

In order to manipulate this state variable and change it (as well as the physical input selected on

the AV/R), the control point must be able to issue a command to change the value of the input.

To do so, an action that allows manipulation of the Input state variable must be specified . The

following code shows this action specification:

10. <ac t ion>

11 . <name>Next_String_Boundedlnput</name>

1 2 . <faction>

The action appears between <action> tags. Its name is NexCString_Boundedlnput. The action

selects the next string of the Input variable, checking that is never goes beyond the number of

al lowed values for that state (it is a bounded increment). A corresponding

Previous_String_Boundedlnput action exists to allow the user to select the previous string.

5.2.5 The Presentation Document

The Device description document and SCPO describe the device and its services to the control

point. At this stage, the control point (the TV) knows about the device offering services (the

AV/R) and what services it is offering from the device and service description documents

respectively. The control point must now present an interface to the user to allow the user to

Chapter 5

119

make us of the services on the AV/R, In order to do this, the control must retrieve the

presentation document from the AV/R. This document is an HTML file and is displayed in a

browser on the TV for the user to see,

The presentation page is written in HTML and uses Visual Basic Script (VBScript) to implement

the functions and handlers necessary for calling UPnP remote functions (the services that the

AV/R has exposed), The document is divided into two sections - the standard HTML to display

buttons and text to the user, and the VBScript section, The VB Script section is responsible for

loading the device description and service descriptions and for mapping the user's actions in the

browser to UPnP commands sent to the AV/R, as well as for updating the display as events that

change the values of anyon-screen state variables are received, The device and service

descriptions must be loaded for the control point to be able to issue commands to the AV/R,

since the loaded device contains the references to the remote functions,

5.2.6 The Presentation Process

The control point must display an interface to the AV/R to the user. To do so, it must retrieve all

the information concerning the device and its services (contained within the device and service

description documents) and display the presentation page to the user. The presentation page

makes use of the device and service descriptions, and so it is vital that the control point can

reference these documents during presentation, A listing of the presentation page used for the

UPnP TV-AV/R system is shown in Appendix E, Figure 14 (page 62) shows what the

presentation page for the UPnP TV looks like,

In order to load the device (that is, to create an internal logical representation of the device), the

control point creates a reference to the device description document as shown in the following

lines of code:

200. Dim AvrDesc

201. Set AvrDesc :::: CreateObj ect ("UPnP. DescriptionDocument .1 11
)

202. AvrDesc. Load (II . . /description/rxvlOOO. xml")

The variable AvrDesc now is a reference to the device description, The CreateObject function

creates a blank structure representing a UPnP device, A method called "Load" is defined that

allows the device description document specified in the argument to be parsed and populate the

blank structure, This object is defined in the UPnP DLLs (Dynamic Link Libraries) that link into

Internet Explorer (the browser being used to display the presentation page), These DLLs come

with the Microsoft Millennium operating system,

Chapter 5

120

Next, the controller creates a reference to the root device of the AVIR's description. Device

descriptions may be nested hierarchical ly (in a similar idea to the subunits of the Panel Subunit

- see § 2.4.5.3) - and the root device will conta in references to further sub-devices (if they

exist). Thereafter, th is reference makes attributes of the device, such as its name

(AVRDevice.FriendlyName) and its type (AVRDevice.Type) available. to the browser. The

fo llowing lines of code show how a further UPnP DLL method, "RootOevice", is used to do this :

208. Dim AvrDevice

209. Set AvrDevice = AvrDesc.RootDevice

In order for the control point to map the user's actions to UPnP commands, the event handler

that handles events generated by the user (such as clicking a button) must be linked to the

services that the AVIR is advertising in its service description. The fol lowing lines of code show

how the browser does this using the UPnP DLL function "Services" (used to create a reference

to the services of the AVIR) and "AddCaIIBack" (used to add a callback for events). The

"GetRef' funct ion is used to obtain a handle to the event handler.

228. Dim Avr ControlService

229. set AvrControlService=AvrDevice.Services("urn:upnp

org: serviceld : avrconfigll)

230 . AvrControlService . AddCallback GetRef(l1eventHandler")

At this point, the presentation page is initialized and can be displayed to the user. Now the first

section of the presentation page comes to the fore, where HTML is used to specify functions that

are used to invoke UPnP actions. For example, a button may be mapped to a function (the

function is written in VBScript) so that when a user clicks the button, the funct ion is called. The

following code shows how a button is specified in HTML. The button is labeled "Next" and

appears under a label with the caption "Input" - in other words, the button, when pressed,

selects the next input option of the AVIR. The button, when pressed, invokes a function called

"Nextlnput":

23. <INPUT type="button ll onclick::IINextlnput () II value = "Next">

Below, the function "Nextlnput" is shown:

124. function Nextlnput()

125. Dim inArgs(O)

126 . Dim QutArgs(O)

127. AvrControlService.lnvokeAction IINext_Strin9_Boundedlnput", inArgs,

outArgs

Chapter 5

121

128 . end function

The action invoked by this funct ion is "Next_String_Boundedlnput" and maps exactly to an

action that is specified in the SCPO fil e of the AV/R (line 11 of Appendix 0 - UPnP AV/R SCPO).

The function call has no input or output arguments.

When state variables of the AV/R change, the events are sent to the TV. A call-back function is

specified in lines 97 - 116 to handle these event messages. The code for th is function is

contains the following case statement:

97. Sub eventHandler(callbackType, svcObj, varNarne, value)

98 . 'the intervening lines o f code are commented out

105. If (callbackType = "VARIABLE_UPDATE") Then

106. s e lect case varName

107 . Case II Input II

108 . Case IISoundModel!

109. Case "SoundField ll

1l0 . Case uSleep ll

lll . Case IISpeakerAIl

ll2 Case nSpeakerBII

ll3. Case "Volume II

ll4 . end se lec t

ll5. End If

ll6. End Sub

Input.innerText = value

SoundMode.innerText = value

SoundFie ld . innerText = value

Sleep . innerText = value

SpeakerA.innerText = value

SpeakerB . innerText = val ue

MainVolume .innerText = value

The event handler accepts four arguments: the call-back type (the only one that the control point

is interested in as far as UPnP goes is "Variable_Update" as seen in line 105), the service

object, the variable and the value. The service object is of no interest here. The case statement

(lines 106 - 114) assigns value to the on-screen value that corresponds to the variable name. In

this manner, all the on-screen variables are always kept up to date.

5.2.7 Modifying the Device and UDevice Modules

The device and service description documents provide the control point (the TV) with enough

information to ca ll the correct remote function corresponding to a user's interaction with the

presentation page. For instance, by pressing the "Next Input" button presented on the TV, the

user communicates the intention to change the currently selected input to the next input option.

The control point must now convey this command to the AV/R in order for it to be carried out.

The presentation page provides the map from the on-screen user actions to UPnP control

commands. The AV/R must now map the UPnP command to a native command that will

Chapter 5

122

actually perform the operation requested by the user (in this case, select the next input option on

the AV/R) . To do this, the AV/R uses two of the Microsoft UPnP Development Kit's modules,

namely the Device and UDevice modules (shown in Appendices F and G respectively).

The "Device" module is where the native, device-specific function calls reside . This module is

specific for each UPnP device. For the case of the AV/R in the TV-AV/R system, the Device

module conta ins several functions that simply issue serial commands along the serial connection

to the AV/R. These serial commands will perform the configuration operations the user

specifies. The map from UPnP commands to these native functions resides in the UDevice

module, and so the UDevice module must also be different for each UPnP device. The Device

module also holds a structure that holds the AV/R's current state.

There are very close relationships between the Device and UDevice modules and the service

description document of the AV/R. The state variables and actions that appear in the service

description document are exactly mapped to internal state variables and functions in the Device

module. The UDevice module contains prototypes of the functions that appear in the Device

module and a map from UPnP actions (as specified in the service document) to these

prototypes.

UPnP commands from the TV come to the AV/R in the form of Simple Object Access Protocol

(SOAP) commands. These are formatted using XML tags and when they are recognized as

SOAP commands by the ISAPlctl module, the commands are passed to the SOAP module. The

SOAP module then parses the command (with help from the XMLMain module) and hands the

commands to the Control module. The Control module then passes the commands to the

UDevice module which maps the SOAP command to a native call. The native call is then made

using the Device module and the command is carried out. Any changes that occur to the state

variables of the AV/R are then broadcast to interested parties (control points which have

subscribed to event notification corresponding to changes in the state variables involved) on the

network.

The structure that the Device module uses to hold the state of the AV/R is shown in the following

lines of code (from Appendix F):

22. struct AVRConfig

23.

24. DWORD I nput;

25. DWORD SoundMode;

26. DWORD SoundField;

Chapter 5

123

27. DWORD Vo l ume;

28 . DWORD Slee p;

29 .

30.

31. };

BOOLEAN

BOOLEAN

SpeakerAi

SpeakerS;

DWords are double words and are defined as 16-bit integers. The variables that the AV/R's

state is modeled with are its Input, Sound Mode, Sound Field, Volume and current sleep setting.

Two Booleans are used to model the on and off state of speaker relays A and B.

This structure is instantiated to a variable called "lnsAVRConfig" and sets the variables to initial

values using the following code, setting the init ial state of the device to Input 0 (an index to the

string name of the input option), Sound Mode and Sound Field 0, Volume 50, Sleep 0 and

SpeakerA and SpeakerB both to 1 (on):

35 . AVRConf i g InsAVRCon f ig =

36 .

37. 0,

38. 0,

39 . 0 ,

40. 50,

41. 0,

42. 1,

43. 1

44. } ;

The native functions appear in the Device module. Each function has a corresponding action

specified in the service description document. Each of the functions performs a range check on

the variable being manipu lated before proceeding . If the new value is within specified

boundaries, the new value is set as the current value. The AWR then returns the results of the

action (if any) to the control point. The AV/R also broadcasts a message to the entire network

informing all interested control points (those control points that have registered for such events)

that the state variable of the AV/R has changed .

For example, consider again the function that selects the next input of the AV/R:

231. DWORD Do_Next_String_BoundedInp u t

232.

233.

234.

Chapter 5

CHAR'

DWORD

ARG*

124

StrEventUrl,

cArgs ,

r gArg s ,

235 .

236.

237 .

238.

PDWORD

ARG OUT*

239. if (InsAVRConfig.Input < MAX_I NPUT)

240.

241 . InsAVRConfig . lnput++;

242. CHAR szValue[32) i

pArgsOut,

rgArgsOut

24 3. sprintf(szValue, II% U I1 , InsAVRConfig.lnput) i

244. Change Prop (StrEventUrl, 11 Input II , szValue);

245 . Serial Command (II Input II I szValue) ;

246 . SubmitPropEvents(StrEventUrl, NULL);

247 .

248 . return 0 ;

249 .

The function is named "Do_Next_String_Boundedlnput" and takes several parameters.

StrEventURL is the U RL of the device's event source, which is used to generate event

notifications. The remainder of the parameters passed to this function are used to access the

input and output arguments of this function's corresponding UPnP command, but since none of

the functions used for the AV/R have any incoming or outgoing arguments, these parameters

are not used. The functions are all al ike in structure: range checking is performed (line 239)

after which the state pertinent state variable is updated (in th is case, the input index is

incremented). szValue is used to convert the state variable value to a string which is used by

the flowing three functions (line 243) . The ChangeProp function causes the state variable's new

value to be placed ready for event notification in the Event module. The SerialCommand

function then performs the serial command output on the serial port to the AV/R which causes

the user's action to be carried out physically on the AV/R (in this case, the next Input option is

selected). The SubmitPropEvents function then posts the event notification informing the

network of the change of this state variable's value. This function produces a UPnP packet,

which is sent to the control point (assuming that the control point has reg istered for this event

notification, which in the TV-AV/R's case it has) and the TV is then able to update its display.

This function (like all the other native functions) is mapped to a UPnP command in a static

structure in the UDevice module (called c_rgSvc, line 111 of Append ix G). Each mapping is a

tuple of the UPnP command and its corresponding native function call in the Device module and

looks as follows :

124. { "Next_String_ Boundedlnput", (PFNAS) Do_Next_String_Boundedlnput },

Chapter 5

125

The UPnP command is "Next_String_Boundedlnput" and this name appears in the service

description (line 11 of Appendix D) and in the presentation page (line 127 of appendix E). This

shows the close relationship between the presentation page, the service description document

and the UDevice module. The native function that this maps to is

"Do_Next_String_Boundedlnput" which is the name of the function in the Device module. In this

manner, all the UPnP commands are mapped to native function calls.

5.3 Summary
This chapter discusses how UPnP presentation mechanism may be used to implement remote

configuration for the same TV-AV/R system used in Chapter 4. A computer is used to host the

AV/R on an Ethernet network, making use of IP, the underlying protocol present in UPnP. The

computer communicates to the AV/R in the same way the DHIVA did in the AV/C Panel Subunit

implementation - via a serial connection. The computer hosting the AV/R is connected to the

control point (a further computer simulating the TV) by Ethernet cable. The AV/R's host

computer acts as a "fi le server", serving the description and presentation documents to the

control point when requested to do so.

The UPnP presentation mechanism implementation of the system hinges on the description and

presentation documents that reside on the AV/R. The control point simply retrieves these

documents from the device and can immediately issue remote configuration commands or

subscribe to events pertaining to the state of the device.

It was decided that implementing an entirely new UPnP stack was unnecessary, since Microsoft

have already implemented such a stack in their UPnP Development Kit. The Microsoft UPnP

Development Kit is used to implement the UPnP TV-AV/R system, since it includes the Microsoft

UPnP stack. The Development Kit is implemented in Visual C++. The source f iles are divided

into modules that implement various UPnP functions. Most of these devices require no changes

at all, with the exception of two modules, the Device and UDevice modules. The UDevice

contains device specific fun ction prototypes. Each UPnP command is mapped to a function in

this module. The functions reside in the module marked "Device". The "Device" module's

functions match service description actions that reside on the AV/R and include state variables

for the device.

-.. ---.------------------------
Chapter 5

126

Because all of the code is supplied in the development kit, only minor modifications need to be

made in order to implement the system for the TV-AV/R - the following must be done on the

AV/R:

• provide a device description document

• provide a service description document

• provide a presentation document

• modify Device module

• modify UDevice module

Each device on the UPnP network that wishes to be remotely configured using the UPnP

presentation mechanism must contain three documents. The description document is an XML

document detailing features of the device , such as its name, model number and manufacturer.

Also embedded in this document are the URLs of the other two documents required . The

service description document describes the services that are available on this device and how

they are used. The final document is the presentation document, wh ich is an HTML document

that specifies the user interface to the device's services. This document uses VBScript to

perform UPnP functions .

The control point (the TV) needs only a browser capable of sending and receiving HTTP, SOAP,

GENA and SSDP messages. The Windows Millennium operating system supports SOAP,

GENA and SSDP. Microsoft's Internet Explorer uses HTTP to obtain the documents and

VBScript to process SOAP, GENA and SSDP messages. Hence, since a computer is being

used to simulate the TV, this Windows ME and Internet Explorer are used to implement the

control point.

In order to manipulate the state variables (as well as perform the physical operations required by

the user on the AV/R), the control point must be able to issue a command to change the value of

any state variable. Actions that allow manipulation of the AV/R's state variable are specified in

the service description document. These actions are used by the presentation page (which is

the user interface displayed to the user on the TV) to perform the users commands.

There are very close relationships between the Device and UDevice modules and the service

description document of the AV/R. The state variab les and actions that appear in the service

description document are exactly mapped to internal state variables and functions in the Device

module. The UDevice module contains prototypes of the functions that appear in the Device

Chapter 5

127

module and a map from UPnP actions (as specified in the service document) to these

prototypes.

Each function not only corresponds to an action specified in the service description document,

but also produces a UPnP packet when a state variable is altered by performing one of these

actions. This packet is sent to the control point (assuming that the control point has reg istered

for it). The TV is then able to update its display using this event notification.

- -_ .. _._-------_._-_.-----------------------
Chapter 5

128

Chapter 6

129

Chapter 6 - Two Communication Models for

Device Configuration

6.1 Introduction

Chapter 2 presents various home entertainment networking solutions - HAVi, Jini, AV/C and

UPnP. Chapter 3 examines a small part of these home entertainment networking solutions -

the ir remote configuration solutions. HAVi uses data Driven Interaction (001), Jini implements

user adapters, AV/C uses the Panel Subunit and remote configuration can be done in a UPnP

network by making use of the UPnP presentation mechanism. A comparison of these solutions

is shown in section 3.5 This comparison revolves around the theoretical features of the different

solutions. In other words, by simply examining the solution, a fair comparison can be drawn to

show the differences in the approaches. Furthermore, the four solutions are divided into only

three categories , since the HAVi and AV/C solutions are so similar.

Chapters 4 and 5 then show how two of these categories of remote configuration solution are

implemented, using the AV/C Panel Subunit and UPnP presentation mechanism respectively.

The availability of an AV/C stack and the UPnP Development Kit make these two solutions the

easiest of the three categories to implement.

This chapter discusses in detail the features of remote configuration solutions described in this

thesis , and contrasts them with the essential features of control solutions within home

entertainment networks, arriving at two models of communication for configuration on home

entertainment networks.

6.2 Control Solutions

Chapters 4 and 5 have all discussed remote configuration using one particular method of

communication (the features of which are discussed later). However, both UPnP and AV/C have

other methods of communicating in order to configure devices using control features inherent in

the networking standard itself. For example, UPnP and AV/C's control features are inherent in

UPnP's control mechanism (see § 2.4.4.8) and AV/C's subunit commands. These control

features are discussed briefly here in order to allow a comparison of communication models.

Cha pl" , 6

130

UPnP's control mechanism and AV/C's subunit commands are very similar. Both start off with

the controller device "knowing" about the services and capabilities that other devices on the

network possess. They then use control commands to configure devices. Some method other

than the presentation page and Panel Subunit for UPnP and AV/C respectively must be made

for user interaction to be catered for.

For example, if an Audio Subunit is present on a device, a controller would know what AV/C

commands to issue to the device in order to configure (and indeed operate) the device simply by

knowing about an Audio Subunits as specified in the AV/C standard. In other words, the

controller can configure any device it already knows about. If it did not know about a Disc

subunit, it would not be able to configure it. The same applies to UPnP's control mechanism.

UPnP device and service specifications exist (which are analogous to AV/C subunits) and

control points can only configure devices (using control messages) that they already know

about.

These methods could use user interfaces that map user input to the corresponding control

message. In th is way a controller could present a user interface for the device being configured

to the user without having to obta in the interface from the device. The interface will reside in the

controller and the controller will only have interfaces for the devices that it knows about.

6.3 Comparison Parameters

In order to make a comparison between the features of remote configuration and the features of

control methods, there must be some properties or characteristics of the methods to compare.

This section will highlight the features of the remote configuration communication model used by

the systems on chapters 4 and 5 so that it may be compared and contrasted to the control

communication model. It is in fact these differences that lead to the two theoretical models.

6.3.1 Device Knowledge

This feature refers to how much knowledge the home entertainment networking solution

possesses of the workings and functionality of a device. If a solution knows nothing of the

capabilities of a device, it will have to discover them at run time, and it mayor may not be able to

make use of all the device's features - especially if the device includes some new functional ity

that was unforeseen when the solution was defined. So new devices can be added "on-the-fly",

but may not be able to operate to their full capability since the home entertainment networking

Chapter 6

131

I
I
I

I
I
I
I
\

I
I
I

solution may not be able to facilitate other devices to interoperate with it correctly because it

does not know enough about the new functionality.

For example, consider the AV/C home entertainment networking solution. Several device types

are defined in the form of logical subunits. Each subunit specifies what properties the device

has and what services the subunit offers. The Audio subunit [40] defines such operations as

balance, surround types etc. The gamut of operations and services covered in the specification

is fairly comprehensive, and so AV/C can be said to have a deep knowledge of the capabilities

of the device. However, an audio device capable of some other new feature will not be able to

easily use this new feature since it is not included in the subunit specification .

The UPnP presentation mechanism, however, will know nothing of the capabilities of devices on

the network. Control points wil l have to discover the capabilities of the device dynamically. This

means that the UPnP presentation mechanism can easily incorporate new devices and new

device types. If the audio device with the added feature (from the example above) is connected

to the network, the UPnP presentation mechanism allows control points to simply discover the

added feature and it becomes immediately available to the network.

The implication of the home entertainment networking solution knowing of the capabilities of a

device becomes apparent when considering configurabil ity. If the solution is aware of the

capabilities of the devices on its network, it can guarantee configuration only of those features

which it knows about. However, if the capabilities of a device must be discovered dynamically,

the controller has the ability to configure features of the device that are unknown to it at first.

For example, consider a CD-player on a home entertainment network. An AV/C controller

(without Panel Subunit capabilities) would only be able to configure the CD-player if its logical

abstraction (the Disc subunit) is programmed into the controller (i.e. the Disc subunit commands

would need to be inside the controller). The controller can guarantee that it can configure the

CD-player exactly to the specifications of the Disc subunit. However, what would happen if a

new feature was added to the CD-player that was not in the Disc subunit specif ication? The

same controller would not be able to configure the new feature since it does not know of the

feature or any command that can configure that feature. However, a controller with Panel

Subunit capabilities would be able to access and configure the new feature (even though it

knows nothing of the feature beforehand) since it has to discover the features of the CD-player

dynamically.

Chapter 6

132

6.3.2 Location of User Interfaces

Continuing with the above CD-player example, consider the difference between a controller that

has Disc subunit capabilities and a controller that has Panel subunit capabilit ies. The first

controller would have a Disc user interface built into it that it can display to the user, while the

second controller would need to retrieve and bu ild up a user interface to the CD-player from the

CD-player itself.

This presents manufacturers with a trade-off - do they manufacture controllers that are capable

of discovering devices and services dynamically, having to build up user interfaces as they are

retrieved from the devices being configured (which is a complicated task) or build controllers that

know only about certain other devices but have predefined user interfaces built into them? Do

they manufacture devices that are going to be configured with or without their own user

interfaces?

6.3.3 Command Sets

Controllers that know of devices beforehand know the commands they can issue to those

devices in order to configure them . For example, a CD-player is abstracted by the Disc subunit

in AV/C and may have device and service specifications in UPnP. Thus only those commands

that are documented in these abstractions can be issued from the controller to the device.

On the other hand , a device could contain a Panel Subunit or presentation document (for AV/C

Panel Subunit and UPnP presentation mechanism respectively) that would specify to the

controller which commands it is able to receive from the controller. Thus commands to configure

the device are provided from the device dynamically and are not limited to any documented

command set.

6.4 Two Models

The features that have been compared lead to two models of communication for device

configuration. Both the AV/C Panel Subunit and UPnP presentation mechanism hinge upon the

control point obtaining device and service descriptions and user interfaces from devices that it

controls . Other control mechanisms, however, have device and service descriptions (and

possibly user interfaces) programmed into them when they are manufactured - they can only

access the devices that they already know about. In other words, control points that have very

little information about the devices and services utilize a model of communication that is dynamic

----_._--_.
Chapter 6

133

(control points discover devices, services and user interfaces "on the fly" and can access any

device that presents this information) while control points that are pre-programmed with

information about the devices and services they will interact with are static in nature (control

points can only access devices they are programmed to). The first model is called the

Rendering Model since the control point acts simply as a "remote" control surface for the user -

it retrieves a user interface from the device and renders it for the user, relaying the user's actions

back to the device. The second model is called the Programmed Model since it is pre

programmed with the knowledge and interfaces it requires in order to allow users to interact with

the devices offering services on the network. The differences between the two models are

shown in Table 4.

Rendering Model Programmed Model

- Little to none - Substantial for certain devices

- Discovered "on the fly" - Pre programmed

Location of User Interfaces On devices offering services On controller

Dynamic - depends on Static - only commands

information provided by programmed into controller can

device offering services be used

Table 4 - Comparison of Rendering and Programmed Communication Models

6.5 Consultant vs. Postman

In order to more fully understand the differences between the two models, an analogy is useful.

The analogy involves a consultant and a postman - analogous to Programmed and Rendering

models respectively.

6.5.1 The Consultant

In the Programmed model, the control point acts like a consultant to the user - it knows about

the device that the user is trying to configure and displays its own interface to that device to the

user. When the user performs an action, it draws on its own knowledge of the device in order to

issue the correct corresponding configuration command to the device.

6.5.2 The Postman

In the Rendering model, the control point acts like a postman between the device and the user.

The device provides the control point (postman) with its user interface and the commands that it

Chapt (~r 6

134

can respond to_ The control point then renders the interface and waits for the user's actions. It

then delivers the user's actions to the device.

6.6 Advantages and Disadvantages of the Models

Manufacturers need to know exactly how much work is involved in implementing a device

configuration solution. Perhaps flexibility is more important to the manufacturer than

predictability, or perhaps backward compatibility is more important to the manufacturer than the

ability to quickly add new devices_ The two models have distinct advantages and disadvantages

and as such provide the manufacturer wi th some sort of criteria to be able to select one

particular device configuration solution over another.

6.6.1 Amount of Programming

The manufacturer must be able to ascertain how much of a particular remote configuration

solution has to be implemented each time a device is manufactured_ Manufacturers using the

Programmed model will have to manufacture control points that know about particular devices

only - and the control points will have to be programmed with device and user specifications and

user interfaces for the devices they wish to control. Manufacturers using the Rendering model

have only to program their control points with enough intelligence to dynamically discover device

and service descriptions and user interfaces of the devices to be controlled . However, the

devices to be controlled must now themselves be programmed with their device and service

specifications and user interfaces _

6.6.2 Addition of New Device Types

New devices are being invented frequently. The ability of a home entertainment networking

solution to be able to work on these new device types (with their new functions) is an important

consideration for manufacturers. Rendering model solutions, because they simply communicate

between devices and know very little about the devices, make adding new device types easier.

Programmed model solutions, because they utilise knowledge of the device and its functions,

can make addition of new device types complex.

6.6.3 Backward Compatibility

Manufacturers need also to consider the issue of backward compatibility. Will newer devices

with newer versions of the home entertainment networking solution be able to communicate with

devices that implement older versions of that solution? Rendering model solutions, again

because they know so little of the devices, make backward compatibility easier.

ChaotH 6

135

6.6.4 Complexity

The complexity of a home entertainment networking solution affects the time it takes to

implement it. This is an important concern for manufacturers. Rendering model solutions are

usually more complex since they need to create user interfaces at run time and issue commands

they have only discovered at run time. Programmed solutions use pre-programmed interfaces

and commands and as such these solutions are usually easier to create, implement and debug.

6.6.5 Flexibility and Functionality

Rendering model solutions are more flexible than Programmed solutions since the control points

discover the services and interfaces on the network on the fly. However, th is flexibility does not

necessarily mean that al l the functionality of a device may be exploited . This is due to the fact

that the configuration solution itself is unaware of the capabilities of the devices offering service,

and as such may not be able to cater for the device's functionality (by not being able to allow

other devices to interoperate with it) . For example, consider a TV, a DVD-player and an AVIR

on a home entertainment network. If the TV were using a Rendering model configuration

solution, it would need to discover the capabilities of the DVD-player and AVIR on the fly. Say

the DVD-player needs to establish a connection on the network in order to stream audio from

itself to the AVIR. The command to do this would be provided by the device to the TV (the

control point) , but the TV may not know enough about the AVIR to establish the connection. On

the other hand , if the TV were using a Programmed configuration solution, it would need to know

about the DVD-player and AVIR beforehand, and as such is more likely to be able to perform

complex operations (such as establishing a connection).

6.6.6 Cost

Cost is an important consideration for manufacturers - how much funct ionality and

interoperability they allow their devices to have depends on the cost of the networking hardware

and firmware they decide to place into their devices. Rendering model solutions are more

difficult to create and will usually take longer to create. Therefore they will end up costing the

manufacturer more.

6.7 Summary
This chapter discusses the implementation differences between the AVIC Panel Subunit and

UPnP presentation mechanism with other device configurations solutions in terms of:

• The amount of knowledge a control point must be programmed with when it is manufactured

Chapter 6

136

• The location of user Interfaces (do they reside in the controller or in the device?)

• Where command sets come from (from the device or are they pre-programmed?)

From these differences, two conceptual models are proposed - the Programmed model and the

Rendering model. The Programmed model requires the control point to have knowledge about

the devices it is going to control programmed into it, while the Rendering model allows devices

to provide configuration information to the control points on the fly. The analogy of the

consultant vs. postman is used to highlight the differences between the two models.

The advantages and disadvantages of the models are discussed according to

• the amount of programming required

• the ease of the addition of new devices types

• backward compatibility

• complexity

• flexibility and functionality

• cost

Chapter 6

137

Chapter 7 - Conclusion

7.1 Home Entertainment Networking Solutions

This thesis has examined home entertainment networking from several important angles.

Firstly, economically, home entertainment networking is a growing market, and much research

and innovation is going to be put into this industry in the coming decade. As such, many home

entertainment networking solutions exist in order to connect the plethora of intelligent home

devices that exist. Manufacturers may be overwhelmed by the amount of options available, and

this thesis examines some of the more popular solutions in order to provide a framework for

deciding on the best solution for a given manufacturer.

This thesis also discusses the features of four primary home entertainment networking solutions

- HAVi, Jini, AV/C and UPnP and how remote configuration of devices is performed in each of

these standards.

7.2 Remote Configuration

Secondly, this thesis provides two implementations of a small sub function of home

entertainment networking solutions - remote configuration. Remote configuration is defined as

"the ability of a home entertainment networking solution to allow one device to change the

configuration state of another device". It has compared various home entertainment networking

solutions as to their approach to remote configuration.

HAVi makes use of Data Driven Interaction (001). Jini implements remote configuration using

ServiceUI objects. AV/C makes use of the Panel Subunit. UPnP makes use of its presentation

mechanism.

The striking similarities between AV/C Panel Subunit and HAVi's 001 is noted, and the main

differences between the four methods of implemented remote configuration are highlighted in

terms of User Interface type, controller type, inter-device relationship, the coupling of

functionality and user interface and specification of the target.

Chapter 7

138

7.3 Contributions to Device Manufacturers

In order to explore fully the challenges of device configuration on home networks , this thesis

shows two implementations of remote configuration for a TV-A VIR (AudioNideo Receiver)

system. The first uses the AV/C Panel Subunit and the second makes use of UPnP's

presentation mechanism.

While the AV/C implementation itself is a contribution to the AV/R manufacturer, several tools

are also created along the way that will allow rapid development of such a system for other

devices from different manufacturers.

A Graphical User Interface (GUI) "language" is defined that allows manufacturers to abstract the

GUI of the device. This "language" is specified in XML, a widely adopted meta-language. Th is

XML allows a manufacturer to specify exactly what user interface elements exist for the UI ,

where they are placed, what attributes they have and how they relate to one another.

Furthermore, since not all manufacturers can readily create XML files by hand, a WYSIWYG

GUIBuilder program is created that allows a manufacturer to graphically layout the GUI and get

the program itself to generate the corresponding XML. This improves the speed and efficiency

of the GUI creation process considerably for the manufacturer.

A parser is then built that can parse the XML GUI description and store the GU i on the target

device. Implementing an AV/C Panel Subunit funct ion block for the Dig ital Harmony Protocol

Stack embedded in the device allows the device to interact with a controller. Any device that

now implements the same stack is AV/C Panel Subunit compliant.

A ControlierApp is provided that allows a PC to simulate a TV and remotely configure the AV/R

on an IEEE1394 home entertainment network.

Lastly, a working UPnP presentation mechanism implementation for remote configuration is

provided . This implementation allows a PC to host the AV/R on a UPnP network. The

modifications to the Microsoft UPnP Development Kit modules and necessary UPnP documents

are provided.

--_._--_ .. _--
Chaeter 7

139

7.4 Contributions to the Home Entertainment

Networking Field

The most significant contribution of this thesis to the field of home entertainment networking is

the creation of an environment for the easy generation of remote configuration solutions by using

the functionality of remote configuration standards. This environment allows manufacturers to

create control points with a method of configuring device parameters that are not able to be

configured using other control mechanisms.

Also, two models are derived by considering the differences between the features of remote

configuration and the features of inherent control mechanisms - the Programmed model and the

Rendering model. These models are based on differences that include the amount of

programming requ ired on controllers and on devices, the location of user interfaces (do they

reside on the controllers or devices?) and the size and positioning of command sets.

Each model has advantages and disadvantages in terms of the amount of programming

required , the ease of the addition of new devices types, backward compatibility, complexity,

flexibility and functionality and cost.

By placing a device configuration solution into one of the two models, the inherent strengths and

weaknesses of the solution can immediately be gauged.

Chap.er 7

140

Appendix A - XML DTD

1 <!ELEMENT PanelSubunit (Panel+»

2 <: !ATTLIST PanelSubunit

3 name CDATA #REQUIRED >

4 <!ELEMENT Panel (Scroller I Slider I Link I Label)+>

5 <: !ATTLIST Panel

6 name CDATA #REQUIRED

7 caption CDATA #REQUIRED >

8 <!ELEMENT Slider (SliderMin, SliderMax, SliderStep»

9 <: !ATTLIST Slider

10

11

12

caption

position

CDATA #REQUIRED

CDATA #REQUIRED >

13 <!ELEMENT Scroller (ScrollVal+»

14 <: !ATTLIST Scroller

15

16

17

caption

position

CDATA #REQUIRED

CDATA #REQUIRED >

18 <!ELEMENT Label EMPTY>

19 <!ATTLIST Label

20 caption CDATA #REQUIRED

21 position CDATA #REQUIRED >

22

23 <!ELEMENT Link EMPTY>

24

25 <!ATTLIST Link

26 caption CDATA #REQUIRED

27 position CDATA #REQUIRED

28 linkto CDATA #IMPLIED >

29

30 <!ELEMENT SliderMin EMPTY>

31 <: !ATTLIST SliderMin

32 value CDATA #IMPLIED

33 hostvalue CDATA #IMPLIED

34 hostaction CDATA #IMPLIED >

35

36 <!ELEMENT SliderMax EMPTY>

Appendices

141

37 <!ATTLIS T SliderMax

38 value CDATA #IMPLIED

39 hostvalue CDATA #IMPLIED

40 hostaction CDATA #IMPLIED >

41

42 <!ELEMENT SliderStep EMPTY>

43 <!ATTLIST SliderStep

44 value CDATA #IMPLIED

45 hostvalue CDATA #IMPLIED >

46

47 <!ELEMENT ScrollVal EMPTY>

48 <!ATTLIST ScrollVal

49 caption CDATA #IMPLIED

50 hostaction CDATA #IMPLIED >

-- --------- - - -------------------------------- --------
Append,,:e.

142

Appendix B - XML Grammar
COMPILER XMLGui

IGNORE CASE

IGNORE CHR(9) .. CHR(13)

COMMENTS FROM He!1I TO ">"

COMMENTS FROM lie?" TO ">"

CHARACTERS

cr CHR(13)

CHR(lO) 1f

instring ANY - 'II' - "e" - II> II - cr - If.

TOKENS

string

PRODUCTIONS

, '" instring { instring }

XMLGui = Body EOF.

' " ,

Body = "e" "PanelSuhunit" Name ">" "e" Panel " e" { Panel "e" }

"/" "PaneISubunit " ">"

Panel tI Panel " ((Name Caption) (Caption Name)) " >"

"e 11 Component "e 11 { Component "e" }

"/" "Panel " ">",

Component = Slider I Label I Link I Scroller .

Label = "Label" ((Caption Position) (Position Caption)) "/" ">".

Link = "Link" ({Caption Position) (Position Caption)) Linklnfo "/" ">H.

Scroller = ItScroller" ((Caption Position) (Position Caption)) ">"

" e " Scrollerlnfo " /" "Scroller" ">".

Scrollerlnfo = ScrollVal "e" { ScrollVal "e" }.

ScrollVal = "ScrollVal" ((Caption HostAction) (HostAction Caption)) 11/11

">" .

Slider "Slider" {(Caption Position) (Position Caption)) ">"

Sliderlnfo Sliderlnfo Sliderlnfo "e " " /" "Slider" ">".

Sliderlnfo = "e" (SliderMin I SliderMax I SliderStep).

SliderMin

SliderMax

"SliderMin" ValCombo Va I Combo Val Combo "/" ">" .

"SliderMax" ValCombo ValCombo Val Combo "/" ">".

SliderStep = "S liderStep " Va 1 Combo ValCombo "/" ">".

ValCombo = (Va lue I HostValue I HostAction).

Appe 'ldices

143

Name = r' name" '1 = " string .

Caption = tlcaption" 11=" string.

Position = "position" "=" stri ng.

Value = "value" "",," string.

HostValue = llhostvalue l l 1' = ' 1 string.

HostAction = "hostaction" "= " string.

Linklnfo 111inkto"" =" str ing .

END XMLGui

Appendices

144

Appendix C - XMLGui.atg
COMPILER XMLGui $XCN

/* GUI XML to binary image parser - Colin Dembovsky, 2000 */

#include <string.h>

#include <stdio . h>

char SourceName[256];

static FILE *bfile;

int checkl, check2, check3, checka, checkb, checkc;

/ /#define DEBUG

//#define DEBUGQ

#include "qstructs . h"

IGNORE CASE

IGNORE CHR(9) .. CHR(13)

COMMENTS FROM "<!" TO ":>"

COMMENTS FROM "<?!! TO II> "

CHARACTERS

cr

If

CHR (13)

CHR (10)

instring ANY - I 11 I _ II <:" _ II::> II _ cr _ 1 f .

TOKENS

string

PRODUCTIONS

XMLGui =

1111 inst r ing { instring }

(. char BimName [256]; int i;

strcpy{BimName, SourceName) i

i = strlen(BimName) - l;

I II I

while (i>O &&BimName[i] ! = ' .') i - - ;

if (i>O) BimName[i] = '\0';

strcat(BimName , lI . bim ") i

if ((bfile = fopen(BimName, "w ")) == NULL) (

fprintf(stderr, "Unable to open binary output file %s\n", BimName) ;

145

exit (EXIT_FAILURE) ;

.)

Body EOF (. fclose (bfile); .)

Body: (. char psname[STRLEN]; TPanelSubunit * PS, *ri TPanel* Pi .J

lIe 1l "PanelSubunit ll Name<psname> (. ps = CreatePanelSubunit (p sname); .)

11>11 lie II Panel<p> (. AddPanel (PS, p) i .) "<"

{ Panelcp> (. AddPanel (PS, p); .J "e" } "/'1 I'PanelSubunit'l ">'1

(. if (Successful()) SavePanelSubunit (ps);

FreePanelSubunitMem (ps) i

fprintf (stderr, "success!");}

fclose (bfile); .)

Panel<TPanel* &p> = (. char pname[STRLENj, c[STRLENj; .)

"Panel" ((Namecpname> Captioncc» (Captioncc> Namecpname»)

(. p -= CreatePanel (pname, c) i .J 11>11

lie II Componentcp> lie II { Componentcp> nell} II/II "Panelll 11>11.

ComponentcTPanel* &p>

SCi .)

(. TSl ider* S; TLabel* L; TLink* Li; TScroll er*

Slider<s> (. AddSlider (p, s); .)

Label<L> (. AddLabel (p, L); .)

Link (. AddLink (p, Li); .)

Scroller<sc> (. AddScroller (p, SC) ; .)

Label<TLabel* &L> = (. char c[STRLENj, p[STRLENj; .)

"Label" ((Captioncc> Positioncp>

(. int pos = atoi(p);

(Positioncp> Captioncc>))

L = CreateLabel (e , pos) i .) II/II 11>11.

Link<TLink* &L> = (. char c[STRLENj, p[STRLENj, Ii [STRLENj ; .)

ULinkll ((Caption<c> Position<p>

<Ii>

(. int pos = atoi(p);

(Position<p> Caption<c>)) Linklnfo

L = CreateLink (c, pas, li) i .) "/" 11>".

Scroller<TScroller* &s> = (. char c[STRLENj , p[STRLENj; .)

"Scroller" «Captian<c> Position<p>)

(. int pos = atoi (p) ;

s = CreateScrol ler (c, pos); .)

Ap endices

146

(Position<p> Caption<c>))

It > " 11<"

Scrollerlnfo<s> II/ II IIScroller " It>"~.

Scrollerlnfo<TScroller* &s> = (. TScrollVal* ti .)

ScrolIVal<t> (. AddScrollerVal (s , t) .) 11<" ScroIIVal<t>

AddScrollerVal (s, t) .) "<II}.

ScrollVal<TScrollVal* &s> = (. char c[STRLEN), h[STRLEN); .)

'!ScroIIVal'! ((Caption<c> HostAction<h>) (HostAction<h> Caption<c>))

(. s = CreateScrollVal (c, h) i .) II/II U> U.

Slider<TSlider* &5> = (. char c[STRLEN), p[STRLEN); .)

"Sl ider" ((Caption<c> Position<p >) I (Position<p> Caption<c>))

(. int pos = atoi(p);

s = CreateSlider(c, pos); .)

"> II (. checka = checkb = checkc 0; .)

Sliderlnfo<s> Sliderlnfo<s> Sliderlnfo<s> "<" "/" "Slide r '1 ">".

Sliderlnfo<TSlider* &5> (. TSliderVal * m; .)

11 <11

(SliderMin< m> (. if (checka t= 0) SemError(1003);

else { checka = 1; AddSliderMin (s , m);) .)

I SliderMax<m> (. if (checkb != 0) SemError (1004) ;

else { checkb = 1 · AddSliderMax (s, m) ;) .)
I SliderStep<m> (. if (checkc != 0) SemError(10051;

else (ehecke = 1 ; AddSliderStep(s, m) i) .1

I

(.

SliderMin<TSliderVal* &5>

at, bt, et; .)

(. char a [STRLEN) , b[STRLEN), c[STRLEN); int

l'S liderMin" (. checkl check2

ValCombo<b, bt > ValCombo<c, ct>

(. if (at == 11 {

check3 0; .) ValCombo<a, at>

if (bt == 2 1 5 = CreateSliderVal (atoi(a) , atoi(bl, cl;

else s = CreateSliderVal (atoi(a), atoi(c), b);

if (bt == 11 {

if (at == 21 s = CreateSliderVal (atoi (b), atoi (ai, cl;

else s = CreateSliderVal (atoi (b), atoi (c), a);

Appendjces

147

if (ct == 1) (

if (at == 2) s = CreateSliderVal (atoi (c), atoi (a), b);

else s = CreateSliderVal (atoi (e) I atoi (b) I a) i

.) n/" 11>11

SliderMax<TSliderVal* &5>

at, bt, ct ; .)

(. char a [STRLEN], b [STRLEN], c [STRLEN]; int

uSliderMax ll
(. checkl check2 check3 Oi .) ValCombo<a, at>

ValCombo<b, bt> ValCombo<c, ct>

(. if (at == 1) (

if (bt == 2) s = CreateSliderVal (atoi (a), atoi (b), c);

else s = CreateSliderVal (atoi(a), atoi(c), b);

if (bt == 1) (

if (at == 2) s = CreateSliderVal (atoi (b), atoi (a), c);

else s = CreateSliderVal (atoi (b) I atoi (el, a) i

if (ct == 1) (

if (at == 2) s = CreateSliderVal (atoi (c), atoi (a), b);

else s = CreateSliderVal (atoi(c), atoi(b), a);

.) II /11 ">".

SliderStep<TSliderVal* &s> = (. char a [STRLEN] , b[STRLEN]; int at, bt; .)

ItSliderSt ep" (. checkl check2 check3 0; .) ValCombo<a, at>

Va!Combo<b, bt>

(. s = CreateSliderVal (atoi(a), atoi(b), NULL); .) II / 1! II> II •

Va!Combo<char n(], int &t> =

(Value<n> (. if (check! != 0) SemError (1006) i

else (check1 - l' t = 1; .)

HostVa!ue<n> (. i f (check2 != 0) SemError (1008) i

else (check2 = 1; t = 2;) .)

HostAction<n> (. if (check3 != 0) SemError (1007);

else (check3 = 1; t = 3;) .)

) .

Name<char lstr(J> = (. int ii char s{STRLEN]; .) II name II "=11 string

(. LexString (s, STRLEN);

AppendIces

148

for (i=l; i<strlen(s) -1; i++) Istr[i - lJ

lstr[i-1 l = ' \0'; .1 .

s [il ;

Caption<char lstr [J > ::: {. int i; char s (S TRLENJ; .) IIcaption" 11=11 string

i . LexString is, STRLENI ;

for (i=1; i<strle n (5) -1 ; i++) lstr [i-lJ

lstr[i-1l = '\0' ; .1 .

s [il ;

Position<char Istr[J> = (. int i; char s[STRLEN J ; .) Hposition" 11=11 string

i. LexString is, STRLENI;

for (i=1; i<strlen(s) - 1; i++) Istr[i - 1]

lstr[i - 1 l = '\0 '; .1 .

s [il ;

Value<cha r l s tr [] > = { . int i ; c har s [STRLEN] ; . J "value II II = II st r ing

i . LexString is, STRLENI;

for ii=l; i<strlenisl-1; i++1 lstr[i-1l

lstr[i - 11 = '\0 ' ; . 1 .

s til ;

HostValue<char lstr [] >

string

(. int i; c har s[STRLEN] ; .J Hhostvalue ll
U= "

i . LexString is, STRLENI ;

for ii =l; i<strlenisl-1; i++1 lstr[i-11

lstr[i-11 = '\0'; .1 .

s til ;

HostAction<char lstr (J >

s tr ing

(. int i ; char s[STRLEN); .J IIhostaction" "="

(. LexString (s, STRLENI;

for (i=li i<st r l e n(s) - li i++) Istr[i - 1} s t i l ;

lstr[i - 11 = '\0 ' ; . 1 .

Linklnfo<char lstr [] > = (. int i; cha r 5 [STRLEN]; .) "linktotl "=11 string

(. LexString (s, STRLENI;

for (i=l; i<strlen(s) -1; i++) lstr[i-l]

lstr[i-11 = '\0'; . 1

END XMLGui

Appendices

149

s til ;

Appendix D - UPnP AV/R SCPD
1. c?xml version= " l.O"?>

2 . cscp d xml ns= II u rn : s chemas -upnp - o r g : se r v ice -l - O II >

3 .

4. cspecVersion>

5 . cmajor>lc/major>

6. cminor>Oc/minor>

7. </specVersion>

8 .

9. cactionList>

10. <action>

11. cname>Ne x t_String_BoundedI nput</name>

12 . <faction>

13.

14. <action>

15. cname>Prev_String_Boundedlnputc/name>

16 . <faction>

17.

18. <action>

19 . cname>Next_St r ing_BoundedSoundMode c!n ame>

20. <fact i on>

2l.

22 . <action>

23. cname>Prev_String_BoundedSoundModec/name>

24. <faction>

25.

26. <action>

27 . cname>IncreaseMainVolumec/name>

28 . <faction>

29.

30. <action>

31. cname >DecreaseMainVolumec/ na me>

32 . <faction>

33 .

34 . <action >

35. cname>IncreaseS!eep</name>

36. <faction>

37.

38. <action>

Appendices

150

39. <name>DecreaseSleep</name>

40. <faction>

41.

42. <action>

43. <name>Next_String_BoundedSoundField</name>

44 . <faction>

45.

46 . <action>

47 . <name>Prev_String_BoundedSoundField</name>

48. <f action>

49 .

50. <action>

51. <name>ToggleSpeakerA</name>

52. <faction>

53.

54. <action>

55 . <name>ToggleSpeaker8</name>

56. <f action>

57.

58. </actionList>

59 .

60 .

61. <serviceStateTable>

62 .

63. <stateVariable sendEvents="yes">

64. <name>Input</name>

65 . <dataType>string</dataType>

66. <allowedValueList>

67 . <allowedValue>Phono</allowedValue>

68. <allowedValue>CD</allowedValue>

69. <al l owedValue>Tuner</allowedValue>

70 . <allowedValue>CD-R</allowedValue>

71. <allowedValue>MO/Tape</allowedValue>

72 . <allowedValue>OVD</allowedValue>

73 . <allowedValue>D-TV/LD</allowedValue>

74. <allowedValue>CABLE/SAT</allowedValue>

75 . <allowedValue>VCR1</allowedValue>

76. <allowedValue>V-Aux</allowedValue>

77. </allowedValueList>

78. <defaultValue>CD</defaultValue>

AppendIces

151

79. </stateVariable>

80.

81. <stateVariable sendEvents=lyes">

82 . <name>SoundMode</name>

83. <dataType>string</dataType>

84. <allowedValueList>

85. <allowedValue>Auto</allowedValue>

86. <allowedValue>DTS</allowedValue>

87. <allowedValue>Analog</allowedValue>

88. </allowedValueList>

89. <defaultValue>Auto</defaultValue>

90. </stateVariable>

91.

92 .

93.

94.

95.

96 .

97.

98.

99.

10.

10l.

102.

103 .

104.

105.

106.

107.

108.

109.

1l0.

111 .

112.

113.

114 .

lls.

116.

117.

118.

<stateVariable sendEvents="yes">

<name>MainVolume</name>

<dataType>i4</dataType>

<allowedValueRange>

<minimum>OO</minimum>

<maximuffi>100</maximum>

<step>l</step>

</allowedValueRange>

<defaultValue>sO</defaultValue>

</stateVariable>

<state Variable sendEvents = l1yes ">

<name>Sleep</name>

<dataType>i4</dataType>

<allowedValueRange>

<minimum>OO</minimum>

<maximum>120</maximum>

<step>30</step>

</allowedValueRange>

<defaultValue>O</defaultValue>

</stateVariable>

<stateVari able sendEvents ="yes">

<name>SoundField</name>

<dataType>string</dataType>

<allowedValueList>

<allowedValue>Hall</allowedValue>

Appendices

152

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

13I.

132.

133.

134.

135.

136.

137.

138.

139.

140.

HI.

142.

143.

144 .

<allowedValue~Church</allowedValue>

callowedValue>Jazze/allowedValue>

callowedValue>Rockc/allowedValue>

callowedValue>Stadium</allowedValue>

callowedValue>TV/Sports</allowedValue>

callowedValue>Sci-fic/allowedValue>

callowedValue>Adventurec/allowedValue>

callowedValue>Enhancedc/allowedValue>

callowedValue>Spectaclec/allowedValue>

</allowedValueList>

cdefaultValue>Rockc/defaultValue>

c/stateVariable>

<stateVariable sendEvents="yes ">

cname>SpeakerAc/name>

cdataType>boolean</dataType>

cdefaultValue>lc/defaultValue>

</stateVariable>

<stateVariable sendEvents='l y es 11 >

cname>SpeakerBc/name>

cdataType>boolean</dataType>

<defaultValue>l</defaultValue>

</stateVariable>

</serviceStateTable>

145. </scpd>

Appendices

153

Appendix E - UPnP Presentation Page (HTML)
1 . <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

2. <HTML>

3. <HEAD>

4. <TITLE>Presentation page for Controlling a UPnP Yamaha RXVIOOO

AV/R</TITLE>

5.

6.

7.

8 .

9.

10.

11.

12.

13 .

</HEAD>

<BODY>

<H3><P ID=FName>Yamaha RXVIOOO</P></H3>

<H3>RXVIOOO Config State Table</H3>

<TABLE BGCOLOR='#D6D7DE' BORDER=O VALIGN=top ALIGN=left

CELLPADDING=l CELLSPACING=3>

14 .

15 .

<TR>

<TD BGCOLOR='ffOOOOOQ' VALIGN=center ALIGN=center

WIDTH=60>Variable</TD>

16. <TD VALIGN=middle ALIGN=left BGCOLOR='#OOOOOO'

WIDTH =60>Value</TD>

17. <TD VALIGN =middle ALIGN=left BGCOLOR= ' #OOOOOO'

WIDTH=60>Actions</ TD>

18.

19 .

20.

21.

22.

23 .

Next ">

24.

">

25 .

26.

27.

28 .

Mode</TD>

29.

30 .

</TR>

<TR>

<TD BGCOLOR=II#FFFFFF" VALIGN=center ALIGN=center>Input</TD>

<:TD BGCOLOR=lIffFFFFFFII valign="topll><P ID=Input></P>< / TO>

<TD BGCOLOR=II#FFFFFF Ii valign=lItopll>

<INPUT type= t1 button tl onclick=IINextlnput() II

<INPUT type = lIbutton" onclick=IIPrevInput()11

</TD>

</TR>

<TR>

value= 1I

value=lI Previous

<TO BGCOLOR= II #FFFFFFIl VALIGN=center ALIGN=center>Sound

<TO BGCOLOR=I!#FFFFFF" valign=lItopll><P IO=SoundMode></P></TO>

<TO BGCOLOR=u#FFFFFFu valign=lItop">

. _-_._-_._---- --_ __ .•...• _._-_ .•.•... __ ._ ..•. -.-.
Appendices

154

31.

Next 11:>

32.

Previous II:>

33 .

34.

35.

36.

Volume</TD>

37 .

<INPUT type=lIbutton " onclick=I1NextSoundMode()tI value="

<INPUT type = "button tl onclick=IIPrevSoundMode() II value=!!

<ITO>

</TR>

<TR>

<TD BGCOLOR= "# FFFFFF" VALIGN=center ALIGN=center>Main

<TD BGCOLOR=tI#FFFFFF Il valign=lItopl1><P

ID=MainVolume></P></TD>

38. <TO BGCOLOR= u#FFFFFFIt valign= 1I top " :>

39 .

">

40.

">

41.

42.

43.

44.

Field</TD>

45 .

<INPUT type ="hutton" onclick=IIIncVolume()1I

<INPUT type=lIbutton li onclick=IIDecVolume()1I

<lTD>

</TR>

<TR>

value=11 Up

value = 1I Down

<TD BGCOLOR= II#FFFFFFIl VALIGN=center ALIGN=center>Sound

<TD BGCOLOR="#FFFFFF" valign="top"><P

ID=SoundField></P ></TO>

46. <TD BGCOLOR="#FFFFFF " valign="top">

47. <INPUT type=lI button" onclick: IINextSoundField()U

value =" Next " >

48.

Previous ">

4 9.

50.

51.

52.

Relay A</TD>

53.

54 .

55.

<INPUT type= "button ll onclick="PrevSoundField() 1I value: !!

</TD>

</TR >

<TR>

<TD BGCOLOR =II#FFFFFFI1 VALIGN=center ALIGN=center>Speaker

<TD BGCOLOR="ffFFFFFF" valign="top!!><P ID=SpeakerA></P></TD>

<TD BGCOLOR="#FFFFFF" valign= lItopu >

<INPUT type="button ll onclick="ToggleSpeakerA()"

value=" Toggle II>

56 . <lTD>

57.

56.

Appendices

</ TR >

<TR>

-----.. ---

155

59. <TD BGCOLOR=II#FFFFFFli VALIGN=center ALIGN=center>Speaker

Relay B</TD>

60.

6l.

<TD BGCOLOR="#FFFFFF II valign=lItopll><P ID=SpeakerB></P></TD>

<TO BGCOLOR=1r#FF FFFF" valign=!ltop">

62. <INPUT type ="button tl onclick=IIToggleSpeakerB()U

value=" Toggle ">

63 . <lTD>

</TR>

<TR>

64.

65 .

66.

67.

68.

69.

<TD BGCOLOR=II#FFFFFF" VALIGN:center ALIGN=center>Sleep<! TD >

<TD BGCOLOR="fj:FFFFFF" valign="top"><P ID=Sleep></P></TD>

<TD BGCOLOR=" #FFFFFF II valign="topll>

<INPUT type="button " onclick=ulncSleep() II

">

70 . <INPUT type= "button ll onclick="DecSleep () II

">

71.

72 .

73.

74.

75 .

< ITO>

</TR>

</TABLE>

76. cBR>

77. cBR>

78.

79. cBR>

80. cBR>

81.

82. cBR>

83.

84 .

85.

86. cH3> </H3>

87.

88. <SCRIPT language=VBScript>

89.

90.

91. ***

92. Event handler called when the UPnP device submits events

93. ***

94.

._-------------_ .. _ .•. _--
Appen(j'ces

156

value=1I Up

value=" Down

95.

96 .

97 . Sub eventHandler(callbackType, svcObj, varName, value)

98.

99. I Dim output

10. ' output output & IIvarName & varName & vbCrLf

101- 'outpu t output & uvalue " & value & vbCrLf

102. 'outpu t output & I1 s vcObj " & svcObj. I d & vbCrLf

103 . 'MsgBox output

104.

105.

106.

107.

108.

109.

110.

111-

112

113.

114.

115.

If (callbackType = "VARIABLE_UPDATE") Then

select case varName

end

End If

116 . End Sub

117 .

118.

119.

Case

Case

Case

Case

Case

Case

Case

select

II Input II

IISoundMode n

IISoundField H

"Sleep"

"SpeakerA"

"SpeakerBIl

"Volume II

Input.innerText = value

SoundMode.innerText = value

SoundField.innerText = value

Sleep . innerText = value

Spe akerA.innerText

SpeakerB.innerText

value

value

MainVolume . innerText = value

120.

121-

122.

123.

***************** ** ****** *** ********************** * ** *** **

Button action callbacks invoke actions

**************** ** *** *************************************

124. function Nextlnput ()

Dim inArgs (0)

Dim outArgs(O)

125.

126.

127.

o utArgs

AvrCon trolService. InvokeAction "Next_String_Boundedlnput II I inArgs,

128. end function

129.

130. function Prevlnput()

131 . Dim inArgs(O)

132 . Dim outArgs(O)

Appendic..es

157

133 . AvrControlService .lnvokeAction II Prey _ Strin9_Boundedlnput II I inArgs,

outArgs

134 . end function

135.

136 . function NextSoundMode()

137. Dim i nArgs (O)

138.

139.

Dim outArgs (0)

AvrControlService . lnvokeAction "Next_Strin9_ BoundedSoundMode ll ,

inArgs, outArgs

140 . end function

14l.

142. function PrevSoundMode()

143. Di m inArgs(O)

144. Di m outArgs{O)

145. AvrControlService.rnvokeAction uPrev_Strin9_BoundedSoundModeu,

inArgs, QutArgs

146 . end function

147 .

148 . function IncVolume ()

149 . Dim inArgs(O)

150. Dim outArgs{O)

151. AvrControlService.lnvokeAction II IncreaseVolume II , inArgs, outArgs

152. end function

153.

154. funct i on DecVo!ume()

155. Dim inArgs{O)

156 . Dim QutArgs(O)

157 . AvrControlService. InvokeAction "DecreaseVolume ", inArgs, outArgs

158 . end function

159 .

160. function IncSleep()

161 . Dim inArgs{O)

Dim outArgs (OJ 162 .

163 . AvrControlService.lnvokeAction ulncreaseSleepu, inArgs , outArgs

16 4. end function

165.

166 . function DecS l eep{)

Dim inArgs{O)

Dim outArgs(O)

167 .

16B.

169 . AvrControlService . lnvokeAction uDecreaseSleepu, inArgs, outArgs

.---------.-
Appendices

158

170. end function

171.

172. function NextSoundField()

173. Dim inArgs(O)

174. Dim outArgs(O)

175. AvrControlService.lnvokeAction IINext_String_BoundedSoundField",

inArgs, outArgs

176. end function

177.

178. function PrevSoundField()

179. Dim inArgs(O)

180. Dim outArgs(O)

181. AvrControlService.lnvokeAction

inArgs, outArgs

182 . end function

183.

184. function ToggleSpeakerA()

Dim inArgs (0)

Dim outArgs(O)

uPrev_String_BoundedSoundField li
,

185.

186.

187. AvrControlService.lnvokeAction IIToggleSpeakerAII, inArgs, outArgs

188. end func tion

1 89.

190. function ToggleSpeakerB()

191. Dim inArgs(O)

Dim outArgs(O) 192 .

193 . AvrControlService.lnvokeAction UToggleSpeakerB II , inArgs, outArgs

194. end function

195 .

196.

197 .

198.

199 .

200.

**

Download the description document from the UPnP device

**

Dim AvrDesc

201. Set AvrDesc == CreateObject (IIUPnP.DescriptionDocument. 111)

202. AvrDesc. Load (II . . /description/rxvlOOO. xml ll)

203.

204 .

205.

206.

207 .

**

Get the Root Device from the description document

*********** *** ************************************** ****

._-_._-_ .•. _-
Appendices

159

208. Di m AvrDevice

209 . Set AvrDevice

210.

211.

AvrDesc.RootDevice

212.

213 .

214 .

**

Output some of t he device properties to the user

******************************** ******* *****************

215. Dim output

2 1 6. output uFound : " & vbCrLf

217. output output & uDisplayName: " & AvrDevice.FriendlyName

218. output output & "Type: " & AvrDevice.Type & vbCrLf

& vbCrLf

219. output output & IIUON: " & AvrDevice.UniqueDeviceName & vbCrLf

220 . MsgBox output

22l.

222 . FName . innerText

223.

AvrDevice.FriendlyName

224.

225 . I ************ ** ******** *** ****************** *** ********* *

226. Attach the event handler to the tv control service

227 . ************** ******** ******** ********************** ****

228. Dim AvrControlService

229. set AvrControlService=AvrDevice . Services{ "urn:upnp -

org : serviceld: avrconfigll)

230 . AvrControlService.AddCallback GetRef(IIeventHandler ll)

231 .

232 . </SCRIPT>

233. </BODY>

234 . </HTML>

Appencices

160

Appendix F - UPnP "Device" Module Listing
1- II Include all the necessary header files.

2. #include <windows . h>

3. #include <std lib .h>

4. #include <stdio.h>

5 . # i nclude IIglobal. hH

6 . # include "event . h "

7 . #include "util.h "

8. #inc l ude lIudevice . h ll

9 .

10 . #define MAX VOLUME 100 -
1 1- #define MIN VOLUME 0

1 2 . #define MAX INPUT 9 -
13. #de fine MIN INPUT 0 -
14 . #define MAX MODE 9 -
15 . #define MIN MODE 0 -
16. #define MAX SLEEP 120 -
17 . #de fine MI N SLEEP 0 -
18 . #define MAX FIELD 9 -
19 . #define MIN FIELD 0 -
20 .

21-

22. struct AVRCon f ig

23.

24 . DWORD Input ;

25 . DWORD SoundMode;

26 . DWORD SoundField ;

27 . DWORD Volume;

2 8. DWORD Sleep ;

29 . BOOLEAN SpeakerA ;

30 . BOOLEAN Speake rB;

31.) ;

32 .

33. 1* Binary Copy of above Device *1
34 .

35. AVRConfig InsAVRConfig

36.

37. 0,

38 . 0,

16 1

39. 0,

40. 50,

4l. 0 ,

42. 1,

43. 1

44. };

45.

46. II Number of state variables.

47. static const int nStateVariables 7 .

48.

49. II String copy of state variables for initializing eventing.

50 . E_PROP_LIST ePropList =
51.

52. nStateVariables,

53.

54. {II Input II I II 111, FALSE,

55. { .. SoundMode" , "I", FALSE,

56. { IISoundField", ilIon I FALSE,

57.

58.

59 .

60.

6l.

62. };

63.

{tiVolume" ,

{"Sleep" ,

{ II SpeakerA" I

{ II SpeakerB" ,

64. DWORD Do AVR Init

65.

1150 " , FALSE,

"all , FALSE,

"1", FALSE,

" I " I FALSE,

(CHAR' StrEventUrll

TRUE} ,

TRUE} ,

TRUE} ,

TRUE} ,

TRUE} ,

TRUE} ,

TRUE} ,

66.

67.

BOOL bResult InitializeUpnpEventSource(StrEventUrl, &ePropList) i

68.

69.

70.

return bResult ? 1 0;

71. DWORD Do_AVR_Cleanup (CHAR' StrEventUrll

72 .

73. if (lCleanupUpnpEventSource(StrEventUrl))

74. puts ("Do_AVR_ Cleanup failed to c lean up the Upnp Event Source tl
);

75.

76. return 1;

77.

78.

Appendices.

162

79. DWORD DO_IncreaseVolume

80.

8l.

82.

83.

84.

85.

86.

CHAR*

DWORD

ARG*

PDWORD

ARG OUT*

87. if (InsAVRConfig.Volume < MAX_VOLUME)

88 .

89. InsAVRConfig.Volume++;

90. CHAR szValue[32);

StrEventUrl,

cArgs,

rgArgs,

pArgsOut,

rgArgsOut

91. sprintf{szValue, II%U I1 , InsAVRConfig.Volume) i

92. Change Prop (StrEventUrl, "Volume II I szValue);

93. SerialCommand (IlVolume ll
I szValue);

94. SubmitPropEvents(StrEventUrl, NULL);

95.

96. return O·

97.

98.

99. DWORD Do DecreaseVolume

100.

10l.

102.

103.

104.

105.

106.

CHAR*

DWORD

ARG*

PDWORD

107. if (InsAVRConfig.Volume > MIN_VOLUME)

108 .

109 . InsAVRConfig.Volume--;

110. CHAR szValue [32) ;

StrEventUrl,

cArgs,

rgArgs,

pArgsOut,

rgArgsOut

111. sprintf(szValue, U%u ll , InsAVRConfig.Volume);

112. ChangeProp(StrEventUrl, IIVolume ll
, szValue);

113. SerialCommand ("Volume u , szValue) ;

114. SubmitPropEvents(StrEventUrl, NULL);

115.

116. return 0 j

117.

118. DWORD Do_IncreaseSleep (

Appendice c;

163

119.

120.

12I.

122.

123.

124.

125.

DWORD

ARG*

PDWORD

ARG OUT*

CHAR* StrEventUrl,

cArgs,

rgArgs,

pArgsOut,

rgArgsOut

126. if (InsAVRConfig.Sleep < MAX_SLEEP)

127 .

128 .

129.

130 .

13I.

132.

133.

I n sAVRConfig . Sleep+ =30 ;

CHAR szValue[32];

sprintf (szValue, "%U", InsAVRConfig .Sleep) i

ChangeProp(StrEventUrl, "Sleep " , szValue) i

SubmitPropEvents(StrEventUrl, NULL);

134. return 0;

135.

136. DWORD Do_DecreaseSleep

137.

138.

149.

140.

141.

142.

143.

CHAR*

DWORD

ARG*

PDWORD

ARG OUT*

144. if (InsAVRConfig . Sleep > MIN_SLEEP)

InsAVRConfig.Sleep-=30 ;

CHAR szValue[32];

StrEventUrl,

cArgs,

rgArgs,

pArgsOut,

rgArgsOut

145.

146.

147.

148 .

149.

150.

15I.

152.

sprintf (szValue, II%U Il , InsAVRConfig.Sleep);

Change Prop (StrEventUrl, IISleepll , szValue);

SerialCommand (IISlee p!!, szValue);

SubmitPropEvents(StrEventUrl, NULL);

153. return 0;

154.

155. DWORD Do_ Next_Strin9_BoundedSoundMode

156 .

157 .

158.

CHAR*

DWORD

ARG*

164

StrEventUrl,

cArgs,

rgArgs,

159.

160.

161 .

162.

PDWORD

163. if {InsAVRConfig .SoundMode < MAX_MODE}

164.

InsAVRConfig.SoundMode++:

CHAR szVa1ue[32];

pArgsOut,

rgArgsOut

165.

166.

167.

168.

169.

170.

17l.

sprintf(szValue , "%u ll
, InsAVRConfig.SoundMode);

ChangeProp(StrEventUrl, nSoundMode", szValue);

Ser i alCommand (tlSoundMode", szValue);

SubmitPropEvents(StrEventUrl , NULL);

172. return 0 i

173.

174. DWORD Do_Prev_String_BoundedSoundMode

175.

176.

177.

178.

179.

180.

18l.

CHAR*

DWORD

ARG *

PDWORD

ARG OUT*

182. if (InsAVRConfig .SoundMode > MIN_MODE)

183.

InsAVRConfig.SoundMode--;

CHAR szValue[32];

StrEventUrl,

cArgs,

rgArgs,

pArgsOut,

rgArgsOut

184.

185.

186.

187.

188.

189.

190.

sprintf(szValue, II%U Il , InsAVRConfig.SoundMode);

ChangeProp(StrEventUrl, "SoundMode ll
, szValue) ;

SerialCornmand (liSoundMode ll
I szValue) j

SubmitPropEvents(StrEventUrl, NULL);

191. return 0;

192 .

193. DWORD Do_Next_Strin9_ BoundedSoundField

194.

195.

196 .

197.

198.

-_ •.. _._-_ .. _._--_._._---_ ... _----
Appendices

CHAR*

DWORD

ARG*

PDWORD

ARG OUT*

165

StrEventUrl,

cArgs,

rgArgs,

pArgsOut,

rgArgsOut

199.

200 .

201. if (InsAVRConfig.SoundField < MAX_FIELD)

202 .

203 .

204.

205 .

206.

207 .

208 .

209 .

InsAVRCo nfig.SoundFie ld++i

CHAR szVa l ue[32};

sprintf (szValue , II tou ll
, InsAVRConfig. SoundField) i

Change Prop (StrEventUrl, "SoundField lt
, szValue);

SerialCommand ("SoundField", szValue);

SubmitPropEvents(StrEventUrl, NULL);

210 . return 0;

211.

212 . DWORD DO_Prev_String_ BoundedSoundField

213 .

214.

215 .

216 .

217.

218.

219.

CHAR *
DWORD

ARG*

PDWORD

ARG OUT '

StrEventUrl,

cArgs,

rgArgs,

pArgsOut,

rgArgsOut

220 . if (InsAVRConfig . SoundField , MIN_ FIELD)

221.

222.

223 .

224.

225 .

226.

227.

228 .

InsAVRConfig.SoundField - -;

CHAR szValue[32);

sprintf (szValue, "%u ", InsAVRConfig. SoundField) i

ChangeProp(StrEventUrl, HSoundField u , szValue) i

SerialCommand (Il SoundField u , szValuel;

SubmitPropEvents(StrEventUrl, NULL);

229. return 0;

230.

231. DWORD Do_Next_String_ Boundedlnput

232. CHAR*

233. DWORD

234. ARG*

235 . PDWORD

236. ARG OUT'

237 .

238.

Appendices

166

StrEvent Url,

c Args ,

rgArgs,

pArgsOut,

rgArgsOut

239 . if (InsAVRConfig . Input < MAX_INPUT)

240 .

InsAVRConfig.lnput++;

CHAR szValue[32];

24l.

242 .

243.

244.

245.

246 .

247 .

sprintf (szValue, U%u ll , ' InsAVRConfig.lnput) ;

ChangeProp(StrEventUrl, "Input", szValue);

SerialCommand (IiInputll, szValue);

SubmitPropEvents(StrEventUrl, NULL) ;

248 . return 0;

249.

250. DWORD Do_Prev_String_Boundedlnput

251. CHAR*

252.

253.

254.

255 .

256.

257 .

DWORD

ARG*

PDWORD

ARG OUT*

258. if (InsAVRConfig.Input > MIN_INPUT)

259.

InsAVRConfig . lnput- -;

CHAR szValue[32];

StrEventUrl,

cArgs,

rgArgs,

pArgsOut,

rgArgsOut

260.

26l.

262 .

263 .

264.

265.

266.

sprintf(szValue, "%U ", InsAVRConfig.lnput);

ChangeProp(S t rEventUrl, 11 Inputll, szValue);

SerialCommand (n Input n, szValue);

SubmitPropEvents(StrEventUrl , NULL);

267 . return 0 ;

268.

269. DWORD Do_ToggleSpeakerA

270 . CHAR*

271. DWORD

272. ARG*

273. PDWORD

274. ARG OUT*

275 .

276 .

StrEventUrl,

cArgs,

rgArgs,

pArgsOut,

rgArgsOut

277 . InsAVRConfig.SpeakerA !InsAVRConfig.SpeakerA;

278 . CHAR szValue[32];

Appendices

167

279 .

280 .

28l.

282 .

283 .

284 .

sp r intf(szValue, U%u n , InsAVRConfig . SpeakerA) i

Change Prop (StrEventUrl, IISpeakerA lt
, szValue) ;

SerialCommand ("SpeakerA", szValue) i

SubmitPropEvents(StrEventUrl, NULL) i

return OJ

285 . DWORD Do_ToggleSpeakerB

286 .

287 .

288.

289 .

290.

29l.

292.

293. InsAVRConfig.SpeakerB

294 . CHAR szValue[32];

CHAR*

DWORD

ARG*

PDWORD

ARG OUT *

StrEventUrl,

cArgs ,

rgArgs,

pArgsOut,

rgArgsOut

! InsAVRConfig .SpeakerBj

295 . sprintf(szValue, II %U Il , InsAVRConfig .SpeakerB) i

296. ChangeProp (StrEventUrl, "SpeakerB", szValue) i

297 . SerialCommand ("SpeakerS ", szValue);

29B. SubmitPropEvents(StrEventUrl, NULL) i

299. return O'

300 .

---------------_._._---_ .. _---_._----_ .. __ .. •. _ ... -

AppendIces

168

Appendix G - UPnP "UDevice" Module Listing
1. II RXVIOOO Device function prototypes

2. DWORD Do AVR Init (CHAR* StrEventUrl);

3.

4. DWORD Do_AVR_Cleanup (CHAR* StrEventUrl);

5.

6. DWORD Do IncreaseVolume

7.

B.

9.

10.

1l.

12 .

13.

14 . DWORD Do DecreaseVolume

15.

16.

17.

lB.

19.

20.

2l.

22 . DWORD Do_IncreaseSleep (

CHAR*

DWORD

ARG *

PDWORD

ARG OUT*

) ;

CHAR*

DWORD

ARG*

PDWORD

ARG OUT*

) ;

23. CHAR*

24. DWORD

25. ARG*

26. PDWORD

27. ARG OUT*

2B.

29.

30. OWORD Do_DecreaseSleep (

) ;

31. CHAR*

32. DWORD

33. ARG*

34. PDWORD

35 . ARG_OUT*

36.

37.

) ;

38. DWORD Do_Next_Strin9_Boundedlnput

169

StrEventUrl,

cArgs t

rgArgs,

pArgsOut,

r gArgsOut

StrEventUrl,

cArgs,

rgArgs,

pArgsOut,

rgArgsOut

StrEventUrl,

cArgs,

rgArgs,

pArgsOut,

rgArgsOut

StrEventUrl,

cArgst

rgArgs,

pArgsOut,

rgArgsOut

39 . CHAR* StrEventUrl,

40. DWORD cArgs,

4l. ARG* rgArgs.

42. PDWORD pArgsOut,

43. ARG OUT* rgArgsOut

44. l;

45.

46. DWORD DO_Prev_String_Boundedlnput

47. CHAR* StrEventUrl,

48. DWORD cArgs,

49. ARG* rgArgs,

50. PDWORD pArgsOut,

51. ARG - OUT* rgArgsOut

52 . l;

53.

54. DWORD Do_Next_String_BoundedSoundField

55. CHAR* StrEventUrl,

56. DWORD cArgs,

57. ARG* rgArgs,

58. PDWORD pArgsOut I

59. ARG OUT* rgArgsOut

60 . l;

6l.

62. DWORD Do - Prey _Strin9_ BoundedSoundField

63. CHAR * StrEventUrl,

64. DWORD cArgs,

65. ARG* rgArgs,

66. PDWORD pArgsOut I

67. ARG OUT* rgArgsOut

68 . l;

69.

70. DWORD Do_Next _Strin9_ BoundedSoundMode

71. CHAR* StrEventUrl,

72 . DWORD cArgs,

73. ARG* rgArgs,

74 . PDWORD pArgsOut,

75. ARG - OUT* rgArgsOut

76. l;

77 .

78. DWORD Do_Prev_ String_BoundedSoundMode (

Appendices

170

79. CHAR* StrEventUrl,

80. DWORD cArgs,

81. ARG* rgArgs,

82. PDWORD pArgsOut,

83. ARG OUT* rgArgsOut

84.) ;

85.

86. DWORD Do_Togg1eSpeakerA

87. CHAR* StrEventUrl,

88. DWORD cArgs,

89. ARG* rgArgs,

90. PDWORD pArgsOut,

91. ARG_OUT * rgArgsOut

92 .) ;

93.

94. DWORD Do_ToggleSpeakerB

95. CHAR* StrEventUrl,

96 . DWORD cArgs,

97. ARG* rgArgs,

98. PDWORD pArgsOut,

99. ARG OUT* rgArgsOut

10.) ;

101.

102. II Add SERVI CE CTL entries for each device.

103 .

104. / / c cDemoSvc must be set to the number of control IDs in c _ rgSvc

(below) .

1 05. II Change this number if you add entries to c_rgSvc.

106. #define c_cDemoSvc 1

107.

lOB. /1 The table that follows is a method of associating UPDIAG control

identifiers with

109. II device-specific function calls.

110.

111. canst SERVICE_ CTL c_rgSvc(c_cDemoSvc)

112

113.

114.

115. n avrconfig" ,

identifier.

//Service control

._--_.- . -_ •.•. _ .. __ .. _._._ .•.•. _ .. _-_.
Appendices

171

116 .

initialization function .

117.

cleanup function .

118. 12,

service i mplements.

119 .

120 .

121.

122 .

123 .

124.

125 .

{ "IncreaseVolume 'I ,

(PFNAS)Do_IncreaseVolume

{ ItDecreaseVolume u ,

(PFNAS)Do_DecreaseVolume

{ "IncreaseSleep" ,

(PFNAS)Do_IncreaseSleep

{ I1Dec r easeSleep" I

(PFNAS)Do_DecreaseSleep

{ "Next_ String_Boundedlnputll,

(PFNAS)Do_Next_ String_Boundedlnput

{ II Prev_Strin9_Boundedlnput II ,

},

(PFNAS) Do_Nex t_String_Boundedlnput),

//Device - specific

//Device-specific

//Number of actions this

},

},

},

} ,

126 . "Next_ Strin9_BoundedSoundModett,

(PFNAS) Do_Next_String_BoundedSoundMode),

127 . uPrev_ String_BoundedSoundMode ll
,

(P FNAS) Do_P r ev_St r ing_BoundedSoundMode),

128 . "Next_String_Bound edSoundField",

(PFNAS) DO_Ne xt_String_BoundedSoundField) ,

129. II Prey _String_ BoundedSoundField " ,

(PFNAS) DO_Prev_String_BoundedSoundField),

130. { IIToggleSpeakerA",

(PFNAS) Do_ToggleSpeakerA

13 1. { "ToggleSpeakerB",

(PFNAS) Do_ToggleSpeakerB

13 2.),

133. },

134 . } ;

135 .

},

} ,

136 . II Define the product name that will appe ar in HTTP SERVER header.

137 . canst CHAR C sZProduct (] = "Yama ha RXVIOOQ" i

138. canst CHAR C sZProductVersion [] = "1 . 0 II ;

.-----.----.--------------... - ... -.- -----
Appendices

172

References
[1] M. Weiser, R. Gold, J.S. Brown. "The origins of ubiquitous computing research at PARC in

the late 1980's". IBM Systems Journal 38, No.4, 693-696 (1999).

[2] I. O'Sullivan. "The IAN Information Appliance Network in Pervasive Home Computing".

http://www.enikia.com/downloads/ian.pdf(1999).

[3]1.0'Sul livan. "The IEDMM" http://www.enikia.com/downloads/iedmm.pdf (1999).

[4] K.F. Eustice, T.J. Lehman, A. Morales, M.C. Munson, S. Edlund, M. Guillen. "A universal

information appliance". IBM Systems Journal 38, No.4, 575-601 (1999).

[5] P. Wyckoff, SW. McLaughry, T.J. Lehman, DA Ford. "Tspaces". IBM Systems Journal 37,

No.3, 454-474 (1998).

[6] T.J. Lehman, K.H. Lee, D. Nelson, T Hodes, M.C. Munson, M Guillen, A Morales. "MoDAL

(Mobile Document Application Language)" . http://www.almaden.ibm.com/cs/TSpaces/MoDAU

(1999).

[7] The ServiceUI Project. "Jini Service UI Draft Specification, Version 1.0"

http://www.artima.com/jini/serviceui/DraftSpec.htm I

[8] "The HAVi Specification, Internal Version 1.01" (2000)

[9] IEEE. "Standard for a High Performance Serial Bus". IEEE Std 1394-1995 (1995)

[10] G. O'Driscol1. "The Essential Guide to Home Networking Technologies". Prentice Hall

(2001).

[11] Microsoft Corporation. "Universal Plug and Play Device Architecture , Ver 1.0".

http://www.upnp.org/download/UPnPDA10_20000613. htm (2000).

[12] 1394 Trade Association. "AV/C Panel Subunit Specification 1.1". TA Document 2001001

(2001).

[13] IEC. "Consumer and audio/video equipment - Digital Interface - Part 1: General" IEC

61883-1 (1998)

[14] 1394 Trade Association. "AV/C Digital Command Set General Specification Version 3.0".

TA Document 1998003 (1998).

[15] 1394 Trade Association "A VIC commands for management of Asynchronous Serial Bus

Connections Ver 1.0 FC1" (1999).

[16] W3C. "Extensible Markup Language (XML) 1.0 (Second Edition)" (2000)

[17] Object Management Group (OMG) Inc. "OMG Unified Modelling Language Specification

Version 1.3" (1999)

[18] Pat Terry. "Compilers and Compiler Generators: An Introduction with C++". International

Thomson, London, England (1999)

References

173

[19] Elizabeth Parks. "Multimedia ConnectivityTM to Drive Networking to the Masses"

http://www.parksassociates.comlinthePress/press_releases/highendentertainment.html(2000)

[20] Sun Microsystems. ''Jini™ Network Technology". http://www.sun.org/j ini

[21] IEEE. "Control and Status Registers (CSR) Architecture for Microcomputer Buses". /EEE

Sid 1212 (1994)

[22]1 394 Trade Association "AV/C Audio Subunit Specification Ver 1.00 FC2" (1999).

[23] Y. Goland, T. Cai, et al. "Simple Service Discovery ProtocoI/1.0."

http://www.upnp.org/draft_cai_ssdp_v1_03.txt (2000)

[24] Y. Goland, J. Schlimmer. "Multicast and Unicast UDP HTTP Messages."

http://www . upn p. org/d raft -gola nd-http-udp-04. txt (2000)

[25] D. Box, D. Ehnebuske, et al. "Simple Object Access Protocol (SOAP) 1.1. "

http: //www.w3.org /TR/SOAP/ (2000)

[26] J. Cohen, S. Aggarwal, Y. Goland. "General Event Notification Architecture Base: Client to

Arbiter." http://www.upnp.org/draft-cohen-gena-client-01 .txt (2000)

[27] Postel, J. "Internet Protocol," RFC 760, USC/Information Sciences Institute (1980)

[28] Postel, J. "Transmission Control Protocol," RFC 761, USCllnformation Sciences Institute

(1980)

[29] P. Mockapetris. "Domain Names - Implementation and Specification" RFC 1035, IETF

(1987)

[30] R. Troll. "Automatically Choos ing an IP Address in an Ad-Hoc IPv4 Network" IETF.

http://www . rtroll. 0 rg /rya nip u bs/draft -i etf -d hc-i pv4-a utoconfig -05. txt (2001)

[31] L. Esibov, B. Aboba, D. Thaler. "Multicast DNS" http://www.globecom .netlietf/draftldraft-ietf

dnsext-mdns-01.html (2001)

[32] R. Droms. "Dynamic Host Configuration Protocol" RFC 1541, IETF (1997)

[33] W3C. "HTML 4.01 Specification" (1999)

[34] P. Ward, S. Mellor. "Structured development for real-time systems" (Volumes 1, 2 and 3)

Yourdon Press (1986)

[35]1394 TA. "AV/C Compatible Asynchronous Serial Bus Connections Version 1.0" (1999)

[36] Microsoft Corporation.

file :///Ubrary/_upnpki,-understanding_how_the_upnp_device_sample_code_is_organized.htm

(2001)

[37] P. Coad, D. North, M. Mayfield. "Object Models: Strategies, Patterns and Applications,

Second Edition" Yourdon Press, Prentice Hall (1997)

[38] P. Naur. "Report on the algori thmic language Algol 60" Communications of the ACM, 6(1)

(1963)

References

174

[39] N. Wirth. 'What can we do about the unnecessary diversity of notation for syntactic

definitions?" Communications of the ACM, 20(11) (1977)

[40] 1394 Trade Association. "AV/C Audio Subunit Specification 1.0". TA Document 1999001

(2000).

[41] 1394 Trade Association. "AV/C Disc Subunit General Specification 1.0". TA Document

1998013 (1999).

[42] Digital Harmony Technologies, Inc. "Functional Specification (Preliminary). DHIVA. Digital

Harmony Interface for Video and Audio (DH1 Adapter Card)" (1999)

[43] Digital Harmony Technologies, Inc. "Embedded Development Platform" (2000)

[44] P. Johansson . RFC 2734 "IPv4 over IEEE 1394" (1999)

[45] B. Nickless. Internet Draft "The IP Multicast Service Model" (2002)

References

175

