12 research outputs found

    An Energy Efficient Data Collection Using Multiple UAVs in Wireless Sensor Network: A Survey Study

    Get PDF
       اليوم، مع التقدم العلمي والتكنولوجي في الروبوتات، والذكاء الاصطناعي، والسيطرة والحواسيب، المركبات البرية والجوية والبحرية قد تم الاهتمام بها. كما تم تحسين الطائرات بدون طيار (UAVs) بشكل كبير وهي مفيدة جدا للعديد من التطبيقات الهامة في الأعمال التجارية والبيئة الحضرية والعسكرية. أحد أهم استخدامات الطائرات بدون طيار في شبكات الاستشعار اللاسلكية (WSNs)  التي لديها طاقة منخفضة وقد لا تكون قادرة على الاتصال في مناطق واسعة. في هذه الحالة ، يمكن أن توفر الطائرة بدون طيار وسيلة لجمع بيانات WSN من جهاز واحد ونقلها إلى المستلم المقصود تركز هذه المقالة على مجال البحث في التطبيقات العملية للطائرات بدون طيار كجامع متنقل لشبكات الاستشعار اللاسلكية. أولا التحقيقات حول الطائرات بدون طيار المقترحة تم دراستها ومقارنة نقاط ضعفها مع بعضها البعض. وكذلك التحديات التقنية لتطبيقات الطائرات بدون طيار في شبكة الاستشعار اللاسلكية تم استكشافها.Today, with scientific and technological advances in robotics, artificial intelligence, control and computers, land, air, and sea vehicles, they have been considered. Unmanned aerial vehicles (UAVs) have also significantly improved and are very useful for many important applications in the business, urban and military environment. One of the important uses of UAVs in Wireless Sensor Networks (WSNs) is that devices with low energy and may not be able to communicate in large areas. Nevertheless, a UAV can provide a tool for collecting the data of WSN from one device and transmitting it to another device. This article focuses on the field of research on practical applications of UAVs as mobile collectors for wireless sensor networks. First, the investigations of the proposed UAV were studied and compared their weaknesses with each other. Then, the technical challenges of the applications of UAVs in the wireless sensor network were explored

    Predictive Maintenance in Industry 4.0

    Get PDF
    In the context of Industry 4.0, the manufacturing-related processes have shifted from conventional processes within one organization to collaborative processes cross different organizations, for example, product design processes, manufacturing processes, and maintenance processes across different factories and enterprises. The development and application of the Internet of things, i.e. smart devices and sensors increases the availability and collection of diverse data. With new technologies, such as advanced data analytics and cloud computing provide new opportunities for flexible collaborations as well as effective optimizing manufacturing-related processes, e.g. predictive maintenance. Predictive maintenance provides a detailed examination of the detection, location and diagnosis of faults in related machinery using various analyses. RAMI4.0 is a framework for thinking about the various efforts that constitute Industry 4.0. It spans the entire product life cycle & value stream axis, hierarchical structure axis and functional classification axis. The Industrial Data Space (now International Data Space) is a virtual data space using standards and common governance models to facilitate the secure exchange and easy linkage of data in business ecosystems. It thereby provides a basis for creating and using smart services and innovative business processes, while at the same time ensuring digital sovereignty of data owners. This paper looks at how to support predictive maintenance in the context of Industry 4.0. Especially, applying RAMI4.0 architecture supports the predictive maintenance using the FIWARE framework, which leads to deal with data exchanging among different organizations with different security requirements as well as modularizing of related functions

    Predictive Maintenance in Industry 4.0

    Get PDF
    In the context of Industry 4.0, the manufacturing-related processes have shifted from conventional processes within one organization to collaborative processes cross different organizations, for example, product design processes, manufacturing processes, and maintenance processes across different factories and enterprises. The development and application of the Internet of things, i.e. smart devices and sensors increases the availability and collection of diverse data. With new technologies, such as advanced data analytics and cloud computing provide new opportunities for flexible collaborations as well as effective optimizing manufacturing-related processes, e.g. predictive maintenance. Predictive maintenance provides a detailed examination of the detection, location and diagnosis of faults in related machinery using various analyses. RAMI4.0 is a framework for thinking about the various efforts that constitute Industry 4.0. It spans the entire product life cycle & value stream axis, hierarchical structure axis and functional classification axis. The Industrial Data Space (now International Data Space) is a virtual data space using standards and common governance models to facilitate the secure exchange and easy linkage of data in business ecosystems. It thereby provides a basis for creating and using smart services and innovative business processes, while at the same time ensuring digital sovereignty of data owners. This paper looks at how to support predictive maintenance in the context of Industry 4.0. Especially, applying RAMI4.0 architecture supports the predictive maintenance using the FIWARE framework, which leads to deal with data exchanging among different organizations with different security requirements as well as modularizing of related functions

    Semantic reasoning in cognitive networks for heterogeneous wireless mesh systems

    Get PDF
    The next generation of wireless networks is expected to provide not only higher bandwidths anywhere and at any time but also ubiquitous communication using different network types. However, several important issues including routing, self-configuration, device management, and context awareness have to be considered before this vision becomes reality. This paper proposes a novel cognitive network framework for heterogeneous wireless mesh systems to abstract the network control system from the infrastructure by introducing a layer that separates the management of different radio access networks from the data transmission. This approach simplifies the process of managing and optimizing the networks by using extendable smart middleware that automatically manages, configures, and optimizes the network performance. The proposed cognitive network framework, called FuzzOnto, is based on a novel approach that employs ontologies and fuzzy reasoning to facilitate the dynamic addition of new network types to the heterogeneous network. The novelty is in using semantic reasoning with cross-layer parameters from heterogeneous network architectures to manage and optimize the performance of the networks. The concept is demonstrated through the use of three network architectures: 1) wireless mesh network; 2) long-term evolution (LTE) cellular network; and 3) vehicular ad hoc network (VANET). These networks utilize nonoverlapped frequency bands and can operate simultaneously with no interference. The proposed heterogeneous network was evaluated using ns-3 network simulation software. The simulation results were compared with those produced by other networks that utilize multiple transmission devices. The results showed that the heterogeneous network outperformed the benchmark networks in both urban and VANET scenarios by up to 70% of the network throughput, even when the LTE network utilized a high bandwidth

    Dalle APP per la didattica alle APP nella didattica - Innovazioni per una didattica innovativa

    Get PDF
    Il Politecnico di Torino fin dal 2000 offre ai suoi studenti attraverso il Portale della didattica uno strumento ad alta pervasività (1Mlogin/mese) in grado di arricchire la didattica tradizionale di contenuti e tecnologie proprie degli ambienti di e-learning. L’articolo ripercorrendo rapidamente l’evoluzione dei servizi di supporto alla didattica erogati dal Politecnico di Torino, si focalizza sui nuovi metodi di trasferimento della conoscenza. In particolare presenta l’evoluzione dei ser-vizi web per la didattica da un modello tradizionale ad uno responsive fino ad approdare ad uno basato su App. Tali strumenti, pur essendo un validissimo supporto per la didattica blended, nell’accezione di metodi di apprendimento ibridi che combinano didattica in aula con sistemi e tecniche proprie dell’e-learning, e pur avendo un altissimo fattore di adozione da parte degli studenti, sono sempre rimasti al di fuori di processi didattici e di apprendimento. Portare la App all’interno di tali processi significa trasformarla in uno strumento innovativo utile ai meccanismi di interazione in tempo reale fra studenti e docente, uno strumento in grado di rendere la didattica in aula più partecipativa anche attraverso l’adozione di nuovi modelli di interazione non tradizionali e più vicini e consoni ai meccanismi di comunicazione dei millennials

    A distributed man-machine dispatching architecture for emergency operations based on 3GPP mission critical services

    Get PDF
    With the number of non-human devices expected to significantly overtake human users of LTE networks, it is no surprise that First Responders in Mission Critical operations will need to interact with an increasing number of unmanned devices, “bots” or drones. In the paper we propose the Mission Critical “bot” concept as an entity capable of gathering environmental/situational information and triggering certain automated actions without the need of human intervention. We prove that in certain circumstances these bots can help quickly resolve emergency situations and complement traditional centralized coordination from Dispatch Control Rooms. We explain how such “bots” relate and expand the 3GPP Mission Critical Communications architecture framework, considering different architectural approaches and complexity levels. Importantly, because First Responders must remain focused, hands-free and context-aware most of the time, we cover specifically the case where man-machine interaction is based on voice communication without having to use hands or look at a screen. It is hence of particular interest to convert “bot” interactions into audio information exchanged over push-to-talk communication services, be it through the cellular network or leveraging the 3GPP device-to-device capability. The paper is complemented with theoretical use cases as well as description and multimedia material of a prototype implementation of a concept emulator.Peer ReviewedPostprint (published version

    Simulação ao nível de sistema de comunicações por drone

    Get PDF
    A rede de acesso rádio de quinta geração, 5G NR, permite o acesso a uma vasta diversidade de novos serviços sobre a rede móvel, através da sua capacidade de fornecer aos clientes maiores ritmos binários, fiabilidade, eficiência espetral e uma latência reduzida. Os Unmanned Aerial Vehicles (UAVs), têm recebido grande atenção devido à sua mobilidade, capacidade de transporte, velocidade e adaptabilidade, o que poderá permitir o surgimento de novas ofertas no mercado. Uma das principais dificuldades impostas para a sua introdução são os requisitos necessários para o controlo do veículo, uma vez que deve ser garantida a segurança da missão, especialmente em missões para além da linha de vista. A reutilização das infraestruturas de rede móvel poderá ser uma solução, através da sua elevada capacidade de cobertura e pelo surgimento das redes de nova geração, que poderão finalmente dar resposta às exigências impostas no controlo de UAVs, especialmente em termos de fiabilidade e ritmos binários. Foi desenvolvido um simulador de nível de sistema que pretende analisar a performance de uma rede de acesso rádio 5G NR, em termos de throughput e de cobertura, quando esta, para além de servir os UEs terrestres convencionais, tem de servir os novos UEs aéreos, possibilitando o estudo do impacto da incorporação de UAVs nas redes móveis convencionais, nos cenários Rural Macro with Aerial Vehicle (RMa-AV), Urban Macro with Aerial Vehicle (UMa-AV) e Urban Micro with Aerial Vehicle (UMi-AV), utilizando-se a técnica de transmissão Massive Multi-Input Multi-Output (mMIMO) e uma técnica de clustering de TRPs.The fifth generation of the new radio access network, 5G NR, allows access to a vast diversity of new services through the mobile network, through their capacity to provide clients with higher data rates, reliability, spectral efficiency, and reduced latency. Unmanned Aerial Vehicles (UAVs) have been receiving large attention due to their mobility, capacity of transport, speed, and adaptability, which may allow the emergence of new offers to the market. One of the main difficulties imposed for their launch is the necessary requirements on the control of the vehicle, since it must be guaranteed the security of the mission, especially during beyond-line-of-sight missions. The reuse of the mobile network infrastructures may be one solution, through its high coverage capacity and the emergence of new mobile network generations, this could finally meet the demands imposed on the control of an UAV, especially in terms of reliability and data rate. It was developed a system-level simulator that intends to analyze the performance of a 5G NR radio access network, in terms of throughput and coverage, which, in addition to serving the conventional terrestrials users, it will also serve the new aerial users, enabling the study of the impact of the incorporation of UAVs into the conventional mobile networks, in the scenarios Rural Macro with Aerial Vehicle (RMa-AV), Urban Macro with Aerial Vehicle (UMa-AV) and Urban Micro with Aerial Vehicle (UMi-AV), using the transmission technique Massive Multi-Input Multi-Output (mMIMO) and a TRPs clustering technique

    Optimizing IETF multimedia signaling protocols and architectures in 3GPP networks : an evolutionary approach

    Get PDF
    Signaling in Next Generation IP-based networks heavily relies in the family of multimedia signaling protocols defined by IETF. Two of these signaling protocols are RTSP and SIP, which are text-based, client-server, request-response signaling protocols aimed at enabling multimedia sessions over IP networks. RTSP was conceived to set up streaming sessions from a Content / Streaming Server to a Streaming Client, while SIP was conceived to set up media (e.g.: voice, video, chat, file sharing, …) sessions among users. However, their scope has evolved and expanded over time to cover virtually any type of content and media session. As mobile networks progressively evolved towards an IP-only (All-IP) concept, particularly in 4G and 5G networks, 3GPP had to select IP-based signaling protocols for core mobile services, as opposed to traditional SS7-based protocols used in the circuit-switched domain in use in 2G and 3G networks. In that context, rather than reinventing the wheel, 3GPP decided to leverage Internet protocols and the work carried on by the IETF. Hence, it was not surprise that when 3GPP defined the so-called Packet-switched Streaming Service (PSS) for real-time continuous media delivery, it selected RTSP as its signaling protocol and, more importantly, SIP was eventually selected as the core signaling protocol for all multimedia core services in the mobile (All-)IP domain. This 3GPP decision to use off-the-shelf IETF-standardized signaling protocols has been a key cornerstone for the future of All-IP fixed / mobile networks convergence and Next Generation Networks (NGN) in general. In this context, the main goal of our work has been analyzing how such general purpose IP multimedia signaling protocols are deployed and behave over 3GPP mobile networks. Effectively, usage of IP protocols is key to enable cross-vendor interoperability. On the other hand, due to the specific nature of the mobile domain, there are scenarios where it might be possible to leverage some additional “context” to enhance the performance of such protocols in the particular case of mobile networks. With this idea in mind, the bulk of this thesis work has consisted on analyzing and optimizing the performance of SIP and RTSP multimedia signaling protocols and defining optimized deployment architectures, with particular focus on the 3GPP PSS and the 3GPP Mission Critical Push-to-Talk (MCPTT) service. This work was preceded by a detailed analysis work of the performance of underlying IP, UDP and TCP protocol performance over 3GPP networks, which provided the best baseline for the future work around IP multimedia signaling protocols. Our contributions include the proposal of new optimizations to enhance multimedia streaming session setup procedures, detailed analysis and optimizations of a SIP-based Presence service and, finally, the definition of new use cases and optimized deployment architectures for the 3GPP MCPTT service. All this work has been published in the form of one book, three papers published in JCR cited International Journals, 5 articles published in International Conferences, one paper published in a National Conference and one awarded patent. This thesis work provides a detailed description of all contributions plus a comprehensive overview of their context, the guiding principles beneath all contributions, their applicability to different network deployment technologies (from 2.5G to 5G), a detailed overview of the related OMA and 3GPP architectures, services and design principles. Last but not least, the potential evolution of this research work into the 5G domain is also outlined as well.Els mecanismes de Senyalització en xarxes de nova generació es fonamenten en protocols de senyalització definits per IETF. En particular, SIP i RTSP són dos protocols extensibles basats en missatges de text i paradigma petició-resposta. RTSP va ser concebut per a establir sessions de streaming de continguts, mentre SIP va ser creat inicialment per a facilitar l’establiment de sessions multimèdia (veu, vídeo, xat, compartició) entre usuaris. Tot i així, el seu àmbit d’aplicació s’ha anat expandint i evolucionant fins a cobrir virtualment qualsevol tipus de contingut i sessió multimèdia. A mesura que les xarxes mòbils han anat evolucionant cap a un paradigma “All-IP”, particularment en xarxes 4G i 5G, 3GPP va seleccionar els protocols i arquitectures destinats a gestionar la senyalització dels serveis mòbils presents i futurs. En un moment determinat 3GPP decideix que, a diferència dels sistemes 2G i 3G que fan servir protocols basats en SS7, els sistemes de nova generació farien servir protocols estandarditzats per IETF. Quan 3GPP va començar a estandarditzar el servei de Streaming sobre xarxes mòbils PSS (Packet-switched Streaming Service) va escollir el protocol RTSP com a mecanisme de senyalització. Encara més significatiu, el protocol SIP va ser escollit com a mecanisme de senyalització per a IMS (IP Multimedia Subsystem), l’arquitectura de nova generació que substituirà la xarxa telefònica tradicional i permetrà el desplegament de nous serveis multimèdia. La decisió per part de 3GPP de seleccionar protocols estàndards definits per IETF ha representat una fita cabdal per a la convergència del sistemes All-IP fixes i mòbils, i per al desenvolupament de xarxes NGN (Next Generation Networks) en general. En aquest context, el nostre objectiu inicial ha estat analitzar com aquests protocols de senyalització multimèdia, dissenyats per a xarxes IP genèriques, es comporten sobre xarxes mòbils 3GPP. Efectivament, l’ús de protocols IP és fonamental de cara a facilitar la interoperabilitat de solucions diferents. Per altra banda, hi ha escenaris a on és possible aprofitar informació de “context” addicional per a millorar el comportament d’aquests protocols en al cas particular de xarxes mòbils. El cos principal del treball de la tesi ha consistit en l’anàlisi i optimització del rendiment dels protocols de senyalització multimèdia SIP i RTSP, i la definició d’arquitectures de desplegament, amb èmfasi en els serveis 3GPP PSS i 3GPP Mission Critical Push-to-Talk (MCPTT). Aquest treball ha estat precedit per una feina d’anàlisi detallada del comportament dels protocols IP, TCP i UDP sobre xarxes 3GPP, que va proporcionar els fonaments adequats per a la posterior tasca d’anàlisi de protocols de senyalització sobre xarxes mòbils. Les contribucions inclouen la proposta de noves optimitzacions per a millorar els procediments d’establiment de sessions de streaming multimèdia, l’anàlisi detallat i optimització del servei de Presència basat en SIP i la definició de nous casos d’ús i exemples de desplegament d’arquitectures optimitzades per al servei 3GPP MCPTT. Aquestes contribucions ha quedat reflectides en un llibre, tres articles publicats en Revistes Internacionals amb índex JCR, 5 articles publicats en Conferències Internacionals, un article publicat en Congrés Nacional i l’adjudicació d’una patent. La tesi proporciona una descripció detallada de totes les contribucions, així com un exhaustiu repàs del seu context, dels principis fonamentals subjacents a totes les contribucions, la seva aplicabilitat a diferents tipus de desplegaments de xarxa (des de 2.5G a 5G), així una presentació detallada de les arquitectures associades definides per organismes com OMA o 3GPP. Finalment també es presenta l’evolució potencial de la tasca de recerca cap a sistemes 5G.Postprint (published version

    Simulação a nível de sistemas 5G através da utilização de ondas milimétricas

    Get PDF
    Devido à necessidade de atender aos requisitos associados ao mercado móvel cada vez mais exigente, a quinta geração (5G) de comunicações sem fio é caracterizada por proporcionar alta eficiência espectral (SE) e elevada eficiência energética (EE). Neste enquadramento, surgem tecnologias fundamentais para redes de próxima geração, como os sistemas massivos com múltiplas entradas e múltiplas saídas (M-MIMO) baseados em modulação espacial generalizada (GSM), a qual constitui um caso específico de modulação de índices (IM). Nestes sistemas, torna-se possível a utilização de ondas milimétricas (mmWave), as quais permitem providenciar taxas de dados mais elevadas, embora introduzam limitações na cobertura, devido ao aumento da atenuação do sinal. Com o intuito de avaliar o desempenho da comunicação milimétrica em sistemas 5G, efetuou-se o desenvolvimento e atualização de um simulador a nível de sistema, de forma a simular uma rede 5G New Radio (NR), incluindo a implementação de três cenários tridimensionais distintos (UMa, UMi - Street canyon e InO), aplicando diferentes modulações e a mesma numerologia e faixa de frequência. Numa segunda etapa, procedeu-se à análise e discussão dos resultados obtidos, derivados das diversas simulações elaboradas, tanto a nível de "throughput", em função do número de utilizadores e do número de antenas TRP ativas, como a nível de cobertura. Assim, os resultados indicam que os cenários "outdoor", particularmente o cenário UMa, apresentam melhor desempenho e, a nível de "throughput", a modulação 64QAM permite alcançar resultados mais elevados, enquanto que, a nível de cobertura, a modulação QPSK apresenta a melhor performance.Due to the need to meet the requirements of the increasingly demanding mobile market, the fifth generation (5G) of wireless communications is characterized by providing high spectral efficiency (SE) and high energy efficiency (EE). Therefore, there are emerging fundamental technologies used for the next generation networks, such as massive multiple-input multiple-output systems (M-MIMO) based on generalized spatial modulation (GSM), which constitutes a particular case of index modulation (IM). In these systems, it is possible to use millimeter waves (mmWave), which provide extreme data rates, although limitations in coverage are introduced due to the increased signal attenuation. With the purpose of evaluate the performance of millimeter wave communication in 5G systems, a system-level simulator was developed and updated, in order to simulate a 5G New Radio (NR) network, where three different three-dimensional scenarios (UMa, UMi – Street canyon and InO) were employed, using different modulations and the same numerology and frequency range. In a second phase, the results obtained from the system level simulations were analysed and discussed, both in terms of throughput, depending on the number of users and the number of active TRP antennas, and in terms of coverage. Consequently, the results indicate that outdoor scenarios, particularly the UMa scenario, can achieve an improved performance and, in terms of throughput, 64QAM modulation is able to obtain superior results, while, in terms of coverage, QPSK modulation presents the best performance

    Dual operative radar for vehicle to vehicle and vehicle to infrastructure communication

    Get PDF
    The research presented in this Thesis deals with the concepts of joint radar and communication system for automotive application. The novel systems developed include a joint radar and communication system based on the fractional Fourier transform (FrFT) and two interference mitigation frameworks. In the joint radar and communication system the FrFT is used to embed the data information into a radar waveform in order to obtain a signal sharing Linear Frequency Modulation (LFM) characteristics while allowing data transmission. Furthermore, in the proposed system multi user operations are allowed by assigning a specific order of the FrFT to each user. In this way, a fractional order division multiplexing can be implemented allowing the allocation of more than one user in the same frequency band with the advantage that the range resolution does not depend on the number of the users that share the same frequency band but only from the assigned of the FrFT. Remarkably, the predicted simulated radar performance of the proposed joint radar and communication system when using Binary Frequency Shift Keying (BFSK) encoding is not significantly affected by the transmitted data. In order to fully describe the proposed waveform design, the signal model when the bits of information are modulated using either BFSK or Binary Phase Shift Keying (BPSK) encoding is derived. This signal model will result also useful in the interference mitigation frameworks. In multi user scenarios to prevent mutual radar interference caused by users that share the same frequency band at the same time, each user has to transmit waveforms that are uncorrelated with those of other users. However, due to spectrum limitations, the uncorrelated property cannot always be satisfied even by using fractional order division multiplexing, thus interference is unavoidable. In order to mitigate the interference, two frameworks are introduced. In a joint radar communication system, the radar also has access to the communication data. With a near-precision reconstruction of the communication signal, this interference can be subtracted. In these two frameworks the interfering signal can be reconstructed using the derived mathematical model of the proposed FrFT waveform. In the first framework the subtraction between the received and reconstructed interference signals is carried out in a coherent manner, where the amplitude and phase of the two signals are taken into account. The performance of this framework is highly depend on the correct estimation of the Doppler frequency of the interfering user. A small error on the Doppler frequency can lead to a lack of synchronization between the received and reconstructed signal. Consequently, the subtraction will not be performed in a correct way and further interference components can be introduced. In order to solve the problem of the lack of the synchronization an alternative framework is developed where the subtraction is carried out in non-coherent manner. In the proposed framework, the subtraction is carried out after that the received radar signal and the reconstructed interference are processed, respectively. The performance is tested on simulated and real signals. The simulated and experimental results show that this framework is capable of mitigating the interference from other users successfully.The research presented in this Thesis deals with the concepts of joint radar and communication system for automotive application. The novel systems developed include a joint radar and communication system based on the fractional Fourier transform (FrFT) and two interference mitigation frameworks. In the joint radar and communication system the FrFT is used to embed the data information into a radar waveform in order to obtain a signal sharing Linear Frequency Modulation (LFM) characteristics while allowing data transmission. Furthermore, in the proposed system multi user operations are allowed by assigning a specific order of the FrFT to each user. In this way, a fractional order division multiplexing can be implemented allowing the allocation of more than one user in the same frequency band with the advantage that the range resolution does not depend on the number of the users that share the same frequency band but only from the assigned of the FrFT. Remarkably, the predicted simulated radar performance of the proposed joint radar and communication system when using Binary Frequency Shift Keying (BFSK) encoding is not significantly affected by the transmitted data. In order to fully describe the proposed waveform design, the signal model when the bits of information are modulated using either BFSK or Binary Phase Shift Keying (BPSK) encoding is derived. This signal model will result also useful in the interference mitigation frameworks. In multi user scenarios to prevent mutual radar interference caused by users that share the same frequency band at the same time, each user has to transmit waveforms that are uncorrelated with those of other users. However, due to spectrum limitations, the uncorrelated property cannot always be satisfied even by using fractional order division multiplexing, thus interference is unavoidable. In order to mitigate the interference, two frameworks are introduced. In a joint radar communication system, the radar also has access to the communication data. With a near-precision reconstruction of the communication signal, this interference can be subtracted. In these two frameworks the interfering signal can be reconstructed using the derived mathematical model of the proposed FrFT waveform. In the first framework the subtraction between the received and reconstructed interference signals is carried out in a coherent manner, where the amplitude and phase of the two signals are taken into account. The performance of this framework is highly depend on the correct estimation of the Doppler frequency of the interfering user. A small error on the Doppler frequency can lead to a lack of synchronization between the received and reconstructed signal. Consequently, the subtraction will not be performed in a correct way and further interference components can be introduced. In order to solve the problem of the lack of the synchronization an alternative framework is developed where the subtraction is carried out in non-coherent manner. In the proposed framework, the subtraction is carried out after that the received radar signal and the reconstructed interference are processed, respectively. The performance is tested on simulated and real signals. The simulated and experimental results show that this framework is capable of mitigating the interference from other users successfully
    corecore