8 research outputs found

    Creation and detection of hardware trojans using non-invasive off-the-shelf technologies

    Get PDF
    As a result of the globalisation of the semiconductor design and fabrication processes, integrated circuits are becoming increasingly vulnerable to malicious attacks. The most concerning threats are hardware trojans. A hardware trojan is a malicious inclusion or alteration to the existing design of an integrated circuit, with the possible effects ranging from leakage of sensitive information to the complete destruction of the integrated circuit itself. While the majority of existing detection schemes focus on test-time, they all require expensive methodologies to detect hardware trojans. Off-the-shelf approaches have often been overlooked due to limited hardware resources and detection accuracy. With the advances in technologies and the democratisation of open-source hardware, however, these tools enable the detection of hardware trojans at reduced costs during or after production. In this manuscript, a hardware trojan is created and emulated on a consumer FPGA board. The experiments to detect the trojan in a dormant and active state are made using off-the-shelf technologies taking advantage of different techniques such as Power Analysis Reports, Side Channel Analysis and Thermal Measurements. Furthermore, multiple attempts to detect the trojan are demonstrated and benchmarked. Our simulations result in a state-of-the-art methodology to accurately detect the trojan in both dormant and active states using off-the-shelf hardware

    Creation and detection of hardware trojans using non-invasive off-the-shelf technologies

    Get PDF
    As a result of the globalisation of the semiconductor design and fabrication processes, integrated circuits are becoming increasingly vulnerable to malicious attacks. The most concerning threats are hardware trojans. A hardware trojan is a malicious inclusion or alteration to the existing design of an integrated circuit, with the possible effects ranging from leakage of sensitive information to the complete destruction of the integrated circuit itself. While the majority of existing detection schemes focus on test-time, they all require expensive methodologies to detect hardware trojans. Off-the-shelf approaches have often been overlooked due to limited hardware resources and detection accuracy. With the advances in technologies and the democratisation of open-source hardware, however, these tools enable the detection of hardware trojans at reduced costs during or after production. In this manuscript, a hardware trojan is created and emulated on a consumer FPGA board. The experiments to detect the trojan in a dormant and active state are made using off-the-shelf technologies taking advantage of different techniques such as Power Analysis Reports, Side Channel Analysis and Thermal Measurements. Furthermore, multiple attempts to detect the trojan are demonstrated and benchmarked. Our simulations result in a state-of-the-art methodology to accurately detect the trojan in both dormant and active states using off-the-shelf hardwar

    Realizability of embedded controllers: from hybrid models to correct implementations

    Get PDF
    Un controller embedded \ue8 un dispositivo (ovvero, un'opportuna combinazione di componenti hardware e software) che, immerso in un ambiente dinamico, deve reagire alle variazioni ambientali in tempo reale. I controller embedded sono largamente adottati in molti contesti della vita moderna, dall'automotive all'avionica, dall'elettronica di consumo alle attrezzature mediche. La correttezza di tali controller \ue8 indubbiamente cruciale. Per la progettazione e per la verifica di un controller embedded, spesso sorge la necessit\ue0 di modellare un intero sistema che includa sia il controller, sia il suo ambiente circostante. La natura di tale sistema \ue8 ibrido. Esso, infatti, \ue8 ottenuto integrando processi ad eventi discreti (i.e., il controller) e processi a tempo continuo (i.e., l'ambiente). Sistemi di questo tipo sono chiamati cyber-physical (CPS) o sistemi ibridi. Le dinamiche di tali sistemi non possono essere rappresentati efficacemente utilizzando o solo un modello (i.e., rappresentazione) discreto o solo un modello continuo. Diversi tipi di modelli possono sono stati proposti per descrivere i sistemi ibridi. Questi si concentrano su obiettivi diversi: modelli dettagliati sono eccellenti per la simulazione del sistema, ma non sono adatti per la sua verifica; modelli meno dettagliati sono eccellenti per la verifica, ma non sono convenienti per i successivi passi di raffinamento richiesti per la progettazione del sistema, e cos\uec via. Tra tutti questi modelli, gli Automi Ibridi (HA) [8, 77] rappresentano il formalismo pi\uf9 efficace per la simulazione e la verifica di sistemi ibridi. In particolare, un automa ibrido rappresenta i processi ad eventi discreti per mezzo di macchine a stati finiti (FSM), mentre i processi a tempo continuo sono rappresentati mediante variabili "continue" la cui dinamica \ue8 specificata da equazioni differenziali ordinarie (ODE) o loro generalizzazioni (e.g., inclusioni differenziali). Sfortunatamente, a causa della loro particolare semantica, esistono diverse difficolt\ue0 nel raffinare un modello basato su automi ibridi in un modello realizzabile e, di conseguenza, esistono difficolt\ue0 nell'automatizzare il flusso di progettazione di sistemi ibridi a partire da automi ibridi. Gli automi ibridi, infatti, sono considerati dispositivi "perfetti e istantanei". Essi adottano una nozione di tempo e di variabili basata su insiemi "densi" (i.e., l'insieme dei numeri reali). Pertanto, gli automi ibridi possono valutare lo stato (i.e., i valori delle variabili) del sistema in ogni istante, ovvero in ogni infinitesimo di tempo, e con la massima precisione. Inoltre, sono in grado di eseguire computazioni o reagire ad eventi di sincronizzazione in modo istantaneo, andando a cambiare la modalit\ue0 di funzionamento del sistema senza alcun ritardo. Questi aspetti sono convenienti a livello di modellazione, ma nessun dispositivo hardware/software potrebbe implementare correttamente tali comportamenti, indipendentemente dalle sue prestazioni. In altre parole, il controller modellato potrebbe non essere implementabile, ovvero, esso potrebbe non essere realizzabile affatto. Questa tesi affronta questo problema proponendo una metodologia completa e gli strumenti necessari per derivare da modelli basati su automi ibridi, modelli realizzabili e le corrispondenti implementazioni corrette. In un modello realizzabile, il controller analizza lo stato del sistema ad istanti temporali discreti, tipicamente fissati dalla frequenza di clock del processore installato sul dispositivo che implementa il controller. Lo stato del sistema \ue8 dato dai valori delle variabili rilevati dai sensori. Questi valori vengono digitalizzati con precisione finita e propagati al controller che li elabora per decidere se cambiare la modalit\ue0 di funzionamento del sistema. In tal caso, il controller genera segnali che, una volta trasmessi agli attuatori, determineranno il cambiamento della modalit\ue0 di funzionamento del sistema. \uc8 necessario tener presente che i sensori e gli attuatori introducono ritardi che seppur limitati, non possono essere trascurati.An embedded controller is a reactive device (e.g., a suitable combination of hardware and software components) that is embedded in a dynamical environment and has to react to environment changes in real time. Embedded controllers are widely adopted in many contexts of modern life, from automotive to avionics, from consumer electronics to medical equipment. Noticeably, the correctness of such controllers is crucial. When designing and verifying an embedded controller, often the need arises to model the controller and also its surrounding environment. The nature of the obtained system is hybrid because of the inclusion of both discrete-event (i.e., controller) and continuous-time (i.e., environment) processes whose dynamics cannot be characterized faithfully using either a discrete or continuous model only. Systems of this kind are named cyber-physical (CPS) or hybrid systems. Different types of models may be used to describe hybrid systems and they focus on different objectives: detailed models are excellent for simulation but not suitable for verification, high-level models are excellent for verification but not convenient for refinement, and so forth. Among all these models, hybrid automata (HA) [8, 77] have been proposed as a powerful formalism for the design, simulation and verification of hybrid systems. In particular, a hybrid automaton represents discrete-event processes by means of finite state machines (FSM), whereas continuous-time processes are represented by using real-numbered variables whose dynamics is specified by (ordinary) differential equation (ODE) or their generalizations (e.g., differential inclusions). Unfortunately, when the high-level model of the hybrid system is a hybrid automaton, several difficulties should be solved in order to automate the refinement phase in the design flow, because of the classical semantics of hybrid automata. In fact, hybrid automata can be considered perfect and instantaneous devices. They adopt a notion of time and evaluation of continuous variables based on dense sets of values (usually R, i.e., Reals). Thus, they can sample the state (i.e., value assignments on variables) of the hybrid system at any instant in such a dense set R 650. Further, they are capable of instantaneously evaluating guard constraints or reacting to incoming events by performing changes in the operating mode of the hybrid system without any delay. While these aspects are convenient at the modeling level, any model of an embedded controller that relies for its correctness on such precision and instantaneity cannot be implemented by any hardware/software device, no matter how fast it is. In other words, the controller is un-realizable, i.e., un-implementable. This thesis proposes a complete methodology and a framework that allows to derive from hybrid automata proved correct in the hybrid domain, correct realizable models of embedded controllers and the related discrete implementations. In a realizable model, the controller samples the state of the environment at periodic discrete time instants which, typically, are fixed by the clock frequency of the processor implementing the controller. The state of the environment consists of the current values of the relevant variables as observed by the sensors. These values are digitized with finite precision and reported to the controller that may decide to switch the operating mode of the environment. In such a case, the controller generates suitable output signals that, once transmitted to the actuators, will effect the desired change in the operating mode. It is worth noting that the sensors will report the current values of the variables and the actuators will effect changes in the rates of evolution of the variables with bounded delays

    Compact Field Programmable Gate Array Based Physical Unclonable Functions Circuits

    Get PDF
    The Physical Unclonable Functions (PUFs) is a candidate to provide a secure solid root source for identification and authentication applications. It is precious for FPGA-based systems, as FPGA designs are vulnerable to IP thefts and cloning. Ideally, the PUFs should have strong random variations from one chip to another, and thus each PUF is unique and hard to replicate. Also, the PUFs should be stable over time so that the same challenge bits always yield the same result. Correspondingly, one of the major challenges for FPGA-based PUFs is the difficulty of avoiding systematic bias in the integrated circuits but also pulling out consistent characteristics as the PUF at the same time. This thesis discusses several compact PUF structures relying on programmable delay lines (PDLs) and our novel intertwined programmable delays (IPD). We explore the strategy to extract the genuinely random PUF from these structures by minimizing the systematic biases. Yet, our methods still maintain very high reliability. Furthermore, our proposed designs, especially the TERO-based PUFs, show promising resilience to machine learning (ML) attacks. We also suggest the bit-bias metric to estimate PUF’s complexity quickly

    Dependability Assessment of NAND Flash-memory for Mission-critical Applications

    Get PDF
    It is a matter of fact that NAND flash memory devices are well established in consumer market. However, it is not true that the same architectures adopted in the consumer market are suitable for mission critical applications like space. In fact, USB flash drives, digital cameras, MP3 players are usually adopted to store "less significant" data which are not changing frequently (e.g., MP3s, pictures, etc.). Therefore, in spite of NAND flash’s drawbacks, a modest complexity is usually needed in the logic of commercial flash drives. On the other hand, mission critical applications have different reliability requirements from commercial scenarios. Moreover, they are usually playing in a hostile environment (e.g., the space) which contributes to worsen all the issues. We aim at providing practical valuable guidelines, comparisons and tradeoffs among the huge number of dimensions of fault tolerant methodologies for NAND flash applied to critical environments. We hope that such guidelines will be useful for our ongoing research and for all the interested readers

    Dependability Assessment of NAND Flash-memory for Mission-critical Applications

    Get PDF
    It is a matter of fact that NAND flash memory devices are well established in consumer market. However, it is not true that the same architectures adopted in the consumer market are suitable for mission critical applications like space. In fact, USB flash drives, digital cameras, MP3 players are usually adopted to store "less significant" data which are not changing frequently (e.g., MP3s, pictures, etc.). Therefore, in spite of NAND flash's drawbacks, a modest complexity is usually needed in the logic of commercial flash drives. On the other hand, mission critical applications have different reliability requirements from commercial scenarios. Moreover, they are usually playing in a hostile environment (e.g., the space) which contributes to worsen all the issues. We aim at providing practical valuable guidelines, comparisons and tradeoffs among the huge number of dimensions of fault tolerant methodologies for NAND flash applied to critical environments. We hope that such guidelines will be useful for our ongoing research and for all the interested reader

    Model-based quality assurance of instrumented context-free systems

    Get PDF
    The ever-growing complexity of today’s software and hardware systems makes quality assurance (QA) a challenging task. Abstraction is a key technique for dealing with this complexity because it allows one to skip non-essential properties of a system and focus on the important ones. Crucial for the success of this approach is the availability of adequate abstraction models that strike a fine balance between simplicity and expressiveness. This thesis presents the formalisms of systems of procedural automata (SPAs), systems of behavioral automata (SBAs), and systems of procedural Mealy machines (SPMMs). The three model types describe systems which consist of multiple procedures that can mutually call each other, including recursion. While the individual procedures are described by regular automata and therefore are easy to understand, the aggregation of procedures towards systems captures the semantics of context-free systems, offering the expressiveness necessary for representing procedural systems. A central concept of the proposed model types is an instrumentation that exposes the internal structure of systems by making calls to and returns from procedures observable. This instrumentation allows for a notion of rigorous (de-) composition which enables a translation between local (procedural) views and global (holistic) views on a system. On the basis of this translation, this thesis presents algorithms for the verification, testing, and learning of (instrumented) context-free systems, covering a broad spectrum of practical QA tasks. Starting with SPAs as a “base” formalism for context-free systems, the flexibility of this concept is shown by including features such as prefix-closure (SBAs) and dialog-based transductions (SPMMs). In a comparison with related formalisms, this thesis shows that the simplicity of the proposed model types not only increases the understandability of models but can also improve the performance of QA tasks. This makes SPAs, SBAs, and SPMMs a powerful tool for tackling the practical challenges of assuring the quality of today’s software and hardware systems

    SAT-based Analysis, (Re-)Configuration & Optimization in the Context of Automotive Product documentation

    Get PDF
    Es gibt einen steigenden Trend hin zu kundenindividueller Massenproduktion (mass customization), insbesondere im Bereich der Automobilkonfiguration. Kundenindividuelle Massenproduktion führt zu einem enormen Anstieg der Komplexität. Es gibt Hunderte von Ausstattungsoptionen aus denen ein Kunde wählen kann um sich sein persönliches Auto zusammenzustellen. Die Anzahl der unterschiedlichen konfigurierbaren Autos eines deutschen Premium-Herstellers liegt für ein Fahrzeugmodell bei bis zu 10^80. SAT-basierte Methoden haben sich zur Verifikation der Stückliste (bill of materials) von Automobilkonfigurationen etabliert. Carsten Sinz hat Mitte der 90er im Bereich der SAT-basierten Verifikationsmethoden für die Daimler AG Pionierarbeit geleistet. Darauf aufbauend wurde nach 2005 ein produktives Software System bei der Daimler AG installiert. Später folgten weitere deutsche Automobilhersteller und installierten ebenfalls SAT-basierte Systeme zur Verifikation ihrer Stücklisten. Die vorliegende Arbeit besteht aus zwei Hauptteilen. Der erste Teil beschäftigt sich mit der Entwicklung weiterer SAT-basierter Methoden für Automobilkonfigurationen. Wir zeigen, dass sich SAT-basierte Methoden für interaktive Automobilkonfiguration eignen. Wir behandeln unterschiedliche Aspekte der interaktiven Konfiguration. Darunter Konsistenzprüfung, Generierung von Beispielen, Erklärungen und die Vermeidung von Fehlkonfigurationen. Außerdem entwickeln wir SAT-basierte Methoden zur Verifikation von dynamischen Zusammenbauten. Ein dynamischer Zusammenbau repräsentiert die chronologische Zusammenbau-Reihenfolge komplexer Teile. Der zweite Teil beschäftigt sich mit der Optimierung von Automobilkonfigurationen. Wir erläutern und vergleichen unterschiedliche Optimierungsprobleme der Aussagenlogik sowie deren algorithmische Lösungsansätze. Wir beschreiben Anwendungsfälle aus der Automobilkonfiguration und zeigen wie diese als aussagenlogisches Optimierungsproblem formalisiert werden können. Beispielsweise möchte man zu einer Menge an Ausstattungswünschen ein Test-Fahrzeug mit minimaler Ergänzung weiterer Ausstattungen berechnen um Kosten zu sparen. DesWeiteren beschäftigen wir uns mit der Problemstellung eine kleinste Menge an Fahrzeugen zu berechnen um eine Testmenge abzudecken. Im Rahmen dieser Arbeit haben wir einen Prototypen eines (Re-)Konfigurators, genannt AutoConfig, entwickelt. Unser (Re-)Konfigurator verwendet im Kern SAT-basierte Methoden und besitzt eine grafische Benutzeroberfläche, welche interaktive Konfiguration erlaubt. AutoConfig kann mit Instanzen von drei großen deutschen Automobilherstellern umgehen, aber ist nicht alleine darauf beschränkt. Mit Hilfe dieses Prototyps wollen wir die Anwendbarkeit unserer Methoden demonstrieren
    corecore