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1

Introduction

An embedded controller is a reactive device (e.g., a suitable combination of hard-
ware and software components) that is embedded in a dynamical environment
and has to react to environment changes in real time. Embedded controllers are
widely adopted in many contexts of modern life, from automotive to avionics,
from consumer electronics to medical equipment. Noticeably, the correctness of
such controllers is crucial. When designing and verifying an embedded controller,
often the need arises to model the controller and also its surrounding environ-
ment. The nature of the obtained system is hybrid because of the inclusion of
both discrete-event (i.e., controller) and continuous-time (i.e., environment) pro-
cesses whose dynamics cannot be characterized faithfully using either a discrete
or continuous model only. Systems of this kind are named cyber-physical (CPS)
or hybrid systems.

Different types of models may be used to describe hybrid systems and they
focus on different objectives: detailed models are excellent for simulation but not
suitable for verification, high-level models are excellent for verification but not
convenient for refinement, and so forth. Among all these models, hybrid automata
(HA) [8, 77] have been proposed as a powerful formalism for the design, simula-
tion and verification of hybrid systems. In particular, a hybrid automaton repre-
sents discrete-event processes by means of finite state machines (FSM), whereas
continuous-time processes are represented by using real-numbered variables whose
dynamics is specified by (ordinary) differential equation (ODE) or their general-
izations (e.g., differential inclusions).

Unfortunately, when the high-level model of the hybrid system is a hybrid
automaton, several difficulties should be solved in order to automate the refinement
phase in the design flow, because of the classical semantics of hybrid automata.
In fact, hybrid automata can be considered perfect and instantaneous devices.
They adopt a notion of time and evaluation of continuous variables based on
dense sets of values (usually R≥0 and R, resp.). Thus, they can sample the state
(i.e., value assignments on variables) of the hybrid system at any instant in such
a dense set R≥0. Further, they are capable of instantaneously evaluating guard
constraints or reacting to incoming events by performing changes in the operating
mode of the hybrid system without any delay. While these aspects are convenient
at the modeling level, any model of an embedded controller that relies for its
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correctness on such precision and instantaneity cannot be implemented by any
hardware/software device, no matter how fast it is. In other words, the controller
is un-realizable, i.e., un-implementable.

1.1 Aims of the thesis

This thesis proposes a complete methodology and a framework that allows to derive
from hybrid automata proved correct in the hybrid domain, correct realizable
models of embedded controllers and the related discrete implementations. In a
realizable model, the controller samples the state of the environment at periodic
discrete time instants which, typically, are fixed by the clock frequency of the
processor implementing the controller. The state of the environment consists of the
current values of the relevant variables as observed by the sensors. These values
are digitized with finite precision and reported to the controller that may decide
to switch the operating mode of the environment. In such a case, the controller
generates suitable output signals that, once transmitted to the actuators, will effect
the desired change in the operating mode. It is worth noting that the sensors will
report the current values of the variables and the actuators will effect changes in
the rates of evolution of the variables with bounded delays.

In particular, given a hybrid automaton-based model M of a hybrid system,
the proposed methodology focuses on:

• Identifying the existence of a realizable model MR which includes a controller
that is implementable and is still able to safely handle the surrounding environ-
ment. In other words, this step aims at automating the synthesis of a relaxed or
lazy control strategy for M which takes into account the digital and imprecise
aspects of the hardware device on which the actual control strategy is being
executed. In particular, the synthesis establishes the performance bounds to
be satisfied by any conservative concrete hardware/software device that will
implement the controller. So, if a realizable model MR is identified, then its
control strategy can be translated into an embedded software that has to be
executed on a hardware device satisfying the synthesized performance bounds.

• Simplifying the translation of the control strategy of MR into the embed-
ded software that is implementing such a realizable control strategy. Instead
of manually defining the code implementation, the methodology proposes to
adopt a model-driven design approach [126], i.e., to define the control strat-
egy behaviors by means of discrete abstract graphic formalisms (e.g., FSMs,
hierarchical FSMs). The gain offered by the adoption of a such an approach is
the capability of synthesizing the code implementing the embedded software
in a systematic way, i.e., it avoids the need of manual writing, analyzing and
modifying the code, because the corresponding code is correct by construction,
that is, it implements correctly the specified model behaviors.

• Supporting the embedded software model-driven design with an integrated
functional verification environment. In fact, even if the model-driven design
simplifies the generation of the software code implementation, it does not pre-
vent the designer to wrongly define the software behaviors using the graphic
formalisms. In particular, the methodology supports the functional verification
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of embedded software by means of dynamic assertion-based verification [64].
Such a kind of verification uses formal temporal assertions for checking the func-
tional and temporal correctness of the embedded software model and, thus, of
its implementation.

• Supporting the qualification of the set of assertions used to verify the embed-
ded software. In particular, the proposed methodology supports the vacuity
checking [16, 98] that aims at identifying the presence of vacuous assertions,
i.e., assertions that are trivially satisfied. Such assertions can lead designers to
a false sense of safety because the embedded software implementation could be
erroneous even if all the defined assertions are satisfied.

The methodology summarized above is thoroughly described in the following
chapters. Each chapter highlight a specific problem and describes how the proposed
methodology aims to solve it. Moreover, each chapter clearly reports which are the
novelties of the proposed work with respect to the state of the art approaches.

1.2 Thesis overview

This thesis is divided in three main parts: the first part focuses on the problem of
synthesizing an implementable control strategy from hybrid automata to enable
the subsequent refinement phases typical of embedded controllers design flows; the
second part focuses on the problem of modeling and verifying embedded software
for guaranteeing the correctness of the software that model the implementable
control strategy previously identified; finally, the third part focuses on evaluating
the effectiveness of the verification phase which guarantee the real correctness of
the implemented embedded software.

In Chapter 2, we discuss the problem of synthesizing implementable control
strategies for hybrid models described by means of hybrid automata. In particu-
lar, in Section 2.3 we describe an existing solution for synthesizing implementable
control strategies for sub-classes of HA and propose a framework that extends its
applicability on general classes of HA. This is based on a joint work with prof.
Tiziano Villa, Dr. Davide Bresolin and Dr. Luca Geretti [31]. In Section 2.4, in-
stead, we defined a new approach for synthesizing implementable control strategies
for lazy linear hybrid automata which is a relevant class of HA whose semantics
differs from the traditional one and it is suited for modeling discrete controller
embedded into physical environments. This approach results from a recent joint
work with prof. Tiziano Villa and prof. Sanjit Seshia which has not been published
yet.

In Chapter 3 we present a suitable combination of model-driven design and dy-
namic assertion-based verification as an effective solution for embedded software
development. Besides, we describe the characteristics of a framework composed
by two environments that has been developed for supporting this integrated ap-
proach. The model-driven design environment, named radCASE, provides the de-
signer with a comprehensive approach to cover the complete modeling and synthe-
sis process of embedded software. The dynamic assertion-based verification envi-
ronment, named radCHECK, automates the simulation-based verification making
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dynamic assertion-based verification really practical. This work is based on col-
laborations with Dr. Giuseppe Di Guglielmo, prof. Masahiro Fujita, prof. Franco
Fummi and prof. Graziano Pravadelli [49]. Preliminary results have been published
also in [48, 52].

In Chapter 4 we tackle the problem of assertion qualification focusing in par-
ticular on the identification of vacuously satisfied assertions which may hide errors
in the verification phase. In particular, we propose the first methodology that,
given a set of assertions satisfied by a design implementation (either hardware or
software), enables to perform vacuity detection in the context of dynamic assertion-
based verification. In fact, all the existing approaches in literature are suited for
static verification. This work is based on a collaboration with prof. Franco Fummi
and prof. Graziano Pravadelli [53, 54].

Finally, a summary of the contributions made by the thesis is reported in Chap-
ter 5. This chapter concludes the thesis by identifying future research directions.
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Synthesis of implementable control strategies for

HA

2.1 Introduction

There is a non-negligible semantic gap between hybrid models described by means
of hybrid automata and discrete implementations. First, the notion of variable
used in hybrid automata is continuous, defining variables which take their values
from a dense set (e.g., R), while implementations can only use digital and finitely
precise variables. Second, hybrid automata react instantaneously to events and
guard constraints while implementations can only react within a given, usually
small but non-zero, reaction delay. Third, hybrid automata may describe control
strategies that are unrealistic, such as Zeno-strategies or strategies that require
the system to act faster and faster. For these reasons, a control strategy that has
been proven correct may not be implementable (at all) or it may not be possible
to systematically turn it into an implementation that is still correct [36]. Thus, the
development of a technique for synthesizing an implementable control strategy (if
it exist) for a hybrid automaton-based model is really valuable.

This chapter tackles this problem by proposing:

• a complete framework, based on the methodology proposed in [46], that makes
practical the applicability of the Almost-ASAP semantics for synthesizing im-
plementable control strategies for relevant classes of hybrid automata for which
the reachability problem is not decidable.

• a new methodology, again supported by tools, for the synthesis of imple-
mentable control strategies for the interesting class of lazy linear hybrid au-
tomata. For such a class of hybrid automata the reachability problem is decid-
able.

In particular, the chapter is organized as follows. Section 2.2 summarizes the
background, the current results related to verification and synthesis of imple-
mentable control strategies for hybrid automata and languages for hybrid au-
tomata specification. Section 2.3 provides the main concepts related to the Almost-
ASAP methodology and the model manipulations implemented into the proposed
framework that enables to synthesize implementable control strategies for generic
classes of hybrid automata. Experimental results show the usability of the frame-
work. Section 2.4 introduces, instead, the fundamental definitions and semantics of
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lazy linear hybrid automata that motivates the assumptions at the base of the new
methodology proposed for synthesis of implementable control strategies described
in Section 2.4.2. Also in this case, experimental results underline the applicability
of the methodology. Finally, Section 2.5 is devoted to concluding remarks.

2.2 Background

A hybrid automaton is a mathematical model for precisely describing systems
in which computational processes tightly interact with the physical world. The
following formal definition has been proposed in [77].

Definition 2.1 (Hybrid Automaton). A hybrid automaton H is a tuple
〈X,Q,Q0, init, inv, f low,E, jump, update,Σ〉. The components of a hybrid au-
tomaton are as follows:

• Variables. A finite set X = {x1, . . . , xn} of real-numbered variables. The num-
ber n is called the dimension of H. Ẋ stands for the set {ẋ1, . . . , ẋn} of dotted
variables (which represent the time derivatives of continuous variables during
continuous change), and X ′ stands for the set {x′1, . . . , x

′
n} of primed variables

(which represent values of continuous variables at the conclusion of discrete
change).

• Control modes. A finite set Q of control modes. Q0 ⊆ Q denotes the set of
initial modes.

• Initial conditions. A labeling function init that assigns to each control mode
q ∈ Q0 an initial predicate. Each initial condition init(q) is a predicate whose
free variables are from X.

• Invariant conditions. A labeling function inv that assigns to each control mode
q ∈ Q an invariant predicate. Each invariant condition inv(q) is a predicate
whose free variables are from X.

• Flow conditions. A labeling function flow that assigns to each control mode
q ∈ Q a flow predicate. Each flow condition flow(q) is a predicate whose free
variables are from X ∪ Ẋ.

• Control switches. A set E of edges (q, q′) from a source mode q ∈ Q to a target
mode q′ ∈ Q.

• Jump conditions. An edge labeling function jump that assigns to each control
switch e ∈ E a predicate. Each jump condition jump(e) is a predicate whose
free variables are from X.

• Update conditions. An edge labeling function update that assigns to each control
switch e ∈ E a predicate. Each update condition update(e) is a predicate whose
free variables are from X ∪X ′.

• Events. A finite set Σ of events, and an edge labeling function event : E → Σ
that assigns to each control switch an event.

In literature different classes of hybrid automata have been proposed which
specify particular restrictions on the initial, invariant, flow, jump and update con-
ditions.
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• Timed automata . A timed automaton (TA) is a hybrid automaton in which
continuous variables are “clocks”, i.e., variables whose time derivatives are
constrained by the flow conditions to 1 (e.g., ẋ = 1) in each control mode. In
a TA, the initial, invariant and jump conditions consist of clock constraints of
the form

φ = x ≤ c | c ≤ x | ¬φ | φ1 ∧ φ2

whose free variables are from X and c ∈ Q. The update conditions, instead,
are restricted clock constraints whose free variables are from X ′ and variables
can be only reset to 0 (e.g., x′ = 0).

• Linear hybrid automata . A linear hybrid automaton (LHA) is an hybrid
automaton in which all the predicates assigned by init, inv, flow, jump and
update functions are rectangular formulas. A rectangular inequality is of the
form xi ∼ c with c ∈ Z and ∼∈ {<,≤, >,≥}. A rectangular formula is a
conjunction of rectangular inequalities. In a LHA initial, invariant and jump
conditions are given by rectangular formulas over continuous variables (e.g.,
xi = [l, u], where l, u ∈ Z are the lower and upper-bound for xi ∈ X , re-
spectively), update conditions are given by rectangular formulas over primed
variables (i.e., X ′) and flow conditions are given by rectangular formulas over
continuous variables time derivatives (i.e., Ẋ).

• Affine hybrid automata . An affine hybrid automaton (AHA) is an hybrid
automaton in which all the predicates assigned by init, inv, flow, jump and
update functions are finite linear formulas. A linear expression is of the form∑

i aixi + b and a convex linear formula is a finite conjunction of constraints∑
i aixi + b ∼ 0, with ai, b ∈ Z, xi ∈ X and ∼∈ {<,≤,=}. Then, a linear

formula, also referred to as non-convex linear formula, is a finite disjunction of
convex linear formulas. In an AHA initial, invariant and jump conditions are
given by linear formulas over continuous variables (i.e., X), update conditions
are given by linear formulas over continuous variables and the primed variables
(i.e., X ∪X ′) and, finally, flow conditions are given by linear formulas over the
continuous variables and their time derivatives (i.e., X ∪ Ẋ).

To formalize the concept of semantics of hybrid automata, several notions needs
to be defined.

Definition 2.2 (Valuation for continuous variables). Let X = {x1, . . . , xn}
be a set of continuous variables. A valuation V for the variables in X is a member
of Rn such that V prescribes a real value V (i) to each variable xi.

Definition 2.3 (State of a HA). Let H be a hybrid automaton. A state of H
is a pair (q, V ), where q ∈ Q is a control mode and V ∈ Rn is a valuation for
the continuous variables in X. A state (q, V ) is initial if and only if q ∈ Q0 and
V � init(q).

Intuitively, the semantics of a HA corresponds to a sequence of transitions from
one state to another, alternating continuous and discrete evolutions. In continuous
evolution, the control mode does not change while the time passes and evolution
of the variables follows the dynamic law associated with the current mode. A
discrete evolution step consists of the activation of a discrete transition that can
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change both the current mode and value of the variables, in accordance with the
update function associated with the transition. The interleaving of continuous and
discrete evolutions is decided by the invariant of the mode, which must be true
for the continuous evolution to keep on going, and guard predicates, which must
be true for a discrete transition to be activated. Guards and invariants are not
necessarily complements of each other: when both the invariant and one or more
guards are true, both the continuous evolution and activation of discrete transitions
are allowed, and the behavior of the automaton becomes nondeterministic.

Formally, the semantics of a HA is defined as follows.

Definition 2.4 (Transition relation of a HA). Let H be a hybrid automaton
and let SH the set of states of H. The semantics of H, noted as JHK, is given by
the transition relation =⇒⊆ SH × (Σ ∪R≥0)× SH defined as follows:

• Continuous transition. For each nonnegative real number t ∈ R≥0, define

(q, V )
t

=⇒ (q′, V ′) iff q = q′ and there is a differentiable function f : [0, t]→ Rn

with the first derivative ḟ : [0, t] → Rn such that f(0) = V , f(t) = V ′ and
∀t′ ∈ [0, t], f(t′) � inv(q) and ḟ(t′) � flow(q).

• Discrete transition. For each event σ ∈ Σ, define (q, V )
σ

=⇒ (q′, V ′) iff there is
a control switch e ∈ E such that e = (q, q′), V � jump(q), (V, V ′) � update(q)
and σ = event(e).

From the semantics define above, it is possible to derive the following notions of
trajectory of a HA, reachability relation between states and product of transition
relations of HA.

Definition 2.5 (Trajectory of a HA). Let H be a hybrid automaton and let
(q, V ) be a state of H. A trajectory of H from (q, V ) is a sequence of states

(qi, Vi), with i > 0, such that (q0, V0) = (q, V ) and (qi−1, Vi−1)
α

=⇒ (qi, Vi) with
either α ∈ R≥0 or α ∈ Σ.

)('| 1212 xRxGx =∈

1

1

Ix

fx

∈

=&

1q

)('| 2121 xRxGx =∈

2q

2

2

Ix

fx

∈

=&

initxx =

Fig. 2.1: Example of hybrid automaton model.

Example (A generic hybrid automaton). Figure 2.1 sketches an example of
a hybrid automaton H composed of two control modes q1 and q2. The set X
of continuous variables is X = {x}. Let i and j be such that i, j ∈ {1, 2} and
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i 6= j. Each invariant condition inv(qi) is defined as a subset Ii of R
n (in this case

n = |X | = 1). The automaton can stay in a control mode qi if the valuation of
the variable x satisfies the invariant condition, i.e., x ∈ Ii. The jump condition
of a control switch eij = (qi, qj), instead, is specified by a guard set Gij and an
update function Rij that defines how the continuous variable x may change when
H switches from qi to qj . For keeping things simple in the example, let assume that
both R12 and R21 are the identity function. Finally, each flow condition flow(qi)
is specified by a function fi, thus, fi constraints the continuous evolution of the
variable x until the HA stays in the control mode qi.

0
T jT

21
G

x

time

initx

iT

12
G

1
I

2
I

1
f 1

f
2
f

Fig. 2.2: Example of a possible trajectory of the HA in Figure 2.1.

Besides, Figure 2.2 shows part of a possible trajectory of H from the initial
state (q1, xinit), which at first follows the dynamics f1. As soon as the trajectory
reaches the guard set G12 (light-gray box), e.g., at time instant Ti, the control
switch e12 is enabled. Due to the fact that at Ti the invariant condition I1 is still
satisfied, the HA can either switch to the mode q2 or remain in q1. The former is
the case in this example. Because of R12 is the identity function, the trajectory
of H starts following the dynamics f2 from the same state reached at Ti. Then,
it keeps following such a dynamics until the invariant I2 is violated or the jump
condition G21 (dark-gray box) is satisfied. This is the case at the time instant
Tj, when the automaton takes the switch e21, and moves back to q1 where the
trajectory evolves again under the dynamics f1.

Definition 2.6 (Reachability relation between states of a HA). Let H be
a hybrid automaton. A state (q, V ) reaches a state (q′, V ′) if there exists a fi-
nite trajectory of states (qi, Vi), with 0 ≤ i ≤ n, such that (q0, V0) = (q, V ) and
(qn, Vn) = (q′, V ′). RH(q, V ) is used to denote the set of states reachable from the
state (q, V ). RH(S) is used to denote the set

⋃
(q,V )∈S RH(q, V ), i.e., the set of

all the states reachable from each state (q, V ) in the set S.

Definition 2.7 (Product of transition relations of HA). Given two hybrid
automata H1 and H2, let SH1

, SH2
denote the set of states, and Σ1, Σ2 denote the
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set of events of H1 and H2, respectively. The product of two transition relations
JH1K, JH2K, noted as JH1K ‖ JH2K, is a third transition relation =⇒⊆ (SH1

×
SH2

)× (Σ1 ∪Σ2 ∪R≥0)× (SH1
× SH2

) defined as follows:

• for any σ ∈ Σ1 ∪ Σ2 ∪R≥0, ((s1, s2), σ, (s
′
1, s

′
2)) ∈=⇒ iff one of the following

conditions hold:
– σ ∈ (Σ1 \Σ2) and (s1, σ, s

′
1) ∈ JH1K and s2 = s′2;

– σ ∈ (Σ2 \Σ1) and (s2, σ, s
′
2) ∈ JH2K and s1 = s′1;

– σ ∈ (Σ1 ∩Σ2) ∪R≥0 and (s1, σ, s
′
1) ∈ JH1K and (s2, σ, s

′
2) ∈ JH2K.

2.2.1 Verification of HA

Definition 2.8 (Safety property). A safety property ϕsp for a hybrid automaton
H consists of a subset of states of H, i.e., ϕsp ⊆ (Q×Rn). A state s of H is said
to be safe if and only if s ∈ ϕsp. The hybrid automaton H is safe with respect to
ϕsp if and only if all the states reachable from its set S0 of initial states are safe,
i.e., RH(S0) ⊆ ϕsp. JHK � ϕsp is alternative notation to state that H is safe w.r.t.
ϕsp.

Given such a definition, it is clear that the problem of verifying safety properties
on hybrid automata reduces to the reachability problem [77].

Unfortunately, in a large variety of settings, the reachability problem on HA
is undecidable (e.g., for the general classes of LHA and AHA). Hence, many tools
for reachability analysis of general hybrid automata are based on approximation
techniques. The challenge for these tools [14,67,78] is to find the “best” approxima-
tions of continuous states. A precise overview of the boundary between decidable
and undecidable aspects of hybrid automata is drawn in [80, 122].

The works in [76, 106, 121] suggest that except under very restrictive settings
(such as the case of TA), it is not possible to attain decidability if the continuous
variables are not reset during mode switches and flow rates change as a result of
the mode change. From a point of view of digital controllers that interact with
plants through sensors and actuators, the resetting requirement severely restricts
the modeling expressiveness.

Due to the inherent discrete nature of a controller of a hybrid system, sev-
eral works have moved to focus on the discrete time behavior of hybrid sys-
tems [4–6, 9, 24, 25, 79]. Also in this context a number of undecidability results
have been reported in the literature. These undecidability results are mainly re-
lated to piecewise-affine systems with infinite precision [24, 25].

On the contrary, positive results have been reported in [4–6, 9, 79]. In particu-
lar, the authors in [4–6] define a class of LHA, named lazy linear hybrid automata,
for which the control state reachability problem is decidable, also allowing the
continuous variables to retain their values during mode changes. This is attained
by focusing on discrete time behavior and requiring finite precision for variables.
Because of such assumptions, this formal model allows a rich class of guards and
cope with lazy sensors and actuators that have bounded delays associated with
them. However, its discrete behavior depends on the sampling frequency of the
controller as well as the precision of variables, and hence, the discretized rep-
resentations are very large and any enumerative analysis would not be feasible
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for systems of appreciable size. This problem has been overcome in [89]. The au-
thors propose a symbolic representation for lazy linear hybrid automata which can
be used for reachability analysis based on bounded model checking. Further, the
authors practically show the scalability of their method on interesting real case
studies.

2.2.2 Synthesis of implementable control strategies for HA

Whereas the control state reachability problem has been thoroughly investigated,
only few works in literature focus on the synthesis of an implementable control
strategy [7, 46, 95, 125] for the hybrid models.

In particular, the work in [95], proposes a digitalized semantics for timed au-
tomata based on the non-instant observability of events. This semantics models
the fact that a physical environment cannot be observed continuously, but only
at discrete time instants by an implementable control strategy. The authors con-
sider timed automata as timed specifications of the hybrid system and, thus, they
study in what sense the corresponding timed traces can be recognized by a digital
controller. To do this, they introduce the concept of time-triggered automata. A
time-triggered automaton is essentially a time table for a digital controller de-
scribing what the controller should do at a given time point. The advantage of
such time-triggered automata is that they can be easily transformed into exe-
cutable programs (i.e., the concrete control strategies). The main result shown
into the work is that the authors can effectively decide whether a time-triggered
automaton correctly recognizes the timed traces, i.e., the time-triggered automa-
ton implements the timed specification of the hybrid system. Unfortunately, the
authors underlined that the systematic synthesis of time-triggered automata from
timed automata in such a way they recognize the corresponding timed traces is
still an open issue.

On the contrary, in [46] the authors propose an alternative semantics for timed
automata that allows to synthesize from a timed automaton C of a digital con-
troller an implementable control strategy in a systematic way. The new semantics,
named Almost-ASAP, relies on the continuous time behavior and infinite preci-
sion of HA. However, it takes into account the digital and imprecise aspects of
the hardware in which the timed automaton C is being executed by relaxing the
“synchrony hypothesis”: the semantics does not impose the controller to react
instantaneously, but it is supposed to react within ∆ time units when a synchro-
nization or a control action has to take place. The designer acts as if the synchrony
hypothesis was true, i.e., he/she models the environment Env and the controller
C without referring to the reaction delay. The reaction delay is taken into account
during the verification phase: the authors use reachability analysis to look for the
largest value ∆ for which the relaxed controller is still receptive w.r.t. the envi-
ronment in which it will be embedded and it is still correct w.r.t. the properties
the original instantaneous model C has to enforce. Such a ∆-relaxed controller
represents an implementable control strategy if ∆ > 0. However, it is worth noting
that the Almost-ASAP approach requires the models of the control strategy C and
environment Env to be separate automata interacting each other only by means
of synchronization events. Moreover, due to the adoption of a continuous time and
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infinite precision semantics, the problem of synthesizing such a value ∆ may not
be decidable.

The work in [125] proposes a similar approach for synthesizing implementable
control strategies from timed automata. Given a timed automaton C modeling
the control strategy, instead of looking for a conservative abstraction of C that
does not contain behaviors which falsify the original specifications, the authors
look for a conservative refinement that includes all the non-blocking behaviors of
C. To determine the existence of such a conservative refinement (i.e., shrinkability
problem) the authors construct from C a new timed automaton C′ that shrinks
the guards of the original automaton so that all behaviors of C′ under relaxation
(performed as proposed in [46]) are included in those of C. Thus, the so obtained
timed automaton C′ preserves the properties proven for C. This means that all
timing requirements satisfied by C, such as critical deadlines, are strictly respected
by C′. However, such a shrinking may remove too many behaviors and even intro-
duce deadlocks in C′. For this reason, the authors have theoretically investigated
the constraints which guarantee the preservation of the desired behaviors in C′,
and have shown that deciding the shrinkability problem of a timed automaton C
is EXPTIME.

Notice that modifying the semantics may not be the only way to enforce the
implementability. Indeed, in [7] the authors ask the question whether similar results
can be obtained without introducing a new semantics, but acting on modeling
instead, thanks to the introduction of new assumptions on the program type or
execution platform by means of changes, in a modular way, on the corresponding
models. The authors propose an implementation methodology for timed automata
which allows to transform a timed automaton into a program and to check whether
the execution of this program on a given platform satisfies a desired property.
Unlike the works in [46,125], an open problem of this approach is how to guarantee
that, when a platform P is replaced by a “better” platform P ′, a program proved
correct for P is also correct for P ′; the authors reported examples where this does
not hold for a reasonable assumption of a “better” platform, namely, when P and
P ′ are identical, but P ′ provides a periodic digital clock running twice as fast as
the one of P ; the reason is that a program using the faster clock has a higher
“sampling rate” and thus may generate more behaviors than a program using the
slower clock, so this situation may result in a violation of properties.

2.2.3 Languages for HA specification

The large number of modeling formalisms for hybrid models specification makes
hard the integration of different techniques and tools in a comprehensive design
framework for hybrid systems. In fact, a model for simulation (e.g., Simulink [137],
Ptolemy II [141], Modelica [110], gPROMS [120]) is very likely to be transformed
into another formalism for verification purposes (e.g., Uppaal [17], PHAVer [67],
Ariadne [14]) and, again, a model suited for either simulation or verification is
likely to be manipulated for other analysis intends (e.g., control optimization with
MUSCOD II [88], and so on). This lack of integration capability is the major
challenge towards a broad industrial acceptance of hybrid systems tools.
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A promising approach for achieving inter-operability between hybrid systems
tools is to develop automatic translations of their formalisms via a general inter-
change format with sufficiently rich syntax and semantics.

The most interesting interchange formalism is the Compositional Interchange
Format (CIF) [129]. Although it has been developed in the recent years, the CIF
formalism is already integrated into different simulation [110,120,136,137] and ver-
ification [14,17,67] frameworks via manipulation tools. This interchange formalism
has several interesting characteristics which can be summarized as follows:

• it has a formal and compositional semantics which allows property preserving
model transformations;

• its concepts are based on mathematics, and independent of implementation
aspects such as equation sorting, and numerical equation solving algorithms;

• it supports arbitrary differential algebraic equations, algebraic loops, steady
state initialization, switched systems such as piecewise affine systems;

• it supports a wide range of concepts originating from hybrid automata, includ-
ing different kinds of urgency, such as urgency predicates, deadline predicates,
triggering guard semantics, and urgent actions [17];

• it supports parallel composition with synchronization by means of shared vari-
ables and shared actions;

• it supports hierarchy and modularity to allow the definition of parallel modules
and modules that can contain other modules (hierarchy), and to allow the
definition of variables and actions as being local to a module, or shared between
modules.

Moreover several ad hoc tools have been developed to support directly the design
and analysis of CIF models:

• a graphical editor that speeds up the definition of the hybrid automaton-based
model by dragging and dropping modes and edges. Once the model is com-
pleted, the editor automatically synthesizes the corresponding CIF code;

• a compiler that takes as input the CIF code and translates it to an abstract
format suited for simulation;

• a stepper that takes as input a CIF abstract format and calculates its dynamic
behavior resulting in a hybrid transition system that consists of action and
time transitions.

• a simulator that provides a front-end to the stepper. Several options exist to
customize the output of the simulator, such as the visualization of the trajec-
tories of the model variables during and/or after the simulation, or the visual-
ization of the performed discrete actions. For simulation purposes, the action
and delay transitions are calculated using symbolic and/or numerical solvers.
Besides, the simulator can be run in different modes:
– User-guided mode: In this mode, the simulator shows all possible transi-

tions, and the user may choose which transition to execute.
– Automatic mode: In this mode, the non-deterministic choices between tran-

sitions are resolved automatically by the simulator, or the simulator can
simulate all possibilities (exhaustive simulation/state-space generation). In
both modes, the simulator can be parameterized with the solvers to be used,
including solver-specific options, and the requested simulation output.
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Summarizing, the CIF formalism represent a good input language for guar-
anteeing the inter-operability of new hybrid system frameworks with the already
existing ones.

2.3 Synthesis of implementable control strategies for generic

HA

2.3.1 Problem definition

The widely adopted design paradigm for hybrid systems can be summarized as
follows:

1. construct a timed/hybrid model E of the environment;
2. state clearly which are the safety properties ϕsp the control strategy (i.e., the

controller) should respect;
3. design a timed/hybrid model C of the controller implementing the control

strategy;
4. verify the correctness of the whole model, i.e., JCK ‖ JEK � ϕsp, that is check

that the composition of the controller with the environment is safe with respect
to the safety properties.

Such a verification step is performed using the traditional semantics for hybrid
automata. Unfortunately, this relies on unimplementable assumptions, such as the
synchrony hypothesis, i.e., the capability of performing any computation in zero
time units and forcing a change in the dynamics of the model without delays.
Thus, the verification returns correctness results for the control strategy which
cannot be used in practice.

To overcome such a problem, the work in [46] proposes an alternative seman-
tics for interpreting the control strategy described into a hybrid model. The new
semantics takes into account the digital and imprecise aspects of the hardware
device on which the actual control strategy is being executed. In particular, it
concerns:

• the relaxation of the variable precision: continuous variables can be modeled
only with a finite precision and consequently they are rounded according to
the HW platform characteristics;

• the relaxation of the instantaneousness of reaction to timeouts and events : any
reaction to a timeout and an incoming or outgoing event introduces delays that
depend on the HW platform characteristics.

Such a semantics is named Almost-As-Soon-As-Possible (AASAP) semantics.
The authors have formally proved that by verifying the correctness of the

control strategy using such a semantics, it is possible to determine if the control
strategy of the modeled hybrid system is implementable.

However, none of the existing model checking tools for hybrid systems is able
to natively verify hybrid models against safety properties using the AASAP se-
mantics. Thus, the only way to work around this difficulty consists of transforming
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the original hybrid model into another one that, interpreted using the classical se-
mantics for hybrid automata (Section 2.2), represents a conservative abstraction
of the original model interpreted using the AASAP semantics (Section 2.3.3).

Intuitively, given a control strategy C, the conservative abstraction of the con-
trol strategy, noted as Cδ, is characterized by a relaxing parameter δ such that:

• δ relaxes the continuous variable precision. Any guard constraint modeling a
decision for the control strategy is relaxed by some small amount which depends
on δ, simulating values digitization;

• δ relaxes the reactions to outgoing events. Any decision that can be taken by
the control strategy becomes urgent only after a small delay bounded by δ.
This simulates the actuation delays;

• δ relaxes the reactions to incoming events. A distinction is made between the
occurrence of a synchronization event in the sender (occurrence) and the ac-
knowledgement of the event by the receiver (perception). The time difference
between the occurrence and the perception of the event is bounded by δ. This
simulates the sensing delays.

Notice that the abstracted control strategy exhibits a superset of the original
behavior, the latter corresponding to a relaxing value ∆ = 0 for the parameter δ.
Consequently, in order for the control strategy Cδ to be implementable at all, a
necessary condition is that there exists a value ∆ > 0 for which Cδ=∆ allows the
hybrid model to be safe. Then, given ∆, the expression ∆ > 4∆P + 3∆L proved
in [46] relates it to the actual constraints the implementable control strategy has
to adhere such as clock period ∆P and the worst-case-time required for treating
incoming and outgoing synchronization events ∆L.

Thus, the problem of synthesizing an implementable control strategy reduces
to the problem of synthesizing a suitable value for the parameter δ, i.e., checking
the existence of a value ∆ for which JCδ=∆K ‖ JEK � ϕsp.

It is worth noting that the verification of JCδ=∆K ‖ JEK � ϕsp is based on the
analysis of the reachable set, i.e., the set of all states that can be reached under
the dynamical evolution of the systems starting from a given set of initial states.
However, the state of a hybrid automaton consists of the pairing of a discrete
location with a vector of continuous variables, therefore it has the cardinality of
continuum. Due to this fact, the reachable set is, in general, not decidable [80].
To face this problem, many approximation techniques and tools to estimate the
reachable set have been proposed in the literature. In particular, the framework
in [46] implementing the AASAP analysis is based on the HyTech tool [78]. A key
feature of HyTech is its ability to perform parametric analysis, i.e. to determine the
values of design parameters (e.g., ∆) for which a linear hybrid automaton satisfies
a safety property (e.g., ϕsp). Although HyTech natively includes an engine for
synthesizing the desired value ∆, its analysis is limited to LHA, and, thus, it
limits the applicability of the proposed methodology.

Thus, a possible way to exceed such a limitation consists of implementing
a framework that makes practical the applicability of the AASAP approach on
classes of hybrid automata more complex than LHA. The framework should in-
clude:
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• tools for the manipulation of hybrid descriptions to generate, given the orig-
inal control strategy, the conservative abstraction of such a control strategy
according to the AASAP semantics;

• a parameters synthesis procedure that can be solved using different state-of-
the-art hybrid domain model checkers that support generic classes of hybrid
automata (e.g., AHA).

It is worth noting that the approach [46] requires the hybrid models of the
control strategy and environment to be separate automata and the model of the
control strategy to be an elastic controller. Such a model is a timed automaton
featuring the following restrictions:

1. Only urgent transitions are allowed;
2. The guards must be closed clock expressions;
3. Communication with the environment is allowed only through events.
4. Continuous variables are restricted to clocks (i.e. continuous variables measur-

ing the elapsing of time).

It must be remarked that the restrictions above are perfectly reasonable from a
controller implementation viewpoint and do not represent a major limitation in
terms of applicability of the method. Moreover, no restrictions are applied on the
model of the environment, thus, it can be either a TA or a LHA or an AHA.

2.3.2 Contributions

The main contributions of Section 2.3 consists of a framework that makes practical
the applicability of the AASAP approach proposed in [46]. It is worth noting that
currently no theoretical extensions have been introduced.

In particular, the novelties of the framework can be summarized as follows:

• it adopts the CIF standard language that eases the modeling of hybrid systems
and ensures the inter-operability of the developed framework with already ex-
isting hybrid system tools;

• it includes a tool, called s-extract, that automatically transforms a CIF descrip-
tion into another CIF description suited for the synthesis of the implementable
control strategy;

• it includes two tools, called cif2phaver and cif2ariadne, which aim to translate
CIF descriptions into the formalisms required to use the PHAVer [67] and
Ariadne [14] model checkers able to handle linear and non-linear affine hybrid
automata, respectively.

• it implements a synthesis procedure that, starting from a set of feasible values
for the relaxing parameter δ and exploiting either PHAVer or Ariadne, identifies
the maximum value which enable the relaxed control strategy to satisfy its
safety properties. The two model checkers are used according to the complexity
of the hybrid model dynamics to analyze.

2.3.3 The AASAP semantics [46]

First of all, any approach for the synthesis of an implementable control strategy
based on the AASAP semantics requires the hybrid models of the control strategy
and environment to be separate automata:
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• the model of the control strategy has to be an Elastic controller ;
• the model of the environment may be either a TA or a LHA or an AHA.

Intuitively, an Elastic controller is a timed automaton suited for modeling
an embedded controller which has to react As Soon As Possible to stimuli com-
ing from the surrounding environment. Such an embedded controller may contain
timers whose expiration may require the generation of stimuli for the surrounding
environment. Notice that actual timers are variables with finite precision whose
value increments with the elapsing of time. The only legal updates on timers are
resets (usually to 0). Expiration constraints can be effectively modeled using closed
rectangular predicates over the timers.

Definition 2.9 (Closed rectangular formula). A closed rectangular formula
over a set of (continuous) variables X is a finite formula ϕ of the form

ϕ = true|false|x ≤ c | c ≤ x | φ1 ∧ φ2

where x ∈ X and c ∈ Q.

In what follows, the usual notation x ∈ [a, b] denotes the predicate a ≤ x ≤ b and
Rectc(X) denotes the set of all the possible closed rectangular formulas over the
set X .

Now, an Elastic controller can be formally defined as follows:

Definition 2.10 (Elastic Controller). An Elastic controller C is a tuple
〈X,Q,Q0, init, inv, f low,E, jump, update,Σ〉. The components of an Elastic con-
troller are as follows:

• Clock variables. A finite set X = {x1, . . . , xn} of clocks. Ẋ stands for the
set {ẋ1, . . . , ẋn} of dotted variables and X ′ stands for the set {x′1, . . . , x

′
n} of

primed variables.
• Control modes. A finite set Q of control modes. Q0 ⊆ Q denotes the set of

initial modes.
• Initial conditions. A labeling function init that assigns to each control mode

q ∈ Q0 an initial predicate. Each initial predicate init(q) is a closed rectangular
formula over the variables in X.

• Invariant conditions. A labeling function inv that assigns to each control mode
q ∈ Q an invariant predicate. Each invariant predicate inv(q) is a closed rect-
angular formula over the variables in X.

• Flow conditions. A labeling function flow that assigns to each control mode
q ∈ Q a flow predicate. Each flow predicate flow(q) is a predicate whose free
variables are from Ẋ and constraints such variables to 1, e.g., ẋ = 1.

• Control switches. A set E of edges (q, q′) from a source mode q ∈ Q to a target
mode q′ ∈ Q.

• Jump conditions. An edge labeling function jump that assigns to each control
switch e ∈ E a predicate. Each jump condition jump(e) is a closed rectangular
formula whose free variables are from X.

• Update conditions. An edge labeling function update that assigns to each con-
trol switch e ∈ E a predicate. Each update condition update(e) is a closed
rectangular formula whose free variables are from X ′ in which variables can be
only reset to 0 (e.g., x′ = 0).
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• Events. A finite set Σ of events, and an edge labeling function event : E → Σ
that assigns to each control switch an event. The set is partitioned into the set
Σin of input events, Σout of output events and Στ of internal events.

To keep the notation compact, in what follows, (q, q′, g, σ, R) ∈ E is used to
denote that there exists a control switch e = (q, q′) with g = jump(e), σ = event(e)
and R = update(e) in C.

Let V ∈ Rn
≥0 be a valuation of the clocks in X , where n = |X |. V − t denotes

a valuation V ′ such that for each xi ∈ X , V ′(i) = V (i) − t. Intuitively, V + t is
defined in a similar way.

Definition 2.11 (True Since). Let X be a set of clocks, g be a closed rectangular
formula over X and V a valuation for clocks in X. The function “True Since”,
noted as TS : R≥0 ×Rectc(X)→ (R≥0 ∪ −∞), is defined as follows:

TS(V, g) =

{
t if V � g ∧ V − t � g ∧ ∀t′ > t : V − t′ 2 g

−∞ otherwise

Definition 2.12 (Guard Enlargement). Let g(x) be the closed rectangular for-
mula x ∈ [a, b]. The closed rectangular formula ∆g(x)∆ with ∆ ∈ Q≥0 denotes the
formula x ∈ [a−∆, b+∆] if a−∆ ≥ 0 and x ∈ [0, b+∆] otherwise. Let g be a convex
closed rectangular predicate, i.e., the finite conjunction of closed rectangular formu-
las, then ∆g∆ denotes the set of closed rectangular formulas {∆g(x)∆ | g(x) ∈ g}.

The input events (e.g., σ ∈ Σin) of the controller represent the possible syn-
chronization requests the controller may receive from the environment. In what
follows, every synchronization request is distinguished in an occurrence, i.e., the
issuing of the request by the environment, and a perception, i.e., the viewing of
such a synchronization request by the controller. In particular:

Definition 2.13 (Perception of Events). Let Σin be the set of input events.

Σ̃in denotes the set of perceptions of input events. To denote a link between an
occurrence of an input event and its perception, the notation σ is used for the
occurrence and σ̃ for the perception.

Definition 2.14 (State of an Elastic controller). Let C be an Elastic con-
troller. A state of C is the tuple (q, V, I, d) where:

• q ∈ Q is a control mode;
• V ∈ R≥0 is a valuation for the clocks in X;
• I ∈ (R≥0 ∪ {⊥})m, with m = |Σin|, is a vector that records, for each input

event σ, the time elapsed since its oldest untreated occurrence. The absence of
an untreated occurrence of an input event is denoted with ⊥. The notation I(σ)
prescribes the value of the component of I corresponding to σ, whereas I[σ := i]
denotes a new vector I ′ such that I ′(α) = i for α = σ and I ′(α) = I(α) for
α 6= σ;

• d ∈ R≥0 records the time elapsed since the last mode change.

Finally, ι = (q0, V0, I, 0) denotes an initial state for C where V0 is such that
V0 � init(q0), and I is such that for any σ ∈ Σin, I(σ) = ⊥;
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Now is possible to define the AASAP semantics for the Elastic controllers.

Definition 2.15 (AASAP semantics). Let C be an Elastic controller, SC be the
set of states of C and ∆ ∈ Q≥0. The AASAP semantics of C, noted JAKAASAP∆ is

given by the transition relation =⇒⊆ SC × (Σ ∪ Σ̃in ∪ {τ} ∪R≥0)× SC where:

1. for the discrete transitions, it is necessary to distinguish five cases:
a) let σ ∈ Σout.

((q, V, I, d), σ, (q′, V ′, I, 0)) ∈=⇒ iff there exists (q, q′, g, σ, R) ∈ E such
that V �∆ [g]∆ and (V, V ′) � R;

b) let σ ∈ Σin.
((q, V, I, d), σ, (q, V, I ′, d)) ∈=⇒ iff
• either I(σ) = ⊥ and I ′ = I[σ := 0];
• or I(σ) 6= ⊥ and I ′ = I.

c) let σ̃ ∈ Σ̃in.
((q, V, I, d), σ, (q′, V ′, I ′, 0)) ∈=⇒ iff there exists (q, q′, g, σ, R) ∈ E such
that V �∆ [g]∆, I(σ) 6= ⊥, (V, V ′) � R and I ′ = I[σ := ⊥];

d) let σ ∈ Στ .
((q, V, I, d), σ, (q′, V ′, I, 0)) ∈=⇒ iff there exists (q, q′, g, σ, R) ∈ E such
that V �∆ [g]∆, and (V, V ′) � R;

e) let σ = τ .
For any (q, V, I, d) ∈ SC , ((q, V, I, d), τ, (q, V, I, d)) ∈=⇒.

2. for the continuous transitions:
a) for any t ∈ R≥0,

((q, V, I, d), t, (q, V + t, I + t, d + t)) ∈=⇒ iff the two following conditions
are satisfied:
• for any edge (q, q′, g, σ, R) ∈ E with σ ∈ Σout ∪Στ :

∀t′ : 0 ≤ t′ ≤ t :

(d+ t′ ≤ ∆ ∨TS(V + t′, g) ≤ ∆)

• for any edge (q, q′, g, σ, R) ∈ E with σ ∈ Σin:

∀t′ : 0 ≤ t′ ≤ t :

(d+ t′ ≤ ∆ ∨TS(V + t′, g) ≤ ∆

∨

I(σ) + t′ ≤ ∆)

Remark 2.16 (The AASAP semantics intuitively). According to the AASAP se-
mantics, control strategies are intended to try to take a control switch as soon as
they can, thus, almost as soon as possible. The idea of almost is modeled by a
value ∆, which is used to upper-bound the delays for sensing and emitting syn-
chronization events from and to the environment, and, moreover, to upper-bound
the time imprecisions of the clocks. In particular:

• The Case (1.a) defines when it is allowed for the Elastic controller to emit
an output event. The only difference with the classical semantics is that the
guard is enlarged by ∆, i.e., the guard is evaluated by supposing imprecisions
in clocks evaluation.
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• The Case (1.b) defines how inputs are treated by the Elastic controller, in
other words, what happens when a synchronization event is emitted by the
environment. The Elastic controller maintains, through the vector I, a list of
occurrences of input events, i.e., events that have occurred and are not treated
yet. An input event σ can be received at any time, but if there are more
occurrences of the same input σ before the controller had the chance to treat
the first one, the semantics simply ignores them and only the age of the oldest
untreated σ is stored in the vector I. Notice that in this Case the automaton
does not change the control mode, i.e., q and also V and d are unchanged at
that point.

• The Case (1.c) defines when inputs are sensed by the Elastic controller. An
input σ is sensed when a transition with an enlarged guard and labeled with
σ̃ is fired. Once σ has been treated, the value of I(σ) is reset to ⊥.

• The Case (1.d) is similar to Case (1.a) states how an internal synchronization
event σ can be emitted.

• The Case (1.e) states that a synchronization τ can always be performed.
• Finally, Case (2.a) specifies how time can elapse. Intuitively, time can pass as

long as no transition from the current mode is urgent. Given a control mode
q, a transition labeled with an output or an internal event is urgent when the
control strategy has stayed in q for more than ∆ time units, i.e., d + t′ > ∆,
and the guard of the corresponding control switch has been true for more than
∆ time units, i.e., TS(v + t′, g) > ∆. Given a control mode q, a transition
labeled with an input event σ is urgent when the control strategy has been in
q for more than ∆ time units, i.e., d+ t′ > ∆, the guard of the related control
switch has been true for more that ∆ time units, i.e., TS(v + t′, g) > ∆, and
the last untreated occurrence of σ has been emitted by the environment at
least ∆ time units ago, i.e., I(σ) + t′ > ∆.

Three problems can be formulated about the AASAP semantics of an Elastic
controller.

Definition 2.17 (Parametric safety verification problem [46]). Let C be
an Elastic controller, E be a hybrid automaton and ϕsp a safety property. The
parametric safety verification problem asks:

• [Fixed] whether JCKAASAP
∆ ‖ JEK � ϕsp for a given fixed value of ∆;

• [Existence] whether there exists ∆ > 0 such that JCKAASAP
∆ ‖ JEK � ϕsp;

• [Maximization] to maximize ∆ such that JCKAASAP
∆ ‖ JEK � ϕsp.

In particular, the problem [Fixed] is useful when the characteristics of the
hardware on which the control strategy that will be implemented are known, the
problem [Existence] is useful to determine if the control strategy is implementable
at all and the problem [Maximization] is useful to determine what is the slowest
hardware on which the controller can be implemented.

Unfortunately, none of the current existing model checkers are able to solve
the parametric safety control problem summarized above. To overcome this, the
following theorem has been proposed:

Theorem 2.18 (Practical verification using traditional timed automaton
semantics). For any Elastic controller C, for any ∆ ∈ Q>0, it is possible to
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effectively construct a timed automaton Cδ = F(C, δ) such that JCKAASAP
∆ ⊑

JCδ=∆K and JCδ=∆K ⊑ JCKAASAP
∆ .

The full proofs are available in [46].
Intuitively, Theorem 2.18 states that Cδ represents a conservative abstraction

of the Elastic controller C interpreted using the AASAP semantics. Thus, it fol-
lows:

Corollary 2.19. For any Elastic controller C, for any ∆ ∈ Q>0, for any hybrid
automaton E and safety property ϕsp, JCKAASAP

∆ ‖ JEK � ϕsp iff JCδ=∆K ‖ JEK �

ϕsp.

In practice, Corollary 2.19 can be used to reduce the parametric safety ver-
ification problem based on the AASAP semantics to the traditional reachability
problem on hybrid automata.

2.3.4 Conservative abstraction of the control strategy [46]

In what follows all the manipulation rules implemented into the s-extract tool are
described. Such rules allow to derive from an Elastic controller C, modeling the
control strategy, its conservative abstraction F(C, δ) in terms of a timed automa-
ton which enables to solve the parametric safety problem (thus, synthesizing an
implementable control strategy for the hybrid model) by using already existing
hybrid domain model checker. An example is reported to explain how the con-
struction of F(C, δ) works.

Theorem 2.20 (Generation of F(C, δ)). Let C be the Elastic automaton

〈X,Q,Q0, init, inv, f low,E, jump, update,Σ〉,

and let F(C, δ) be the timed automaton

〈X1, Q1, Q
0
1, init1, inv1, f low1, E1, jump1, update1, Σ1〉,

such that:

1. X1 = X ∪ {yσ | σ ∈ Σin} ∪ {d}.
2. Q1 = {(q, b) | q ∈ Q ∧ b ∈ {⊤,⊥}m,m = |Σin|}.
3. Q0

1 = {(q, b⊥) | q ∈ Q0 ∧ b⊥ = {⊥}m,m = |Σin|}.
4. init1 is such that for every (q, b) ∈ Q0

1 , init1((q, b)) = init(q);
5. flow1 is such that for every (q, b) ∈ Q1 , flow1((q, b)) =

∧
x∈X1

ẋ = 1;

6. Σ1 = Σin ∪Σout ∪Στ ∪ Σ̃in;
7. E1, jump1 and update1 are defined in such a way ((q, b), (q′, b′),δ [g]δ, σ, R

′) ∈
E1 iff one of the following conditions holds:
a) σ ∈ Σin and
• q′ = q
• b(σ) = ⊥
• b′ = b[σ := ⊤]
• g = true
• R′ =

∧
x∈X1\{yσ}

(x′ = x) ∧ (yσ = 0)
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b) σ ∈ Σin and
• q′ = q
• b(σ) = ⊤
• b′ = b
• g = true
• R′ =

∧
x∈X1

(x′ = x)
c) σ ∈ Σout and
• there exists (q, q′, g, σ, R) ∈ E
• b′ = b
• R′ = R ∧ (d = 0)

d) σ ∈ Στ and
• there exists (q, q′, g, σ, R) ∈ E
• b′ = b
• R′ = R ∧ (d = 0)

e) σ = α̃ ∈ Σ̃in and
• there exists (q, q′, g, α,R) ∈ E
• b(α) = ⊤
• b′ = b[α := ⊥]
• R′ = R ∧ (d = 0)

f) σ = τ and
• q′ = q
• b′ = b
• g = true
• R′ =

∧
x∈X1

(x′ = x)

8. Let EV T ((q, b)) = {((q, q′, g, σ, R) ∈ E | σ ∈ Σin ∧ b(σ) = ⊤}. Let
ACT ((q, b)) = {(q, q′, g, σ, R) ∈ E | σ ∈ Σout ∪Στ}.
Then Inv1((q, b)) = ϕ1(q, b) ∧ ϕ2(q, b) where:

ϕ1(q, b) =
∧

(q,q′,g,σ,R)∈EV T

(d ≤ δ ∨ ¬(δg) ∨ yσ ≤ δ)

ϕ2(q, b) =
∧

(q,q′,g,σ,R)∈ACT

(d ≤ δ ∨ ¬(δg))

and δg(x) is the constraint x ∈ (a+ δ, b] if g(x) is of the form x ∈ [a, b].

Then, F(C, δ) satisfies the properties of Theorem 2.18.

Remark 2.21 (Generation of F(C, δ) intuitively). The above theorem describes
how to transform an Elastic controller into a timed automaton that, interpreted
using the traditional semantics, preserves all the behaviors of the initial Elastic
controller interpreted using the AASAP semantics. The so obtained timed au-
tomaton is enriched with new control modes, support variables and a parameter
δ to correctly model the concept of almost as soon as possible synchronization.
This transformation proposed in [46] is easy to implement but not very efficient:
indeed, the number of modes is larger by an exponential factor in the number of
input events of the initial Elastic controller. In particular:
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• Rule (1) defines the set X1 of continuous variables of F(C, δ). X1 contains
all the clocks (i.e., x ∈ X) of C and new variables: {yσ} and d. Each yσ is a
clock used to store the age of the oldest untreated input event σ, i.e., the time
elapsed since the oldest untreated σ has occurred. Instead, d is a clock that
stores the time spent in the current control mode.

• Rule (2) defines the set Q1 of control modes of F(C, δ). To each mode q ∈ Q,
F(C, δ) associates a set of modes whose cardinality depends on the number of
input events of C. In particular, each mode (q, b) ∈ Q1 models the fact that
the original Elastic controller C can remain in the mode q even if several input
events σ have occurred and are untreated (i.e., b(σ) = ⊤). The non-untreated
events are specified as b(σ) = ⊥.

• Rule (3) defines the set Q0
1 of initial control modes of F(C, δ). A mode (q, b) ∈

Q1 is initial if q is an initial mode for C and none of the input events is untreated
(i.e., for all σ ∈ Σin, b(σ) = ⊥).

• Rule (4) defines the init1 function of F(C, δ). For all the initial modes (q, b⊥)
of F(C, δ) the initial conditions are such that init1((q, b⊥)) = init(q), i.e., they
coincide with the initial conditions of the corresponding initial modes of C.

• Rule (5) defines the flow1 function of F(C, δ). This rule is trivial because all
the continuous variables in X1 are clocks.

• Rule (6) defines the set Σ1 of synchronization events of F(C, δ). Σ1 contains
all the events (i.e., σ ∈ Σin ∪ Σout ∪ Στ ) of C and a new set of events (i.e.,

Σ̃in = {σ̃|σ ∈ Σin}) that models the perception of input events of C.
• Rule (7) defines the set of edges (and the related jump and update functions)

of F(C, δ). In particular:
– Rule (7.a) defines, for any input event σ ∈ Σin of C, the existence of an

edge between two distinct modes (q, b) and (q′, b′), where q = q′, b(σ) = ⊥
and b′(σ) = ⊤, with jump constraint true, synchronization event σ and
update constraint R′. Intuitively, these edges model the fact that when an
input event σ occurs in a mode in which it is non-untreated (i.e., b(σ) = ⊥),
F(C, δ) moves to an appropriate mode in which σ is marked as untreated
(i.e., b′(σ) = ⊤). Moreover, the update constraint resets the variable yσ to
0, starting to record the time elapsed since σ has occurred.

– Rule (7.b) defines, for any input event σ ∈ Σin of C, the existence of a
self-loop on the mode (q, b), where b(σ) = ⊤, with jump constraint true,
synchronization event σ and update constraint R′. Intuitively, these edges
model the fact that when an input event σ occurs in a mode where σ is
already untreated, F(C, δ) remains in such a mode without changing any
clock (i.e., R′ is the identity constraints).

– Rule (7.c) defines, for any output event σ ∈ Σout of C, the existence of
an edge between two modes (q, b) and (q′, b′), where b′ = b, with jump
constraint obtained by enlarging the guard g, synchronization event σ and
update constraint R′ if (q, q′, g, σ, R) is a control switch in C. Intuitively,
these edges model the fact that whether the initial Elastic controller C can
issue an output event σ moving from a control mode q to another one q′

when a guard g is satisfied, F(C, δ) can make the same move, but, in this
case, the guard is evaluated by supposing imprecisions in clocks evaluation.
Moreover, the recorded untreated input events are preserved (i.e., b′ = b)
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and the update constraints reset the variable d to 0, starting to record the
time elapsed since the target mode (q′, b′) has been entered.

– Rule (7.d) is similar to Rule (7.c) and defines, for any internal event σ ∈ Στ

of C, an edge between two modes (q, b) and (q′, b′), where b′ = b, with jump
constraint obtained by enlarging the guard g, synchronization event σ and
update constraint R′ if (q, q′, g, σ, R) is a control switch in C. Intuitively,
these edges model the fact that whether the initial Elastic controller C can
issue an internal event σ moving from a control mode q to another one q′

when a guard g is satisfied, F(C, δ) can make the same move, and also in this
case the guard is evaluated by supposing imprecisions in clocks evaluation.
Moreover, the recorded untreated input events are preserved (i.e., b′ = b)
and the update constraints reset the variable d to 0, starting to record the
time elapsed since the target mode (q′, b′) has been entered.

– Rule (7.e) defines, for any event σ̃ ∈ Σ̃in of C, an edge between two modes
(q, b) and (q′, b′), where b(σ) = ⊤ and b′(σ) = ⊥, with jump constraint
obtained by enlarging the guard g, synchronization event σ̃ and update
constraint R′ if (q, q′, g, σ, R) is a control switch in C. Intuitively, this edge
models the fact that whether the initial Elastic controller C can handle
an input event σ moving from a control mode q to another one q′ when a
guard g is satisfied, F(C, δ) can make the same move only when it reaches
a state in which σ is untreated and then it issues a perception of such an
event (i.e., σ̃). Notice that the guard of the corresponding edge is evaluated
by supposing imprecisions in clocks evaluation and the update constraints
reset the variable d to 0, starting to record the time elapsed since the target
mode (q′, b′) has been entered.

– Rules (7.f) simply states that F(C, δ) can always perform a synchronization
τ .

• Finally, Rule (8) defines the inv function, i.e., how time can elapse. Intuitively,
in each control mode (q, b), the invariant condition is given by the conjunction
of two constraints ϕ1 and ϕ2.
In particular, ϕ1 states that time can elapse in a mode (q, b) in which an input
event σ is untreated if every outgoing control switch labeled with an event σ̃
is not urgent, that is, F(C, δ) has been in (q, b) for less than δ time units (i.e.,
d ≤ δ), or the guard of the control switch has been true for less than δ time
units (i.e., ¬(δg)) or the oldest untreated occurrence of σ has been emitted by
the environment less than δ time units ago (i.e., yσ ≤ ∆).
ϕ2, instead, states that time can elapse in a mode (q, b) if every outgoing control
switch labeled with an output or internal event σ is not urgent, that is, F(C, δ)
has been in (q, b) for less than δ time units (i.e., d ≤ δ), or the guard of the
control switch has been true for less than δ time units (i.e., ¬(δg))

To graphically show the result of such transformations, Figure 2.4 depicts the
timed automaton F(C, δ) obtained by applying the rules summarized above on
the elastic controller C of Figure 2.3. For readability, self loops on modes are not
depicted.
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Fig. 2.3: Example of Elastic controller C.
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Fig. 2.4: Parameterized timed automaton derived from the Elastic controller C.

2.3.5 Synthesis procedure

The synthesis engine aims at identifying the maximum value ∆ of the parameter δ
for which the model M δ=∆, whose semantics is given by JM δ=∆K = JCδ=∆K ‖ JEK,
satisfies the safety property ϕsp, i.e., JM δ=∆K � ϕsp.

The engine identifies the intended value ∆ by using a bisection method on
a finite interval of feasible values for the parameter δ. The bisection method in
mathematics is a method for finding a solution which repeatedly bisects an interval
and then selects a subinterval in which a solution must lie for further processing.
For this reason, the synthesis procedure asks the user to specify the initial interval



26 2 Synthesis of implementable control strategies for HA

[a, b] of values which represents the initial search space and the maximum num-
ber N of interval bisections. A sound initial search space likely guarantees better
performances and accuracy in identifying the value ∆. Algorithm 1 reports the
pseudo-code implementing the value synthesis procedure.

Algorithm 1: The value synthesis procedure for AASAP-based abstracted
control strategies.

procedure find value(Mδ, ϕsp, a, b, N)

input: the model Mδ, the safety property ϕsp, the interval [a,b] of feasible values
for δ.

output: maximal value ∆ for which the model Mδ=∆ satisfies ϕsp, ∆ = 0
otherwise

1 it = 0;
2 ∆ = 0;
3 mid = (a+ b)/2;
4 while (it < N) do

5 if MC(Mδ, ϕsp,mid) == true then
6 ∆ = mid;
7 a = mid;

8 else
9 b = mid;

10 mid = (a+ b)/2;
11 it = it+ 1;

12 return ∆;

At each step, the procedure performs a model checking process
MC(M δ, ϕsp,mid) to determine if JM δ=midK � ϕsp, in other words, the midpoint
mid of the current subinterval of [a, b] is a good value for δ that enables M δ to
satisfy the safety property ϕsp. Now, according to the model checking result, the
procedure registers the current midpoint as a candidate value for δ and selects the
subinterval to be used in the next step. In particular, if mid letsM δ=mid to satisfy
the safety property, mid becomes a candidate maximal value ∆ (i.e. ∆ = mid)
and the new interval of search will be [mid, b]. For this reason the new mid value
is (mid + b)/2, i.e., the procedure will check the satisfiability of the property on
new values for δ greater than the current midpoint. Otherwise, the procedure has
to look for smaller values contained in the subinterval [a,mid], i.e., the new mid
value is (a +mid)/2. In this way the interval that contains the desired value of
the parameter δ is reduced in width by 50% at each step. The process is continued
until the maximum number N of iterations is reached.

2.3.6 Experimental results

This section reports the results obtained by applying the proposed framework
on two case studies. All experiments have been performed on a workstation with
Intel Xeon 2.53 GHz processors and 16GB RAM. The hybrid automaton-based
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models of the case studies have been described by means of CIF language. The
s-extract tool has been used to automatically generate, from such models, the CIF
parametric-models implementing the abstracted control strategies. The cif2ariadne
and cif2phaver translators have been developed to automatically transform the
different descriptions into the Ariadne [14] and PHAVer [67] formalisms. Then,
the two hybrid domain model checkers have been used for the parameter synthesis
(i.e., synthesis of the implementable control strategies) purposes. In particular, for
each case study their performances have been compared.

Watertank Control System

The watertank control system [22] is depicted in Figure 2.5, where four different
automata are shown: a tank, a valve, an evaluator and a timed controller. Briefly,
the system is centered on a water tank, which is characterized by an uncontrolled
outbound water flow, while the inbound water flow is controlled by the aperture
of a valve. The controller acts on the aperture of the valve a in order to keep the
water level x in a safe interval.

Physics
x = fINB(a) -fOUTB(x)
.

a) Tank automaton 

b) Valve automaton
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Closing
a = - 1/Ta
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Fig. 2.5: Hybrid model of the watertank system.

The tank automaton is a hybrid automaton characterized by a single control
mode and no transitions. The dynamic of x can be kept purposely generic, since
it is possible to introduce any positive (non-)linear function for fOUTB(x) and
fINB(a), where fOUTB represents the outbound flow term and fINB the inbound
flow term. In this case we defined the inbound and the outbound flow respectively
as fINB(a) = 0.3 ∗ a and fOUTB(x) = 0.02 ∗ x. The valve automaton increases (in
the Opening mode) or decreases (in the Closing mode) the aperture of the valve
a between the two extremes 0.0 (closed) and 1.0 (opened). If the valve is closed,
no inbound water flow is present, whereas if the valve is opened then the inbound
flow is maximum. The automaton reacts to input events OPEN and CLOSE for
starting the operation of opening or closing the valve, respectively. Notice that
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an input event is identified by the question mark suffix, while an output event is
identified by the exclamation mark suffix. The opening and closing times that result
from the dynamics are fixed and equal to Ta. The evaluator automaton evaluates
the value of x: if it is higher than an upper threshold xhigh such that xhigh < xmax,
it issues an HIGH event, while if x is lower than a lower threshold xlow such that
xlow > xmin, it issues a LOW event. The timed automaton controller models the
control strategy. It receives the HIGH and LOW events and, after a fixed time T ,
issues the corresponding CLOSE and OPEN events for the valve.

The safety property ϕsp used for defining the desired instance of the parametric
safety verification problem (i.e., JCδ=∆K ‖ JEK � ϕsp) on the watertank control
system has been ϕsp = x < xmax & x > xmin. The property requires that the
water level x is always kept between the safe bounds xmax = 8.25 and xmin = 5.25
(while xhigh = 8.0 and xlow = 5.5).

Given such an instance of the problem, the synthesis engine returned an upper
bound for∆ equal to 0.289898872375, for which the relation∆ > 4∆P+3∆L must
hold. For example, this means that the control strategy which needs to be executed
on an hardware device characterized by a clock frequency equal to 14 Hz (i.e.
∆P = 1/14 sec.), needs the latency for the correct handling of the incoming and
outgoing synchronization events to be upper bounded by 1 ms (i.e. ∆L = 1/1000
sec.). In fact, given the same frequency of 14 Hz, if the synchronization latency
reaches the 2 ms, the control strategy is unable to promptly provide output signals
to the environment, thus not preventing it from entering an error state. If on the
other hand, given the same 1 ms latency, the device executing the control strategy
has a clock frequency of 13 Hz, then it is not possible to correctly sample the
incoming events: the controller might detect the perception of an event too late,
and consequently it could miss firing a transition; this situation would in turn
cause the environment to enter an error state while waiting on a synchronization.

Table 2.1: Results of the parametric safety verification problem for the watertank
control system.

MC Search space # Bisect. Time (sec)

PHAVer [0, 0.5] 15 89635.72

Ariadne [0, 0.5] 15 121255.06

Table 2.1 shows a comparison between the amounts of time required for syn-
thesizing the value ∆ by using the two model checkers. In particular, columnMC
reports the name of the model checkers; columns search space and # Bisect. report
the initial search space and the maximum number of bisections used for synthesiz-
ing the value ∆; finally, column Time reports the total time (in seconds) required
for the synthesis.

According to the results, PHAVer has turned out to be faster w.r.t. Ariadne in
the synthesis of the value ∆. This is only due to the fact that PHAVer is a hybrid
domain model checker optimized for analyzing linear affine dynamics, as the ones
described by the watertank model, whereas Ariadne is suited for more complex
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dynamics. So, Ariadne seems to pay the gain of handling non-linear ODE in terms
of performances when used for verifying models with linear ODE.

Power Supply Selector Control System

The hybrid model depicted in Figure 2.6 represents the Power Supply Selector
(PSS) control system included in the MAGALI platform [18]. The basic behavior
of the PSS is to control the supply voltage Vc of a generic unit of the platform. More
precisely, due to DVFS (Dynamic Voltage and Frequency Scaling) operations, the
supply voltage can switch dynamically between two values, High and Low. During
such transitions, the supply voltage Vc (which supplies the considerable load given
by the equivalent resistance of the core circuit) must follow a linearly rising/falling
reference voltage Vr as closely as possible. Essentially, a controller provides periodic
UP or DOWN events that ultimately make the supply voltage rise or fall by a
fixed step of voltage: by ensuring that the controller issues events at a properly
high frequency, the core voltage can follow the reference voltage, guaranteeing a
bounded voltage difference Vd between Vr and Vc.
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Fig. 2.6: Hybrid model of the Power Supply Selector system.

The hybrid system consists of three automata: environment, controller and
evaluator. In the environment, the behavior of the voltage difference Vd between
the supply and reference voltages is modeled. The hybrid automaton can operate
in an Idle mode, in which the derivative of Vd is constant. In the Rise mode, an ad-
ditional constant positive component makes Vd temporarily increase in time, while
in the Fall mode there is an additional negative component which temporarily in-
crements the rate of decrease. The switch between modes is provided by the UP
and DOWN commands from the controller. This automaton behavior abstracts
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the platform behavior in [18] when modulating the series-resistance between the
core resistive load and the supply voltage, in order to control the difference of po-
tential provided to the core. The evaluator simply translates the variations of sign
of the Vd variable into N2P (negative-to-positive) and P2N (positive-to-negative)
events that are received by the controller, thus jumping between the Pos (positive)
and Neg (negative) modes. The evaluator is able to produce a result as soon as
Vd is greater than a small threshold H (which is sensibly lower than the oper-
ating core voltage). The controller features two modes: Incr (increase) and Decr
(decrease), where a periodic UP or DOWN event is produced, respectively. Essen-
tially, it compensates a N2P (P2N ) event by periodically issuing a DOWN (UP)
event to the environment, until a P2N (N2P) event is received and the behavior
is reversed.

The parameters used for describing the automata timings (i.e. T , T1, the slope
of the Vd variable in the locations of the environment) are: T = T1 = 0.01s, H =
0.001 (where Vhigh = 1.2 and Vlow = 0.8), the dynamics for the time derivative of
Vd are:

• Idle: V̇d = C1;
• Rise: V̇d = C1 + C2/T1;
• Fall : V̇d = C1 − C2/T1;

where C1 = −0.4 (which corresponds to a relatively slow falling reference voltage,
since the core voltage is essentially stable on a specific value) and C2 = 0.05 (which
is the absolute value of the supply voltage step taken after an UP or DOWN event
has been handled by the environment).

To check the parametric safety verification problem on the PSS system, the
property chosen has been ϕsp = (Vd >= −L & Vd <= L), meaning that the
voltage difference Vd = Vr − Vc must maintain an absolute value not greater than
L = 0.1.

For the PSS system, the synthesis engine retrieved an upper bound for ∆ equal
to 0.00112487792969. Again, for the same considerations reported into the previ-
ous case study, the control strategy that needs to be executed on a device whose
clock frequency is 10 Mhz (i.e. clock precision of 10 µs), requires the synchroniza-
tion latency to be bounded by 60 µs.

Table 2.2: Results of the parametric safety verification problem for the PSS system.

MC Search space # Bisect. Time (sec)

PHAVer [0, 0.002] 15 4273.55

Ariadne [0, 0.002] 15 7436.61

Table 2.2 shows a comparison between the total time required for synthesizing
the value ∆ by using the two model checkers. In particular, column MC reports
the name of the model checkers, columns search space and # Bisect. report the
initial search space and the maximum number of bisections, respectively, which
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are used for synthesizing the value ∆. Finally, column Time reports the time (in
seconds) required for the synthesis.

Also on this case study, PHAVer outperformed Ariadne. Again the main mo-
tivation of such a difference in the synthesis times relies on the different engines
which computes the set of reachable states for the hybrid model. While PHAVer
is suited for rectangular and linear affine dynamics, as the ones used in the PSS
model, Ariadne is suited for non-linear affine dynamics. So, again Ariadne pays its
capability of handling very complex dynamics in terms of performances on models
with simpler dynamics.

2.4 Synthesis of implementable control strategies for LLHA

2.4.1 Lazy Linear Hybrid Automata [5]

In what follows the class of lazy linear hybrid automata is being described. This
particular class of hybrid automata has the interesting property that its discrete
time behavior can be computed and represented as finite state automaton as shown
in [5].

Definition 2.22 (Lazy Linear Hybrid Automaton). A finite precision
lazy linear hybrid automaton (LLHA) is a tuple 〈X,Q,Q0, init, inv, f low,E,
jump,Act,D, ǫ, B, P 〉. The components of LLHA are as follows:

• Variables. A finite set X = {x1, . . . , xn} of real-numbered variables. Ẋ
stands for the set {ẋ1, . . . , ẋn} of dotted variables and X ′ stands for the set
{x′1, . . . , x

′
n} of primed variables.

• Control modes. A finite set Q of control modes. Q0 ⊆ Q denotes the set of
initial modes.

• Initial conditions. A labeling function init that assigns to each control mode
q ∈ Q0 an initial predicate. Each initial predicate init(q) is a convex (non-
)linear formula over the variables in X.

• Invariant conditions. A labeling function inv that assigns to each control mode
q ∈ Q an invariant predicate. Each invariant predicate inv(q) is a convex (non-
)linear formula over the variables in X.

• Flow conditions. A labeling function flow that assigns to each control mode
q ∈ Q a flow predicate. Let Ẋq be the finite set {ρ1q, ρ

2
q, . . . , ρ

k
q} of possible rate

vectors ρq ∈ Qn which specify the rate ρq(i) at which each variable xi evolves
when the automaton is in the control mode q. Each flow predicate flow(q) is
of the form (ẋ1 = ρjq(1)) ∧ . . . ∧ (ẋn = ρjq(n)) with ρjq ∈ Ẋq.

• Control switches. A set E of edges (q, q′) from a source mode q ∈ Q to a target
mode q′ ∈ Q.

• Jump conditions. A labeling function jump that assigns to each control switch
e ∈ E a predicate. Each jump predicate jump(e) from the control mode q to q′,
is given by a convex (non-)linear formula over the variables in X.

• Update conditions. A labeling function update that assigns to each control
switch e ∈ E a predicate. Each update predicate update(e) from the control
mode q to q′, is given by the identity predicate over the variables in X ∪ X ′

(e.g., x′i = xi).
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• Actions. A finite set Act of actions and an edge labeling function action : E →
Act that assigns to each control switch an action.

• Delay parameters. D = g, δg, h, δh is the set of delay parameters such that
0 ≤ g ≤ g+ δg < h ≤ h+ δh ≤ P , where h denotes the sensing delay, g denotes
the actuation delay and P is the sampling interval of the controller.

• Precision. ǫi is the precision of measurement of variable xi.
• Range. Bi = [Bimin

, Bimax
] is the range of the variable xi.

• Period. P represents the time period associated with the discrete controller, i.e.,
control mode switches take place at times T0, T1, T2, . . . where Tk+1 = Tk +P .

To keep the notation compact, in what follows, q
a,ϕ
−→ q′ is used to denote

that there exists a control switch e = (q, q′) with q 6= q′, a = action(e) and
ϕ = jump(e) ∧ update(e) in A.

It is worth noting that, unlike the conventional definition of linear hybrid au-
tomata [79], invariants and guards in LLHA can be non-linear. The flows in linear
hybrid automata are represented using rectangular formulas over only the rates
of change of variables. Under the assumption of finite precision, such flows can
be considered as a finite set of constant values of rate of change of different con-
tinuous variables. Thus, LLHA can be used for representing hybrid systems with
rectangular flows [5].

Let A be a lazy linear hybrid automaton as defined above. The semantics of A
is being defined in terms of an associated transition relation over its states.

Definition 2.23 (State of a LLHA). A state of a lazy linear hybrid automaton
A is a triple (q, V, q̂) where q, q̂ are control modes and V is a valuation. q is the
control mode holding at the current time instant and q̂ is the control mode that held
at the previous time instant. V captures the actual values of the variables at the
current instant. The state (q, V, q̂) is feasible if and only if V (i) ∈ [Bmini

, Bmaxi
]

for every i.

The initial state is, by convention, the triple (qinit, Vinit, qinit) where qinit ∈ Q0

and Vinit is such that Vinit � init(qinit). It is assumed without loss of generality
that the initial state is feasible. Let SA denote the set of states of A. To better
understand the dynamics of A it is useful to distinguish each move of the LLHA
into a time-passage move followed by an instantaneous transition.

At the time instant T0, the automaton will be in its initial state. Suppose that
A is in the state (qk, Vk, q̂k) at Tk. Then, let the time pass. At time instant Tk+1,
the automaton will make an instantaneous move by performing an action a or the
silent action τ and move to a state (qk+1, Vk+1, q̂k+1). The silent action τ is used
to record that no mode change has taken place during this move. On the contrary,
each action a ∈ Act labeling a control switch in A is used to record that a mode
change has taken place during the move. The two distinct sub-steps of a move
(unit-time-passage followed by an instantaneous transition) highlighted above can
be merged into one time-abstract transition labeled by a member of Act or by τ .
With this scheme in mind, it is possible to define the transition relation =⇒ of A
as follows.

Definition 2.24 (Transition relation of a LLHA). =⇒⊆ SA×(Act∪{τ})×SA
is such that:
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Fig. 2.7: Lazy transitions with sensing delays.

• Let (q, V, q̂), (q′, V ′, q̂′) ∈ SA be states and a ∈ Act. Then (q, V, q̂)
a

=⇒
(q′, V ′, q̂′) if and only if q̂′ = q and there exist a control switch of the form

q
a,ϕ
−→ q′ in A and t1 ∈ [g, g + δg]

n, t2 ∈ [h, h + δh]
n such that the following

conditions are satisfied:
1. Let vi = V (i) + ρq̂(i) · t1(i) + ρq(i) · (t2(i) − t1(i)) for each i. Then

(〈v1〉, . . . 〈vn〉) satisfies ϕ and each 〈vi〉 represents the digitized value of the
variable xi that have been rounded using the value of ǫi.

2. V ′(i) = V (i) + ρq̂(i) · t1(i) + ρq(i) · (P − t1(i)) for each i.

• Let (q, V, q̂), (q′, V ′, q̂′) ∈ SA be states. Then (q, V, q̂)
τ

=⇒ (q′, V ′, q̂′) if and only
if q′ = q̂′ = q and there exists t1 ∈ [g, g + δg]

n such that:
1. V ′(i) = V (i) + ρq̂(i) · t1(i) + ρq(i) · (P − t1(i)) for each i.

Basically there are four possible transition types depending on whether q = q̂ and
α ∈ Act.

Suppose, as shown in Figure 2.7, that (q, V, q̂)
a

=⇒ (q′, V ′, q̂′) with a ∈ Act

and assume that q
a,ϕ
−→ q′ in A and t1 ∈ [g, g + δg]

n and t2 ∈ [h, h + δh]
n are as

specified above. Notice that q′ 6= q by definition of −→ in A, while the requirement
q̂′ = q follows from the convention that q̂′ is the control mode that held in the
previous instant and it is known this was q. First consider the case q 6= q̂ and
suppose that the state (q, V, q̂) holds at Tk (Figure 2.7.(i)). Then q 6= q̂ means
that a mode change from q̂ to q has just taken place (instantaneously) at Tk
based on the observations that were made available at Tk. However, at Tk, the
automaton will continue to evolve at the rate dictated by ρq̂. Indeed, each xi will,
starting from Tk, evolve at rate ρq̂(i) until some Tk + t1 with t1 ∈ [g, g + δg].
It will then start to evolve at rate ρq(i) until Tk+1. Consequently, at Tk+1, the
value of xi will be V

′(i) = V (i) + ρq̂(i) · t1 + ρq(i) · (P − t1). On the other hand,
q′ 6= q implies that another instantaneous mode change has taken place at Tk+1

based on the measurements made in the interval [Tk + h, Tk + h + δh]. Suppose
xi was measured at Tk + t2 with t2 ∈ [Tk + h, Tk + h + δh]. Then in order for

the transition q
a,ϕ
−→ q′ of A to be enabled at Tk+1, it must be the case that the
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observed values of xi at Tk + t2 satisfy the guard ϕ. Then these values are 〈vi〉
with vi = V (i) + ρq̂(i) · t1 + ρq(i) · (t2 − t1). This explains the demands placed on

the transition (q, V, q̂)
a

=⇒ (q′, V ′, q̂′).
It is worth noting that if q = q̂, i.e., no mode change has taken place at Tk

(Figure 2.7.(ii)), then V ′(i) = V (i)+ρq(i) · t1+ρq(i) · (P − t1) = V (i)+ρq(i) ·P as
it should be. Furthermore, vi = V (i)+ρq(i) · t1+ρq(i) · (t2− t1) = V (i)+ρq(i) · t2.
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Fig. 2.8: Lazy transitions with actuation delays.

As shown in Figure 2.8, similar (and simpler) considerations motivate the de-

mands placed on transitions of the form (q, V, q̂)
τ

=⇒ (q′, V ′, q̂′) where no mode
changes take place at Tk+1. Here again, in case q 6= q̂, i.e., a mode change
has taken place at Tk (Figure 2.8.(iii)), there exists t1 ∈ [g, g + δg] such that
V ′(i) = V (i) + ρq̂(i) · t1 + ρq(i) · (P − t1).

On the contrary, in case q = q̂ (Figure 2.8.(iv)), V ′(i) is determined uniquely,
namely, V ′(i) = V (i) + ρq(i) · P .

From the semantics defined above, it is possible to derive the notions of tra-
jectory of a LLHA and the reachability relation between states.

Definition 2.25 (Trajectory of a LLHA). Let A be a lazy linear hybrid au-
tomaton and let (q, V, q̂) a state of A. A trajectory of A from (q, V, q̂) is a se-
quence of states (qi, Vi, q̂i) with i ≥ 0, such that (q0, V0, q̂0) = (q, V, q̂) and

(qi−1, Vi−1, q̂i−1)
α

=⇒ (qi, Vi, q̂i) for some α ∈ Act ∪ {τ}.

Example (A generic lazy linear hybrid automaton). Figure 2.9 sketches a lazy
linear hybrid automaton A with two control modes q1 and q2. Let i and j be
such that i, j ∈ {1, 2} and i 6= j. Like in the classic hybrid automaton model,
an invariant condition inv(qi) is defined as a subset Ii of R

n and the LLHA can
stay in the control mode qi if the valuation of the variable x satisfies the invariant
condition. The jump condition of a control switch eij = (qi, qj) is specified by
a guard set Gij and a reset function that, by definition of LLHA, is always the
identity function. Unlike in the classic HA model, the control switch eij is enabled
only if the digitized values 〈x〉 detected by the sensor belong to Gij and, moreover,
sensing and actuation delays (i.e., h, δh and g, δg, respectively) are associated to
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Fig. 2.10: Example of a possible lazy linear hybrid automaton trajectory.

the control switch. Finally, each flow condition flow(qi) constraints the evolution
of the continuous variable x to one of the possible rates ρni allowed in the mode
(e.g., {ρ11, ρ

2
1, ρ

3
1} in q1).

Figure 2.10 sketches, instead, part of a trajectory of such a LLHA starting
from the initial state (q1, xinit). In the example, the trajectory keeps following
the dynamics flow(q1) until the time instant Tk. In fact, the control switch e12
is not enabled as soon as the trajectory reaches the guard set G12 because of
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the semantics of LLHA: a jump condition can be evaluated only at periodic time
points and by considering the digitized values detected by the sensor at some
instant (marked with ⋆) in the interval [T hk−1, T

δh
k−1]. As shown in the figure, at Tk,

the invariant condition of the mode q1 is still satisfied, thus, the LLHA can either
switch to q2 or continue with the dynamics of q1. Let assume that the automaton
performs a control switch (marked with •) and moves in q2. When LLHA switches
from q1 to q2, it resets the continuous variable x according to the predicate specified
by the jump condition, i.e., the identity function. Thus, in this case, the trajectory
starts from the same state reached at Tk. Notice that the trajectory keeps following
the dynamics of q1 due to the presence of an actuation delay (i.e., g, δg) on the

control switch. In fact, only at some time (marked with ◦) in the interval [T gk , T
δg
k ]

the trajectory changes according to the rates specified by the flow condition of q2
(i.e., ẋ ∈ {ρ12, ρ

2
2}). Then the trajectory follows that flow rate until the invariant I2

is violated or the jump condition G21 is satisfied allowing the automaton to jump
back in the mode q1.

Definition 2.26 (Reachability relation between states of a LLHA). Let
A be a lazy linear hybrid automaton. A state (q, V, q̂) reaches a state (q′, V ′, q̂′)
if there exists a finite trajectory of states (qi, Vi, q̂i), with 0 ≤ i ≤ n, such that
(q0, V0, q̂0) = (q, V, q̂) and (qn, Vn, q̂n) = (q′, V ′, q̂′). RC(q, V, q̂) is used to denote
the set of states reachable from (q, V, q̂). RC is used to denote the set of all the
possible states reachable from the initial ones.

2.4.2 Problem definition

The synthesis of implementable control strategy for a LLHA consists of determin-
ing if there exist legal values for the clock precision (i.e., P ), and upper-bounds
for sensing and actuation delays (i.e., TSD and TAD, respectively) for which the
control strategy modeled in the LLHA is able to satisfy the safety properties the
hybrid system has to ensure.

Let A be a lazy linear hybrid automaton such that SA is the set of the possible
states, Init is a function that constraints the control modes and the variables value
in the set of initial states, and T R is the transition relation that models the lazy
behavior of A. Let ϕsafe be a function that specifies the constraints for identifying
the states satisfying the safety properties for the hybrid system. The synthesis
problem summarized above can be formalized by a Quantified Boolean Formula
(QBF), i.e., a formula in which propositional variables can be either quantified
existentially or universally, as follows:

∀S0, . . . , Sn, ∃P, TSD, TAD : Init(S0)∧
n∧

i=0

T R(Si, Si+1, P, TSD, TAD)→
n∧

i=0

ϕsafe(Si)

(2.1)
where each Si is in SA. Intuitively, the formula states that every state Si

reachable from one of the initial states satisfies the safety property ϕsafe.
An efficient way to solve this problem consists of deriving from Formula 2.1 a

reachability problem on A. Such a reachability problem should focus on identifying
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the existence of bad states, i.e., states Si violating the safety properties and are
reachable from the initial states of A:

∀S0, . . . , Sn, ∃P, TSD, TAD : Init(S0)∧
n∧

i=0

T R(Si, Si+1, P, TSD, TAD)∧
n∨

i=0

¬ϕsafe(Si)

(2.2)
where each Si is in SA.
The unsatisfiability of Formula 2.2 proves the validity of Formula 2.1. Notice

that the satisfiability of Formula 2.2 may be proved or disproved by applying a
Satisfiability Modulo Theory (SMT) [15] decision procedure on its propositional
part. Unfortunately, the number of copies of the transition relation T R in the
formula coincides with the number of steps being checked. As a consequence, for
a complete check, the SMT procedure must be invoked on formulas containing an
exponential number of copies of the transition relation T R leading to the typical
memory explosion.

To overcome such a problem, it is possible to limit the analysis to a bounded
reachability problem: the transition relation may be unrolled only a finite number
k of times, where k is the reachability diameter [96] of the LLHA. Thus, the formula
checks if a bad state Si≤k is reachable from the initial state S0. This is an instance
of the classical Bounded Model Checking (BMC) [23] problem, and there exist
well-know techniques and tools to solve it.

In what follows, a symbolic BMC encoding for modeling Formula 2.2 is pro-
posed. Then, a synthesis procedure for identifying the maximum values of clock
precision (P ), sensing and actuation delays (TSD,TAD respectively) for satisfying
the safety specification ϕsafe is proposed.

2.4.3 Contributions

In what follows it is shown that, by using LLHA, the problem of synthesizing a
discrete-time and finite-precision control strategy for a hybrid system is decidable.
In particular, the main contributions of Section 2.4 are as follows:

• it defines a symbolic encoding of the set RC of reachable states of a LLHA that
reduces the synthesis of implementable control strategies for LLHA to the state
reachability problem on LLHA. In fact the symbolic encoding of RC, unlike the
one proposed in [89], explicitly models the finite precision of clock and sensors,
as well as the sensing and actuation delays by means of parameters. Then, by
verifying the safety properties as reachability queries, it is possible to identify
values for such parameters which make the control strategy implementable,
i.e., the control strategy is able to handle the continuous plant by following
finite-precision and discrete-time behaviors.

• it proposes a synthesis procedure that, starting from a set of feasible values
for the different parameters, identifies for each of them the maximum values
which enable a LLHA to satisfy its required safety properties.

The following sections describe all the details of the proposed approach.
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2.4.4 Symbolic BMC encoding

This section describes how the reachability problem on a LLHA can be symbolically
represented by means of a parametric BMC formula. At first, an useful definition
is provided.

Definition 2.27 (Frame). A frame F is a tuple 〈K, c, t1, t2, t, q〉 where K =
(k1, k2 . . . kn) represents the variables evaluation; c is the time elapsed since the
last clock tick; t1 is the actuation delay; t2 is the sensing delay; t is the time before
transition to next frame; q denotes the current control mode in F .

Intuitively, a frame F reports the state of the LLHA at the time instant t. Due
to the finite-precision assumption of LLHA, each variable ki can be symbolically
modeled by using a bit-vector [33] whose size depends on the legal range Bi as-
sociated to the variable. The same considerations apply to symbolically represent
the other quantities reported into a frame.

The semantics of a LLHA is described by a finite conjunction of predicates,
modeling a symbolic transition relation, over the sequence of frames (i.e., states)
F1, F2, . . . , Fn.

The initial state Init(F0) is defined as the predicate

Init(F0) ≡ (q = qinit) ∧ φ0(K) ∧ (c = 0) ∧ (t1 = 0) ∧ (t2 = 0) (2.3)

where qinit denotes the initial control mode and φ0(K) the initial constraint over
continuous variables (e.g., variables initialization). At the initial step the values
of the continuous variables are known, thus, no sensing delays can happen (i.e.,
t2 = 0). Moreover, also the actuation delay t1 is constrained to 0. In fact, no
mode switches could have happened before the initial step. To make a mode switch
possible, the Init predicate constraints c (i.e., time units before the next clock tick)
to 0. This is due to the fact that, according to the LLHA semantics (Section 2.4.1),
a mode switch can happen only at discrete time instants corresponding to clock
ticks. Thus, the initial frame F0 is being defined as 〈K0 .

= φ0(K), c0
.
= 0, t01

.
=

0, t02
.
= 0, t0

.
= 0〉.

On the contrary, each step of the symbolic transition relation is described by
the predicate T R that defines constraints over the current frame Fm by means of
its previous frame Fm−1. Such a predicate consists of the disjunction of all possible
control switches (Jij) and flow evolutions (Ei) and (Ēi) on such frames.

T R(Fm−1, Fm) ≡
∨

(i,j)∈E

Jij(Fm−1, Fm) ∨
∨

i∈Q

Ei(Fm−1, Fm) ∨
∨

i∈Q

Ēi(Fm−1, Fm)

(2.4)
Intuitively, Jij(Fm−1, Fm) specifies that a switch between modes i and j can

happen. Ei(Fm−1, Fm) specifies that time can continue to elapse into the current
mode i. Finally, Ēi(Fm−1, Fm) specifies that time can continue to elapse into the
current mode i despite of its invariant till the first occurring clock tick at which
will be mandatory leave the control mode.

The formal definitions of predicates Jij , Ei and Ēi, are specified in terms of
quantities which, in turn, depend on two functions: compensated for sensing delay
(csd) and compensated for actuation delay (cad).
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These two functions csd (Equation 2.5) and cad (Equation 2.6) map a valuation
K of the continuous variables to a set of possible corresponding valuations obtained
after compensating for sensing and actuation delay, respectively.

csd(K, i, t2) ≡ {(k1 − k̇1 · t2, . . . , kn − k̇n · t2) | (k̇1, . . . , k̇n) |= flow(i)} (2.5)

cad(K,h, i, t1, t) ≡ {(k1 − (k̇1h − k̇1i) · t1 + k̇1i · t, . . . , kn − (k̇nh − k̇ni) · t1 + k̇ni · t) |

(k̇1h, . . . , k̇nh) |= flow(h), (k̇1i, . . . , k̇ni) |= flow(i)}

(2.6)

Now, let Fm = (Km, cm, tm1 , t
m
2 , t

m, qm) and Fm−1 =
(Km−1, cm−1, tm−1

1 , tm−1
2 , tm−1, qm−1) be the current and previous frames,

respectively. The following quantities are needed for formalizing the aforemen-
tioned Jij , Ei and Ēi predicates.

The predicate Ii,

Ii(Fm) ≡ (i = qm)∧(0 ≤ tm2 ≤ TSD)∧∃K
′[K ′ ∈ csd(Km, lm, tm2 )∧invi(K

′)] (2.7)

evaluated on the frame Fm, tests the satisfiability of the invariant at the control
mode i in Fm. In particular, the predicate checks the existence of a valuation K ′,
derived from Km by compensating for the sensing delays in tm2 , that satisfies the
invariant invqm . Notice that the values in tm2 range over the interval [0, TSD] where
the upper-bound TSD is a parameter whose maximum value is being synthesized
during the verification. Intuitively, the maximum value of TSD will represent the
slowest admissible sensing delay ensuring the correctness of the control strategy
modeled by the LLHA.

The predicate gij ,

gij(Fm−1, Fm) ≡ (i = qm−1∧j = qm)∧∃K ′[K ′ ∈ csd(Km−1, qm−1, tm−1
2 )∧ψij(K

′)]
(2.8)

evaluated on the frames Fm−1 and Fm, tests the satisfiability of guard ψij labeling
the edge (qm−1, qm) ∈ E by checking the existence of a valuation K ′, derived
from Km by compensating for the sensing delays in tm2 , that is able to satisfy the
constraint ψij .

The predicate ehi,

ehi(Fm−1, Fm) ≡ (i = qm ∧ qm = qm−1) ∧Km ∈ cad(Km−1, h, i, tm−1
1 , tm)

(2.9)

evaluated on the frames Fm−1 and Fm, deals with the time evolution in control
mode i with predecessor mode h. Practically, ehi computes the values of the con-
tinuous variables in Km according to the time elapsing tm. Such a computation
takes into account the actuation delays specified by tm−1

1 due to a possible previous
mode switch (i.e., h = qm−2 such that qm−2 6= q).

The switch and evolution predicates can now be defined as follows:

Jij(Fm−1, Fm) ≡ gij(Fm−1, Fm) ∧ (cm−1 = 0) ∧ [(Km, cm) =

= updateij(K
m−1, cm−1)] ∧ (0 ≤ tm1 ≤ TAD)

(2.10)
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The switch predicate Jij is satisfied if, in correspondence of a clock tick (i.e.,
cm−1 = 0), the guard constraint, specified by gij , evaluates to true by taking
into account the sensing delays. As a result, the continuous variables retain the
values specified in Km−1 and cm−1 (i.e., [(Km, cm) = updateij(K

m−1, cm−1)])
and actuation delays tm1 are set because of the mode change. Notice that these
actuation delays range over [0, TAD] where the upper-bound TAD is a parameter
whose maximum value is being synthesized during the verification. The synthesized
value of TAD will represent the slowest admissible actuation delay ensuring the
correctness of the control strategy modeled by the LLHA.

Ei(Fm−1, Fm) ≡ Ii(Fm−1) ∧ Ij(Fm) ∧ [
∨

h∈pre(i)

ehi(Fm−1, Fm)] ∧

∧ (tm ≥ tm−1
1 ) ∧ [cm = (cm−1 + tm) mod P ]

(2.11)

where pre(i) denotes the set of predecessor modes of i. The predicate Ei is satisfied
if, at the current control mode, the time can elapse till tm , i.e., the associated
invariant evaluates to true in all the time instants of the interval [tm−1, tm]. As a
result of the time elapsing, the value of the continuous variables evolves according
to the specified flow constraints (i.e., ehi) by also taking into account the actuation
delays (i.e., tm−1

1 ) due to a possible previous mode change. Moreover, the elapsing
of clock ticks is tracked (i.e., cm).

Ēi(Fm−1, Fm) ≡ Ii(Fm−1) ∧ ¬Ij(Fm) ∧ ¬[
∨

(i,j)∈E

gij(Fm−1, Fm) ∧ (cm−1 = 0)] ∧

∧ [
∨

h∈pre(i)

ehi(Fm−1, Fm)] ∧ (tm = P − cm−1)

(2.12)

where pre(i) denotes the set of predecessor modes of i. The predicate Ēi is satisfied
if neither the invariant at the current mode is satisfiable at any time instant
following tm−1 nor a mode switch can occur at tm−1. This means that the mode
should be left as soon as possible. For this reason the time can elapse only till the
closest clock tick (i.e., tm = P − cm−1) at which it would be possible evaluate the
guards ψij labeling the outgoing edges of the current control mode i.

This completes the definition of the transition predicate.
Now the parameterized BMC formula, used for synthesizing the maximum val-

ues of P , TAD and TSD, can be defined. Let ϕsafe(F ) = (φc(q)∧φv(K)) represent
a safety property for the LLHA. The predicate ϕsafe(F ) specifies both a constraint
φc on the current control mode in the frame F (e.g., either q = qi or q 6= qi) and a
constraint φv(K) on the value of continuous variables in F (e.g., xi ∈ [−10, 12]).

If d is the number of steps to which check the transition relation for safety,
then the unsatisfiability of the formula

BMCd(P, TAD, TSD) ≡ Init(F0) ∧
d∧

n=1

T R(Fn−1, Fn) ∧
d∨

n=1

¬ϕsafe(Fn) (2.13)
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will guarantee the correctness of the LLHA w.r.t. the specified safety property.
Notice that, if BMCd is satisfied, then there exists a sequence of frames F0, F1, . . . ,
Fj with j ≤ d falsifying the property ϕsafe. Such a sequence of frames represents
a counterexample trace.

Furthermore, BMC is complete with respect to reachability if d is large enough
to guarantee that all reachable states of A are considered. The smallest d that has
this property is called the reachability diameter. Due to the fact that the set of
states SA is finite [5], such a smallest d exists, thus, if BMCj is unsatisfied for all
j ≤ d, then the safety property is satisfied by the LLHA.

2.4.5 Synthesis procedure

The definition of the BMC formula described in the previous section is based on a
set of parameters whose values affect the correctness of the LLHA model, i.e., its
capability of satisfying a safety property ϕsafe that represents a specification for
the hybrid system. The synthesis engine aims at identifying the maximum values of
such parameters for which the discrete-time and finite-precision behaviors specified
by the LLHA are able to satisfy ϕsafe.

In particular, the parameters reported into the formula BMCd are the follow-
ing:

• clock period P . It specifies the periodicity of clock ticks at which it is possible
to evaluate the guards for performing a mode switch;

• actuation delay upper-bound TAD. It specifies the maximum delay admitted for
effecting the change of rate due to a mode switch (i.e., actuator latency);

• sensing delay upper-bound TSD. It specifies the maximum delay admitted for
notifying the controller that a mode switch can be performed (i.e., sensor la-
tency).

At the moment, the precision ǫ of the observed values is not explicitly modeled
as a parameter. Instead, it is assumed that it is fixed at some suitable level of
granularity and that the constant values reported into the predicates modeling
guard and invariant conditions have been scaled accordingly to be represented as
integers1.

For reducing the time required in identifying the suitable values for the param-
eters summarize above, it is asked to the user to specify a desired clock period P
that the control strategy has to adopt. Then a synthesis procedure will automat-
ically retrieve the maximum values for TSD and TAD that preserve the safety of
the model according to the specified clock period.

The procedure identifies the intended values by using a bisection method on a
finite interval of feasible values for the parameters. Due to the fact that the LLHA
semantics constraints the actuation delay to be smaller than the sensing delay and
the sum of sensing and actuation delays to be smaller than the clock period, the
starting search space is given by the intervals TAD ∈ [a, b] and TSD ∈ [c, d] such
that b < d and b+ d < P . Algorithm 2 reports the pseudo-code implementing the
values synthesis procedure.

1 Remember that the underlying structure used for the symbolic representation of vari-
ables is the bit-vector.
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Algorithm 2: The values synthesis procedure for LLHA-based control strate-
gies.

procedure find values(BMCd, P , a, b, c, d, N)

input: the BMCd formula, the clock period P , initial intervals [a,b] and [c,d] of
feasible values for TAD and TSD, resp., and the maximum number N of
iterations

output: maximal values of TAD and TSD for which the control strategy satisfies
ϕsafe, TSD = 0 and TAD = 0 otherwise

1 it = 0;
2 TSD = 0;
3 TAD = 0;
4 mid1 = ⌊(a+ b)/2⌋;
5 mid2 = ⌊(c+ d)/2⌋;
6 while (it < N) ∧ ((b− a > 1) ∨ (d− c > 1)) do

7 if SMT (BMCd(P,mid1,mid2)) 99K valid then
8 a = mid1;
9 TAD = mid1;

10 c = mid2;
11 TSD = mid2;

12 else
13 b = mid1;
14 mid1−tmp = ⌊(a+ b)/2⌋;

15 if SMT (BMCd(P,mid1−tmp,mid2)) 99K valid then
16 a = mid1−tmp;
17 TAD = mid1−tmp;
18 c = mid2;
19 TAD = mid2;

20 else
21 d = mid2;

22 mid1 = ⌊(a+ b)/2⌋;
23 mid2 = ⌊(c+ d)/2⌋;
24 it = it+ 1;

25 return (TSD, TAD);

At each step, the procedure divides the current subintervals of [a, b] and [c, d]
in two by computing their midpoints mid1 and mid2. Then it verifies whether the
formula BMCd(P,mid1,mid2) is valid by fixing TAD = mid1 and TSD = mid2.
Now, according to the verification results the method registers the current mid-
points as candidate solutions and selects the subintervals to be used in the next
step. In particular, if mid1 and mid2 let the formula be valid, they become candi-
date maximal values for TAD and TSD, resp., and the new intervals of search will
be [mid1, b] and [mid2, d], i.e., the procedure will check the validity of the formula
on new values greater than the current midpoints. Otherwise, the procedure has
to look for smaller ones. At first, it checks the formula validity by reducing only
the current value for actuation delays. It computes the new candidate for TAD
(i.e., mid1−tmp) and, by preserving the previous candidate mid2 for TSD, verifies
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the validity of the formula BMCd(P,mid1−tmp,mid2). If the verification returns
a positive answer, then mid1−tmp and mid2 are recorded as new candidate max-
imal solutions for TAD and TSD, resp., and the new intervals of search will be
TAD ∈ [mid1−tmp,mid1] and TSD ∈ [mid2, d]. On the contrary, the non-validity
of the formula underlines that also a smaller sensing delay is required. For this
reason the search continues on the intervals [a,mid1] and [c,mid2]. In this way the
intervals that contains the final values of the parameters is reduced in width at
least by 50% at each step. The process is continued until the maximum number
N of iteration is reached or each interval contains 1 element.

2.4.6 Experimental Results

This section reports the results obtained by applying the proposed LLHA parame-
ter synthesis approach on three case studies. All experiments have been performed
on a workstation with Intel Xeon 2.53 GHz processors and 16GB RAM. The hybrid
models of the case studies have been described by means of CIF [129] language.
The cif2uclid tool has been implemented to automatically derive, from such mod-
els, parametric-LLHA descriptions which have been automatically synthesized into
equivalent SMT formulas by using the UCLID [99] modeling environment. Several
SMT solvers have been used to verifying the models and identify the maximum
values for the sensing and actuation delay parameters reported into the LLHA
models. In particular, for each case study the performances of the following SMT
solvers have been compared: Boolector2 [32], Yices [55] and Beaver [90]. Notice
that, any other SMT solver could alternatively be used as verification and param-
eter synthesis engine.

Train-Gate Controller

The train gate controller ensures that the gate is closed when the train is ap-
proaching it. The train is assumed to move at a constant speed v on a circular
track and the gate begins to close at a constant angular speed u when the train is
dmax distance from the gate. Once the train has moved dmax distance away from
the gate, the gate begins to open again. The system is shown in Figure 2.11. The
distance of the train is measured in meters, the angle of the gate in degrees and
the time in seconds. The set of parameter values used in the running example is
as follows: v = 40, u = 15, dfar−away = 2000, dmax = 400 and dsafe = 160.

The system is considered safe, i.e., the train is never closer to gate than dsafe
unless the gate is completely closed, only if the following safety property is satisfied:
−dsafe ≤ d ≤ dsafe → a <= 0.

Such a property is used during the synthesis phase for identifying the maxi-
mum values for the sensing and actuation delay parameters (TSD and TAD, respec-
tively) that are reported into the LLHA modeling the system. In particular, the
parametric LLHA has been automatically generated by using a digitizing precision
ǫ = 10−3 and a clock period P = 10−2. Then, the parameter synthesis approach
has determined that the coarse values for the sensing and actuation delays which

2 MiniSat and PicoSat have been used as the underlying SAT engines.
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Fig. 2.11: LHA model of the Train-Gate controller.

ensure the correctness of such a LLHA are TSD = 4 · 10−3 and TAD = 2 · 10−3.
The time required for synthesizing such values is reported in Table 2.3.

Table 2.3: Comparison of the synthesis times using different SMT solvers.

SMT TSD s-Space TAD s-Space # Bisect. Time (sec)

Beaver [0, 5 · 10−3] [0, 4 · 10−3] 15 123.336

Boolector [0, 5 · 10−3] [0, 4 · 10−3] 15 101.544

Yices [0, 5 · 10−3] [0, 4 · 10−3] 15 49121.940

In particular, column SMT reports the name of the SMT solvers compared;
columns TSD s-Space and TAD s-Space report the initial search spaces used for
identifying suitable values for the sensing and actuation delays, respectively. Col-
umn # Bisect. shows the maximum number of bisection iterations allowed for
synthesizing the parameters values and, finally, column Time reports the total
time (in seconds) spent for the synthesis process.

Room Heating Controller

The room heating controller ensures that the temperature of a room is kept into
a comfort interval by turning on and off the heater installed into the room. Fig-
ure 2.12 depicts the model of the system. Intuitively, the automaton is composed
by two control modes on and off, representing the status of the heater. The vari-
able x denotes the room temperature (measured in ◦C). When the heater is off, the
temperature of the room falls according to any of rates specified by the rectangu-
lar constraint ẋ ∈ [−b,−a]. Instead, when the heater is on the temperature of the
room rises following any of rates specified by the constraint ẋ ∈ [b, c]. The heater
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is turned on as soon as the falling temperature reaches xlow: the automaton moves
to the control mode on and the temperature rises starting at a value x <= xlow.
The heater is turned off as soon as the temperature reaches xhigh: the automaton
moves to the control mode off and the temperature starts falling again at a value
x >= xhigh. This control strategy guarantees the temperature of the room will re-
main at between xmin and xmax starting at the initial temperature xinit such that
xlow < xinit < xhigh. The set of parameter values used in the running example is
as follows: a = 2, b = 3, c = 4, xmin = 17.8, xlow = 18, xhigh = 22 xmax = 22.5
and xinit = 19.

x ≤ xlow

x = xinit

x ≥ xhigh

OFF

-b ≤ x ≤ -a

x ≥ xlow

.
ON

b ≤ x ≤ c

x ≤ xhigh

.

Fig. 2.12: The LHA model of the room heating controller.

The property xmin < x < xmax is used for synthesizing the maximum values
of the sensing delay TSD and the actuation delay TAD which are reported into
the parametric LLHA modeling the finite-precision lazy heating controller. Such
a model has been generated from the one depicted in Figure 2.12 by choosing a
digitizing precision ǫ = 10−4 and a clock period P = 10−2. The synthesis procedure
has determined that the values TSD = 11 ·8−3 and TAD = 10 ·10−3 guarantee that
the lazy controller keeps the temperature into the comfort bounds (i.e., xmin and
xmax). The time required for synthesizing such values is reported in Table 2.4.

Table 2.4: Comparison of the synthesis times using different SMT solvers.

SMT TSD s-Space TAD s-Space # Bisect. Time (sec)

Beaver [0, 40 · 10−3] [0, 30 · 10−3] 15 343.888

Boolector [0, 40 · 10−3] [0, 30 · 10−3] 15 1584.864

Yices [0, 40 · 10−3] [0, 30 · 10−3] 15 90903.836

Watertank Controller

The watertank system is centered on a water tank, which is characterized by an
uncontrolled outbound water flow, while the inbound water flow is controlled by
the aperture of a valve. The controller acts on the aperture of the valve a in order
to keep the water level x in a safe interval xmin < x < xmax. The system model is
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shown in Figure 2.13. The water level is measured in deciliters, the valve aperture
in degrees and the time in seconds. The set of parameter values used in the running
example is as follows: a = 1, b = 2, c = 4, d = 7, v = 20, xhigh = 850, xlow = 550,
ymin = 0, ymax = 360, xmax = 870 and xmin = 540.

OPENING

a ≤ x ≤ c

y = v

y ≤ ymax

.

.

OPEN

c ≤ x ≤ d

y = 0

x ≤ xhigh

.

.

y ≥ ymax

x ≥ xhighx ≤ xlow

x = xlow

y = 0

CLOSED

-c ≤ x ≤ -b

y = 0

x ≥ xlow

.

.

CLOSING

-b ≤ x ≤ -a

y = -v

y ≥ ymin

.

.

y ≤ ymin

x ≥ xhighx ≤ xlow

Fig. 2.13: LHA model of the watertank controller.

In the model, the water level begins to increase according to a rectangular
constraint ẋ = [a, c] when the valve starts to open at constant angular speed v. As
soon as the valve reaches its full aperture, the incoming flow reaches its maximum
value, filling faster the water tank. Once the water level crosses an upper threshold
xhigh, the valve starts to close in order to avoid a water overflow. Once the valve
is completely closed, no inbound water flow is present and the water level keeps
decreasing. When the water level reaches its lower threshold xlow , the valve begins
to open again.

The property xmin < x < xmax is used for synthesizing the maximum values
of the sensing delay TSD and the actuation delay TAD which are reported into the
parametric LLHA modeling the finite-precision lazy watertank controller. Such
a model has been generated from the one shown in Figure 2.13 by choosing a
digitizing precision ǫ = 10−3 and a clock period P = 10−1. At the end of the
synthesis phase, the verification has determined that the values TSD = 23 · 10−3

and TAD = 11 ·10−3 guarantee that the lazy controller keeps safely the water level
into the xmin and xmax bounds. The time required for synthesizing such values is
reported in Table 2.5.

Automated Highway Control System

Automated Highway Control System (AHS) is an arbiter which ensures that there
is no collision between cars running on a highway by imposing legal speed ranges.
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Table 2.5: Comparison of the synthesis times using different SMT solvers.

SMT TSD s-Space TAD s-Space # Bisect. Time (sec)

Beaver [0, 50 · 10−3] [0, 40 · 10−3] 15 531.560

Boolector [0, 50 · 10−3] [0, 40 · 10−3] 15 2413.017

Yices [0, 50 · 10−3] [0, 40 · 10−3] 15 107236.980

The linear hybrid automata representing the case of four cars is shown in Fig-
ure 2.14. The distance between cars is measured in km, time in hours and speeds
in km/h. The set of parameter values used in the running example is as follows:
rl = 20, b = 30, c = 40, d = 50, e = 60, ru = 70, f = 100, αmin = 2 · 10−3,
αmax = 1 and α′

min = 5 · 10−4.
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Fig. 2.14: LHA model of the Automated Highway Control System.

To avoid collisions, the arbiter specifies speed limits (i.e., [a, f ]) for each vehicle.
When two vehicles i and j come within a distance yij ≤ αmin of each other,
there exists a possible collision event. The arbiter asks the approaching car to
slow down by reducing the speed into the interval [b, c] and asks the leading car
to speed up by keeping a speed into the interval [d, e]; it also requires that all
other cars not involved in the possible collision slow down to a constant recovery
mode velocity rl for cars behind the critical region and ru for cars in front of the
critical region. When the distance between the two vehicles involved in the possible
collision exceeds α, the arbiter model goes back to the dynamics of the cruise mode.
Moreover, the arbiter keeps all the vehicles below a maximal distance αmax of each
other. When two vehicles i and j exceed such a distance (i.e., yij ≥ αmax), the
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arbiter asks the leading car to slow down by reducing the speed into the interval
[b, c] and asks the approaching car to speed up by keeping a speed into the interval
[d, e]; it also requires that all other cars keep the current distance constant (i.e.,
speeding up for cars behind the critical region and slowing down for cars in front
of the critical region). When the distance between the two vehicles decreases below
αmax, the arbiter model goes back to the dynamics of the cruise mode.

The only safety property to be satisfied by the model is that the control mode
is never the error mode.

Again, once the parametric LLHA model has been extracted by choosing a
digitizing precision ǫ = 10−5 and a clock period P = 10−2, the safety property is
used as constraint for identifying the coarse values of the sensing and actuation
delay parameters (TSD and TAD, respectively). On this case study, the synthesis
phase has determined that the values TSD = 218 · 10−5 and TAD = 112 · 10−5

guarantee the safety of the system, i.e., the lazy controller is able to avoid cars
collision. The time required for synthesizing such values is reported in Table 2.6.

Table 2.6: Comparison of the synthesis times using different SMT solvers.

SMT TSD s-Space TAD s-Space # Bisect. Time (sec)

Beaver [0, 500 · 10−5] [0, 400 · 10−5] 15 154.053

Boolector [0, 500 · 10−5] [0, 400 · 10−5] 15 147.753

Yices [0, 500 · 10−5] [0, 400 · 10−5] 15 7533.104

2.5 Conclusions

The development of methodologies for the synthesis of implementable control
strategies for hybrid automaton-based models is a new and valuable research area.
This chapter tackled this problem in two ways. At first, it proposed a new frame-
work, including the s-extract manipulation tool, the cif2ariadne and cif2phaver
translators, Ariadne and PHAVer model checkers and a model checker indepen-
dent synthesis procedure, that makes practical the applicability of the AASAP
synthesis approach on general classes of hybrid automata for which the reachabil-
ity problem is not decidable. Afterwards, it focused on defining a new methodology
that, supported by tools such as cif2uclid, UCLID and a SMT solver independent
synthesis procedure, enables the synthesis of implementable control strategies for
the interesting class of lazy linear hybrid automata. In both cases experimental re-
sults have been proposed to underline the applicability of the proposed approaches.
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Model-driven design and verification of embedded

software

3.1 Introduction

With the increasing complexity of embedded controllers and, in particular, of the
related software part, i.e., Embedded Software (ESW), the need arises to improve
the design and the verification of ESW. As is well known, ESW is a specific-
purpose software tightly integrated with the underlying execution platform and it
constantly reacts to event occurrences and mixes control and data flows [102].

Typically, implementation and verification of ESW is a time consuming and
error-prone process [119]. In fact, code implementation inevitably implies fixing
and re-factoring: the designer needs to implement specifications that, described by
means of natural language, may lead to misinterpretations.

To address the limitations of natural languages, the industries have realized
that, whenever possible, requirement specifications should be given in formal no-
tations, both graphical and language-based [59, 111].

Since the mid 1990s, the massive use of multiple graphical-modeling paradigms
in embedded-system design leads to consider the usage of Model-Driven Design
(MDD) methodologies [126]. MDD aims at raising the level of abstraction through
an extensive use of generic models in all the phases of the development. It describes
the system under development in terms of abstract characterization, attempting
to be generic not only in the choice of implementation platforms, but even in the
choice of execution and interaction semantics. Thus, MDD has emerged as the
most suitable solution to develop complex systems and has been supported by
academic [60] and industrial tools [1, 11, 68, 82, 83, 130].

The gain offered by the adoption of a MDD approach is the capability of
generating the source code implementing the ESW in a systematic way, i.e., it
avoids the need of manual writing, analyzing and modifying the code. However,
even if the MDD simplifies the software implementation it does not prevent the
designer to wrongly define the software behaviors. Therefore, the MDD gives full
benefits if it integrates also functional verification.

Unfortunately, nowadays, only certain aspects concerning verification of ESW
are automated, as for example the structural analysis of code, but specification
conformance, i.e., functional verification, is still a human-based process [57,71]. In-
deed, the de-facto approach to guarantee the correct behavior of ESW is monitor-
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ing the system simulation: company verification teams are responsible of putting
the system into appropriate states by generating the required stimuli, judging
when stimuli should be executed, manually simulating environment and user in-
teractions, and analyzing the results to identify unexpected behaviors.

Assertion-based Verification (ABV) [64] aims at providing verification engi-
neers with a way for formally capturing the intended specifications and checking
their compliance with the implemented ESW. In ABV, specifications are expressed
by means of temporal assertions, that, to overcome the ambiguity of natural lan-
guages, are defined according to formal assertion languages, like, for example, the
Property Specification Language (PSL) [87]. PSL assertions can be verified by
model checking (static ABV) or by simulation (dynamic ABV). Dynamic ABV
is preferred in case of large designs due to its scalability. In particular, in the
hardware domain, dynamic ABV is affirming as a leading strategy in industry
to guarantee fast and high-quality verification of hardware components [35, 108]
and several verification approaches have been proposed [61, 64]. On the contrary,
companies, which develop embedded software, still incur practical problems in
adopting dynamic ABV in their design flows [128].

It is, therefore, evident that MDD and dynamic ABV individually suffer some
limitations that prevent their integration in the ESW design and verification flow.
But, if combined in a comprehensive framework, these approaches support and
enable each other. On one side, MDD gains full benefits only if the MDD environ-
ment integrates automatic code generation with functional verification to ensure
designer about the conformance between specification and implementation. That
reduces the need of directly examining and verifying the generated code. In this
way, the problem is abstracted and moved from the source-code level to the model
level. On the other side, dynamic ABV needs to be supported by a MDD approach
to be easily applied to ESW verification. Indeed, dynamic ABV, has been widely
used in the hardware-design domain, since HW descriptions satisfy some simula-
tion assumptions that generally do not hold in SW, as reported in Section 3.3.
The use of a MDD approach for generation of ESW code provides a solution to
such problems, as described in this paper.

In this context, extending the idea proposed in [49], this chapter will describe
how MDD approaches and dynamic ABV can be integrated in an off-the-shelf
framework for supporting the ESW development.

3.1.1 Framework overview and contributions

Our framework is composed of two environments: radCASE and radCHECK (Fig-
ure 3.1). radCASE is a UML-modeling and development environment for ESW
supporting model-driven design. radCHECK is a dynamic ABV environment that
supports assertion definition and automatic checkers and stimuli generation.

Starting from the informal specifications and requirements, the designer, with
the Model Editor of radCASE, defines the ESW model using an UML-based ap-
proach. Concurrently, with the Property Editor of radCHECK, he/she defines a
set of PSL assertions that the application must fulfil. Then, radCASE automati-
cally translates the UML specifications in the ESW C-code implementation, and
automatically extracts an Extended Finite State Machine (EFSM) [37] model to
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Fig. 3.1: The radCASE and radCHECK model-driven and verification framework.

support verification. At the same time, radCHECK can be used to automatically
generate executable checkers from the defined PSL assertions. Checkers are exe-
cutable components that monitor the evolution of the ESW during dynamic ABV.
The dynamic ABV is guided by stimuli automatically generated by Ulisse, i.e., a
corner-case-oriented concolic stimuli generator that exploits the EFSM model to
explore the ESW state space. Thus, the verification phase is performed by using
the generated stimuli on top of an ESW simulator or on the application running
on the target hardware. The checkers execute within the ESW and monitor if the
state of the application causes an assertion to falsify. The designer uses the re-
sulting information, i.e., failed requirements, for refining the UML specifications
incrementally and in an iterative fashion.

The main contributions of such a framework are summarized as follows:

• it presents an extension of the existing radCASE environment [133] to cover
all possible aspects of ESW design taking care of verification requirements. In
particular, we extended radCASE to automatically synthesize from the UML-
like specifications of the ESW a corresponding EFSM model supporting the
automatic stimuli generation required for the effective dynamic verification of
the ESW implementation;

• it presents a new dynamic ABV environment for ESW, named radCHECK [131],
which integrates a graphical assertion editor for assisted assertion definition, a
checker generator, and a stimuli generator to simulate the ESW. In particular:
– the assertion editor graphically supports the designer in defining formal

assertions from the informal specifications of the ESW through a large set
of parametric templates.
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– the checker generator synthesizes the defined formal assertions into asser-
tion checkers which are automatically integrated into the simulation envi-
ronment.

– the stimuli generator provides the simulator with stimuli to efficiently cover
corner cases when checkers are simulated to determine the correctness of
the implementation w.r.t the specification;

The remainder of this chapter is structured as follows. Section 3.2 summarizes
the state of the art concerning model-driven design and dynamic assertion-based
verification for ESW; Section 3.3 summarizes the main limitation of current ap-
proaches and clarifies the goal of the proposed design and verification framework;
Section 3.4 presents radCASE; Section 3.5 presents radCHECK; Section 3.6 is de-
voted to the stimuli generation engine included in radCHECK; Section 3.7 deals
with experimental results and comparisons with other approaches. Finally, Sec-
tion 3.8 is devoted to concluding remarks.

3.2 State of the art

This section provides an overview of existing formalisms and tools for ESW design,
as well as state-of-the-art approaches for ESW verification.

3.2.1 Model-driven design of embedded software

The focus of MDD is to elevate software development to a higher level of abstrac-
tion than that provided by third-generation programming languages [126]. The
development is based on models, which are abstract characterizations of require-
ments, behaviors and functionalities of the ESW and separate “what” the software
should do, from “how” it needs to be implemented on an available technology plat-
form.

Nowadays, several standardized visual languages have been proposed for the
definition of these abstract models. Among all, due to the noticeably effort of
the Object Management Group (OMG) [114], the Unified Modeling Language
(UML) [116] has been adopted as the reference modeling language for describing
ESW. UML provides general-purpose graphic elements to create visual models
of object-oriented-software systems and attempts to be generic in both the inte-
gration and the execution semantics. Due to such a general-purpose semantics,
more specific UML profiles have been introduced for dealing with specific domains
or concerns. They extend subsets of the UML meta-model with new standard
elements and refine the core UML semantics to cope with particular hardware/-
software problems.

For example, the System Modeling Language (SysML) [134] profile extends
UML to support the specification, the analysis and the design of complex systems
which may include software and hardware. The main aim of the profile is to provide
graphical representations with a semantic foundation for modeling system require-
ments, behavior, structure, and parametrics, which are used to integrate with other
engineering analysis models. The Gaspard2 [74] profile, instead, extends the UML
semantics to support the modeling of SoCs (System-on-Chip) by specifying the
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hardware/software system at different level of abstraction. The modeling process
consists of three sequential steps: software (behavior of the SoC) specification,
hardware architecture specification, and, finally, association of the software to the
hardware architecture. The software is represented following a data flow model,
but additional mechanisms permit the usage of control flow models. In addition to
those notions, the profile introduces factorization mechanisms to enable the com-
pact description of massively parallel and repetitive systems. The MARTE [112]
profile adds capabilities to UML for Modeling and Analysis of Real-Time and Em-
bedded (software) systems. It replaces the obsolete Schedulability, Performance
and Time (SPT) [115] profile and redefines UML concepts for real-time modeling
and analysis concerns. The modeling concepts provide support for representing
time and time-related mechanisms, the use of concurrent resources and other em-
bedded systems characteristics (such as memory capacity and power consumption).
The analysis concepts, instead, provide model annotations for dealing with system
properties analysis such as schedulability analysis and performance analysis. The
Synchronous Reactive [45] profile, on the opposite, refines UML semantics to pro-
vide state diagrams (and to a certain extend a restrictive set of activity diagrams
and sequence diagrams) with a clear and semantically sound way of generating
valid execution sequences, thereby endowing them with a programming language
quality. Nevertheless the specification style promoted by the synchronous reac-
tive approach is still fully independent from any runtime system mechanism or
execution platform. Notice that other UML profiles exist, but they target mainly
hardware related aspects such as system level modeling and simulation rather than
embedded software specification [109,123]. Other hardware-oriented profiles and a
comparison of them is clearly described in [29]. Finally, some proprietary variants
of the UML notations exist. The most famous ones are the MathWorks Stateflow
and Simulink [137] formalisms. They use finite-state-machine-like and functional-
block-diagram-like models, respectively, for specifying behaviors and structure of
reactive hardware/software systems with the aim of rapid ESW prototyping and
engineering analysis.

Several MDD tools on the market support UML and Model-Driven Architec-
ture (MDA) for embedded software development. The underlying idea of MDA is
the definition of models at different level of abstraction which linked together form
an implementation. MDA distinguishes the conceptual aspects of an application
from their representation on specific implementations technologies. For this reason,
the MDA design approach uses Platform Independent Models (PIMs) to specify
what an application does and Platform Specific Models (PSMs) to specify how
the application is implemented and executed in the target technology. Basically, a
PIM is described by means of UML (or one of its profiles), whereas a PSM may
be represented in a variety of forms including executable code such as C, C++
or Java. The key element of a MDA approach is the capability to automatically
transform models: transformation of PIMs into PSMs enables realizations, whereas
transformations between PIMs enable integration features.

For example, Artisan Studio [11] is a MDD framework which provides support
to UML and SysML models and generates C, C++, Ada, Java and C# code specifi-
cations. Enterprise Architect [130] is a MDD and analysis framework that supports
a comprehensive set of UML models and is able to systematically transforms them
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into C, C++, Java, .NET code. IAR visualSTATE [82] is a MDD framework that
supports a state machine subset of UML and generates C and C++ specifications.
CoDeSys [1] is a MDD framework supporting PIMs described by means of IEC
61131-3 standard [91]. This standard combines graphical and textual programming
languages, e.g., function-block diagram and structured text. The framework gen-
erates PSMs defined using the IEC 61131-3 Structured Text formalism. Rational
Rhapsody [83] helps teams collaborate to understand and elaborate requirements,
to abstract the complexities using industry standard languages, such as UML and
automatically transforms them into C, C++ specifications. TOPCASED [3] is a
MDD framework that supports ESW modeling and code synthesis. The framework
allows to specify software requirements by means of UML models which adhere the
SysML and MARTE profiles. Then, it is able to translate them into C, Java and
Python code. Finally, Poseidon for UML Embedded Edition [68] is a MDD frame-
work that, starting from UML diagrams, focuses on the development of C, C++
software for small systems with strong memory and performances constraints. A
comparison of these tools is provided in the experimental result section.

3.2.2 Dynamic ABV of embedded software

Approaches based on ABV are traditionally classified in two main categories: static
(i.e., formal) and dynamic (i.e., simulation-based).

In static ABV, assertions, representing design specifications, are exhaustively
checked against a formal model of the design by exploiting, for example, a model
checker. Such an exhaustive reasoning provides the verification engineers with high
confidence in system reliability. However, the well-known state-space explosion
problem limits the applicability of static ABV to small/medium-size, high-budget
and safety-critical projects [93].

On the contrary, thanks to the scalability provided by simulation-based tech-
niques, dynamic ABV approaches are preferred for verifying large designs, which
have both reliability requirements and stringent development-cost/time-to-market
constraints. In dynamic ABV, assertions defined by using formal languages (e.g.,
PSL) are compiled into assertion checkers, or simply checkers, i.e., modules that
capture the behavior of the corresponding assertions and monitor if they hold
with respect to the design [27] when this latter is simulated by using a set of
(automatically generated) stimuli.

In the context of ESW verification, dynamic ABV provides an effective solution
to the functional verification problem.

Assertion definition and checker generation

In software verification, software designers widely use executable assertions [81]
for specifying conditions that apply to some states of a computation, e.g., “pre-
conditions” and “post-conditions” of a procedural code block. A runtime error is
released whenever execution reaches the location at which the executable assertion
occurs and the related condition does not hold any more. This kind of executable
assertions is limited to Boolean expressions, which are totally unaware of temporal
aspects.
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However, if the designers aims to check more complex requirements in which
Boolean expressions are used for defining relations spanning over the time, they
have to (i) define assertions in a formal language and (ii) synthesize them as
executable modules, i.e., checkers. Checkers, integrated into the simulation envi-
ronment, monitor the software execution for identifying violation of the intended
requirement.

In hardware verification several solutions have already been proposed. These
approaches can be classified in (i) library-based or (ii) language-based.

Library-based approaches rely on libraries of pre-defined checkers, e.g., the
Open Verification Library (OVL) [65], which can be instantiated into the sim-
ulation environment for simplifying the checking of specific temporal behaviors.
Unfortunately, due to their inflexibility of checking general situation, the pre-
defined checkers limit the completeness of the verification.

Language-based approaches, instead, use declarative languages, such as PSL [87]
and SystemVerilog Assertions (SVA) [86], for formalizing the temporal behav-
iors into well-defined mathematical formulas (i.e., assertions) that can be synthe-
sized into executable checkers by using automatic tools named checker genera-
tors [2,26,27,44]. These tools may generate checkers implementations at different
levels of abstraction, from the register transfer level (RTL), e.g., MBAC [27] and
FoCs [2], to the C-based electronic system level (ESL) [43], i.e., FoCs.

Although some attempts have been tried to extend hardware ABV to embedded
software, still several problems persist. In [38], the authors present a Microsoft-
proprietary approach for binding C language with PSL. They define a subset of
PSL and use a simulator as an execution platform. In this case, only a relative small
set of temporal assertions can be defined, since only equality operator is supported
for Boolean expressions, and the simulator limits the type of embedded-software
applications.

Another extension of PSL is proposed in [146], where the authors unify as-
sertion definition for hardware and software by translating their semantics to a
common formal semantic basis. In [145], the authors use temporal expressions of
e hardware verification language to define checkers. In both these cases, temporal
expressions are similar, but not compatible with PSL standards.

Finally, in [103] the authors propose two approaches based on SystemC check-
ers. In the first case, embedded software is executed on top of an emulated SystemC
processor and, every clock cycle, the checkers monitor the variables and functions
stored in the memory model. In the second approach, embedded software is trans-
lated in SystemC modules which run against checkers. In this case, timing reference
is imposed by introducing an event notified after each statement and the SystemC
process is suspended on additional wait() statements. In both cases, there are
several limitations. First, the approaches are not general enough to support real-
life embedded software: the SystemC processor cannot reasonably emulate real
embedded-system processors, as well, the translation of embedded-software appli-
cations in SystemC may be not flexible enough. Secondly, in both the cases the
SystemC (co-)simulation and the chosen timing references introduce significant
overhead. In particular, clock cycle or statement step may be an excessive fine
granularity for efficiently evaluating a sufficient number of temporal assertions;
moreover, on the one hand, defining assertions which consider absolute time may
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generate significantly large checkers to address the high number of intermediate
steps; on the other, it is difficult to define temporal assertions at source-code level,
i.e., C applications, in terms of clock cycles.

Stimuli generation

Actual-value inputs may be either automatically generated or developed by engi-
neers as stimuli suites. In both the cases, the main purpose of dynamic verification
is increasing the confidence of designers in the ESW behavior by creating stimuli
and evaluating them in terms of adequacy criteria, e.g., coverage metrics.

In particular, there are three main categories for classifying stimuli-generation
techniques for (embedded) software: concrete execution, symbolic execution, and
concolic execution. The concrete execution is based on random, probabilistic, or
genetic techniques [107]. It is considered a narrow-width and long-range explo-
ration method, since it reaches deep states of the system space by executing a
large number of long paths, but it is not an exhaustive approach. The symbolic
execution [94] represents an alternative for overcoming concrete execution limita-
tions, where an executable specification is simulated using symbolic variables and
a decision procedure is used to obtain concrete values for inputs. However, such
approaches suffer the solver limitations in handling the complexity of either the
formulas or the data structures or the surrounding-execution environment.

Such limitation have been recently addressed by proposing concolic execu-
tion [105, 127]. In concolic approaches, concrete and symbolic executions run to-
gether, and, when necessary, symbolic constraints are simplified by using the cor-
responding concrete values. However, a concolic engine still represents the module
execution as a symbolic-execution tree. Thus, state space explosion can still be a
problem, since the size of the execution tree grows exponentially in the number of
the maintained paths, states, and conditions.

Several tools on the market adopt these approaches and provide the user
with automatic stimuli generation addressing coverage metrics in embedded soft-
ware [69, 72, 143, 144].

In particular, DART [70] is a tool for generating stimuli for C programs that are
able to trigger errors such as crashes. It combines random stimuli generation with
symbolic reasoning to keep track of constraints for executed control-flow paths.
CUTE [127] is a variation on the DART approach addressing complex data struc-
tures and pointer arithmetic. KLEE [34] is a framework for symbolically executing
LLVM [101] byte-code. PEX [139] is an automated structural-testing generation
tool for .NET code developed at Microsoft Research. In [105] the authors describe
a hybrid-concolic stimuli generation approach for C programs. It interleaves ran-
dom stimuli generation with bounded exhaustive symbolic exploration to achieve
better coverage. However, it cannot selectively and concolically execute symbolic
paths in a neighborhood of the corner cases. Nevertheless stressing structural en-
tities of an application does not guarantee to observe and achieve specification
conformance and vice versa [75].
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Fig. 3.2: Integration of dynamic ABV and MDD approach vs. a traditional (man-
ual) approach. MDD permits to address ESW critical aspects, i.e., timing refer-
ences, complex data-structures, and variable visibility.

3.3 Joining MDD and dynamic ABV: what is missing?

As reported in the previous section, many tools and methodologies have been pro-
posed for MDD as well as dynamic ABV. However, ESW designers and verification
engineers still encounter many practical problems in the application of such ap-
proaches, and particularly in the set up of an efficient and effective dynamic ABV
environment [128]. This is mainly due to the absence of a single framework that
provides a tight integration between MDD and dynamic ABV. In fact, even if,
for example, Simulink is widely used in industry together with other verification
tools, the lack of a tight integration of a dynamic ABV environment for verifying
the generated code induces the verification engineers to perform a tedious and
error-prone manual set up of the verification phases.

For example, in the traditional (manual) ESW design approach, the integra-
tion between the ESW implementation and the checkers derived from temporal
assertions to check the correctness of such an implementation is not clear (Fig-
ure 3.2, right). Both the checkers and the ESW code are represented by a set
of subprograms without clear rules concerning when the former should interact
with the latter. Moreover, existing checker generators are limited to the hardware
domain and creates checkers that cannot be easily integrated in an ESW design
flow [2, 28]. This is mainly due to the characteristics of ESW, which generally
differs from HW descriptions in several aspects. In particular, HW descriptions
satisfy some simulation assumptions, which make very easy their integration with
checkers to perform dynamic ABV. On the other hand, ESW is generally far from
guaranteeing the same assumptions, and in particular:

• Timing references: simulation of HW descriptions exploits either a cycle-based
or an event-driven scheduling strategy which makes extremely clear how syn-
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chronization between modules happens, and exactly fixes the time when com-
putation reaches a stable condition. Such timing reference provides designers
with the exact time when checkers must be activated to verify the behavior
of the design. The execution of ESW lacks such a timing reference, thus the
checkers are not aware of the right time when ESW computation reaches a
stable condition, nor they can control ESW concurrency.

• Presence of complex data structures: existing HW checker generators support
the creation of assertion checkers including expressions conforming the Boolean
layer of PSL. Reasoning in terms of Boolean data type is straightforward in
the HW domain, especially at RTL and gate level. On the contrary, ESW may
involve more complex data structures, like pointers, unions, etc., which cannot
be easily handled by existing checker generators.

• Variable visibility: assertion checkers can monitor the behavior of variables
which are made visible at the boundary of the design. For HW descriptions this
means primary inputs and outputs and signals, which is enough to predicate
about the functionality of the design. On the other hand, the scope of ESW
variables is more complex and in some cases, relevant variables can be invisible
to the checkers.

Such problems are avoided by our proposed approach (Figure 3.2, left). First,
radCASE generates the ESW code from graphical and textual formalisms which
adhere to specific, well-affirmed, execution semantics (i.e., synchronous reactive
models [45]). This makes clear when checkers must be invoked to monitor the cor-
rectness of the implementation, thus solving the problem of timing reference, as
described in Section 3.4.3. Moreover, thanks to the possibility of analyzing this
ESW abstract model, radCHECK can extract fundamental information suited for
supporting the checker synthesis overcoming problems related to variable visibility
and management of complex data structures during the set up of the verification
phase, as described, respectively, in Section 3.5.1 and Section 3.5.2. In this way,
thanks to the adoption of a well-defined coding style for implementing the syn-
chronous reactive execution semantics, the ESW code generated by radCASE can
be verified by means of the dynamic ABV approach implemented in radCHECK.

Another problem which discourages the application of ABV for ESW verifica-
tion is represented by the high skills required to define effective assertions. Indeed,
project managers encourage software architects and developers to write assertions,
but they have problems with learning PSL and translating informal specifications
into assertions. PSL allows to formalize complex temporal behaviors in a precise
and concise manner, but the complexity of its semantics requires qualified verifi-
cation engineers for correctly defining the intended assertions. To overcome such
difficulties, predefined libraries of assertion checkers have been proposed in the
HW domain, like, for example, the Open Verification Library (OVL) [65], but,
to the best of our knowledge, nothing similar is available for ESW. For this rea-
son, radCHECK integrates an assertion editor that guides the user during the
formalization of assertions, as described in Section 3.5.1.

Besides allowing a strict integration between MDD and dynamic ABV, rad-
CASE and radCHECK provide unique features that are not present in the existing
tools. In particular, radCASE is the only MDD tool providing:
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• an integrated engine which extracts an EFSM-based model from the UML-
based specifications of the ESW that supports the dynamic ABV tool (i.e.,
radCHECK) in analyzing the ESW behaviors for generating effective stimuli;

Moreover, radCHECK unique features are:

• a Checker Generator which synthesizes the defined formal assertions into ex-
ecutable checkers implemented in C-code. Beside the checker implementation,
the tool generates automatically also the supporting code that enables the
smooth integration of the checkers into the simulation environment, avoiding
any manual set up.

• a stimuli generation engine (i.e., Ulisse) which exploits a weight-based depen-
dency analysis and multi-level backjumping over EFSM to efficiently cover
corner cases when checkers are simulated to check the correctness of the im-
plementation w.r.t the specification.

Next sections will describe details of both radCASE and radCHECK. More-
over, they will show how practical problems concerning the application of ABV to
embedded SW can be solved by applying a MDD-based approach.

3.4 Model-driven design for ABV of embedded software

The radCASE environment has been extended for supporting the dynamic ABV of
ESW. In particular, the adoption of graphical and textual formalisms which adhere
to the synchronous reactive modeling paradigm [45] allowed us to reach two impor-
tant results. First, they enabled us to establish a well-defined semantics for ESW
execution in such a way the identification of the timing references at which verify
assertions is clear. Second, although their heterogeneity, the synchronous reactive
models enabled us to define a model-to-model transformation for supporting the
automatic generation of stimuli. Indeed, radCASE integrates a synthesis engine of
ESW specifications into an EFSM-based model, i.e., a model that efficiently repre-
sents the execution flow of the ESW and enables the stimuli-generation approach
implemented in radCHECK.

In what follows, Section 3.4.1 describes the environment for the graphical defi-
nition of the ESW model. Section 3.4.2 provides the details of the MDA approach
implemented in radCASE for the synthesis of the ESW model into executable
C-code. Section 3.4.3 shows how MDD based on synchronous reactive models per-
mits to solve the problem of identifying the timing references in ESW. Finally,
Section 3.4.4 provides an example of the transformation of an UML-based model
of the ESW in an EFSM-based model.

3.4.1 Model-driven design environment for embedded software

radCASE is a MDD framework that supports the most important software-
engineering standards, such as UML and IEC 61131-3, and MDA for the em-
bedded software development. The radCASE design process is conforming to the
Overall Object-Oriented [63] (also called O3 or Ozon) approach that provides
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Fig. 3.3: radCASE Model Editor window: the GUI provides the designer with all
the means for graphically defining ESW structure, functionality and meta-data,
as well as requirements, testing scenarios and documentation.

a more integral approach with respect to traditional UML Object-Oriented De-
sign (OOD) [100]. In fact, unlike the other Computer Aided Software Engineer-
ing (CASE) tools, radCASE unifies structural information, functionalities and
meta-data inside the component (named module) they belongs to and not at sepa-
rate positions. Thus, there is no redundancy of information in the complete model
and no manual adjustment are required to align different portions of the model
in case of changes on a part of them. Besides, the radCASE project description
contains all the information, as requirements specification, underlying architec-
ture annotations, testing scenarios and documentation, to allow a full automatic
generation of all necessary outcomes.

In the radCASE Model Editor (Figure 3.3), UML diagrams, IEC 61131-3 stan-
dards and C-code are used to model different aspects of ESW (Figure 3.3, Insert
Ribbon Page, i.e., box 1). As usual, high level requirements are described by means
of Use Case diagrams. They provide the simplified and graphical representation of
what the ESW has actually to do and specify the various ways the actors (either a
human or an external system) interact with it. Notice that, a use case diagram is
only meant to provide the business reasoning and outcomes of the ESW, while the
technical outline of the functionality of the system, is captured using structural
and behavioral views.

The structural views (Figure 3.3, box 2) define the ESW structure using objects,
attributes, operations (i.e., methods) and relationships. radCASE offers a variety
of different structural views including:
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• Class diagrams, to specify components by describing their modeling classes,
attributes and methods, and relationships between classes;

• Composite structure diagrams, to specify components by describing the internal
structure of the modeling classes and which relationships they make possible;

• Object diagrams, sometimes referred to as instance diagrams, to specify class
instances and relationships between them;

• Component diagrams, to specify components by describing their interfaces and
the allowed relationships to define larger software systems.

The behavioral views (Figure 3.3, box 3) specify ESW behavior by showing
collaborations among the components and changes to their internal states. In rad-
CASE, the ESW behavior is specified choosing the best suited formalism among
the following:

• Statecharts, to represent the series of events and actions that could occur in
one or more possible states of a component. Notice that Statecharts may con-
tain superstates, i.e., hierarchically nested states. This formalism has become
standard in the CASE tool area;

• Sequence diagrams, to represent the flow of methods invocations between dif-
ferent components, where a method invocation corresponds to a message in
UML terminology;

• Activity diagrams, to model a process control flow specifying stepwise activities,
choices, iterations and concurrency;

In radCASE, besides the previous diagrams, the behavioral view of an ESW
can be specified using also a subset of the formalisms included into the IEC 61131-3
standard [91]. In particular:

• Functional block diagrams, to represent a function between input and output
variables of a component. A function is described as a set of elementary blocks.
Input and output variables are connected to blocks by connection lines. An
output of a block may also be connected to an input of another block.

• Structured text, to specify the input/output relations of a component by means
of a programming language that is block structured and syntactically resembles
Pascal. The language is suited for conditional and iterative coding style.

Finally, radCASE allows to specify components functionality by using C-code.
This solution can integrate the graphical elements with the full expressiveness of
this procedural language allowing to cover all possible aspects of ESW behavior
specification.

3.4.2 Synchronous reactive model synthesis to embedded software

The synchronous reactive paradigm, adopted by radCASE and other state-of-the-
practice tools such as IAR VisualState, MathWorks Simulink and SCADE Suite of
Esterel Technologies [135], has affirmed for ESW design of safety critical avionics
and automotive applications [12], which are reactive systems. A reactive system
monitors continuously the environment, at the speed determined by the latter [21].
Moreover, synchronous approaches differ from the more general class of modeling
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languages that includes support for asynchronous and concurrent execution of
components and message passing [20].

In particular, reactive systems are called synchronous when reactions take place
within a logical instant, which is shared by all components of the system. Thus,
in synchronous reactive systems time is represented as an ordered sequence of
instants. All components will complete their behavior for the current instant (or
stabilize) before the next instant starts. For this reason, in a synchronous reactive
modeling environment, components can be designed as part of a single application
embedded inside a periodic-execution loop: the application acquires its inputs at
the start of the loop, computes using these values and the current states to produce
the system next state and related outputs as a single atomic computation step.
Communication between components is performed using dataflow signals. Signals
consist of data values that are aligned with the global logical instant that is a
complete loop execution.

The main advantage of this synchronous reactive paradigm, is the capability
of handling input stimuli which trigger internal and output computations, with
a simultaneous change of state in a number of concurrent components. All the
computations occur in a single instant (atomic computation step), through a de-
terministic interleaving of local computations including possibly local signaling
(i.e., data values propagation) which implement the components concurrency. The
local computation ordering is established either by the designer (i.e., designer-
defined), who specifies priorities between components execution, or by the model
itself (i.e., model-dependent), due to the fact each component involved into the
model must be executed (local computation) before any of the components whose
input ports it drives. As a consequence, the run-to-completion semantics, i.e., the
assumption that an event is not processed before the processing of the previous
event is fully completed, requires the simultaneous consistent evolution of all com-
ponents in the system, while propagating signals until a global stable state is found
(and the global logical instant is terminated).

For example, let us consider the well-known Statechart model that extends tra-
ditional finite state machines with concepts of hierarchy, concurrency, and priority.
By using Statecharts, designers can describe ESW functionalities in a concurrent
manner. To satisfy the synchronous reactive execution behavior, any MDA ap-
proach adopted to transform such a model into an executable PSM has to compile
away the concurrency, ordering the Statecharts executions in an opportune way
(e.g., designer-defined or model-dependent execution order). For example, let us
consider Figure 3.4(a) which reports an example of a system composed of three
concurrent Statecharts. The synchronous reactive execution semantic of the model
requires to traverse a transition at-a-time for each Statechart, i.e., the dashed tran-
sitions in the figure, according to the Statecharts priority. When the last scheduled
Statechart advances, the overall system moves in a new stable state, i.e., the filled
states in the figure, and it is ready for the next step. Thus, an effective way
to transform the model into an executable C-code PSM consists of synthesizing
the different Statecharts in different C-code functions scheduled according to the
designer-defined priorities and execute them in a loop, as shown in Figure 3.4(b):
first, the inputs are read; then, each of the machines evolves; the stable state is
reached after the last function returns; finally, outputs are written.
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while(1) {

input_read();

statechart_1();

statechart_2();

statechart_3();

output_write();
}

×

×

●
3

2

1

(a) (b)
× unstable statestable state●

Timing

reference

Fig. 3.4: (a) Example of Statecharts, where three concurrent modules execute
according to user-defined priority. (b) The corresponding synthesized code: each
function statechart X() implements the corresponding module of the State-
charts in (a); the execution loop monitor continuously the environment; when the
last module advances, the overall system moves in a new stable state.

By following this idea, radCASE transforms the models for structural and
behavioral specifications (Section 3.4.1) into C-code, implementing all what is
specified in the diagrams: static structure, dynamic behavior, I/O mapping, data
storage, communications, etc. Indeed, one of the main goals of the MDA approach
of radCASE is to avoid the designer to manually complete the generated code,
allowing him/her to include procedural code during the modeling phase without
breaking the MDD.

The main steps performed by the MDA approach implemented in radCASE to
transform PIMs into executable PSMs (i.e., ANSI C-code) are:

1. PIM to PIM transformation. In radCASE, a PIM description is composed of
UML diagrams and methods (i.e., portions of procedural code) that define dif-
ferent aspects of the ESW model, e.g., structure, functionalities, I/O mapping,
parameters, and so forth. Optionally, a set of platform-specific annotations may
be specified on the elements of this PIM. Notice that, in the PIM, elements
are defined once, but may be instantiated zero, one or many times to specify
the whole software system. For such a reason, as first step, radCASE parses
the PIM to identify all the instantiated elements, and then it generates a new
intermediate PIM which specifies only the required parts of the model.

2. Sanity checks. Syntax and completeness checks are performed on the interme-
diate PIM to identify missing elements definition or syntactical errors into the
methods code defined by the designer.

3. PIM to PSM transformation. Finally, the radCASE code-synthesis engine
reads the intermediate PIM and applies to it a pre-defined transformation map
for the target implementation platform. The transformation map consists of
a set of templates and a run-time mechanisms library. The templates specify
the rules to transform the PIM elements into executable code. The optional
elements annotations guides the choice of such rules and related optimizations.
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The run-time mechanisms library, instead, implements a set of target platform
utilities required by the generated code. Thus, the engine generates the code
representing the PSM from the (annotated) PIM, templates and the target
platform run-time mechanisms library. The obtained code consists of a single-
thread application described by means of C language conforming the ANSI
standard.

As summarized above, the templates establish how a PIM element is transformed
into code. In particular, radCASE includes the following templates:

• Statecharts are realized with a hierarchical switch-case construction, where
each state of the statechart is described using a switch-case modeling all its
entry/during/exit transitions. Superstates (i.e., hierarchical states) are real-
ized as special case-statements including a call to a function implementing the
corresponding superstate behavior (i.e., separate switch-case statements);

• Activity diagrams are realized as functions implementing the flow between the
activities using a label-goto construction. Each activity is implemented as a
separate function identified by a label, whereas transitions between activities
are modeled with goto statements. Decision points in the diagram are simply
realized using an if-then-else statement;

• Sequence diagrams are realized as functions implementing the synchronous
message passing between objects as an ordered sequence of functions calls.
In particular, each object of the diagram is realized as a call to the function
implementing the correspondent functionality. Each message between objects
is realized as assignments used to model the message exchanging between ob-
jects. The order in which the messages are exchanged specifies the order in
which function calls are invoked.

• Functional block diagrams are realized as functions containing an ordered se-
quence of functions calls. In particular, each block of the diagram is realized
as a call to the function implementing the correspondent block functional-
ity. Each connection between blocks is realized as an assignment to variables
used to model the source-destination value passing between blocks. The order
of function calls depends on the dependency of blocks inputs on outputs of
the other blocks: any function must be executed before any other whose input
ports depend on its outputs. Furthermore, the usage of nested functional-block-
diagrams generates a hierarchical call of functions.

• Structured text code is realized following a linear translation process that maps
each PASCAL-like conditional and iterative statement into the corresponding
one in C language.

Besides, PIM annotations are exploited to take care of particular hardware aspects
and optimize the generated code. In particular, annotations support:

• object-oriented concepts in the ANSI-conformant C code, i.e., inheritance,
(multiple) instantiation, and virtualization, for avoiding byte-code redundancy
and addressing the strict memory constraints of embedded hardware;

• separated compilation units, for limiting the size of compiled objects and data
segments for supporting performances- and memory-constrained processors
(e.g., Atmel ATtiny);
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bool a, b, c;
{ 

c = true;
...

a = c;
...

if (a)
... 

b = true;
...

} 

×

×

×

assert always (a -> b)

a b c

false false true true

true false true false

true false true false

true true true true

× unstable statestable state●

Timing

reference

●

s1

s2

s3

s4

Fig. 3.5: Is the assertion really violated in these states?

• different binary-data format, e.g., big or little endian alignment in a single 8-,
16-, 32-bit word, for supporting different processor families and architectures.

3.4.3 The problem of timing references

As previously described, MDD refers to the use of graphical modeling languages
that allow to create an abstract model of the intended design. Such a model can
be simulated, verified and refined in a iterative manner, very often with the use of
automatic tools, till specifications are satisfied. Then, the model is automatically
synthesized into the final implementation for the target platform. As a drawback,
the designer has limited control on the synthesis process: software coding choices,
e.g., functional partitioning and variable scope assignment, are delegated to the
synthesis tool, which has only to preserve the semantic imposed by the abstract
model. However, from the point of view of dynamic ABV, what appears to be
a drawback becomes an advantage. In fact, automatic synthesis of ESW prevents
designers from implementing code that escapes from a pre-defined template. Thus,
it enables the definition of a dynamic ABV approach that overcomes the practical
issue of identifying the timing references at which evaluating assertions.

Let us consider the piece of code and the assertion reported in Figure 3.5. By
adopting the “single statement” as timing reference [103], the checker correspond-
ing to the assertion is evaluated in states s1, . . . , s4. For states s2 and s3, a is set to
true and b not yet, thus the assertion is violated, but does this really violate the
intent of the verification engineer? Indeed, states s1, . . . , s3 should be considered
unstable, because the computation is still on-going. Unstable states characterize
(embedded) software and may provide incorrect responses in terms of verifica-
tion. Such unstable states are similar to the intermediate configurations, which
characterize cycle-based or event-driven simulation of hardware descriptions. To
overcome this issue, in the hardware domain, dynamic ABV evaluates temporal
assertions when the system reaches a synchronization event, e.g., a clock event.

Thus, a similar strategy is adopted to identify the exact time at which checkers
(whose implementation details are reported in Section 3.5.2) must be activated
to verify ESW. In particular, the proposed approach exploits the timing reference
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that characterizes synchronous-embedded applications generated by model-driven
approaches.

Thus, considering the example shown in Figure 3.4, checkers are activated
only at the end of the execution loop of the application, when each Statechart has
executed at most one transition and the stable state is reached.

Activation of checkers at a higher or lower rate may correspond to their non-
correct evaluation. Figure 3.6 shows different timing references for ESW.

Real time

Clock timing

Instruction timing

Transition timing
Model level

Implementation

level

Model synchronization timing

Fig. 3.6: Timing references for ESW.

At implementation level, i.e., source code, it is possible to distinguish clock
and instruction timing references. Checkers evaluation at each clock cycle or after
each statement in the application implies a high evaluation rate, which may trigger
erroneous violation of assertions, as shown in the example of Figure 3.5. At model
level, instead, transition and model-synchronization timing references can be dis-
tinguished. Transition-synchronization timing reference is the instant at which
each single transition inside a UML diagram (e.g., Statecharts, Activity diagrams,
Sequence diagrams, . . . ) completes. The example in Figure 3.4 shows that unstable
states occur and may affect assertion evaluation. Finally, model-synchronization
timing reference is the instant in which each diagram has executed at most one
transition and all are waiting for the new iteration of the main loop. It is worth
noting that only the model-synchronization timing reference provides the right
time instants for checkers evaluation, i.e., when the system has reached a stable
state.

3.4.4 Model transformation to EFSM

Because of the mixed nature of radCASE specifications, which combines different
formalisms, the EFSM synthesis is required for providing the stimuli-generation
phase (Section 3.6) with an abstract, uniform, and efficient model for describing
the ESW behavior.

An EFSM is a Mealy finite state machine augmented with a finite number of
internal variables, which are not part of the set of explicit states [37]. Each EFSM
transition, noted as t, is labeled with an enabling function and an update function.
The former is a triggering condition over internal and input variables. The latter
is a sequence of assignments to internal and output variables.

A pair 〈s, x〉, where s represents the state and x represents the values of the
internal and output variables, is called configuration of the EFSM. The reset con-
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figuration is the pair 〈s0, x0〉, where s0 is the reset state, and x0 represents the
reset values of the internal and output variables. Traversing a transition t changes
the EFSM configuration. A reset transition reverts the system to the reset config-
uration 〈s0, x0〉. Notice that, there is a reset transition outgoing from each state
of the EFSM.

A path of the EFSM is a sequence of adjacent transitions starting from the
reset transition. Intuitively, it describes one possible behavior of the EFSM, i.e.,
sequence of EFSM configurations. In this work we consider deterministic EFSMs.
In a deterministic EFSM, for every state, outgoing transitions have mutually ex-
clusive enabling functions. Such a condition also fits the semantic of imperative
languages, e.g. C.

In the following, we show which is the EFSM model extracted from the ESW
specification depicted in Figure 3.3. For the EFSM extraction, radCASE analyzes
the intermediate PIM of the ESW generated during the PSM synthesis from the
initial user-defined PIM (Section 3.4.2), and not the PSM itself. This is due to
the fact that code target-dependent optimizations, which are required by the un-
derlying hardware platform, limit the applicability of the approach for symbolic
generation of stimuli. Moreover, this choice presents a further advantage, because
both the graphical and textual models are synthesized in the intermediate PIM
removing the unused diagrams and code (e.g., non-instantiated classes, un-used
methods, etc.). It is worth noting that rules for generating EFSM models are
thoroughly described in [50], for this reason we do not detail them.

Figure 3.3 reports the specification of a simplified in-flight safety system that
monitors the temperature, the pressure and the oxygen status of the cabin and
notifies alarms by turning on and off emergency light and buzzer, according to the
danger level of the situation. The ESW structure (Figure 3.3, box 2) is specified as
a Class characterized by several attributes that model input, output and internal
variables of the ESW. In particular, the variables {o, p, t} are the input variables
and represent the temperature (◦C), the pressure (hPA), the oxygen rate (%V/V )
of the cabin. The variables {sound, light} are the output variables and represent
the emergency light and sound (i.e., buzzer) controls. {ova, pva, tva}, instead, are
the internal variables which store the values of the cabin parameters. For each
input, output and internal variable, the domain is specified as follows: light and
sound are Boolean variables, i.e., their domain is {0, 1}; t, tva assume values
in the interval of integers [0, 60]; p, pva assume values in the interval of integers
[920, 1200]; finally, o, ova assume values in the interval of integers [0, 90]. Moreover,
internal and output variables are all initialized to 0.

The ESW behavior is specified by using a hierarchical Statechart (Figure 3.3,
box 3). The Statechart is characterized by an initial state, i.e., Safe, and a su-
perstate, i.e., Unsafe, which consists of two different states, i.e., Warning and
Critical.

According to the model, when the temperature exceeds the threshold of 42◦C
degrees or the pressure is higher than 1020 hPA, the system moves from the Safe
to the Unsafe state. In the former case, it enters the Warning state. In the
latter, it enters immediately the Critical state. In the Warning state, the system
continuously monitors if the cabin temperature raises whereas the oxygen rate
falls below a threshold of 18% V/V . If this is the case, it moves to the Critical
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Safe Warning

Critical

t1 t2 t5

t4

t9
t3 t6

t7

t8

t0

S = {Safe, Warning, Critical}

I = {t, p, o, rst}

O = {light, sound}

D = {tva, pva, ova}

rst, light, sound : {0,1}

t, tva : [0,60]

o, ova : [0,90]

p, pva : [920,1200]

T En. Func. Up. Func.

t0 rst = 1 tva = 0; ova = 0; pva = 0;
light = 0; sound = 0;

t1 t < 42 ∧ p ≥ 980 −
t2 t ≥ 42 tva = t; pva = p; light = 1;
t3 t < 42 ∧ p > 1020 tva = t; pva = p; sound = 1;
t4 t < 42 ∧ p ≤ 1020 light = 0; sound = 0;
t5 t ≥ 42 ∧ p > 1020 ∧

tva = t;
t ≤ tva ∧ o ≥ 18

t6 t ≥ tva ∧ o < 18 ova = o; sound = 1;
t7 o > ova ∧ p < pva sound = 0;
t8 o ≤ ova ∧ p ≥ pva ∧

−
t ≥ 42 ∧ p > 1020

t9 t < 42 ∧ p ≤ 1020 light = 0; sound = 0;

Fig. 3.7: An EFSM specification of a simplified in-flight safety system.

state. In the Critical state, the system constantly monitors the oxygen rate and
the pressure of the cabin. Only when oxygen rate starts rising and the pressure
decreases, the system moves back to the Warning state. Finally, only when the
temperature, pressure values return into the safe interval (i.e., t < 42, p ≤ 1020)
the system returns in the Safe state.

Figure 3.7 reports the corresponding EFSM specification of the simplified in-
flight safety system. Unlike the original Statechart, the states of the EFSM are
S = {Safe,Warning, Critical}, where Safe is the reset state, and the superstate
Unsafe is removed. The input variables are I = {t, p, o, rst} and represent the
corresponding temperature, pressure and oxygen variables, whereas rst represents
the EFSM reset signal. O = {light, sound} is the set of output variables corre-
sponding to light and sound controls. Finally, D = {tva, pva, ova}, is the set of
internal variables of the EFSM. For each transition, the enabling function and up-
date function are reported in the table. For readability, only a reset transition t0 is
depicted with a dotted arrow and represents each of the reset transitions outgoing
from the states of the EFSM.

Notice that the EFSM model in Figure 3.7 is flatten and reports explicitly all
the transition of the original Statechart (including the implicit ones). Enabling
functions are derived from transition conditions of the Statechart diagram and
defined in such a way they are mutually exclusive. Again, update functions are
derived from transition action of the Statechart diagram and are extended by
analyzing the entry/exit actions of the states that represent the source and the
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target of the transition. In particular, the entry and exit actions of a state are
reported in the update conditions of the ingoing and outgoing transitions of the
state, respectively. Moreover, new transitions are introduced to specify the during
actions defined into the Statechart states. They are realized as self loops on the
corresponding states. Finally, due to the fact that superstates are flatten, their
outgoing transitions are reported as outgoing transitions of each internal state of
the superstate.

3.5 ABV for model-driven embedded software

The radCHECK environment has been defined and implemented to overcome the
typical problems of adopting dynamic ABV techniques for verifying ESW. First,
the Property Editor (PE) graphically guides the designer in defining assertions
by providing him/her with all the information (e.g., software structure, variables
identifier and data type, parametric assertion templates, etc.) required to formalize
the informal ESW specifications. In this way, the PE allows to easily exceed the
challenge of teaching the designer formal assertion languages making them master
quickly assertion definition. Moreover, the PE can update the ESW structural
specifications by modifying variables scopes (and handling the related problem of
name clashing) to avoids that variables, which need to be accessed by checkers
during the simulation, will be hidden by the ESW C-code synthesis from the UML
diagrams.

The integrated Checker Generator (CG) engine, unlike the existing checker
generators, is effectively suited for synthesizing checkers able to verify the ESW
C-code implementation. In fact, because of the C language is rich of complex data-
types (e.g., floats, pointers, user-defined types), the CG exploits the information
reported in the UML specifications of the ESW for extracting all it needs for defin-
ing support functions that retrieve the value of variables declared by using such
complex data-types. Thus, all the possible variables of the ESW can be checked
by generated checkers.

Finally, to avoid the tedious manual generation of input stimuli for executing
the ESW and checkers, radCHECK provides the designer with a stimuli generation
engine, i.e. Ulisse. Ulisse is based on a corner-case-oriented concolic approach, that
generates effective stimuli by exploiting the EFSM-based representation of the
ESW. In this way, also the simulation phase is automated.

In what follows, each component of radCHECK is analyzed in details. At first,
the assertion definition infrastructure, i.e., PE, is described in Section 3.5.1. Sec-
tion 3.5.2 is devoted to the CG engine that synthesizes the assertions into C-code
checkers enabling the functional verification of the ESW. Finally, the algorithms
implemented by the stimuli generation engine integrated in radCHECK are sum-
marized in Section 3.6.

3.5.1 Assertion definition for model-driven embedded software

The PE (Figure 3.8) is a graphical tool that provides the designer with a means
for extracting automatically the information he/she needs for defining assertions.
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3

12

Fig. 3.8: Property Editor main window: the GUI provides the user with information
about the ESW structure for guiding, with an effective point-and-click mechanism,
the assertion definition based on parametric templates.

In particular, by analyzing the radCASE intermediate UML specification of the
ESW, the PE automatically extract a list of component signatures which are being
implemented into the ESW. This list is shown by using a tree view (Figure 3.8,
box 1) that gives a well-organized description of the ESW. Notice that, by select-
ing a node of the tree view, i.e., choosing a particular component, the GUI shows
the component parameters and internal variables as well as the list of internally
referred components. Both the parameters and variables information are shown
by reporting their own identifier and the associated data type. These informa-
tion are also stored into a specific data-dump successively exploited by the CG
(Section 3.5.2).

Moreover, for formalizing the informal specifications, the PE provides the de-
signer with parametric assertion templates [52] which specify different property
patterns [56] (i.e, functional behaviors that a verification engineer usually verifies
on ESW implementations). These assertion templates ensure a clean separation
between assertion semantics and its formal definition. They are characterized by
(i) an interface (Figure 3.9a) extended with placeholders (i.e., $P, $Q and $R)
that provide an intuitive idea of the property pattern meaning and (ii) a formal
parametric PSL definition (Figure 3.9b). In this way, for defining an assertion, the
designer needs only to understand the semantic of the interface and graphically re-
place the placeholders with the intended expressions by exploiting drag-and-drop
as well as point-and-click mechanisms.

The parameter replacement is guided by the tool: the placeholders are strongly
typed parameters and the designer can replace them only with legal elements
according to specific semantic checks included into the PE. Practically, when the
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$P holds at least once in between $Q and $R.

(a) The interface

next event! ($Q)($P before! $R) & eventually! $R)

(b) The PSL parametric definition

Fig. 3.9: Example of a parametric assertion template: the interface simply explains
to the user the assertion meaning whereas the PSL parametric definition is used
by the tool for automatically generating the formal PSL assertion.

designer selects a specific placeholder the PE blocks the drag-and-drop of all the
illegal expressions for that placeholder, whereas, if the designer uses the point-and-
click substitution mechanism, he/she is provided immediately with a list of all the
legal expressions (Figure 3.8, box 2). In this way the PE avoids the definition of
syntactically erroneous assertions.

It is clear that the more the set of parametric assertion templates is complete
(Figure 3.8, box 3) the easier is the definition of semantically correct assertions. At
the moment, more than 60 templates have been defined and have been organized
into 5 libraries (e.g., a selection of templates is reported in Table 3.1) each one
focuses on a specific category of patterns: universality, existence, absence, respon-
siveness and precedence. The universality library describes behaviors that must
hold continuously during the software execution (e.g., a condition that must be
preserved for the whole execution, a condition that has to hold continuously after
that the software reaches a particular configuration, etc). The existence library
describes behaviors in which the occurrence of particular conditions is mandatory
for the software execution (e.g., a condition must be observed at least once during
the whole execution or after that a particular configuration is reached, etc). The
absence library describes behaviors that must not occur during the software exe-
cution or under certain conditions. The responsiveness library, instead, describes
behaviors that specifies cause-effect relations (e.g., a particular condition implies
a particular configuration of the software variables, etc). Finally, the precedence
library describes behaviors that require a precise ordering between conditions dur-
ing the software execution (e.g., a variable has to assume specific values in an exact
order).

It is worth noting that this initial set of templates provided with the PE can be
extended according to the designer needs. The new parametric assertion templates
can be defined by specializing the existing ones or starting from scratch by the
most confident designers. Moreover, the new parametric assertion templates can
be organized into new libraries or added to the existing ones, sorted according
to the different functional aspects they aims to check. In this way, the so defined
libraries of templates can be shared between designers allowing also the inexpert
ones to get confident in defining formal assertions.
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Table 3.1: Selection of assertion templates.

Library Parametric Interface Parametric PSL definition

Universality

P holds continuously always $P
P holds continuously since Q next event! ($Q)( always $P ))
P holds continuously until R $P until! $R
P holds continuously in between Q and R next event! ($Q)($P until! $R))

Existence

P holds at least once eventually! ($P)
P holds at least once since Q next event! ($Q)(eventually! $P)
P holds at least once before R (eventually! $R) & ($P before! $R)
P holds at least once in between Q and R next event! ($Q)($P before! $R) & eventually! $R)

Absence

P never holds never $P
P never holds since Q next event! ($Q)(never $P)
P never holds until R (never $P) until! $R
P never holds in between Q and R next event! ($Q)((never $P) until! $R))

Responsiveness

P causes S to happen at the same time always ($P -> $S)
P causes S to happen eventually always ($P -> eventually! ($S))
P causes S to happen, but before R always ($P -> (($S before! $R) & eventually!( $R )))
P causes S to happen, but after Q always ($P -> ((eventually! $S) & ($Q before! $S)))

Precedence

P precedes S ($P before! $S) & (eventually! $S)
P precedes S after Q next event!($Q)(($P before! $S) & (eventually! $S))

P precedes S before R
((!$S & !$R) until! $P) & eventually! ($R) &
next event! ($P)(next($S before! $R))

P precedes S in between Q and R
((!$P & !$S & !$R) until! $Q) & (eventually! $R) &
next event!($Q)(($P before! $S) & ($S before! $R))

P precedes S repeatedly
($P before! $S) & always ($P -> next ($S before $P)) &
always ($S -> next ($P before $S))
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The problem of variable visibility

C and C++ are the main languages used in the industry for the implementation of
ESW applications [104]. Variables in C/C++ can be either of global or local scope
and this affects the variable accessibility in the defined assertions: global vari-
ables, declared in the main body of the source code, outside all functions, can be
referred from anywhere in the code, and also by the checkers (i.e., C functions) im-
plementing the assertions semantics. Local variables, instead, are declared within
a function body or a block, thus, their visibility is limited to the block where they
are declared, preventing the checkers from any variable reference. As a consequence
verification engineers who define assertions starting from system specifications and,
in first instance, ignoring some of the implementation details, may be forced to do
code re-factoring. This is a time-consuming and error-prone activity (e.g., variable
name clashing).

The PE plays an important role in ensuring the right variable visibility to
both the designer, during assertion definition, and the CG engine, during checker
synthesis. As previously described (Section 3.5.1), the PE is able to identify all
the parameters and the variables of the ESW by analyzing the UML diagrams
describing the ESW model. Then the tool provides the designer with such variables
organized by scopes. Once the designer has defined the intended assertions, the
PE updates the UML diagrams by marking as visible all the variables referenced
by such assertions. As a consequence, these variables are being synthesized in the
ESW implementation in such a way they can be accessed by the checkers that will
be generated.

3.5.2 Checker generation for model-driven embedded software

The CG synthesizes the assertions defined by the designer into compact proce-
dural C-code functions that can be distinguished in: logic, wrapper and checking
functions.

The logic functions (one for each assertion) implement the semantics of the
checker. The logic function definition differs according to the assertion, but their
signature is always characterized by the following set of Boolean parameters (Fig-
ure 3.10):

• the enable parameter is used to start the assertion evaluation in any instant of
the simulation, and, in particular, to prevent a checker from scanning variables
strictly before they have been initialized (i.e., in the unstable initial states);

• the reset parameter is used to (re-)initialize the checker to its initial configu-
ration every time a new assertion evaluation has to be started;

• the fail parameter is set by the checker to notify an assertion violation;
• the fail if last cycle parameter is set by the checker when an unfulfilled obliga-

tion has been detected. In this way it is possible to distinguish a property failure
due to a too short simulation execution from a failure due to the presence of
an error into the ESW implementation (i.e., fail).

• finally, the Boolean parameters v0 . . . vn represent the minimal subformulas of
the assertion. The values of these minimal subformulas are retrieved by the
wrapper function associated to each logic function.
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For completeness sake, Figure 3.10 reports the logic function implementation,
but notice that the handling of complex data structures is independent from it, as
explained in the following.

1 //assert
2 // always (((thermo.Heating = On) &
3 // (thermo.Temperature) >
4 // (thermo.Setpoint - thermo.Hysteresis)) ->
5 // eventually! (thermo.Heating = Off))
6 // assert always v0 & v1 -> eventually! v2
7 #include <stdint.h>
8

9 #define CONVERT_BOOL(b) ((b) ? 0x3 : 0x0)
10

11 typedef int bool ;
12

13 void checker_logic( bool const enable, bool const reset,
14 bool * fail, bool * fail_if_last_cycle,
15 bool v0, bool v1, bool v2)
16 {
17 // 1. Define registers.
18 static int unsigned var12;
19 static int unsigned var13;
20 static int unsigned enable;
21 if (reset) {
22 var13 = CONVERT_BOOL(false );
23 var12 = CONVERT_BOOL(false );
24 }
25 else {
26 // 4. Compute intermediate values.
27 int unsigned var0 = /* lastCycle */ 0x2;
28 int unsigned var1 = enable;
29 int unsigned var2 = CONVERT_BOOL(v0);
30 int unsigned var3 = CONVERT_BOOL(v1);
31 int unsigned var4 = CONVERT_BOOL(v2);
32 int unsigned var5 = ˜var4;
33 int unsigned var6 = var1 | var12;
34 int unsigned var7 = var2 & var3;
35 int unsigned var8 = var6 & var7;
36 int unsigned var9 = var8 | var13;
37 int unsigned var10 = var5 & var9;
38 int unsigned var11 = var0 & var10;
39 int unsigned tmp_var12 = var1 | var12;
40 int unsigned tmp_var13 = var5 & var9;
41 // 5. Checker outputs.
42 fail_if_last_cycle = (var11 & 0x2) != 0;
43 fail = (var11 & 0x1) != 0;
44 // 6. Update registers.
45 var12 = tmp_var12;
46 var13 = tmp_var13;
47 }
48 }

Fig. 3.10: The C-code implementation of a typical logic function.

The wrapper function (Figure 3.11) contains the satellite expressions that han-
dle the use of ESW complex data structures inside PSL assertions (Section 3.5.2).
The satellite expressions implement the minimal subformulas of a PSL asser-
tion (e.g., thermo.Heating = On , thermo.Temperature > (thermo.Setpoint

- thermo.Hysteresis) , thermo.Heating = Off ) and are automatically ex-
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1 void get_var(
2 struct System const * sys,
3 char const * name,
4 void * var,
5 long unsigned var_sizeof);
6

7 #define GET_VAR(T,N,S) \
8 T N; get_var(sys, S, &N, sizeof (T));
9

10 void checker_wrapper( bool const enable,
11 bool const reset,
12 bool * fail,
13 struct System const * sys) {
14

15 // 1. Retrieve system-variable values
16 GET_VAR(int8_t, thermo_Heating, ”thermo.Heating”);
17 GET_VAR(int16_t, thermo_Hysteresis, ”thermo. Hysteresis”);
18 GET_VAR(double , thermo_Setpoint, ”thermo. Setpoint”);
19 GET_VAR(double , thermo_Temperature, ”thermo.Temperature”);
20

21 // 2. Evaluate complex Boolean expressions
22 bool v0 = (thermo_Heating == /* On */ 1);
23 bool v1 = (thermo_Temperature >
24 (thermo_Setpoint - thermo_Hysteresis));
25 bool v2 = (thermo_Heating == /* OFF */ 0);
26

27 // 3. Invoke the checker over Boolean variables
28 checker_logic(enable, reset, fail, v0, v1, v2);
29 }

Fig. 3.11: The C-code implementation of a typical wrapper function.

1 typedef void ( * checker_binding_func)( bool enable,
2 bool reset, bool * fail,
3 struct System const * sys);
4

5 void checker_run_check( bool enable, bool reset,
6 struct System const * sys,
7 checker_binding_func * checkers) {
8 bool fail;
9 int unsigned i;

10 update_log();
11 for (i=0; checkers[i]; ++i) {
12 checkers[i](enable, reset, &fail, sys);
13 if (fail)
14 update_fail_log(i);
15 }
16 }

Fig. 3.12: The C-code implementation of a typical checking function.

tracted by the CG to correctly evaluate the corresponding logic function (line
28).

The checking function (Figure 3.12) is used to perform a verification step when
a stable configuration of the ESW is reached. It executes all the synthesized check-
ers by calling the corresponding wrapper functions (e.g., checker wrapper , line
11). Moreover, it manages a log file in which it stores the simulation traces (i.e.,
variable evolution). At each invocation, labeled with a time stamp inside the log
file, the current values of variables are recorded (line 9) and, error notification is
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reported whenever an assertion violation occurs(lines 12-13 ). In this way, simu-
lation traces can be used for debugging purposes. In fact, the trace portion that
precedes an error message into the log file represents a counterexample to the
satisfiability of the assertion.

The problem of complex data-types handling

PSL, being an extension of LTL and CTL temporal logics towards HW design,
natively supports the specification of temporal assertions based on Boolean ex-
pressions. It supports also relational expressions on a restricted set of operands
(integers, Booleans, bit vectors). Indeed, RTL and gate-level HW descriptions can
be easily brought down to the Boolean level, for example see Figure 3.13(a). As a
consequence, all the existing checker generators adhere to such a restriction. On
the contrary, temporal assertions for ESW may involve more complex relational
expressions, since C language allows to declare variables using complex data types,
e.g., floats, pointers, structures, unions, etc., which are not supported by PSL.

always (v0 & v1 → eventually! (v2))

v0

v1

v2

0 1 2 3 4 5 6 7

always ((thermo.Heating = ON) &
( thermo.Temperature >

(a) 

(b) 

( thermo.Temperature >
(thermo.Setpoint - thermo.Hysteresis)) -> 

(eventually! (thermo.Heating = OFF) ) 

Fig. 3.13: Example of a PSL assertion for HW (a) and ESW (b).

Figure 3.13(b) reports a temporal assertion defined for an ESW application.
Its meaning is the same as in Figure 3.13(a), but the Boolean expression is built
on top of more complex types and data-structures.

To take care of such a complexity, the CG environment extracts, from each
assertion defined by using the PE, all the minimal subformulas (i.e., the relational
expressions) replacing them with fresh Boolean variables. In this way, it gener-
ates (i) pure PSL assertions and (ii) mappings between the several fresh Boolean
variables and the corresponding minimal subformulas which may contain variables
with complex data-types (e.g., floats, pointers, etc.).

Thus, the CG engine can easily synthesize the PSL assertions into correct-by-
construction executable checkers by adopting a satellite-based approach. A satellite
is an arbitrary complex propositional expression wrapped into a C function that
returns a Boolean value representing the evaluation of the complex expression
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(Figure 3.11). In particular, the data-dump created by the PE stores the name of
the ESW variables, as well as their type. In this way, the CG can correctly specify
a unique function (lines 1-5 ) to retrieve from a structure containing all the visible
variables defined in the ESW (i.e., sys , line 2), the value of variables required
to evaluate the satellite expressions (lines 16-19 ). Such an evaluation is stored
into support Boolean variables (lines 22-25 ) that can be used as parameters for
the checker evaluation function (i.e., checker logic , line 23) implementing the
related PSL assertion semantics.

3.6 EFSM-based stimuli generation

Let us consider a generic EFSM and let t be a transition of this EFSM. Traversing
the transition t depends on the values of both input and internal variables within
the enabling function of t. Moreover, the internal variable values depend on the
update functions in the path leading from the reset state to t. In the following, a
target transition t is supposed to be a not-yet-traversed transition.

This section presents the concolic stimuli generation approach for ESW that has
been implemented into Ulisse. The approach is based on the EFSM model of the
ESW and leads to traverse a target transition by integrating concrete execution,
which reaches deep states of the system, and a symbolic technique, that is weight-
oriented and ensures exhaustiveness along specific paths.

Algorithm 3: The EFSM-based concolic algorithm for stimuli generation;
it alternates concrete approach, i.e, LongRangeSearch, and weight-oriented
symbolic approach, i.e., GuidedWideWidthSearch.

procedure EfsmStimuliGen(Efsm, MaxTime, InaTime)
input: embedded-application model Efsm, overall timeout

MaxTime, inactivity timeout InaTime
output: set of stimuli Stimuli

1 Stimuli ← ∅; RInf ← ∅;
2 DInf ← DependencyAnalysis(Efsm);
3 while elapsed time < MaxTime do
4 while inactivity timeout InaTime not expired do
5 (stimulus, reach) ← LongRangeSearch(Efsm, RInf);
6 Stimuli ← Stimuli ∪ {stimulus}; RInf ← RInf ∪ {reach};

7 (stimulus, reach) ← GuidedWideWidthSearch(Efsm, RInf, DInf);
8 Stimuli ← Stimuli ∪ {stimulus}; RInf ← RInf ∪ {reach};

9 return Stimuli

Algorithm 3 is a high-level description of the proposed concolic approach. It
takes as inputs the EFSM model and two timeout thresholds: overall timeout and
inactivity timeout, i.e., MaxTime and InaTime respectively, which are measured
in milli-seconds (real CPU time). The overall timeout is the maximum execution
time of the algorithm; the inactivity timeout is the maximum execution time the
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long-range concrete technique can spend without improving the transition cov-
erage. At the beginning, the stimuli set Stimuli is empty, and no reachability
information, i.e., RInf, is available (line 1). In particular, RInf keeps track of
the EFSM configurations which are used for (re-)storing the system status when
the algorithm switches between the symbolic and concrete techniques. The algo-
rithm identifies the dependencies between internal and input variables and EFSM
paths. At first, it statically analyzes the EFSM transitions, and it generates initial
dependency information, i.e., DInf (line 2), which is used in the following corner-
case-oriented symbolic phases, when a further dynamic analysis between EFSM
paths is performed. Such a dependency analysis permits to selectively choose a
path for the symbolic execution when the concrete technique fails in improving
the transition coverage of the EFSM. The stimuli generation runs until the spec-
ified overall timeout expires (line 3). First, the algorithm executes a long-range
concrete technique (line 5), then a symbolic wide-width technique, which exploits
the multi-level backjumping (MLBJ) to cover corner cases (line 7). The latter
starts when the transition coverage remains steady for the user specified inactivity
timeout (line 4). The algorithm reverts back to the long-range search as soon as
the wide-width search traverses a target transition. Finally, the output of the al-
gorithm is the generated stimuli set (line 9). The adopted long-range search (line
5) exploits constraint-based heuristics [51], that focus on the traversal of just one
transition at a time. Such approaches scale well with design size and, significantly
improve the bare pure-random approach.

The following sections describe, respectively, the proposed dependency analysis
over the EFSM model, the snapshot-and-restoring mechanism required during the
switch between the concrete and symbolic execution and, finally, the MLBJ that
addresses the selective symbolic execution of EFSM paths which are terminating
with the target transition and have a high dependence on the inputs.

Dependency analysis

Without a proper dependency analysis, the stimuli-generation engine wastes con-
siderable effort in the exploration of uninteresting parts of the design. Thus, the
proposed approach focuses on dependencies of enabling functions, i.e., control part,
on internal variables. As a further motivating example let us consider the EFSM
in Figure 3.7. Let t8 be the target transition. Let us compare paths π1 = t2 :: t6
and π2 = t3. (t :: t

′ denotes the concatenation of transitions t and t′.)
The enabling function of t8 involves the variables ‘ova’ and ‘pva’. Both are

defined along π1 by means of primary inputs. Along π2 only ‘pva’ is defined by
means of primary inputs. Thus, to traverse t8, MLBJ will select π1 instead of π2
since t8 enabling function is more likely to be satisfied by the symbolic execution
of π1 rather than π2. We will consider again this example at the end of the section.

Dependencies are approximated as weights. Indirect dependencies, as in the
sequence of assignments ‘d1 := i1 + i2; d2 := d1 + i3’ the dependency of d2 on
i1, are approximated as flows of weights between assignments. Given a target
transition t̄, each path ending in t̄ is mapped to a non-negative weight. Intuitively,
the higher is this weight, the greater is the dependency of the enabling function of
t̄, i.e., et̄, on inputs read along such a path, and the higher is the likelihood that
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its symbolic execution leads to the satisfaction of et̄. This section formalizes how
a path weight is computed.

An initial weight is assigned to et̄, then it “percolates” backward along paths.
Each transition lets a fraction of the received weight percolate to the preceding
nodes and retains the remaining fraction. The weight associated with a path π is
defined as the sum of weights retained by each transition of π. The ratio of the
weight retained by a transition is defined by its update function. In the following,
these concepts are formally defined.

Definition 3.1 (Weight tuple). Let W ⊆ Rk. A weight tuple w ∈W is a tuple
of the form w = 〈w1, . . . , wk〉, i.e., a k-tuple of non-negative real values. wi denotes
the i-th element of w where i ∈ {1, . . . , k}.

Given w, let wi be the weight associated with di ∈ D, that is the i-th internal
variable of the design. Given a target transition t̄, the computation of the weight
associated with a path ending in t̄ starts considering an initial weight tuple w0 that
assigns higher weight to variables that influence the satisfaction of et̄, i.e., w

0
i = 1 if

di occurs in et̄, w
0
i = 0 otherwise. For example, the initial weight tuple of transition

t8 (Figure 3.7) is w0 = 〈1, 1, 0〉 for D = 〈ova, pva, tva〉 since only ‘ova’ and ‘pva’
occur in the enabling function. To define how a transition retains and percolates
the weight, let us consider the assignments that compose its update function. All
assignments to output variables are ignored since they do not affect the execution
flow.

Definition 3.2. Let A be the set of assignments which occur in the EFSM. The
function Mod: A→ D returns the internal variable updated by the assignment a,
i.e., the left-hand-side (lhs) of a. The function Ref : A→ ℘(D ∪ I) returns the set
of internal and input variables referenced by a, i.e., in the right-hand-side (rhs)
of a. (℘(S) denotes the powerset of the set S.)

For example, said a ∈ A the assignment ‘d3 := i2 + d4 − d3’, Mod(a) = d3
and Ref(a) = {i2, d3, d4}. The next definition shows how the lhs depends on other
variables. In other words, it shows how the weight percolates from the lhs back to
the rhs of an assignment. The weight associated with a’s lhs is equally split among
the variables in a’s rhs. By splitting weight in equal parts, all variables in a’s rhs
are considered equally relevant in the definition of the lhs.

Definition 3.3 (Percolation coefficient). Let ∆ : A → W and a ∈ A. ∆i(a)
denotes the i-th element of the weight tuple ∆(a). Then:

∆i(a) =

{
1

|Ref(a)| if di ∈ Ref(a),

0 otherwise.

(|S| denotes the cardinality of the set S.)

Now, Υ (a) is being defined as the ratio of weight that, coming from a’s lhs, is
retained by a. Once the weight has been equally split among variables in a’s rhs,
a retains the weight that is gone to input variables. The retention of a models
the dependency of et on a’s lhs. Intuitively, the more weight is retained, the more
inputs are in a’s rhs, the more the solver is able to constrain a’s lhs, and the
higher is the likelihood that the symbolic execution of a path that passes through
a satisfies et.
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Definition 3.4 (Retention coefficient). Let Υ : A→ R+ be:

Υ (a) =

{
0 if Ref(a) = ∅,
|Ref(a)∩I|
|Ref(a)| otherwise.

The special case Ref(a) = ∅ happens when a’s rhs is a literal constant expression,
for example, ‘d3 := 0’. Coefficients ∆ and Υ are statically computed at line 2 of
Algorithm 3 in time proportional to the number of internal variables, i.e., |D| and
to the number of assignments in the EFSM.

The previously defined coefficients are used in the next definition to compute
how an assignment dynamically percolates and retains a weight tuple w.

Definition 3.5. Let a ∈ A, di = Mod(a), w ∈ W , wi be the weight associated
with di, and ‘w[i/0]’ be the weight tuple w where the i-th element has been re-
placed by 0. The percolation function P : A×W →W and the retention function
R : A×W → R+ are defined as:

P (a, w) = wi ·∆(a) + w[i/0],

R(a, w) = wiΥ (a).

The definition states that (1) the weight tuple P (a, w) that percolates through
the assignment a is obtained by removing from the original weight w the weight
associated with a’s lhs (i.e., w[i/0]) and by distributing it (i.e., wi) in equal parts
to the internal variables that occur in a’s rhs (i.e., wi ·∆(a)), and (2) the overall
weight R(a, w) retained by the assignment a is the fraction of the original weight
according to the retention coefficient (“it splits through input variables”).

An EFSM update function is expressed as a possibly empty sequence of assign-
ments, i.e. α ∈ A∗. (S∗ denotes the Kleene closure of the set S, that is, the set of
all finite sequences of elements of S). The next definition shows how update func-
tions percolate and retain weight. It extends the previous definition to sequences
of assignments. It states that the given weight tuple is first applied to the lhs of
the last assignment. Then, it is iteratively percolated from the lhs back to the rhs
of the current assignment and then applied to the lhs of the previous assignment.
The weight retained by the sequence is the sum of weights retained at each step.

Definition 3.6. Let the percolation function over sequences P ∗ : A∗ ×W → W ,
and the retention function over sequences R∗ : A∗ ×W → R+ be defined by induc-
tion on the length of α ∈ A∗. The empty sequence of assignments ǫ does not affect
the weight propagation, i.e., P ∗(ǫ, w) = w, nor it retains weight, i.e., R∗(ǫ, w) = 0.
Let α = a :: β be the concatenation of the assignment a with the sequence of as-
signments β. Then:

P ∗(α,w) = P
(
a, P ∗(β,w)

)
,

R∗(α,w) = R
(
a, P ∗(β,w)

)
+R∗(β,w).

Finally, given the target transition t̄, its associated initial weight tuple w0, and
the concatenation α of all assignments of the update functions along a path ending
in t̄, R∗(α,w0) denotes the weight associated with such a path. From Definition 3.5,
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a weight conservation property can be derived: R(a, w) +
∑
i P (a, w)i =

∑
iwi.

Intuitively, this means that the repeated application of P in the definition of P ∗

and the consequent repeated retention of a fraction of w causes a progressive
attenuation of the percolated weight P ∗(α,w). This models the assumption that
the dependence of enabling function et̄ on assignments dims as the distance from t̄
increases. Thus, when searching for a path for the symbolic execution, the MLBJ
will select paths with higher weight first (the details are described in the following
sections).

To evaluate these definitions, let us consider again the example from Figure 3.7.
Let t8 be the target transition. We want to show that on paths π1 = t2 ::t6 and π2 =
t3 we have R∗(π1, w

0) > R∗(π2, w
0). Precisely, said D = 〈ova, pva, tva〉, according

to Equations 3.6, the percolation along path π1 = t2 :: t6 is P ∗(π1, w) = 〈0, 0, 0〉.
The retained weight is R∗(π1, w) = wova+wpva+wtva. The percolation along path
π2 = t3, is P

∗(π2, w) = 〈wova, 0, 0〉. The retained weight is R∗(π2, w) = wtva+wpva.
The initial weight tuple of t8 is w0 = 〈1, 1, 0〉 as its enabling function contains
occurrences of ‘ova’ and ‘pva’ but not ‘tva’. Thus, the retained weight of π1 w.r.t. t8
is R∗(π1, w) = wova + wpva + wtva = 2. The retained weight of π2 w.r.t t8 is
R∗(π2, w) = wtva + wpva = 1. In such a case, MLBJ will select π1 first.

Snapshots of The Concrete Execution

The ability of saving the EFSM configurations allows the system to be restored
during the switches between concrete and symbolic phases. This avoids the time
consuming re-execution of stimuli. Algorithm 3 keeps trace of the reachability
information, i.e. RInf, and, in particular, a cache of snapshots of the concrete
execution is maintained. Each time a stimulus is added to the set of stimuli, the
resulting configuration is stored in memory and explicitly linked to the reached
state. The wide-width technique searches feasible paths that both start from an
intermediate state of the execution and lead to the target transition. Moreover,
during the MLBJ, for a given configuration and target transition, many paths are
checked for feasibility, as described in the following section. Thus, caching avoids
the cost of recomputing configurations for each checked path. Both the time and
memory requirements of each snapshot are proportional to the size of D.

Multi-level Backjumping

When the long-range concrete technique reaches the inactivity-timeout thresh-
old, the concolic algorithm switches to the weight-oriented symbolic approach, see
line 7 in Algorithm 3. Typically, some hard-to-traverse transitions, whose enabling
functions involve internal variables, prevent the concrete technique going further
in the exploration, as depicted in Figure 3.14. In this case, the MLBJ technique
is able to selectively address paths, with high dependency on inputs, i.e., high
retained weight, for symbolically executing them. Such paths are leading from an
intermediate state of the execution to the target transition, thus the approach is
exhaustive in a neighborhood of the corner case.

Algorithm 4 presents a description of the core of the MLBJ procedure.
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traversed

transitions

non traversed

transitions
target

transitions

Fig. 3.14: When the approach changes from concrete to symbolic, the EFSM tran-
sitions are classified as traversed and non traversed: the target transitions (non
traversed) are the frontier between these two partitions and prevent further explo-
ration.

Algorithm 4: The core of the MLBJ technique.

procedure MLBJ(t̄, timeout)
input: target transition t̄ ∈ T , timeout
output: stimuli for t̄, in case empty

1 Let w0 be the initial weight tuple such that

2 ∀di ∈ D .w0

i =

{

1 if di occurs in EnablingFunction(t̄),

0 otherwise.

3 p←
{

(t̄, w0, 0, 0)
}

;
4 while elapsed time < timeout do
5

(

t :: π,w, r′, r
)

← remove top(p)
6 // w = P ∗(t :: π,w0), r′ = R∗(t :: π,w0),
7 // r = R∗(π,w0)
8 if t :: π is satisfiable then
9 if r < r′ then

10 foreach configuration 〈src(t), k〉 do
11 if k ∧ t :: π is satisfiable then
12 return stimuli for t̄;

13 foreach
{

t′ ∈ T
∣

∣ dst(t′) = src(t)
}

do
14 w′ = P ∗(t′ :: t :: π,w0);
15 r′′ = R∗(t′ :: t :: π,w0);

16 push
(

p,
(

t′ :: t :: π,w′, r′′, r′
)

)

;
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A transition t̄ is selected in the set of target transition, and then a progressively
increasing neighborhood of t̄ is searched for paths π leading to t̄ and having maxi-
mal retained weight, i.e., R∗(π,w0). If the approach fails, another target transition
is selected in the set and the procedure is repeated.

More in details, a visit is started from t̄ that proceeds backward in the EFSM
graph. The visit uses a priority queue p, whose elements are paths that end in t̄. In
particular, each path of p is accompanied by its weight tuple, i.e., w = P ∗(π,w0)
and retained weights, i.e., r = R∗(π,w0) and r′ = R∗(t ::π,w0). At the beginning,
the queue p contains only t̄ and the associated initial weight w0 (lines 1-2); no
weight is initially retained (line 3). At each iteration, a path t :: π with maximal
retained weight is removed from p (line 5). The decision procedure is used to check
if the path t :: π can be proved unsatisfiable in advance (line 8), e.g., it contains
clause conflicts. In this case t :: π is discarded so the sub-tree preceding t :: π
will not be explored. Otherwise, if the transition t has yielded a positive retained
weight (line 9), then for each configuration associated with the source state of t
the decision procedure checks the existence of a sequence of stimuli that leads to
the traversal of t :: π and thus of t̄ (lines 10-12). In particular, the path constraint
is obtained by the identified EFSM path, i.e. t :: π, and the concrete values of the
internal variables, i.e., k, (line 11). In the case a valid sequence of stimuli has not
been identified, for each transition t′, that precedes t, the path t′ :: t ::π is added to
the priority queue p (lines 13-16). The values of the associated weight tuple and
retained weights are computed according the Definition 3.6. Notice that notation
has been relaxed for readability. In particular, P ∗ and R∗ functions are intended
to be applied to the concatenation of transition update functions along paths π,
t :: π, and t′ :: t :: π.
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3.7 Experimental results

In this section we show that even if many MDD tools already exist, the integration
of a dynamic ABV environment for verifying the generated code has been an open
problem. In fact, only few of them integrate natively or by means of third party
toolboxes a verification environment, but, as shown in Section 3.7.1, they are
limited only to specific kind of checking and do not support functional verification
by means of dynamic ABV of the ESW code. For this reason, in Section 3.7.2 we
thoroughly commented the characteristics of radCHECK by providing empirical
results showing that the adoption of our proposed integration approach of MDD
and dynamic ABV makes possible the functional verification of ESW.

In the following, Section 3.7.1 analyzes the radCASE design and synthesis
environment comparing it with similar commercial tools, whereas Section 3.7.2
provides a thorough evaluation of the radCHECK verification environment.

3.7.1 RadCase

Table 3.2 presents a comparison between radCASE features and the most-used
model-driven tools in the field of ESW design. In particular, the table reports fea-
tures organized by categories. Use Case diagrams are used for writing high-level
requirements of the ESW. Class Diagrams, Composite Diagrams, Object Diagrams
and Component Diagrams are meant for describing the ESW structure. State-
charts, Sequence Diagrams, Activity Diagrams are meant for describing the the
ESW behavior, and, in some tools, also IEC 61131-3 FBDs (Functional Block
Diagrams), IEC 61131-3 ST or C languages can be used to describe the func-
tionalities. The comparison shows that radCASE supports all the most used UML
features and IEC 61131-3 formalisms. Another advantage of radCASE is that it
supports a HMI Graphical editor for designing human-machine interfaces (from
text display to full color video and touch screen). Besides, the reported minimum
memory requirements for the target embedded system (Minimum HW ) highlight
that radCASE can be used to develop applications for embedded systems with
very high hardware constraints.

A particular comment is mandatory about the Mathworks Simulink MDD
framework. This framework supports proprietary formalisms, such as Stateflow,
Simulink and Matlab languages, for defining the ESW specifications, but their
expressivity can be considered comparable to the one of Statecharts, FBDs and
C-language, respectively.

Although all the tools but one (i.e., Poseidon embedded) integrate a simulator
with graphical capability (Visualizer), only radCASE, Rational Rhapsody and
Simulink are supported by environments for automatic stimuli generation (i.e.,
radCHECK, Rational Rhapsody Automatic Test Generation [84] and Simulink
Verification and Validation toolbox [138], respectively) which relieve the designers
from manually putting the system into appropriate states and simulating platform
and user interactions. However, through the Visualizer, they still have to analyze
the simulation to identify unexpected behaviors. On the contrary, radCASE is
the only tool that, supported by a dynamic ABV environment, i.e., radCHECK,
allows the designers to perform functional verification of the ESW simulation in
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batch mode: in fact, stimuli are automatically provided to the simulator, and, at
the end of the simulation, all the falsified requirements are graphically noticed
to the designer. This is a useful feedback to ease and speed-up the ESW model
fixing. It is worth noting that also IAR VisualState, TOPCASED and Simulink
integrate a verification environment, i.e., VerificatorTM, Topcased OCL tooling
and Simulink Verification and Validation toolbox, respectively, but they present
some limitations. The first is limited to structural checks on VisualState models,
such as conflicting transitions between states, unreachable states, unused variables,
parameters and constants, and so forth. The second is able to check OCL [113]
constraints on the UML models supported by TOPCASED. In particular, such
constraints are suited for specifying invariants on classes and types in the classes,
as well as pre- and post-conditions on Operations and Methods. However, the OCL
language lacks of means to specify temporal constraints. The third environment,
i.e., Simulink Verification and Validation toolbox, supports partially the dynamic
ABV of ESW. The toolbox provides the designer with a limited number of blocks
implementing restricted temporal checking: the designer has to manually combine
them and graphically model the temporal behavior they want to check during
simulation. It is worth noting that these temporal checks are limited w.r.t. the
ones allowed by PSL assertions. Moreover, by using the checker generation engine
integrated in radCHECK, assertion checkers are automatically embedded into the
simulation environment for performing dynamic ABV avoiding any manual set up.



Table 3.2: Model-driven tool comparison.

ARTiSAN Enterprise Rational IAR Poseidon Matlab
Category Feature radCASE studio Architect Rhapsody visualSTATE CoDeSys embedded Topcased Simulink

Requirements Use Case X X X X - - - X -

Structure

Class
X X X X - - X X -

diagrams
Composite

X X X X - - - X -
diagrams
Object

X X X X - X - X -
diagrams
Component

X X X X - - - X -
diagrams

Behavior

Statecharts X X X X X - X X X
∗

Sequence
X X X X - - - X -

diagrams
Activity

X X X X - - X X -
diagrams
IEC FBDs X - - - - X - - X

∗

IEC ST X - - - - X - - -
C X X X X - - X X X

∗

HMI
Graphical

X - - - - X - - -
Editor

Minimum
ROM/RAM 1kB / 100B 32kB / 8kB 32kB / 8kB 32kB / 8kB 64kb / 1kb 128kB / 32kB N.A. N.A. N.A.

HW

Simulation
Stimuli

X - - X - - - - X
generation
Visualizer X X X X X X - X X

Verification ABV X - - - (X) - - (X) (X)
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3.7.2 RadCheck

radCHECK implements the dynamic-ABV approach proposed in Section 3.5 by
integrating an assertion editor (i.e., PE), a checker-generation engine (i.e., CG) and
a stimuli-generation engine (i.e., Ulisse). In the following, Section 3.7.2 provides a
comparison of CG with other tools developed in the hardware-verification domain
(since they are the only available). Section 3.7.2 provides a comparison of Ulisse
with other approaches in literature. Finally, Section 3.7.2 analyzes the efficiency
and effectiveness of the adopted timing reference for assertion evaluation, i.e., the
model synchronization timing reference, with respect to other timing resolutions.

Checker generation

While the assertion templates included in radCHECK help the designers during
the assertion definition, their automatic synthesis into executable checkers improve
notably the quality of the simulation-based verification avoiding the manual and
error prone definition of the monitors for checking the correctness of the software.
In the following, the characteristics of CG have been compared with the ones of
FoCs and MBAC tools. In particular, Table 3.3 reports the set of PSL operators
supported by CG w.r.t. FoCs and MBAC generators.

It is worth noting that CG supports more operators w.r.t. FoCs but, unlike
MBAC, it introduces some restrictions on the SERE operators : the “or”, the
“length-matching and” and the “non-length matching and” operators cannot ap-
pear on the right-hand-side (RHS) of a suffix implication. These operators require
further investigations for guaranteeing the correctness of the procedural code im-
plementing the checker. On the contrary, MBAC seems to not suffer of this problem
(but it is not possible to test it, since the MBAC is not accessible). However, it is
worth noting that MBAC has been explicitly developed for supporting the gener-
ation of checker in the hardware-context, while, CG generates C-code checkers to
be used in the embedded-software context.

To provide a clear idea of the synthesis capabilities of CG, the three checker
generation tools have been compared on a set of interesting assertions (Table 3.4)
proposed in [26, 27] (p1-p15) or manually written (p16, p17, p18). In these as-
sertions, the identifiers “a”,“b”, “c”, etc, represent Boolean expressions whose
complexity does not affect the capability of the tools to generate the checkers.
Columns of the Table 3.4 report the PSL assertion definition (PSL assertion) and
for each of the considered tools if the assertion has been correctly synthesized into
a checker (X) or not (−).
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Table 3.3: Set of supported PSL operators.

PSL operator CG FoCs MBAC

next, next a, next e family X X X

next!, next a!, next e! family X - X

next event family X X X

next event! family X - X

next event a family X - X

next event a! family X - X

next event e family X - X

next event e! family X - X

before family X X X

before! family X - X

until family X X X

until! family X X X

eventually! X X X

always X X X

logical FL operators X X X

SERE suffix implication X X X

SERE consecutive repetition X X X

SERE non-consecutive repetition X X X

SERE goto repetition X X X

SERE or X
∗

X
∗

X

SERE non-length-matching and X
∗

X
∗

X

SERE length-matching and X
∗

X
∗

X

SERE within X - X

∗ not supported on the RHS of the suffix implication operator



3
.7

E
x
p
erim

en
ta
l
resu

lts
8
9

Table 3.4: Benchmarking Assertions

PSL assertion CG FoCs MBAC

p1: always(a->next(next a[2:10](next event(b)[10](next e[1:5](d)) until (c)))) X X X

p2: always((a->next(next[10](next event(b)((next e[1:5](d)) until (c)))))|| e) X X X

p3: always(a->(next event a(b)[1:4](next((d before e) until (c))))) X X X

p4: always(a->next event e(b)[1:6](c)) X X X

p5: always(a->next a![2:4](b)) X − X

p6: always(a->next e![2:4](b)) X − X

p7: always(a->next event a!(b)[5:10](c)) X − X

p8: always(a->next event e!(b)[2:4](c)) X − X

p9: always(a->(b until! c)) X X X

p10: always(a->({b;c} until! d)) X − X

p11: never {a;[*];b;c[+]} X X X

p12: always({a;d}|->next e[2:4](b)) until c X − X

p13: always {a;b[*0:2];c}| =>(d[*2]|-> next(!e)) X − X

p14: always (e || (a->({b;c} until d))) X − X

p15: always({a;b}|->eventually! c;d) X − X

p16: always({a;b;c} |->{{d;e}|{f;g}}) − − N.A.

p17: always({a;b;c} |->{{d;e}&{f;g}}) − − N.A.

p18: always({a;b;c} |->{{d;e}&&{f;g}}) − − N.A.
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While it has been possible to directly test the synthesis results by using CG
and FoCs, the MBAC results are retrieved from [27] because it is not possible to
access the tool. It is worth noting that, on all the assertions reported in [26, 27],
the proposed CG has behaved exactly as MBAC. Finally, let us consider assertions
p16, p17 and p18 which escape the aforementioned restrictions on the PSL SERE
operators. In this case, CG and FoCs has not been able to generate the checkers for
them. As well, it is not possible to desume from [27] if MBAC is able to synthesize
them.

Stimuli generation for ESW

Ulisse implements the EFSM-based concolic approach for stimuli generation de-
scribed in Section 3.6. Ulisse is developed in C and uses MiniSAT [58] as decision
procedure. It has been tested on eight application modeled using radCASE: five
applications, Ciitp, Inres, Lift, Ifss, and Atm, have been deduced from the speci-
fications proposed in [92], while, the others, Thermox, Filter, and Elevator, have
been implemented starting from the industrial specifications of the embedded ap-
plications [132]. In particular, Ciitp is based on a module of a class II transport
protocol; Inres is a connection-oriented protocol controller; Lift is an elevator sys-
tem; Ifss is a in-flight safety system that monitors some craft-cabinet parameters
(Figure 3.7 is a very simplified version of it); Atm is the model of cash-point with
different menu and services; Thermox is a controller for an industrial oven which
monitors parameters like temperature, time, air humidity, and air circulation; the
Filter controller is part of a device which produces water highly purified from
salts and chemical pollution; finally, Elevator (different from the Lift module) has
several functionalities, in particular the controller provides an interface both in
the cabin and on the floors, moreover the speed, the acceleration, the position, the
service direction, and door status are monitored.

Table 3.5: Characteristics of the designs.

DUT LoC I O V T S

Ciitp 324 55 274 80 28 6
Inres 158 41 4 32 21 4
Lift 297 82 16 48 30 4
Ifss 282 77 6 65 36 3
Atm 282 168 48 80 42 10
Thermox 142 58 8 156 168 2
Filter 256 66 32 293 237 21
Elevator 3391 8 32 5037 775 382

The characteristics of the considered benchmarks are described in Table 3.5.
Column LoC shows the number of lines of the C code generated by radCASE;
columns I, O, and V respectively show the bit size of the inputs, outputs, and
internal variables; columns T and S show the number of EFSM transitions and
states. Benchmarks are ordered according to column V, since the number of vari-
ables is significant in the case of decision-procedure-based (symbolic) approaches.
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In what follows two experiments are proposed. The first one (Table 3.6) com-
pares Ulisse with alternative model-based techniques for stimuli generation. The
second experiment (Table 3.7) compares Ulisse with KLEE [34], which works at
bytecode level.

Table 3.6: Transition-coverage comparisons.

Rand Cons Symb Ulisse
DUT TC% Time TC% Time TC% Time TC% Time

Ciitp 96.1 6.8 96.1 18.7 100.0 180.3 100.0 23.8
Inres 89.4 24.1 92.7 18.4 100.0 186.8 100.0 24.0
Lift 11.1 0.7 81.4 63.5 100.0 1224.5 100.0 13.9
Ifss 32.3 25.6 55.8 59.1 100.0 1024.1 100.0 12.7
Atm 12.5 0.2 71.1 76.0 100.0 934.1 100.0 51.0
Thermox 33.8 8.0 47.0 170.5 47.0 3402.3 60.2 37.6
Filter 62.8 0.8 62.8 2.7 68.5 3503.1 100.0 30.5
Elevator 69.3 30.2 69.3 190.9 1.4 4914.1 81.5 4459.6

Time is expressed in seconds.

Table 3.6 compares Ulisse with a pure random approach (Rand), a constraint-
based heuristic (Cons) [51], and a pure symbolic approach (Symb). The Cons

approach focuses on the traversal of just one transition at a time by submit-
ting each enabling function formula to a constraint solver. Even if Cons uses a
solver for guiding the stimuli generation, it can be considered a long-range con-
crete technique. On the contrary, the Symb extends a deep-first-search procedure
to EFSMs [127] and is intended to be an exhaustive and wide-width approach.

The table reports the maximum achieved transition coverage (TC%) and the
execution time in seconds (Time). Each experiment has been carried out with
a time threshold of 5000 seconds, and the reported execution time refers to the
instant the engine achieved the last improvement in transition coverage. It is worth
noting that:

• for designs with a smaller number of internal variables and transitions, Ulisse
always outperforms Rand and Cons in terms of transition coverage; while in
cases Symb achieves the same coverage as Ulisse, Symb is one or two orders of
magnitude slower;

• for designs with a larger number of internal variables and transitions, Ulisse
outperforms both Cons and Symb in terms of transition coverage; in par-
ticular, the coverage achieved by Symb is poor because of the high number
of decision paths and the complexity of the decision problems, which would
require an execution time higher than the selected time threshold.

Figure 3.15 presents the trend of the four approaches on the Filter and Atm test-
cases, in terms of transition coverage versus stimuli generation time. For readability
the transition coverage progress is depicted up to 6 seconds. Notice that Rand

and Cons very rapidly increase the coverage, but they achieve steady values, as
they are unable to cover corner cases. On the contrary, Symb slowly increases the
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Fig. 3.15: The transition coverage versus the stimuli generation time for the Atm
and Filter designs.

coverage because of both high execution time required by the decision procedure
and non corner-case-oriented nature. Indeed, Symb tends to waste a lot of time
trying to compute irrelevant stimuli data, i.e., stimuli exercising no new transitions.
On the contrary, Ulisse spends a certain amount of time for the initial dependency
analysis (Section 3.6). Then, the achieved coverage presents two different trends.
It very rapidly increases as the long-range concrete approach is executed. As soon
as it is no more able to traverse new transitions, the wide-width search (based on
the MLBJ algorithm proposed in Section 3.6) is started. It is slower, because it
requires more time for solving path constraints, but it allows to exit from steady
conditions achieving a higher transition coverage.

Table 3.7: Instruction-coverage comparisons.

DUT KLEE-IC% Ulisse-IC%

Thermox 23.15 54.30
Filter 69.18 94.74
Elevator 30.48 74.61

The second experiment (Table 3.7), considers the three designs where the pure
symbolic model-based approach Symb has not achieved 100% transition cover-
age, and compares the quality of the stimuli sequences generated by Ulisse and
KLEE, which symbolically analyzes the LLVM byte-code generated from the C
specification.

In particular, the KLEE infrastructure is used for comparing the instruction
coverage on the LLVM byte-code. At first, KLEE has symbolically executed the
C code with a maximum execution time set to 5000 seconds and its instruction
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coverage is collected. Then, KLEE has executed the C code using the stimuli
sequences generated by Ulisse considering the same maximum execution time (i.e.,
5000 seconds).

Table 3.7 reports the results of such experiment. Columns KLEE-IC% shows
the KLEE instruction coverage; column Ulisse-IC% shows the instruction coverage
achieved by simulating the stimuli sequences generated by Ulisse with KLEE.

Notice that KLEE, which works at bytecode level and implements an deep-
first-search approach, has not been able to reach the same instruction coverage
achieved by Ulisse, which exploits the model information to explore more efficiently
the system state space.

Dynamic ABV for ESW

This final set of experiments validates the adopted timing reference for assertion
evaluation. For the purpose, some industrial ESW for control and automation sys-
tems have been developed with radCASE. Table 3.8 reports their characteristics.

Table 3.8: Case-studies characteristics.

Design Specs Modules LoC Asserts

DSC 25 93 26000 211
Tridomix 12 18 10782 163
Desal 10 28 5319 113
HV 7 18 2626 88
Sewing 40 164 120638 258

Column Design reports the design name; Specs is the number of pages in
the specification and requirement document (in natural language); Modules is the
number of the Statecharts modules in the radCASE model; LoC is line of code of
the synthesized ESW; finally, Asserts is the number of assertions which engineers
defined for the ESW verification.

Table 3.9 compares the efficiency and effectiveness of the proposed dynamic
ABV for ESW with respect to different timing references. The efficiency is mea-
sured in terms of execution time of the ESW running with checkers, whereas the
effectiveness of the adopted timing reference is measured by counting the number
of false negatives and false positives which arise during the checker simulations. A
false negative (positive) occurs when the checker indicates that an assertion does
not hold (hold) when it really does (does not).

In particular, columns Design and Asserts report the design name and num-
ber of associated assertions, respectively; column MSync reports the results of the
proposed approach, which evaluates checkers according to the model synchroniza-
tion timing reference; Trans refers to the transition timing reference; finally, Instr
refers to instruction timing reference, as described in [103]. For each approach,
FN/P is the number of false negatives or false positives which occur, and Time is
the execution time in seconds.
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Table 3.9: ABV efficiency and effectiveness.

MSync Trans Instr
Design Asserts FN/P Time FN/P Time FN/P Time

DSC 211 0 50 27 2088 184 99105
Tridomix 163 0 36 42 327 139 11759
Desal 113 0 17 16 337 102 13294
HV 88 0 11 29 16.8 72 2358
Sewing 258 0 161 52 4577 213 226146

Time is expressed in seconds.

As expected, since all designs meet the specifications, the use of the model
synchronization timing reference does not lead to false negatives/positives. On
the contrary, false negatives/positives occur adopting the other timing references:
typically this is due to assertions that predicate over variables before a stable con-
dition is reached (e.g. Figure 3.5). In particular, the number of false negatives/pos-
itives is greater when assertions are evaluated according to the instruction timing
reference. Whereas, in case of transition timing reference, only assertions whose
variables span over different modules may be affected by false negatives/positives.

Finally, increasing the checker-evaluation rate significantly impacts the overall
execution time, as shown in columns Time.

3.8 Conclusions

This chapter has described how a suitable combination of MDD and dynamic
ABV is an effective solution for ESW development. On one hand, a particular
adoption of MDD-based techniques exceeds both the problem of manual defin-
ing the ESW C-code and practical issues concerning integration of dynamic ABV
in ESW design. In fact, MDD approaches allow to identify the right instants for
checkers evaluation, as well as they provide support for handling of variable visi-
bility inside ESW and complex data-types inside assertion checkers. Besides, also
automatic generation of effective stimuli for simulation becomes practical. On the
other hand, the adoption of ABV-based techniques exceeds the problem of manu-
ally debugging the ESW C-code. In particular, dynamic ABV approaches allow to
refine the ESW model iteratively and incrementally. Indeed, each assertion falsifi-
cation identified by the corresponding checker implies a violation of a specific ESW
requirement, thus, it is a useful information for guiding the model fixing. Besides,
by adopting a guided assertion definition strategy based on property patterns (i.e.,
parametric assertion templates) and aided by graphical tools, no effort is required
to teach the designers new languages for specifying assertions.

For these reasons, a comprehensive design and verification framework for ESW
has been proposed. It integrates radCASE, which is a model-driven design, code
generation and simulation environment, and radCHECK, which is a dynamic ABV
environment that includes guided assertion definition, automatic generation of
checkers, and stimuli generation.
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Vacuity analysis for assertion qualification in

dynamic ABV

4.1 Introduction

Assertion qualification aims at evaluating the quality of assertions defined to check
the correctness of a design implementation, either hardware or software. It fo-
cuses on measuring assertion coverage [140], identifying redundant assertions [30],
searching for vacuous assertions [16], etc. In particular, the presence of vacuous
assertions (i.e., assertions that are trivially satisfied) in assertion-based verification
(ABV), in both static [42] and dynamic [66] contexts, can lead designers to a false
sense of safety because the design implementation could be erroneous even if all
the defined assertions are satisfied.

For this reason vacuity analysis is a mandatory process that looks for formulas1

that pass vacuously and points out problems which require a refinement process in
the design under verification (DUV), or in its specification (i.e., in the assertions
themselves), or, in case of dynamic ABV, in the stimuli sequences (Figure 4.1).

Current approaches for vacuity checking are suited for static ABV, where tem-
poral assertions are formally checked against the DUV model. Basically they ex-
ploit formal methods to search for interesting witnesses proving that assertions
do not pass vacuously [16, 98]. Such approaches are computationally as complex
as model checking, and they require to define and model check further assertions
obtained from the original ones by substituting their sub-formulas in some way,
sensibly increasing the verification time. Moreover, these approaches are not able
to identify vacuity when it is due to the presence of tautologies. Only in [10] au-
thors propose a technique to identify vacuity caused by errors in the DUV model
as well as by tautologies, but the designer has to analyze the produced vacuity
alerts to decide which should be ignored.

This chapter, instead, describes an alternative methodology for vacuity check-
ing that extends the current approaches and makes vacuity detection feasible also
in dynamic ABV, where assertion checkers2, synthesized from temporal assertions,
are used to check the DUV behaviors simulated using a set of (automatically gen-
erated) stimuli.

1 By standard conventions, the term formula is used to identify a temporal assertion.
2 The notion of checker and its structure have been summarized in Section 3.2.2 and
Section 3.5.2, respectively. We will recall them in Section 4.5



96 4 Vacuity analysis for assertion qualification in dynamic ABV
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Fig. 4.1: Vacuity detection in model checking and ABV.

The proposed methodology is based on mutation analysis [117]. Usually, muta-
tion analysis relies on the perturbation of a DUV by introducing new statements
or modifying existing ones in small ways. As a consequence, many versions of the
model are created, each containing one mutation and representing a mutant of
the original DUV. Stimuli sequences are used to simulate mutants with the goal
of distinguishing their outputs from the original DUV ones. In fact, the presence
of not-distinguished mutants points out inadequacies in the stimuli sequences or
in the DUV model. Thus, the main purpose of mutation analysis consists of help-
ing the verification engineers to develop effective stimuli able to activate all DUV
sections.

On the contrary, we use mutation analysis with the purpose of detecting vacu-
ous assertions: instead of perturbing the DUV, we perturb the assertion checkers
by a small set of mutations, named interesting faults. These interesting faults en-
able us to create mutants of the original checker which have to be distinguished
during simulation. Stimuli sequences enabling to distinguish such mutants repre-
sent the interesting witnesses proving that the assertions do not pass vacuously.
If the interesting witnesses are not identified, the methodology provides an alert
to force the designers to investigate the stimuli sequences, the assertions and the
DUV model to understand which is the cause of the alert.

4.1.1 Contributions

The main contributions of this work can be summarized as follows:

• it redefines the notion of vacuity checking in such a way it can be applied in the
context of dynamic assertion-based verification of temporal assertions defined
according to the Simple Subset of PSL [87];
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• it proposes a mutation-based approach for vacuity checking that does not re-
quire the definition and the verification of witness formulas to generate the
interesting witnesses, reducing the computational complexity of the analysis;

• it extends the current vacuity checking methodologies to identify tautological
vacuity in a more accurate way than [10];

• it implements the proposed methodology into radCHECK;
• it shows the applicability of the proposed methodology in the context of dy-

namic ABV for both embedded software and electronic system level (ESL)
models.

The remind of this chapter is organized as follows. Section 4.2 summarizes re-
lated works. Section 4.3 reports preliminary definitions. Section 4.4 presents an
overview of the proposed vacuity analysis methodology. Section 4.5 is devoted to
checker structural analysis and describes how subformulas of a temporal assertion
can be identified in different parts of a checker. Section 4.6 defines the theoretical
basis of the proposed vacuity analysis. Section 4.7 describes the problem of de-
tecting tautological vacuity. Section 4.8 deals with prons and cons of the proposed
methodology. Finally, Section 4.9 and Section 4.10 report, respectively, experimen-
tal results and concluding remarks.

4.2 State of the art

Vacuity analysis is a mandatory process looking for assertions that, passing vacu-
ously, lead designers to a false sense of safety.

According to Beer et al. [16], a formula ϕ passes vacuously in a model M if it
passes in M , and there is a sub-formula ψ of ϕ that can be changed arbitrarily
without affecting the outcome of model checking.

Automatic techniques to detect trivial passes are proposed in [10,13,16,19,39,
40,73,98] and, generally, define and model check new assertions obtained from the
original ones by substituting their sub-formulas in some way. Comparisons and
discussions about such techniques have been proposed in [41, 97, 124].

The work in [98] proposes a methodology for vacuity detection applicable to
CTL* formulas. The authors argue that vacuity detection consists of checking
whether all the sub-formulas of ϕ affect its truth value in the system. This is
obtained by replacing each sub-formula ψ by either true or false depending on
whether ψ occurs in ϕ with negative polarity (i.e., under an odd number of nega-
tions) or positive polarity (i.e., under an even number of negation). This method
is for vacuity with respect to sub-formula occurrences. While a sub-formula oc-
currence has a pure polarity (exclusively negative or positive), a sub-formula with
several occurrences may have mixed polarity (both positive and negative occur-
rences). It is shown that the method is no longer valid by considering sub-formulas
instead of sub-formulas occurrences.

In [16], Beer et al. prove a result similar to the one in [98], that holds for
all logics with polarity. First, the authors show that vacuity can be checked by
examining only a subset of the sub-formulas, i.e., sub-formulas which are minimal
with respect of the subformula pre-order. Secondly, the authors define logics with
polarity for which it is enough to check the replacement of a sub-formula by either
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true or false. These two results allow authors to check vacuity of a formula in
a logic with polarity by defining and checking a relatively small number of other
formulas, whose size is not greater than the size of ϕ. However, the authors show
a practical solution only for a subset of ACTL, and they check vacuity only with
respect to the smallest important sub-formula.

In [10], the aim of the authors is to remove the restriction of [16,98] concerning
sub-formula occurrences of pure polarity. To keep things simple, the authors stick
to LTL. Strategies presented in [16, 98] consider only syntactic perturbation on a
formula ϕ, instead, in [10] the authors consider the notion of semantic perturbation
which is modeled by universal quantifier (i.e., UQLTL). Such a semantic can be
interpreted with respect either to the model (structure semantics) or to its set of
computation (trace semantics). While the authors argue that structure semantics
yields notions of vacuity that are computationally intractable, they argue that,
instead, trace semantics is considered intuitive, robust and it is shown that it can
be checked easily by a model checker. According to these semantics, the authors
give new definitions of vacuity which do not restrict a sub-formula to occur once
and it can be of mixed polarity.

In [73] the authors present the notion of mutual vacuity that is a kind of
vacuity with respect to literal occurrences. Mutual vacuity focuses on finding the
maximal set of literal occurrences that can be simultaneously replaced by false
without causing the property to fail. In this way, the authors want to identify all
sub-formulas of a given CTL formula that cause its vacuity, or better, identify all
maximal such sub-formulas. Moreover, they propose an exponential-time multi-
valued model checking algorithm to detect mutual vacuity.

In [40] Chockler et al. propose a definition of vacuity very similar to the one
of [73]. The authors underlined that checking for mutual vacuity can lead to
stronger properties than those obtained by vacuity checks with respect to sub-
formula occurrences, but it is also harder because it has to consider subset of
literals.

In [19], Ben-David et al. underline that vacuity detection for certain logics
can be complex and time consuming and indicate that not all vacuities detected
in practical applications are considered a problem by the system verifier. As a
consequence, the authors limit their analysis to the problem of detecting antecedent
failure. They define Temporal Antecedent Failure, a refinement of vacuity that
occurs when some pre-condition in the formula is never fulfilled in the model.

The work in [13] defines vacuity in the context of testing. In particular, the
authors distinguish strong and weak vacuity. Strong vacuity coincides with the
common definition of vacuity in model checking (e.g., the one proposed in [98])
and points out that some behavior that the specifier expect cannot happen. Weak
vacuity depends on test sets and it suggests either there is strong vacuity (missing
behaviors) or more tests are needed. Although the authors state that the pro-
posed vacuity analysis approach can lead to better specifications and test suits,
no experimental results are provided.

In [39], the authors examine the possibility of finding a property stronger than
the original LTL formula by either vacuity or mutual vacuity, that is sill satisfied
by the model. In particular, the approach determines vacuity values over paths of
the model in order to compute the strongest formula that is satisfied by the model
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and lies in the Boolean closure of the strengthening of the original property. Even
if the approach finds formulas stronger than mutual vacuity does, its complexity
seems impractical for large formulas.

4.3 Background

The following definitions and theorems report relevant results related to the notion
of vacuity according to the work proposed by Beer et al. in [16]. The same con-
cepts are exploited in the majority of the other papers summarized in Section 4.2,
and they are fundamental to better understand the methodology proposed in this
chapter.

In the following, the term formula denotes a temporal assertion ϕ, and the
notation ϕ[ψ ← ψ′] denotes the formula obtained from ϕ by replacing the sub-
formula ψ with ψ′.

Definition 1 (Affect) A sub-formula ψ of a formula ϕ affects ϕ in a model M
if there is a formula ψ′ such that the truth values of ϕ and ϕ[ψ ← ψ′] are different
in M .

Definition 2 (Vacuous pass) A formula ϕ passes vacuously in a model M if
M |= ϕ and ϕ includes a sub-formula ψ that does not affect ϕ in M . In this case,
we say that ϕ is ψ-vacuous in M .

While the previous definitions capture the intuitive notion of vacuity, they are
not very useful from the practical point of view, because they require an infinite
number of checking to determine the vacuity of a formula. For this reason, in [16]
the following definitions and theorems have proposed to make the analysis feasible.

Definition 3 (Minimal sub-formulas) Let S be a set of sub-formulas. The
minimal sub-formulas of S is defined as:

min(S) = {ψ ∈ S | ∄ ψ′ ∈ S such that ψ′ ≤ ψ},

where ≤ denotes the pre-order relation among sub-formulas. That is ψ′ ≤ ψ means
ψ′ is a sub-formula of ψ.

Definition 3 assumes that each sub-formula is unique, i.e., two separate oc-
currences of the same sub-formula are considered to be different sub-formulas.
For example, let us consider the formula ϕ = G(¬α ∨ ¬β ∨ X(γ ∨ ¬α)). The
set of sub-formulas of ϕ is S = {¬α1 ∨ ¬β1 ∨ X(γ1 ∨ ¬α2),¬α1 ∨ ¬β1, X(γ1 ∨
¬α2),¬α1,¬β1, γ1 ∨ ¬α2, α1, β1, γ1,¬α2, α2}, where the subscript denotes the oc-
currence number of each sub-formula in ϕ (in particular, α1 and α2 denote two
distinct occurrences of α, since α occurs twice in ϕ), and thus the minimal sub-
formulas of S are min(S) = {α1, β1, γ1, α2}.

Definition 4 (Vacuity w.r.t. a set of sub-formulas) LetM � ϕ and S be the
set of sub-formulas of ϕ. Formula ϕ is S-vacuous in M if there exists ψ ∈ S such
that ϕ is ψ-vacuous in M .
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Theorem 4.1. Let S be the set of sub-formulas of ϕ, true in model M . Formula
ϕ is S-vacuous iff ϕ is min(S)-vacuous.

Theorem 4.2. In a logic with polarity3, for a formula ϕ , and a set S of sub-
formulas of ϕ, for every model M , ϕ is S-vacuous in M iff there is ψ ∈ min(S)
such that M |= ϕ[ψ ← X ], where X = false if M |= ϕ (M 2 ϕ) and ψ is of
positive (negative) polarity4, otherwise, X = true.

The full proofs of these theorems are available in [16]. While Theorem 4.1 states
that to check vacuity of ϕ it is enough to check for vacuity with respect to only the
minimal sub-formulas of ϕ, Theorem 4.2 allows the authors to focus only on model
checking ϕ where the minimal sub-formulas are substituted with either true or
false, thus reducing the total number of checks required to search for vacuity. The
formulas obtained by such substitutions are called witness formulas for ϕ. As a
consequence of Theorem 4.2, ϕ is not ψ-vacuous if M 2 ϕ[ψ ← X ], and in such a
case the counterexample provided by the model checker is the desired interesting
witness proving the non-vacuity of ϕ with respect to ψ.

4.4 Methodology overview

All the techniques summarized in Section 4.2 check the vacuity of a formula ϕ by
using formal methods. This work, instead, considers the notion of vacuity specified
by Definition 2 and presents an alternative strategy to reason about it to make
practical vacuity checking in the context of dynamic ABV.

The proposed methodology is based on mutation analysis and works as follows
(Figure 4.2):

1. Given the set of formulas satisfied during the dynamic ABV of the DUV,
the corresponding assertion checkers are collected and interesting faults are
injected on them. Each interesting fault is implemented as a stuck-at 0/1 fault
on a checker variable modeling an assertion minimal sub-formula. In particular,
for each assertion ϕ, we identify how sub-formulas must be perturbed, i.e., if a
stuck-at fault injected in the corresponding checker has to affect one or many
minimal sub-formulas of ϕ. This allows us to accurately address the vacuity
alerts. Intuitively, an interesting fault perturbs the checker behavior similarly
to what happen when a sub-formula ψ is substituted by true or false in ϕ.

2. The faulty checkers are integrated into the simulation environment. Then,
stimuli sequences are used to simulate the DUV. The vacuity analysis relies on
the observation of the faulty checkers status. A checker failure due to the effect
of an interesting fault f corresponds to prove that the sub-formulas ψ associ-
ated to (perturbed by) f affect the truth value of ϕ. Consequently, the specific
stimuli sequence that causes the checker failure (i.e., the stimuli sequence of
f) is an interesting witness proving that ϕ is not ψ-vacuous (Section 4.6).
On the contrary, faults that do not cause checker failures (i.e., not detected

3 For a definition of logics with polarity please refer to [16].
4 Intuitively, in a logic with polarity, a formula has positive polarity if it is preceded by
an even number of not operators, has negative polarity otherwise [16].
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Fig. 4.2: Methodology overview.

faults) have to be analyzed to determine if either the property is vacuous or
the vacuity alert generated is due to the inefficiency of the stimuli sequences
used during the simulation (Section 4.8).

Notice that the proposed methodology works on LTL formulas defined ac-
cording to the Simple Subset of PSL, that conforms to the notion of monotonic
advancement of time. This is a mandatory restriction that guarantees that formu-
las defined within such a subset can be automatically translated into executable
checkers and simulated.

4.5 Checker analysis

As reported also in Chapter 3, both academic and industrial tools are available
to automatically generate checkers from temporal assertions. For example, rad-
CHECK, MBAC and FoCs allow a designer to convert a PSL formula into either
C-code or HDL-code implementing a state machine which will enter an error state
in a simulation run if the corresponding assertion is falsified.

By analyzing the structure of a checker corresponding to a formula ϕ it is
possible to identify which parts of the checker are related to the minimal sub-
formulas of ϕ. For example, let us consider the following formula:

ϕ = always((state = START )→ next[2](state = FETCH1))

By construction, checkers generated using radCHECK separates the tempo-
ral semantics of the assertion from the involved minimal Boolean sub-formulas in
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1 void get_var(
2 struct System const * sys, char const * name,
3 void * var, long unsigned var_sizeof);
4

5 #define GET_VAR(T,N,S) \
6 T N; get_var(sys, S, &N, sizeof (T));
7

8 void checker_wrapper( bool const enable, bool const reset,
9 bool * fail, struct System const * sys){

10

11 // 1. Retrieve system-variable values
12 GET_VAR(int8_t, design_State, ”design . State”);
13

14 // 2. Evaluate minimal sub-formulas
15 bool v0 = (design_State == /* Start */ 0);
16 bool v1 = (design_State == /* Fetch1 */ 1);
17

18 // 3. Invoke the checker over Boolean variables
19 checker_logic(enable, reset, fail, v0, v1);
20 }

Fig. 4.3: The C-code wrapper function of the checker for assertion ϕ.

different portions of C-code, i.e., the checker logic and the checker wrapper func-
tions, respectively (Section 3.5.2). In particular, the checkers template adopted
by radCHECK models minimal sub-formulas using satellites and explicitly re-
ports them into the checker wrapper function. Figure 4.3 shows, as an example,
the checker wrapper function for the assertion ϕ. The minimal sub-formulas (i.e.,
state = START and state = FETCH1) are reported at lines 19 – 20.

Now, let us consider a VHDL checker corresponding to ϕ generated, for exam-
ple, by FoCs. Its structure is shown in Figure 4.4. The template used by FoCs for
implementing checkers distinguishes the code modeling the minimal sub-formulas
from the temporal semantics of the checker as follows. The truth values of minimal
sub-formulas of ϕ are captured by concurrent assignments introduced at the begin-
ning of the checker architecture (lines 20 – 21), whereas, the temporal behavior of
the checker is implemented by two synchronous processes, i.e., p1 and pp1. The first
process (lines 23 – 31) handles the signal focs ok checker psl 1 which stores in
each time instant t (depending on the clock period) the truth value of the formula
ϕ. According to the values reported into the signal focs v checker psl 1 (line
26) the process evaluates the truth value of the temporal assertion and asserts its
violation when focs ok checker psl 1 is equal to false (line 32 – 36). The second
process (lines 38 – 55) manages the temporal aspects of the formula. It sets the
values in focs v checker psl 1 by evaluating the property sub-formulas during
the DUV simulation. Such a signal is represented as a vector, whose length de-
pends on the temporal characteristics of the formula. For example, the truth value
of a sub-formula of ϕ may be stored at time instant t as first element of the vector,
and in the following time instants t + i with i > 0 it moves forward, position by
position, modeling the elapsing of time. At time instant t + i, such a value can
be retrieved at the i-th position of the vector and can be used to establish the
satisfaction or the falsification of the formula ϕ.

As shown in Figure 4.3 and Figure 4.4, the identification of variables/signals
associated to minimal sub-formulas is straightforward and, thus, the injection of
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1 library ieee;
2 use ieee.std_logic_1164. all ;
3 use work.sim_support_downto. all ;
4 ENTITY checkers_psl IS
5 PORT (
6 clock : IN std_logic;
7 reset : IN std_logic;
8 state : IN std_logic_vector(1 DOWNTO0));
9 END checkers_psl ;

10

11 ARCHITECTUREchecker OF checkers_psl IS
12 CONSTANTstart : std_logic_vector(1 DOWNTO0) := ”00”;
13 CONSTANTfetch1 : std_logic_vector(1 DOWNTO0) := ”01”;
14 SIGNAL state_start : std_logic;
15 SIGNAL state_fetch1 : std_logic;
16 SIGNAL focs_ok_checkers_psl_1 : std_logic;
17 SIGNAL focs_v_checkers_psl_1 : std_logic_vector(3 DOWNTO0);
18

19 BEGIN
20 state_start <= b2l((state(1 DOWNTO0) = start(1 DOWNTO0)));
21 state_fetch1 <= b2l((state(1 DOWNTO0) = fetch1(1 DOWNTO0)));
22

23 p1: PROCESS(clock)
24 BEGIN
25 IF ((clock = ’1’)) THEN
26 focs_ok_checkers_psl_1 <= NOT((focs_v_checkers_psl_1(3)
27 AND NOT(state_fetch1)));
28 ELSE
29 focs_ok_checkers_psl_1 <= ’1’;
30 END IF;
31 END PROCESSp1;
32 ASSERT ( NOT(( focs_ok_checkers_psl_1 = ’0’)))
33 REPORT”FAILURE EVENT rule : CHECKERSPSL,
34 formula: 1 in f i l e checkers psl .vhd: Assertion Failed ;
35 vunit : checkers psl property 1”
36 SEVERITY NOTE;
37

38 pp1: PROCESS(clock)
39 VARIABLE focs_vout_checkers_psl_1 : std_logic_vector(3 DOWNTO0);
40 BEGIN
41 IF (l2b(reset)) THEN
42 focs_v_checkers_psl_1(3 DOWNTO0) <= ”0011”;
43 ELSIF (clock’EVENT AND clock = ’1’) THEN
44 focs_vout_checkers_psl_1(3 DOWNTO0) :=
45 reverse(((((( focs_v_checkers_psl_1(0) AND ’1’)) &
46 (( focs_v_checkers_psl_1(1) AND state_start))) &
47 (( focs_v_checkers_psl_1(2) AND ’1’))) &
48 (( focs_v_checkers_psl_1(3) AND NOT(state_fetch1)))));
49 focs_v_checkers_psl_1(3 DOWNTO0) <=
50 reverse((((( focs_vout_checkers_psl_1(0)) &
51 (focs_vout_checkers_psl_1(0))) &
52 (focs_vout_checkers_psl_1(1))) &
53 (focs_vout_checkers_psl_1(2))));
54 END IF;
55 END PROCESSpp1;
56 END checker;

Fig. 4.4: A VHDL checker for always((state = START ) → next[2](state =
FETCH1)).

interesting faults into the checkers can be automatized as described in the next
section. It is worth noting that the idea of storing (and perturbing) the values
of sub-formulas in explicit variables assigned by the checker statements can be
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exploited whatever is the structure of the checker. Thus, templates adopted by
automatic tools to model the checkers do not affect the proposed methodology.

4.6 Mutation-based vacuity analysis

Let us consider the effect of faults on variables (or signals) storing the values of
minimal sub-formulas into the checker. Faults are implemented as saboteurs that
stuck at true or false the variable corresponding to a sub-formula ψ of ϕ inside
the checker. We say that such a fault is detectable according to the following
definition.

Definition 5 (Detectable fault) A fault f , injected in the checker C corre-
sponding to a formula ϕ satisfied in modelM , is detectable if there exists a sequence
of values (test sequence) that, once assigned to the primary inputs of M , causes
the output of the faulty checker to become false, while the output of the fault-free
checker remains true.

According to the previous definition, and considering ϕ = G(¬α ∨Xβ) as an
example, if α never happens, independently from the value of β, the output of
the corresponding checker will remain always true. Thus, a stuck-at false on the
variable storing the value of sub-formula β cannot be detected, since it cannot
affect the result of the faulty checker because α never happens. On the contrary,
if α eventually happens, the faulty checker will eventually become false due to
the effect of the injected fault. In this case, the fault is detected, and the related
stimuli sequence represents an interesting witness proving that the formula does
not pass vacuously. Analogous considerations can be done for a stuck-at true on
the variable storing the value of sub-formula α.

Thus, injecting a fault of type stuck-at false (true) on the variable storing the
value of sub-formula β (α) provides us the same result obtained by model checking
ϕ[β ← false] (ϕ[α← true]).

The previous considerations can be formalized by defining a correspondence
between sub-formulas and interesting faults. In particular, we distinguish minimal
sub-formulas as:

• contemporaneous : occurrences of the same sub-formula that affect the same
temporal instants;

• opposite: contemporaneous occurrences of opposite polarity that are in the
same clause.

A fault of type stuck-at true/false on a sub-formula perturbs not only the spe-
cific occurrence, but all the ones that are opposite. On the contrary, non-opposite
occurrences are not perturbed.

The definitions of contemporaneous and opposite sub-formulas are formalized
in Section 4.7 and they allow us to opportunely address identification of tautologies
and increase the accuracy of vacuity alerts.

Definition 6 (Interesting faults) Let ϕ be a formula expressed by using a logic
with polarity, C the corresponding checker, S the set of minimal sub-formulas of ϕ,
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and A the set of assignments of C setting the values of sub-formulas in S during
simulation. The set of interesting faults for C is defined as follows:

F = {stuck-at X on a|a ∈ A}

where X = false if the sub-formula associated to assignment a has positive polarity,
X = true otherwise.

From the previous considerations the following theorems follow.

Theorem 4.3. Let ψ be a sub-formula of ϕ expressed by using a logic with polarity.
The checker of ϕ[ψ ← X ] (where X can be either true or false depending on the
polarity of ψ) is equivalent to the checker of ϕ where the variable storing the value
of ψ is stuck at X.

Proof: Let C be a checker for ϕ and sψ be the variable of C storing the truth value
of the sub-formula ψ of ϕ, as shown in Section 4.5. Ab absurdo, let us suppose
that the checker C′, which captures by construction the behavior of ϕ[ψ ← X ], is
not equivalent to C in which the variable sψ is stack at X .

When sψ is stack at X in C, the structure of C becomes syntactically equal
to the one of C′ modeling ϕ[ψ ← X ]. Thus, they always behave in the same way.
But, by assumptions, C and C′ are not equivalent, so their behaviors must differ.
Contradiction. �

Theorem 4.4. Let ϕ be a formula expressed by using a logic with polarity, C the
corresponding checker, S the set of minimal sub-formulas of ϕ, and F the set of
interesting faults of C associated to S. The fault f ∈ F , such that f is associated to
sub-formula ψ ∈ S as defined in Definition 6, is detectable, iff ϕ is not ψ-vacuous.

Proof: Let us assume that f of kind stuck at X (where X can be either true or
false depending on the polarity of the associated sub-formula) is detectable. For
Definition 5 there exists a stimuli sequence that causes a failure on the checker C
perturbed by f once it is applied to the primary inputs of the model. Thus, for
Theorem 4.3 the same sequence causes a failure also on the checker C′ correspond-
ing to ϕ[ψ ← X ]. However, if a checker fails, the corresponding formula cannot be
satisfied in the model, by construction of the checker. From this observation and
from Definition 1 and Definition 2 it derives that ϕ is not ψ-vacuous.

On the contrary, let us assume that ϕ is not ψ-vacuous. From Theorem 4.2 this
means that ϕ[ψ ← X ] is not satisfied in the model, and thus a counterexample
of ϕ[ψ ← X ] can be generated by model checking. However, the checker C′ cor-
responding to ϕ[ψ ← X ] must fail, by construction of the checker, when such a
counterexample is simulated in the DUV model. Therefore, from Theorem 4.3, it
derives that the checker C of ϕ perturbed by f also fails when it is stimulated by
the same counterexample. Thus, from Definition 5 f is detectable. �

The previous theorem allows us to reason about vacuity by fault simulating
interesting faults in the checker of the formula instead of model checking its witness
formulas as proposed in [16]. Since the number of interesting faults to be considered
amounts to |min(S)| (it coincides with the number of witness formulas to be
checked according to [16]), the approach results to be efficient in determining that
a property does not pass vacuously.
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1 void faulty_checker_wrapper( bool const enable, bool const reset,
2 bool * fail, struct System const * sys,
3 int8_t fault_id) {
4

5 // 1. Retrieve system-variable values
6 GET_VAR(int8_t, design_State, ”design . State”);
7

8 // 2. Retrieve sub-formulas polarity
9 bool fault_v0 = GET_POLARITY( ”v0”);

10 bool fault_v1 = GET_POLARITY( ”v1”);
11

12 // 3. Evaluate minimal sub-formulas
13 bool v0 = fault_id == 1 ? fault_v0 : (design_State == /* Start */ 0);
14 bool v1 = fault_id == 2 ? fault_v1 : (design_State == /* Fetch1 */ 1);
15

16 // 4. Invoke the checker over Boolean variables
17 checker_logic(enable, reset, fail, v0, v1);
18 }

Fig. 4.5: The C-code wrapper function of the faulty checker for the property
always((state = START )→ next[2](state = FETCH1)).

Moreover, the injection of interesting faults can be performed in a system-
atic way. For example, the choice made in Section 3.5.2 of modeling minimal
sub-formulas using satellites makes easy the injection of interesting faults. In par-
ticular, in radCHECK, a faulty checker definition is automatically synthesized by
generating the faulty checker wrapper function shown in Figure 4.5. It is clear that
such a function is obtained by applying few modifications to the standard checker
wrappers generator which manipulates the data dump containing the temporal
assertions defined by means of the PE (i.e., Property Editor, Section 3.5.1). In
particular, unlike the standard wrapper function, the faulty checker wrapper func-
tion is characterized by:

• a fault id parameter (line 3). This parameter is used to activate the interesting
faults injected into the faulty checker. Each fault is identified by an integer
ID number. They are activated sequentially, one at a time, to check the non-
vacuity of the assertion with respect to a specific minimal sub-formula. The
fail parameter, in this case, notifies a violation of the property in presence of
an interesting fault;

• a set of automatic variables { fault v0, . . . , fault vN } (lines 9 – 10). These
variables model the interesting faults associated to the different minimal sub-
formulas { v0, . . . , vN } of the assertion. The function GET POLARITY ()
elaborates the assertion structure reported into the data dump generated by the
PE to establish the polarity of each sub-formula in { v0, . . . , vN }. Intuitively,
a sub-formula has positive polarity if it is preceded by an even number of not
operators, has negative polarity otherwise.

• a set of conditional expression statements for applying the interesting faults to
minimal sub-formulas (lines 13 – 14). These expressions are used to activate
the effect of an interesting fault only when required.
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4.7 Tautological vacuity

From Definition 2 and Theorem 4.2, a formula ϕ is considered to pass vacuously
if there exists a sub-formula ψ that does not affect ϕ, i.e., if we can indifferently
change the value of ψ without affecting the value of ϕ. According to such a no-
tion, tautologies are, indeed, not marked as vacuous formulas when two separate
occurrences of the same sub-formula are considered to be different sub-formulas.
Let us consider, for example, the formula (α∨¬α). According to Theorem 4.2, the
formula is non-vacuous, since the replacement of each occurrence of α with either
true or false, depending on its polarity, leads to the following formulas, which do
not have the same evaluation of (α ∨ ¬α):

• (false ∨ ¬α), which is ¬α;
• (α ∨ ¬true), which is α.

However, (α ∨ ¬α) is commonly considered vacuous, indeed. This problem has
been highlighted also in paper [10] by Armoni et al. The solution proposed in [10]
to correctly address (α ∨ ¬α) consists of considering sub-formulas instead of oc-
currences of sub-formulas. In this case, the two occurrences of α, substituted by
either true or false, lead to the following formulas:

• (true ∨ ¬true), which has the same evaluation of (α ∨ ¬α);
• (false ∨ ¬false), which still have the same evaluation of (α ∨ ¬α).

By considering sub-formulas instead of occurrences, (α ∨ ¬α) would be correctly
marked as vacuous. However, the same authors, in [10], show that considering
sub-formulas instead of occurrences of sub-formulas may lead to wrongly mark, as
non-vacuous, formulas that are vacuous. For example, let us consider the formula
(α ∧ G(¬β ∨ α)) and assume that β never occurs. Then the formula is vacuous.
Such a formula will be incorrectly marked as non-vacuous using the sub-formulas
substitution:

• (false ∧G(¬β ∨ false)), which is false;
• (α ∧G(¬true ∨ α)), which is α ∧G(α) and it can be falsified.

Thus, they conclude by saying that “a thorough vacuity detection algorithm should
detect both sub-formulas and occurrences that do not affect the examined formula.
It is up to the user to decide which vacuity alerts to ignore”. Therefore, considering
the notion of vacuity with respect to sub-formulas or occurrences of sub-formulas
is still an open problem. In this section, we propose an approach that addresses
the problems highlighted in [10] to perform vacuity analysis adopting both sub-
formulas and occurrences substitutions.

In the following we describe that the substitution of a sub-formula ψ by true or
false influences either many occurrences or a single occurrence of ψ depending on
clauses and the temporal scope of such occurrences. In particular, opposite occur-
rences are substituted simultaneously. On the contrary non-opposite occurrences
are substituted individually.

Definition 7 (Contemporaneous occurrences) Let ψ1 and ψ2 two occurrences
of the same sub-formula ψ. ψ1 and ψ2 are contemporaneous if they are under the
scope of the same temporal operators.
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Definition 8 (Opposite occurrences) Let ψ1 and ψ2 two contemporaneous oc-
currences of ψ in the same clause. ψ1 and ψ2 are opposite if they have opposite
polarities.

Notice that to correctly apply Definition 7 and Definition 8 to a formula ϕ,
it is mandatory to solve the temporal overlapping between the occurrences of the
same sub-formula into a clause. To do this it is possible to use the unwinding laws
for the temporal operators G (i.e., always), F (i.e., eventually) and U (i.e., until):

• G(α) ≡ α ∧X(G(α));
• F (α) ≡ α ∨X(G(α));
• α U β ≡ β ∨ (α ∧X(α U β));

Due to the fact that the unwinding is performed only within clauses and the
simple subset of PSL restricts one operand of the logical “or” to be a Boolean,
the unwinding requires only a finite number of steps (one for each overlapping
occurrence).

For example, let us consider the formula ϕ = G(¬α ∨ F (α)). The set of sub-
formulas of ϕ is S = {¬α1, α1, α2} where the subscript denotes the occurrence
number of each sub-formula in ϕ. Due to the fact that the time interval of α2

overlaps the one of α1 (and it does not coincide with it), we have to introduce a
new occurrence α3 to resolve the temporal overlap obtaining the following formula:
ϕ = G(¬α ∨ α ∨ X(F (α))). Now S = {¬α1, α1, α3, α2} and the minimal sub-
formulas of S are min(S) = {α1, α3, α2}. Notice that α occurs three times in ϕ
and its occurrences are all in the same clause but in the scope of different temporal
operators. In particular α1 and α3 are opposite, they have the same temporal scope
(i.e., G), while α3 has a scope (i.e., GXF ) that is different from the previous one.

For a formula ϕ and a subformula ψ of ϕ, let ϕ[ψ ← ⊥] denote the formula
obtained from ϕ by replacing all opposite occurrences of ψ by false. Dually, ϕ[ψ ←
⊤] replaces the opposite occurrences by true.

Considering Definition 8 and Definition 1, the following theorem proposed by
Kupferman et al. in [98] is still valid and it allows us to detect tautological vacuity.

Theorem 4.5. Let ϕ a formula in CNF form within the simple subset of PSL.
For a minimal sub-formula ψ of ϕ, let us distinguish the opposite occurrences of
ψ using the unwinding rules. Now, for every system M , if M � ϕ[ψ ← ⊥], then
for every formula ξ, we have M � ϕ[ψ ← ξ]. In addition, if M 2 ϕ[ψ ← ⊤], then
for every formula ξ, we have M 2 ϕ[ψ ← ξ].

Proof: We prove the implications

ϕ[ψ ← ⊥]→ ϕ[ψ ← ξ], and ϕ[ψ ← ξ]→ ϕ[ψ ← ⊤]

together, by induction on the structure of ϕ.

• If ϕ = ψ = p, and p is an atomic proposition, then for all ξ, we have ϕ[ψ ←
⊥] = false, ϕ[ψ ← ξ] = ξ and ϕ[ψ ← ⊤] = true. Hence, as for all ξ, we have
false→ ξ → true, we are done.

• If ϕ = ψ∨¬ψ, and ψ = p. Notice that ψ occurs one time with positive polarity
and one time with negative polarity. Since the occurrences are contemporaneous
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and belong to the same clause, they are opposite. Thus, they should be replaced
simultaneously. So, for all ξ, we have
ϕ[ψ ← ⊥] = false ∨ ¬false = true, ϕ[ψ ← ξ] = ξ ∨ ¬ξ = true and ϕ[ψ ←
⊤] = true ∨ ¬true = true. We are done.

• Consider the case ϕ = f(θ, θ′), with f ∈ {∧,∨}. Notice that ϕ is into con-
junctive normal form. By the semantics of LTL, the operator f is positively
monotonic, in the sense that for every θ1 and θ2, with θ1 → θ2, for all θ′ we
have f(θ1, θ

′)→ f(θ2, θ
′) and f(θ′, θ1)→ f(θ′, θ2). Now since for all θ and θ′,

the polarities of sub-formulas of θ are equal to their polarities in f(θ, θ′) and
f(θ′, θ), the claim follows immediately form the induction hypothesis.

• Consider the case ϕ = g(λ) or ϕ = h(λ, λ′) with g ∈ {X} and h ∈ {U} and
ϕ is into CNF. By the semantics of LTL, the operators g and h are positively
monotonic, in the sense that for every λ1 and λ2, with λ1 → λ2, we have
g(λ1) → g(λ2), and for all λ′ we have h(λ1, λ

′) → h(λ2, λ
′) and h(λ′, λ1) →

h(λ′, λ2). So for all λ and λ′, the polarities of subformulas of λ are equal to
their polarities in g(λ), h(λ, λ′) and h(λ′, λ). Then, the claim follows from the
induction hypothesis.

�

Now, let us consider properties ϕ1 = (α∨¬α) and ϕ2 = (α∧G(¬β∨α)). By the
adoption of the Definition 8 and Theorem 4.5 it is possible to correctly analyze
formulas ϕ1 and ϕ2. In particular, considering ϕ1, the set of its minimal sub-
formulas is min(S) = {α1, α2}, and α1, α2 are opposite sub-formulas. It is worth
noting that, the substitution of false on a sub-formula should influence all opposite
sub-formulas simultaneously. So we have to check ϕ1[α1,2 ← false]. Performing
the substitution and considering the presence of opposite sub-formulas, we obtain:

• ϕ1[α1,2 ← false] = false ∨ ¬false = true

So, the substitution underlines that property ϕ1 is always true, thus it is vacuous
and, in particular, it is a tautology. Notice that tautologies cannot be identified in
a syntactic way. Indeed, the only things we identify syntactically are sub-formulas
polarity and temporal scope of occurrences.

Now let us consider property ϕ2 satisfied by the model and let us assume that
β never occurs. The set of its minimal sub-formulas is min(S) = {α1, β1, α2}, but
none of the minimal sub-formulas are opposite. According to sub-formulas polarity,
we perform the following substitution:

• ϕ2[α1 ← false] = (false ∧G(¬β ∨ α)) = false
• ϕ2[β1 ← true] = (α ∧G(false ∨ α)) = (α ∧G(α))
• ϕ2[α2 ← false] = (α ∧G(¬β ∨ false)) = (α ∧G(¬β))

Due to the fact that ϕ2 is satisfied by the model and β never occurs, ϕ2[α2 ←
false] = α is satisfied, thus the property ϕ2 is marked as vacuous. Such a vacuous
pass is not revealed by adopting the approach proposed in [10].

4.8 Pros and cons

There are two reasons that may cause a formula to pass vacuously when it is
model checked: (i) an error in the model of the DUV that does not implement
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correctly the specification and (ii) an error in the formula itself that does not
capture the real intent of the specification. The same reasons may prevent also
the detection of interesting faults. However, missing to detect a fault may be also
due to the inefficiency of the stimuli sequences used during fault simulation. It
happens when there exists a test sequence (interesting witness) for detecting the
fault, but the stimuli sequences do not include it. In this case, the vacuity of a
formula is due to the lack of exhaustiveness of the adopted stimuli, rather than a
real problem on either the formula or the DUV model. Thus, from the practical
point of view, according to Theorem 4.4, we can conclude that a formula ϕ is not
ψ-vacuous, when stimuli used to simulate the system (composed of the DUV and
the faulty checker) detect the interesting fault associated to the sub-formula ψ of
ϕ. On the contrary, if stimuli sequences are not able to detect the fault, we cannot
conclude that ϕ is ψ-vacuous in the meaning commonly adopted in the model
checking context, since it could depend on the incapability of generating the right
stimuli sequence. In this case, an ineffective stimuli sequence may lead designers
to mark a formula as vacuous even if it is not. Thus, the described methodology
provides a semi-decidable strategy. On the other hand, in dynamic ABV, it is
absolutely reasonable stating that a formula passes vacuously when the defined
stimuli sequences cannot generate the interesting witness related to an interesting
fault. In fact, stimuli sequences are a fundamental ingredient and they must be
as effective as possible to guarantee an high-quality verification. Thus, refining
stimuli sequences that allow a formula to pass vacuously is an objective. In this
context, the proposed vacuity analysis is very satisfactory because in presence
of low-quality stimuli sequences, it alerts the designers to search the cause that
prevents the detection of a interesting fault associated to a particular sub-formula
leading in investigating also simulation stimuli.

4.9 Experimental results

In what follows two set of experiments are proposed. The first set (Section 4.9.1)
applies the proposed vacuity analysis methodology on assertions verified using rad-
CHECK on eight designs modeled with radCASE. The second set (Section 4.9.2),
instead, applies the methodology on assertions used to check the correctness of
seven ESL designs within a dynamic ABV environment implemented in SystemC.
In particular, on such designs and assertions, the proposed methodology for vacuity
analysis is compared with the formal vacuity checking approach described in [16]
in terms of effectiveness and efficiency.

4.9.1 Vacuity analysis in dynamic ABV of model-driven embedded
software

In this section we considered eight application developed using radCASE and ver-
ified using radCHECK (Chapter 3), and we applied the proposed vacuity analysis
approach to identify the presence of potential vacuously satisfied assertions.

In particular, the Ciitp application implements a module of a class II trans-
port protocol; the Inres application implements a connection-oriented protocol
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controller; the Lift application models an elevator system; the Ifss application im-
plements an in-flight safety system that monitors some craft-cabinet parameters;
the Atm application is the model of cash-point with different menu and services;
the Thermox application implements a controller for an industrial oven which
monitors parameters like temperature, time, air humidity, and air circulation; the
Filter application models the control software of a device which produces water
highly purified from salts and chemical pollution; finally, the Elevator application
(that is different from Lift) implements a controller which handles elevator requests
from both the cabin and the floors, and monitors the speed, the acceleration, the
position, the service direction, and door status of the elevator.

The formal assertions used to verify such applications have been defined using
radCHECK and in particular, for the applications Ciitp, Inres, Lift, Ifss, and Atm,
they have been deduced from the specifications proposed in [92], while, for the
others, i.e., Thermox, Filter, and Elevator, assertions have been defined starting
from the industrial specifications of the embedded applications [132].

Table 4.1: Characteristics of the designs and vacuity analysis results.

Stimuli Vacuity analysis

DUV LoC T TC% Assertions Vacuous Time (sec)

Ciitp 324 28 100.0% 20 0 34.192

Inres 158 21 100.0% 10 0 22.64

Lift 297 30 100.0% 12 0 28.904

Ifss 282 36 100.0% 12 0 30.23

Atm 282 42 100.0% 10 0 29.812

Thermox 142 168 60.2% 18 9 21.984

Filter 256 237 100.0% 19 2 27.897

Elevator 3391 775 81.5% 30 11 356.72

The characteristics of the considered benchmarks, the quality of the stimuli
sequences used for the dynamic verification and the number of verified assertions
are shown in Table 4.1. Column DUV reports the name of the design under ver-
ification; column LoC shows the number of lines of the C-code implementation
generated by radCASE; column T and TC% show the number of EFSM transi-
tions extracted by Ulisse (Section 3.6) from the designs model and the percentage
of transition covered by the stimuli sequences generated by its stimuli generation
engine (more information are reported in Section 3.7.2). Such stimuli sequences
have been used for the vacuity analysis phase. Besides, column Assertions reports
the number of formal assertions that, satisfied by the applications, need to be
checked for possible vacuous satisfactions. The right-most columns of Table 4.1,
instead, report, information related to the vacuity analysis results. In particular,
Vacuous reports the total number of vacuous assertions identified by our method-
ology, and Time denotes the total execution time (in seconds) required for the
vacuity analysis. It is worth noting that such time does not include the time
required to generate stimuli sequences, because they have been generated for the
dynamic ABV phase that preceded the vacuity analysis phase. Moreover, the faulty
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checkers required for the vacuity analysis have been automatically generated using
radCHECK (Section 4.6).

As is shown by the table, only three designs present vacuously satisfied formu-
las. In particular, for Termox and Elevator applications, the presence of vacuously
satisfied assertions has been due to the partial coverage of the stimuli sequences.
In fact, in all the identified cases of vacuity, the assertions predicate over variables
configurations (i.e., specific value assignments on variables) that have not been
achieved by using the available stimuli sequences. In particular, the assertions ac-
tivation conditions have not been satisfied causing the assertions to be trivially
valid on the models. Such vacuity alerts have been solved by manually creating the
stimuli sequences using the radCASE simulator. By interacting with the simulator,
we have led the application to generate the desired configurations for activating
the assertions and, then, proving their non-vacuity.

For the Filter application, instead, the methodology has identified real errors
in two assertions definitions. These assertions are of the form ϕ = always(α →
next(β → next(γ))), i.e., they specify that every time that a variables configura-
tion α occurs during the application execution, this may be followed immediately
by a configuration β, and, if this is the case, the configuration γ has to occur
immediately after. By analyzing the model and also the informal specifications of
the application in [132], we have realized that while β may eventually occur, it is
not required to occur immediately after α. For this reason, both the sub-formulas
α and γ have not affected ϕ during the vacuity analysis and then ϕ has been
correctly marked as vacuous. As a consequence, we have rewritten the two asser-
tions as ϕ = always(α→ eventually!(β → next(γ))) and they have been satisfied
non-vacuously by the Filter application.

4.9.2 Vacuity analysis in dynamic ABV of ESL designs

In this case, the proposed methodology has been evaluated by using some of the
well-known ITC-99 benchmarks [118], the control unit of an 8-bit CPU with an
instruction set architecture composed of 13 instructions and a real industrial case
provided by STMicroelectronics that is a square-root calculator included into a face
recognition module. Their characteristics are described in Table 4.2. Assertions for
ITC-99 benchmarks have been taken from the vis-verilog-models-1.2 package [142]
provided to formal verify the correctness of the considered benchmarks with VIS
model checker [142]. Assertions for the square-root model have been provided with
its implementation. On the contrary, assertions for the CPU model have been
defined by analyzing its specifications. The dynamic ABV environment has been
modeled using SystemC [85] language. Assertion checkers have been generated by
using FoCs, while interesting faults have been manually injected into the checkers.
Stimuli sequences have been generated by using Laerte++ [62], an automatic test
pattern generator for SystemC designs. The achieved results have been compared
with the formal vacuity analysis performed according to the approach described
in [16] by using VIS to model check the assertions and the witness formulas.

Columns of Table 4.2 report, respectively, design names (DUV ), the number
of primary inputs (PIs), primary outputs (POs), gates (Gates), flip flops (FF )
and analyzed assertions (Ψ). Table 4.2 also reports information related to the
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Table 4.2: Vacuity analysis results.

Fault simulation Formal technique [16]

DUV PIs POs Gates FF Ψ IF DF SS Time (sec.) WF UWF Time (sec.) Sav.

b02 3 1 71 4 3 6 6 50 0.040 6 6 0.140 71%

b04 13 8 1815 66 8 23 23 320 0.144 23 23 6.452 98%

b06 4 6 135 8 3 3 3 30 0.020 3 3 0.140 86%

b09 3 1 491 28 2 6 6 44 0.048 6 6 0.156 69%

b10 13 6 560 17 3 13 13 340 0.112 13 13 0.492 77%

cpu 10 2 52 10 8 20 16 480 0.227 20 17 0.313 27%

sqrt 66 64 6383 163 10 32 32 120 1.632 32 32 31.564 94%

vacuity analysis methodology proposed in this chapter (Fault simulation), i.e., the
number of injected interesting faults (IF ), detected interesting faults (DF ), stimuli
sequences (SS ), and the time required for automatic stimuli generation and fault
simulation of interesting faults (time). On the contrary, the right-most columns
report, information related to the vacuity analysis performed according to the
technique proposed in [16] (Formal technique), i.e., the number of witness formulas
(WF ) to be model checked, the number of witness formulas that fail (UWF ),
and the time required for reasoning about vacuity by model checking the witness
formula (time). Finally, column Sav. reports the percentage of computational time
saved by using fault simulation of interesting faults instead of model checking
witness formulas.

Both approaches have shown that the assertions included in the vis-verilog-
models-1.2 archive for ITC-99 benchmarks and the ones provided with the square-
root module do not pass vacuously, since all interesting faults have been detected
and all witness formulas have been proved to be false. On the contrary, while our
methodology has generated vacuity alerts for two assertions ϕ1, ϕ2 defined for the
control unit of the CPU (16 DF vs. 20 IF ), the formal approach has produced an
alert only for ϕ1 (17 UWF vs. 20 WF ).

In particular, both methodologies have underlined that the vacuity of the prop-
erty ϕ1 has been due to an error in the property definition. ϕ1 is of the form
ϕ1 = α ∧ β → eventually!(γ), i.e., it specifies that an occurrence of the variables
configurations α and β at the same time, requires the configuration γ to occur
eventually. Notice that according to the assertion formalization, α and β are ex-
pected to occur at the first step of the simulation (or, in the context of formal
verification, in the first state of the trace). On the contrary, in such a step (state,
resp.), these configurations cannot occur according to the design implementation
and, thus, ϕ1 has turned out to be vacuous (in particular, neither α, or β or γ
affects ϕ1). To be consistent with the informal specifications, the assertion should
have been defined as ϕ1 = always(α ∧ β → eventually!(γ)), i.e., every time that
the configurations α and β occur at the same time, then the configuration γ has
to occur eventually. Indeed, such a new defined assertion has been classified as
non-vacuous by both our dynamic approach and the formal one in [16].

As regards ϕ2, the assertion is of the form ϕ2 = α→ eventually!(α), i.e., it is a
temporal tautology. The vacuity alert generated by our vacuity analysis approach
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has detected that such an assertion has been vacuously satisfied (a discussion on
such a property has been proposed in Section 4.7). On the contrary the methodol-
ogy proposed in [16] marked the tautological property as non-vacuous due to the
fact that opposite occurrences are not substituted simultaneously.

Regarding the comparison of computation times, Table 4.2 highlights that
our approach is, in average, 74% faster than the one proposed in [16]. This is
achieved by detecting the interesting witnesses to the non-vacuity of assertions
using fault simulation instead of formally verifying witness formulas. As a draw-
back, our methodology depends strongly on the quality of the stimuli sequences.
The more they are exhaustive, the more the proposed vacuity analysis approach
is effective and efficient w.r.t. the current existing formal approaches.

4.10 Conclusions

In this chapter a mutation-based methodology for vacuity analysis suited for dy-
namic ABV has been proposed. Current vacuity checking strategies in literature
are suited only for static ABV and look for interesting witnesses to the non-vacuity
of assertions by verifying witness formulas. On the contrary the proposed approach
establishes the vacuity of a formula ϕ by checking, during simulation, the status
of checkers perturbed by faults associated to the sub-formulas of ϕ. The stimuli
sequences which detect such faults represent the interesting witnesses.

Moreover, by proposing the definition of opposite occurrences of a sub-formula
(Definition 8), the approach allows us to detect also tautological vacuity and im-
prove the accuracy of vacuity alerts with respect to [10, 16].

As regards the experimental results, we have proved that the proposed vacu-
ity analysis approach can be effectively applied in the context of dynamic ABV
for model-driven embedded software as well as ESL designs. In the first case, the
methodology has allowed us to detect assertions trivially satisfied due to both
errors in assertions definition and low-quality stimuli sequences. In particular,
results have highlighted the need of improving the quality of stimuli to avoid erro-
neous vacuity alerts. In fact, the proposed approach depends strongly on stimuli
sequences and the more they are exhaustive, the more the proposed approach is
effective and efficient. In the second case, experiments have shown that the pro-
posed approach is more effective than the one presented in [16], and, in average,
74% faster. Such a speed-up is guaranteed by the use of simulation to rapidly
identify non-vacuous properties. It is worth noting that the experimental results
provided in Section 4.9.2 are mainly based on academic benchmarks. This is due to
the fact that retrieving real-industrial cases accompanied with the set of properties
used to check their correctness is not easy. Indeed, only one of the papers related
to vacuity we cited in our work reports experimental results. The complexity of
such benchmarks and properties seem comparable with ours.
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Conclusions and future works

This thesis has proposed a complete methodology and tools that combined together
return a framework to derive from hybrid automata specifications proved correct
in the hybrid domain, correct realizable models of embedded controllers and the
related discrete implementations. The need of such a framework is mainly due to
the fact that formal verification results performed using the traditional semantics
of hybrid automata rely on un-implementable assumptions which cannot be used in
practice for deriving a correct hardware/software implementation in a systematic
way. For example, one of these assumptions is the synchrony hypothesis, i.e., the
capability of performing any computation in zero time units and forcing a change
in the dynamics of the hybrid system without delays, that is clearly an unrealistic
assumption.

To overcome this problem, we have identified that several steps are required
to obtain a correct implementation of a hybrid automaton-based model M of a
hybrid system.

At first, given the modelM , it is mandatory to retrieve, if it exists, a realizable
model MR which includes a controller that is implementable and is still able to
handle the surrounding physical environment satisfying all the safety properties
ϕsp used to check the correctness of M in the hybrid domain. In other words,
this step aims at automating the synthesis of an AASAP or lazy control strategy
for M which takes into account the digital and imprecise aspects of the hardware
device on which the actual control strategy is being executed. The goal of this
synthesis consists of establishing the performance bounds that any conservative
concrete hardware/software device implementing the embedded controller has to
satisfy. As a consequence, if a realizable model MR is identified, then its control
strategy can be translated into an embedded software that has to be executed on
a hardware device satisfying the synthesized performance bounds. In this context,
our main contributions can be summarized as follows:

• We developed tools and a synthesis procedure which make practical the appli-
cability of the Almost-ASAP semantics for synthesizing implementable control
strategies for relevant classes of hybrid automata. In particular, such tools ma-
nipulates CIF descriptions for generating the MR model (i.e., s-extract) and
translating it in suitable formalisms required for the formal verification (i.e.,
cif2phaver and cif2ariadne). The synthesis procedure, instead, identifies the
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performance bounds which enable the relaxed control strategy to satisfy its
safety properties. Notice that this procedure is model checker independent,
and, thus, different model checkers can be used according to the complexity of
the hybrid model dynamics to analyze.

• We defined a new methodology, supported by tools, for the synthesis of im-
plementable control strategies for the interesting class of lazy linear hybrid
automata. In particular, we defined a symbolic encoding of the set of reachable
states of a LLHA that reduces the synthesis of implementable control strategies
for LLHA to the reachability problem on LLHA, that is decidable. In fact, by
verifying the safety properties as reachability queries, the proposed represen-
tation makes possible to establish if there exists a lazy control strategy able
to handle the continuous plant by following finite-precision and discrete-time
behaviors. Such a representation is automatically generated by combining our
cif2uclid tool and the UCLID modeling environment. Then, our proposed syn-
thesis procedure can exploit different SMT solvers to identify the performance
bounds which enable the lazy control strategy to satisfy its safety properties.

The following step consists of modeling the identified implementable control
strategy specified by MR as an embedded software. Instead of manually defining
the code implementation, we proposed to adopt a model-driven design approach.
The control strategy behaviors are specified by means of graphic formalisms and
are synthesized into code implementing the embedded software in a systematic
way. This avoids the need of manual writing and fixing the code, because the
embedded software implementation is correct by construction, that is, it imple-
ments correctly the specified model behaviors. However, even if the model-driven
design simplifies the generation of the software, it does not prevent the designer
to wrongly define the software behaviors using the graphic formalisms. For this
reason, we supported the design phase with functional verification. We proposed
to perform functional verification by means of dynamic assertion-based verifica-
tion. Such a kind of verification uses formal temporal assertions for checking the
functional and temporal correctness of the embedded software model and, thus, of
its implementation. In this context, our main contributions can be summarized as
follows:

• We extended radCASE, an existing environment for model-driven design, code
generation, and simulation of embedded software, for supporting a dynamic
assertion-based verification approach. In particular, the internal engine of the
tool has been modified for generating from the UML-like description of the
specification it uses to synthesize the final C code, a corresponding EFSM
model to be used for automatic stimuli generation during verification.

• We defined and implemented a dynamic ABV environment for embedded soft-
ware, named radCHECK, which integrates a graphical assertion editor for
assisted assertion definition, a checker generator, and a stimuli generator to
simulate the embedded software. In particular:
– the assertion editor graphically supports the designer in defining formal as-

sertions from the informal specifications of the embedded software through
a large set of parametric templates.
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– the checker generator synthesizes the defined formal assertions into asser-
tion checkers which are automatically integrated into the simulation envi-
ronment.

– the stimuli generator provides the simulator with stimuli to efficiently cover
corner cases when checkers are simulated to determine the correctness of
the implementation w.r.t the specification;

The quality of the verification, strongly depends on the quality of the checked
assertions. For this reason, we introduced a further step in the refinement process.
Such a step aims at identifying the presence of vacuous assertions, i.e., assertions
that are trivially satisfied by the embedded software during the dynamic verifica-
tion and hide errors into either the software or the assertions themselves. Thus,
this kind of assertions can lead designers to a false sense of safety because they may
be meaningless or the embedded software implementation may be erroneous even
if all the defined assertions are satisfied. In this context, our main contributions
can be summarized as follows:

• We redefined the traditional notion of vacuity checking in such a way it can be
applied in the context of dynamic assertion-based verification of temporal as-
sertions defined according to the Simple Subset of PSL. In particular, unlike the
existing approaches in literature, we proposed a mutation-based approach that
does not require the definition and the verification of support assertions (i.e,
witness formulas) to generate the interesting witnesses to assertions vacuity,
reducing the computational complexity of the analysis;

• We extended the current vacuity checking methodologies to identify tautolog-
ical vacuity in a more accurate way.

• Finally, we implemented the proposed methodology into radCHECK.

5.1 Future works

Although we have achieved encouraging results, there are still possible extensions
and future works:

• The proposed methodology for synthesis of implementable control strategies
based on the AASAP semantics uses a reduction for Elastic controllers that
returns a description that is exponentially larger than the initial specification.
Indeed, the number of modes of the obtained automaton is larger by an expo-
nential factor in the number of inputs events of the Elastic controller. This state
explosion is not a problem from a theoretical point of view, but in practice it
does not allow to handle interesting industrial examples. The work in [47] pro-
poses an alternative reduction that is compositional. Instead of modeling the
Elastic controller with an unique timed automaton, the authors generate sev-
eral (smaller) timed automata whose composition behaves as the initial Elastic
controller interpreted using the AASAP semantics. However, the exponential
behavior can still appear during the verification phase but only in the worst
case. This solution is very interesting but it is model checker dependent: the
authors have defined transformation rules which exploit ad hoc constructs typ-
ical of HyTech or Uppaal model checkers. Thus, more generic rules could be
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investigated to avoid the model blow up and keep it compatible with different
model checkers, such as PHAVer and Ariadne.

• The proposed methodology requires that once the implementable control strat-
egy has been identified, it is manually refined into a discrete graphic formal-
ism to enable the embedded software generation. A very valuable extension
consists of automatically synthesize the control strategy into another model
suited for MDD of embedded software to enable the generation of a correct-
by-construction generation of the embedded code.

• Another valuable extension could be the refinement of the whole imple-
mentable model MR into a Stateflow-Simulink model. In this way, the inte-
grated Simulink embedded code generator can be used to obtain the embedded
software implementing the control strategy. Moreover, the Simulink environ-
ment can be used for further refinements to achieve a more detailed embedded
software specification definition.

• As a consequence, also the radCHECK environment should be extended to
support Simulink models verification. This requires the investigation of how to
automatically generate effective stimuli sequences for Simulink designs and in-
tegrate assertion checkers into the Simulink simulation environment. Although
the guided assertion definition infrastructure does not need modifications, fu-
ture works can be related to the investigation of property patterns suited for
Simulink designs.

• The proposed vacuity analysis approach could be extended by introducing a
preliminary check that analyzes the Büchi automata derived from assertions
to identify trivially valid formulas such as tautologies. Intuitively, the analysis
of the automaton structure allows to identify satisfiable and un-satisfiable as-
sertions. Thus, the un-satisfiability of ¬ϕ, i.e., the negation of an assertion ϕ,
proves the validity of ϕ. This preliminary analysis speeds up the identification
of vacuous assertions, and can be easily implemented into radCHECK. More
investigations can be performed to identify if other cases of vacuity can be
structurally determined avoiding the simulation of faulty checkers.
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140. J. Tong, M. Boulé, and Z. Zilic. Defining and Providing Coverage for Assertion-

Based Dynamic Verification. Journal of Electronic Testing, 26:211–225, 2010.
141. UC Berkeley EECS Dept. Ptolemy II, 2012.

http://ptolemy.berkeley.edu/ptolemyII/ .
142. University of Colorado. VIS, 1999. http://vlsi.colorado.edu/ ˜ vis .
143. J. Wegener, R. Pitschinetz, K. Grimm, and M. Grochtmann. TESSY - Yet An-

other Computer-Aided Software Testing Tool. In Proc. of European International
Conference on Software Testing, Analysis and Review (EuroSTAR), 1994.

144. G. Williams, M. Karlesky, and M. VanderVoord. Unity - Compact Test Framework
for C, 2012. http://sourceforge.net/projects/unity .

145. M. Winterholer. Transaction-based Hardware Software Co-Verification. In In Proc.
of Forum on Specification & Design Languages (FDL), 2006.

146. F. Xie and H. Liu. Unified Property Specification for Hardware/Software Co-
Verification. In Proc. of International Computer Software and Applications Confer-
ence (COMSAC), pages 483–490, 2007.

http://www.mathworks.it/products/matlab/
http://www.mathworks.com/products/simulink/
http://www.mathworks.it/help/toolbox/slvnv/ug/bs_ftl2.html
http://ptolemy.berkeley.edu/ptolemyII/
http://vlsi.colorado.edu/~vis
http://sourceforge.net/projects/unity

	Introduction
	Aims of the thesis
	Thesis overview

	Synthesis of implementable control strategies for HA
	Introduction
	Background
	Verification of HA
	Synthesis of implementable control strategies for HA
	Languages for HA specification

	Synthesis of implementable control strategies for generic HA
	Problem definition
	Contributions
	The AASAP semantics wulf2005almost
	Conservative abstraction of the control strategy wulf2005almost
	Synthesis procedure
	Experimental results

	Synthesis of implementable control strategies for LLHA
	Lazy Linear Hybrid Automata agrawal2005discrete
	Problem definition
	Contributions
	Symbolic BMC encoding
	Synthesis procedure
	Experimental Results

	Conclusions

	Model-driven design and verification of embedded software
	Introduction
	Framework overview and contributions

	State of the art
	Model-driven design of embedded software
	Dynamic ABV of embedded software

	Joining MDD and dynamic ABV: what is missing?
	Model-driven design for ABV of embedded software
	Model-driven design environment for embedded software
	Synchronous reactive model synthesis to embedded software
	The problem of timing references
	Model transformation to EFSM

	ABV for model-driven embedded software
	Assertion definition for model-driven embedded software
	Checker generation for model-driven embedded software

	EFSM-based stimuli generation
	Experimental results
	RadCase
	RadCheck

	Conclusions

	Vacuity analysis for assertion qualification in dynamic ABV
	Introduction
	Contributions

	State of the art
	Background
	Methodology overview
	Checker analysis
	Mutation-based vacuity analysis
	Tautological vacuity
	Pros and cons
	Experimental results
	Vacuity analysis in dynamic ABV of model-driven embedded software
	Vacuity analysis in dynamic ABV of ESL designs

	Conclusions

	Conclusions and future works
	Future works

	Part II Articles
	Published contributions
	Journal Publications
	International Conferences

	References


