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ABSTRACT 

In the context of Industry 4.0, the manufacturing related processes 

have shifted from conventional processes within one organization 

to collaborative processes cross different organizations, for 

example, product design processes, manufacturing processes, and 

maintenance processes across different factories and enterprises. 

The development and application of Internet of things, i.e. smart 

devices and sensors increases availability and collection of diverse 

data. With new technologies, such as advanced data analytics and 

cloud computing provide new opportunities for flexible 

collaborations as well as effective optimizing manufacturing 

related processes, e.g. predictive maintenance. Predictive 

maintenance provides a detailed examination of the detection, 

location and diagnosis of faults in related machineries using 

various analyses. RAMI4.0 is a framework for thinking about the 

various efforts that constitute Industry 4.0. It spans the entire 

product life cycle & value stream axis, hierarchical structure axis 

and functional classification axis. The Industrial Data Space (now 

International Data Space) is a virtual data space using standards 

and common governance models to facilitate the secure exchange 

and easy linkage of data in business ecosystems. It thereby 

provides a basis for creating and using smart services and 

innovative business processes, while at the same time ensuring 

digital sovereignty of data owners. This paper looks at how to 

support predictive maintenance in the context of Industry 4.0?  

Especially, applying RAMI4.0 architecture supports the predictive 

maintenance using FIWARE framework, which leads to deal with 

data exchanging among different organizations with different 

security requirements as well as modularizing of related functions. 
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1 Introduction 

Being widely adopted by industry, the focus of BPM, “a 

systematic and structured approach to analyze, improve, control, 

and manage business processes” face new challenges and 

opportunities. Process models focusing only on the control flow 

become insufficient. The dynamic nature of market demands, 

competitions and globalization, short life cycle of product force 

organizations to work beyond its boundary including 

machines/devices collaboration [1, 2, 3]. This demands enterprises 

with different business interests and competitiveness to work 

together for a defined business goal [3]. 

Collaboration enables multiple partners to produce a common 

business goal by integrating their agreed business process [3]. 

Traditional manufacturing like physical machines, devices, etc. 

are slow, long process, expensive as well as inefficient in dealing 

with the challenges created by short product lifecycle, dynamic 

nature of market demands, competitions and globalization [1]. 

Collaborative business processes are required being moved across 

factories and enterprises to effectively manage and ease the life 

cycle of production and its demands [1, 4]. For instance, virtual 
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factory, a major expansion upon virtual enterprises in the context 

of manufacturing, enable the creation of new business ecosystems 

by integrating the collaborative business processes from different 

enterprises to simulate, model and test different design options, to 

evaluate performance, saving time-to-production [4]. 

Modular collaboration, the capability of enabling plugin or re-

configure processes, devices, machines without a need for 

extensive re-development/engineering effort, is essential to 

enabling the flexibility (plugin/out) for cross-organizations to 

work seamlessly [1]. This means that organizations can connect 

devices with required data to perform business functions, enabling 

the maximum capacity of establishing instant collaboration among 

collaborative partners [1]. However, collaborative business 

process requires maintaining trust and transparency among 

partners [5]. Traditional collaborative business processes typically 

operate by exchanging messages between different partners via 

web services or sharing a collaborative database [6, 7].  These 

collaborations are often based on the centralized approach, which 

requires an authorized agent and subsequently poses challenges 

such as trust and traceability [5]. 

Blockchain as data storage has the potential to provide trust 

and traceability of business process data for the collaborative 

environment. Several attempts have made in the research 

community to provide solutions for collaborative business process 

based on blockchain technology [5, 9, 30, 31, 34]. However, 

blockchain technology platform still poses several key challenges 

including scalability, performance, security and business use cases 

[5, 8, 9]. One important approach to tackling these challenges is to 

take advantage of blockchain as data asset approach, rather than 

running collaborative business processes entirely. 

The emerging Industry 4.0 drives the focus of modern 

industrial collaborative computing [10]. Industry 4.0 is defined as 

“the flexibility that exists in value-creating networks is increased 

by the application of Cyber Physical Systems (CPS). This enables 

machines and plants to adapt their behaviours to changing orders 

and operating conditions through self-optimization and 

reconfiguration” [11]. Essentially the data exchanged and 

produced in such interaction among several components 

establishes the underlying business processes for collaboration.  

With the demand for data to flow across different collaborative 

domains, new important challenge like data sharing, transparency 

and traceability arise. Besides, the huge amount of data 

heterogeneous generated and collected from the many connected 

devices such as sensors, processes and systems pose challenges 

and opportunities such as data driven discoveries such as analytics 

[12, 13, 14]. The continuous growth of big data and its usage can 

provide new opportunities to operations and maintenance process 

to be proactive with ongoing equipment maintenance and upkeep 

[12, 13, 15]. This enables to predict upcoming potential issues in a 

system or equipment and, therefore utilize maintenance in a 

predictive manner, rather than relying on the costly approaches 

such as manual and random maintenance. However, the huge 

volumes of data become impossible for the traditional data 

processing and tools for analytics with a flexible and modular 

platform in the context of Industry 4.0 [1, 10, 14, 16]. 

This paper looks at how to support predictive maintenance in 

the context of Industry 4.0 by applying RAMI4.0 architecture 

supports the predictive maintenance using FIWARE framework, 

which leads to deal with data exchanging among different 

organizations with different security requirements as well as 

modularizing of related functions. The contributions of this work 

are: a) to design a predictive maintenance analytics platform 

based on RAMI 4.0 and FIWARE, b) to investigate and introduce 

a collaborative data exchange method based on IDS and 

Blockchain, and c) using the design predictive maintenance 

platform to present the application case. 

The structure of the paper is as follows: Application case for 

predictive maintenance and background are provided in Section 2 

and 3. IDS and blockchain for predictive maintenance, and the 

proposed design solution are presented in Section 4 and 5. A short 

discussion is presented in section 6, and the future work and 

conclusion are provided in Section 7. 

2 Application case for predictive maintenance 

The performance and condition of the production equipments are 

critical to the whole manufacturing process. Any unplanned 

failure or inefficient process of a component of manufacturing 

equipment can have a negative economic impact for an entire 

production line, resulting unplanned downtime and costs [17, 18]. 

Traditional maintenance approaches such as manual maintenance 

is inefficient and cumbersome in collecting equipment data due to 

the general concern of trust, discrete support and limited data 

available from competitive equipment manufacturers. Internet of 

technology like RFID/sensor technology enables to collect data 

but the process is complex, and the huge volumes of data is 

impossible for the traditional data processing and tools for 

producing meaningful information [16].  

The continuous collection of huge data and its usage from the 

equipment can provide new opportunities to operations and 

maintenance process to be proactive with ongoing equipment 

maintenance and upkeep [17, 18]. This enables to optimize the 

operation and condition of the equipment as well as predict future 

potential issues in a system or equipment and, therefore utilize 

maintenance in a predictive manner. In order to achieve an 

optimal maintenance decision making, new approach should be in 

place to integrate multiple data sources from different data 

domains. Typically, production data, machine functional and 

operational data, and sensor data are all required for analysis 

(real-time, off-line) and used to build models for predicting 

machine failure or inefficient process or poor product quality 

reducing failure times and costs. 

A flexible manufacturing factory consists of a processing 

system, a logistics system, an information system, and an 

auxiliary system. A concrete scene of the flexible factory is shown 

in Figure 1. The processing system in the scene consists of 4 sets 

of equipment, which consists of a three-dimensional warehouse, 

numbers of AGV trolleys, three robots, a carrier board and a 

carrier plate. Coordinate measuring machine (CMM) is 

responsible for the measurement. A cleaning machine and a 
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drying machine are responsible for cleaning and drying the 

workpiece. 

 

 

Figure 1: Flexible Manufacturing Factory 

The workpiece is put on a universal tray with high re-

positioning accuracy, which allows the different workpieces can 

be easily and quickly positioned and clamped. The RFID chip 

with the identification of each workpiece is fixed on the tray. 

After all workpieces are loaded on a carrier board, the carrier 

board is transported from the preparation area into the rough 

machining area by an AGV. 

Depending on the processing requirements of each workpiece, 

the robot moves a workpiece to the roughing equipment for 

roughing machining, after roughing, the robot moves the 

workpiece for cleaning and drying equipment for cleaning and 

drying, and then the workpiece is transported by the robot to the 

area to wait for fine machining. The fine machining is similar to 

roughing machining. The robot moves the roughing finishing 

workpiece into the machine, and after processing, it is transported 

for cleaning and drying. 

At the quality control stage, the finished workpiece is carried 

by the robot to the three-coordinate measuring machine. After the 

test is completed, the workpiece is moved to the area to further 

processes. If the result of the quality control is not satisfied, the 

workpiece may need to be redone. If the result of the quality 

control is fine, the workpiece is moved to a warehouse or to be 

packed using AGV. 

If the quality of a numbers of finished workpieces is not good, 

the manufacturing process of the product line will be interfered. 

According to [19], measuring the dimensional and geometric 

errors is carried out using laser interferometer, co-ordinate 

measuring machine (CMM), 3D probe ball bar system. CMM 

measures all the possible coordinates in a modelled component in 

X, Y, Z direction of related equipment, such as CNC. The results 

of measurements are the input of error correction algorithm and 

feedback to the CNC for finalizing the compensation and error 

corrections. 

 

3 Background 

3.1 Industry 4.0 

Industry 4.0 is defined as “the flexibility that exists in value-

creating networks is increased by the application of Cyber 

Physical Systems (CPS). This enables machines and plants to 

adapt their behaviour to changing orders and operating conditions 

through self-optimization and reconfiguration” [11]. Industry 4.0 

is being considered by the existence of several components 

interactions among interconnected devices i.e. sensors, actuators 

and computation services [10]. Essentially the data exchanged and 

produced in such interaction among several components 

establishes the underlying business processes for collaboration. 

With the huge amount of heterogeneous data generated and 

collected from the many connected devices such as sensors, 

processes and systems pose challenges as well as opportunities 

such as data driven discoveries such as analytics [12, 13]. 

 

 

Figure 2: Reference Architecture Model Industry 4.0 [11] 

Reference Architecture Model Industry (RAMI) 4.0 simplifies 

the fourth industrial revolution by providing a template with a 

three-dimensional model representing different complex 

components, sub-models and processes [11]. It comprises of 

hierarchy levels, architecture layers and lifecycle value stream. 

The hierarchy levels concern with the factory levels which 

includes collaborative organizations, factories, goods, devices, 

suppliers and customers (i.e. product, field device, control device, 

station, work centers, enterprise, and connected world) [11, 20]. 

The architecture layers represent six different components naming 

asset, integration, communication, information, functional and 

business and these components are essential to the development of 

system solutions for manufacturing network operations in a 

consistent manner [11]. The lifecycle value stream concerns with 

the value creation in the process of development and production in 

conjunction with maintenance usage. The value stream can be 

realized by the utilization of the constant data generated from the 

production lifecycle and the digitization of the whole development 

and market chain that offers opportunities for improvement of 

products, machines and other aspects [20]. At this stage, there 

remains a lack of coherent mapping and modelling of components, 
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processes of RAMI 4.0 in manufacturing operations, specifically 

in real world implementation [10, 21]. 

 

3.2 FIWARE 

FIWARE is an open source platform for building smart solutions 

gather data from many different sources (including but not limited 

to IoT) to build a “picture” of the real world and then process and 

analyse that information in order to implement the desired 

intelligent behaviour (which may imply changing the real world) 

[22]. There are five components, namely context processing, 

analysis and visualization at the top of Figure 3; core context 

management (context blocker) at the middle top of Figure 3; 

Internet of Things (IoT), robots and third-party systems at the 

bottom of Figure 3; data/API management, publication and 

monetization at the right of Figure 3; and development tools at the 

left of Figure 3. 

 

 

Figure 3: FIWARE platform architecture overview [24] 

1. Context processing, analysis and visualization of context 

information, bringing support to usage control and the 

opportunity to publish and monetize part of managed context 

data. 

2. Core Context Management (Context Broker) allows to model 

manage and gather context information at large scale 

enabling context-aware applications with the FIWARE 

context information model [23, 24]. 

3. Internet of Things (IoT), robots and third-party systems, 

defines interfaces for capturing updates on context 

information and translating required actuations. 

4. Data/API management, publication and monetization, 

implementing the expected smart behaviour of applications 

and/or assisting end users in making smart decisions. 

5. Deployment tools support easing the deployment and 

configuration of FIWARE or third-party components and 
their integration with FIWARE Context Broker technology. 

Different components map into FIWARE GEs [25], i.e. 

development of context-aware applications (Orion, STH-Comet, 

Cygnus, QuantumLeap, Draco); connection to the Internet of 

Things (IDAS, OpenMTC); real-time processing of context events 

(Perseo); handling authorization and access control to APIs 

(Keyrock, Wilma, AuthZForce, APInf); publication and 

monetization of context information (CKAN extensions, Data/API 

Biz Framework, IDRA); creation of application dashboards 

(Wirecloud); real-time processing of media streams (Kurento); 

business intelligence (Knowage); connection to robots (Fast 

RTPS, Micro XRCE-DDS); big data context analysis (Cosmos); 

cloud edge (FogFlow); documents exchange (Domibus). 

With the constant development of IoT applications and 

devices, the ability to support not only open standards but also 

dynamic data becomes critical [26]. There is a need to gather and 

manage context information that allows the manufacturing 

process to be dynamic. The processing of that information and 

informing external actors, enables the information to actuate and 

therefore alter or enrich the current context in the context of 

modular and flexible manufacturing platform. FIWARE allows 

for a pick and mix approach in additional to its GE components, 

allowing the integration of other third platform components to 

design a hybrid platform. 

The FIWARE context broker component is the core of the 

FIWARE platform [24]. It enables the system to perform updates 

and access to the current state of context. The Context Broker in 

turn is surrounded by a suite of additional platform components, 

which may be supply context data from diverse sources such as a 

CRM system, social networks, mobile apps or IoT sensors for 

example, supporting processing, analysis and visualization of data 

or bringing support to data access control, publication or 

monetization. 

3.3 Industrial Data Space (IDS) 

The Industrial Data Space (now International data space) is a 

virtual data space using standards and common governance 

models to facilitate the secure exchange and easy linkage of data 

in business ecosystems [27]. It thereby provides a basis for 

creating and using smart services and innovative business 

processes, while at the same time ensuring digital sovereignty of 

data owners [27]. The Industrial Data Space initiative was 

launched in Germany at the end of 2014 by representatives from 

business, politics, and research [28]. Meanwhile, it is an explicit 

goal of the initiative to take both the development and use of the 

platform to a Global level [28]. 

Data sovereignty is a central aspect of the International Data 

Spaces [27]. It can be defined as a natural person’s or corporate 

entity’s capability of being entirely self-determined with regard to 

its data [27]. It is also the base of building virtual factory or 

building a co-design and co-creation product platform. In 

compliance with common system architecture models and 

standards, the Reference Architecture Model uses a five-layer 

structure expressing various stakeholders’ concerns and 

viewpoints at different levels of granularity [27, 28]. The general 

structure of the Reference Architecture Model is illustrated in 

Figure 4 [27].  

The model is made up of five layers: The Business Layer 

specifies and categorizes the different roles which the participants 

of the Industrial Data Spaces can assume, and it specifies the main 

activities and interactions connected with each of these roles [27]. 
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The Functional Layer defines the functional requirements of the 

International Data Spaces, plus the concrete features to be derived 

from these [27]. The Process Layer specifies the interactions 

taking place between the different components of the Industrial 

Data Spaces; using the BPMN notation, it provides a dynamic 

view of the Reference Architecture Model [27]. The Information 

Layer defines a conceptual model which makes use of linked-data 

principles for describing both the static and the dynamic aspects 

of the Industrial Data Space’s constituents [27]. The System Layer 

is concerned with the decomposition of the logical software 

components, considering aspects such as integration, 

configuration, deployment, and extensibility of these components 

[27]. 

In addition, the Reference Architecture Model comprises three 

perspectives that need to be implemented across all five layers: 

Security, Certification, and Governance [27]. 

 

 

Figure 4: General Structure of Reference Architecture Model 

[27] 

3.4 Blockchain 

Blockchain is a distributed database, a technology platform for 

decentralized and transactional data sharing across a large 

network with connected users [29, 30]. A transaction can be any 

kind of value, money, goods, property, or votes. This transaction 

stores a timestamped list of blocks which record, share, and 

aggregate data that have ever recorded onto the blockchain 

network [30]. Cryptographic proofs make this data storage 

effectively tamper-proof [30]. Essentially, blockchain offers a 

decentralized, distributed and peer-to-peer transaction system 

across a network of users [29]. 

A Blockchain has some important features by design: 

1. Decentralization: As being the nature of a decentralized 

platform, it removes the need for any third-party organization 

‘the middle-man’ and hence enables the users to build trust 

with better transparency [31, 32].  

2. Data integrity: All data stored in the Blockchain is hard to 

revise or tamper with [ 29, 33]. 

3. Transparency and auditability: The transactions conducted on 

the blockchain are transparent and allow for subsequent 

audits anytime [31].  

4. Automation: Smart contracts are self-executing scripts [31], 

that can be stored and executed on the Blockchain, i.e. 

Ethereum Blockchain. This makes it possible to incorporate 

effects or to check conditions using smart contracts. 

 

Besides, other design important ones are the differentiation 

between public and private choose and between permission-less 

and permissioned [34]. In a public Blockchain, anyone can join 

the network whereas in a private Blockchain only certain parties 

can join in the Blockchain network. In the same way, a 

permission-less Blockchain allows anyone to approve new blocks, 

i.e. for mining, whereas in a permissioned Blockchain, only 

certain parties can approve new blocks. 

The concepts of blockchain are essential for business processes 

in this way: blockchain is a technology platform for decentralized 

and transactional data sharing across a network of untrusted 

participants. It enables the participants to find the shared state of 

transactions happened within the network without a central 

authority or any participant, and hence provides transparency and 

traceability of the truth [30, 35]. Cryptographic proofs make this 

data storage immutable. 

Blockchain also offer a computational infrastructure to run 

smart contracts which can be executed by machines [30, 35]. 

Smart contracts can be used to implement business collaborations 

in general as well as inter-organizational business processes [9]. 

Untrusted parties can establish trust in the truthful execution of 

the code [5]. 

However, blockchain technology is still at an early stage of 

business adoption, especially from the perspective of technical 

challenges and limitations of the technology [35]. [29] 

summarizes seven of the technology’s challenges and limitations: 

throughput, latency, size and bandwidth, security, wasted 

resources, usability, and versioning, hard forks and multiple 

chains. Furthermore, challenges such as scalability and 

manageability, i.e. conflict resolution need to be addressed. 

3.5 Predictive Maintenance 

The efficient management of maintenance activities is becoming 

essential to decreasing the costs associated with downtime and 

defective products [17], especially in highly competitive advanced 

manufacturing industries. This means that effective maintenance 

helps to keep the life cycle cost down and ensures expected 

operations. 

Approaches to maintenance management can be divided into 

different groups which, in order of increasing complexity and 

efficiency [18], are as follows: 

1. Run-to-Failure: where maintenance interventions are 

performed only after the occurrence of failures.  

2. Preventive Maintenance: where maintenance actions are 

carried out according to a planned schedule based on time or 

process iterations. 

3. Condition-based maintenance: when the actions on the 

process are taken after the verification of one or more 

conditions indicating a degradation of the process or the 

equipment.  
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4. Predictive Maintenance: where maintenance is performed 

based on an estimate of the health status of a piece of 

equipment [36]. Predictive Maintenance systems allow 

advance detection of pending failures and enable timely pre-

failure interventions, utilizing prediction tools based on 

historical data, ad hoc defined health factors, statistical 

inference methods, and engineering approaches. 

 

The development and applications of Internet of things i.e. 

smart devices, sensors, the increasing availability of huge data and 

cloud computing make the industry to be more effective in 

decision-making process [14, 16]. It offers opportunities to the 

industry to enhance capabilities such as monitoring, scheduling, 

maintenance management and quality improvement by the 

deployment of physical and virtual sensors enabling them to act 

ahead of time [18]. This means that a potential problem can be 

investigated before they arise in order to avoid or mitigate the 

impact of a future failure. Data-driven with machine learning 

approaches are recognized in providing the rising effective 

solutions in facilitating the decision-making process, assisted by 

the progressive capabilities of cloud computing, big data, machine 

learning, and analytics [14, 16]. However, there still exists several 

challenges in predictive maintenance and its data management due 

to the complexity and implementation, the capacity to manage big 

data with the nature of being dynamic and complex associations 

[16]. 

At this stage, there remains lack of a coherent Predictive 

Maintenance Platform in the manufacturing industry, particularly 

with RAMI 4.0 and FIWARE. Several conceptual frameworks for 

predictive maintenance have been proposed in the research 

community [37, 38, 39, 40, 41, 42, 43]. The most recent approach 

proposes a Predictive Maintenance based on RAMI 4.0, 

subsequently provided a case study based on the proposed 

solution [43]. However, several key factors should be considered 

in designing Predictive Maintenance Platform. These important 

factors include open collaborations based on industry open 

standards, the capability of modular design i.e. to easily act 

dynamically based on demands and needs (pluggable 

components). FIWRAE, open source framework with modular 

architecture can provide a solution responding to the complex and 

dynamic manufacturing environment. 

4 IDS and Blockchain for Predictive 

Maintenance 

4.1 IDS for Predictive Maintenance 

In the development of Internet of things, manufacturing 

organizations are turning into data-driven approach in dealing 

with maintenance, particularly in the predictive aspect, to keep the 

life cycle cost down and ensure expected operations. Industrial big 

data enabled platforms as well as diverse data from both internal 

and external sources are essential to effectively implement the 

predictive capability [44]. Predictive maintenance management 

requires sharing data on production and inventory levels among 

networked partner firms, as well as the changing consumer 

demands [45]. Thus, it necessitates exploring the data sharing 

economy, sourcing data from different sources and providers such 

as external and data marketplaces, open data to enhance analytics. 

In a complex and increasing competitive industries like 

manufacturing, collaborative business processes face several 

challenges such as data transparency, consistency and traceability 

[5, 9, 46]. For example, a typical collaboration in manufacturing 

chain, the certification of design and product quality and 

dynamically controlling production processes contribute to the 

problem domain of output deficiencies as well as leak of patent. 

IDS model facilitates secure data exchange by providing data 

sovereignty to data owners i.e. transparency of policy, data flow, 

usage and access across the parties [27, 28]. The IDS model 

provides a base model for the implementation of data sharing. 

Data sharing enhances decision making process, for example, by 

the usage of data from production sensors i.e. equipment, logistics, 

weather and traffic data in the analytics enables to plan effective 

production and distribution network [44]. Regarding predictive 

aspect, the implementation of IDS model can improve prediction 

results because data quality and consistency are maintained 

throughout its movement across multiple parties or systems. Most 

of all, the implementation of IDS model enables full data 

transparency i.e. traced with a high degree of trust, providing the 

data authority to the owner. 

4.2 Blockchain for Predictive Maintenance 

Blockchain as decentralized database ledger offers some benefits 

to the collaborative environment. This includes transparency, 

consistency, decentralization, traceability (auditability), and 

ownership [8]. IDS is a model architecture but does not provide 

any implementation details. Blockchain, being immutable 

database, has the potential to provide the implementation as 

transparent and traceable data storage. Blockchain offers greater 

control of data including originality, usage, enabling traceability 

with transparency and consequently enhance collaborations as 

well as trust.  Predictive models based on machine learning 

requires ongoing retrain from new data, storing analytics models 

on blockchain can provide greater consistency due to temper-

proof. Moreover, the quality of data enhances decision making by 

providing better analysis results derived from consistent data. 

Furthermore, blockchain as a decentralized database provides data 

access efficiently and quickly thus, enhancing real time 

monitoring more effective. For example, real-time monitoring for 

accessing the status of high value machines or tracking the 

progress of production. 

4.3 Data Storing on Blockchain 

Collaboration is typically facilitated by message exchange among 

multiple partners in which data is passed through the whole cycle 

of the collaborative business process [47, 48, 49]. The potential of 

storing certain data exchange on blockchain can improve 

collaboration in traditional as well as digital, smart or virtual 

factories, supporting the nature of dynamic collaboration and 

business opportunities, and dealing with trust among participants 
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and traceability of process data [5, 9]. However, this requires the 

understanding of the nature of blockchain and the type of data to 

be stored in a business use case. 

Regarding blockchain data, it offers immutable data in a 

decentralized manner, enabling the tracing of originality and time-

stamped data [5, 9, 46]. However, it is critical to understand that 

data recorded on blockchain cannot be deleted, but permanently 

existed when recorded. It also means that blockchain data storage 

does not fully support the concept of CRUD (Create, Read, 

Update, Delete) but CRU. Thus, data required rules and 

compliance, i.e. data privacy, GDPR should be carefully managed 

(should not be stored) before implementation. This can apply to 

various use cases across industries. In addition, Blockchain is not 

optimized for performance and scalability, hence it lacks 

supporting IoT data, streaming unstructured data, big data [53]. 

Thus, the intended use case should be critically analyzed before 

implementing blockchain data storage. 

In the context of BPM data, it exists several forms including 

BP model specification, business data for the process logic, 

execution states including histories, correlations among BP 

instances, and resources and their states [7]. These data are often 

scattered across databases and auxiliary data sources managed by 

the BPM systems including files i.e. BP schemas [6]. In addition 

to the traditional message exchange or database sharing for 

collaborative business process, modern collaborations require 

diverse data from different sources through the increasing 

development of data sharing economy across industries as well as 

the nature of dynamic collaboration and data. This demands new 

methods and technology to manage collaborative data. 

Different domains have different types of data and some of the 

type of data can generally be grouped as follows [13, 16, 50]; 

 

1. Big data: very large and diverse datasets that include 

structured, unstructured data and semi-structured, from 

different sources in different volumes, that it is not 

impossible to handle by traditional databases and processes. 

2. Structured, unstructured data and semi-structured: structured 

data normally refers to data with a pre-defined model storing 

in a traditional relational database whereas unstructured data 

such as audio, video, does not have a pre-defined model and 

semi-structured data such as JSON data has a structured form 

with no conventional conformance.  

3. Time-stamped data: refers to a dataset that has a time 

ordering sequence of each data point i.e. the time of captured 

or collected.  

4. Historical data: refers to historical data generated from 

systems, applications, etc. 

5. Operational data: daily transaction data generated from 

business processes and systems. 

6. Identity data: refers to the data of an object which can be 

used to identify the object. 

7. Asset data: data that is “thing, item or entity that has actual 

or potential value” [51]. This data can cover several aspects 

of an organization, ranging from product data such as 

product design to machinery, etc. 

8. Environment data: data relates to weather, temperature 

(dynamic temporal) 

 

In the collaborative industrial context, data can accumulate 

from the following sources [2, 12, 13, 16, 50]: 

 

1. Machine operation data, data from the control system, 

vibration, rotating, etc. 

2. Condition data, such as the health condition or state of 

physical assets i.e. machine, equipment. 

3. Monitoring (event) data, data such as fault (breakdown), 

system status (overhaul), installation (config), repair, oil 

change, etc. 

4. Design data, data such as the product and machine design. 

5. Product data: quality data such as the defective rate of each 

facility and usage data such as availability, repair rate. 

6. Customer data, such as customer features, feedback data, 

suggestions. 

7. Staff operation data, such as manual operation, working 

process 

8. Cost data, such as cost of operations, tools, machines. 

9. Logistics data  

10. Environmental conditions, data such as weather, temperature, 

humidity, noises 

 

In data-driven collaborative industry like Industry 4.0, data 

from different sources like data sharing is essential to the effective 

management of maintenance activities. This includes sharing 

information on production and inventory levels among networked 

partner firms, as well as ever changing consumer demands [37, 

52]. Data which will provide value if stored on blockchain, may 

include data asset, machine data, time-stamped data, identity data. 

Keeping these data on blockchain enables data transparency, 

consistency as well as traceability, enhancing collaboration as 

well as analytics capabilities such as data consistency, real time 

monitoring. 

4.4 Use Case Data Constraints Driven 

The appropriate approach to deal with storing data on 

blockchain is using Use Case Data Constraints Driven approach. 

The steps include; 1) understand the use case for blockchain 2) 

identify blockchain data constraints 3) analyse and design 

blockchain data storage 4) implement and review. Initially, the 

use case with data constraints such as consistency, availability, 

immutability, privacy and protection, should be identified and 

evaluated. The analysis should include data value, data 

transparency and traceability to foster collaboration as well as 

value i.e. analytics, monetary. Based on the analysis, the type of 

data to be stored on blockchain should be recognized. 
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5 Predictive Maintenance Platform for the 

proposed application case 

The Predictive Maintenance Platform architecture for the 

proposed application case is presented in Figure 5. It is designed 

in the context of RAMI 4.0 implementing the FIWARE platform 

with IDS and Blockchain. The platform architecture shows the 

core interactions among the main components through the 

definition of end-to-end integration and communication processes. 

The platform architecture is composed of three layers: Application 

Layer, Process Layer and Interface and Data Layer.  

5.1 Application Layer 

The application layer includes Graphical User Interface (GUI) that 

provides user options for different items including Overview of 

the Interface, Stream Data Analytics, Batch Data Analytics, 

Decision Support Analytics, Assessment such as equipment 

condition and status and System Repository such as equipment 

failure, status, code, etc. In the context of RAMI 4.0, the 

application layer represents the business layer (Interfaces, 

visualization, real time monitoring) and functional layer (decision 

making, assessment, tracing, etc.). 

5.2 Process Layer 

The FIWARE framework implements the process layer, 

integrating different modules and functionalities required for the 

predictive maintenance in the aspect of the functional layer in 

Industry 4.0. The core analytics of the predictive maintenance 

platform is the Cosmos big data analysis Generic Enabler, 

enabling big data analytics including batch (Cygnus) and 

streaming data (Spark) [22, 23, 24]. The Cosmos module takes 

care of analytics processing incorporating with data from sensor, 

HDFS, Craft DB, the platform DB, legacy data systems and 

shared data on blockchain. For advanced capabilities, Quatumleap 

for efficient time-series analytics and Complex event processing 

for real-time analytics are implemented. The process layer focuses 

on the functional layer of RAMI 4.0, representing the formal 

description of functions enabling the platform for horizontal 

integration of various functions [20].  

5.3 Middleware and Data Layer 

The Middleware and Data layer represents the event broker, 

adapters and the related data sources and storages. As the core 

component of the predictive maintenance platform, FIWARE 

Orion Context Broker manages the life cycle of the whole context 

information, ranging from registrations, updates, subscriptions 

and queries via NGSI APIs [22]. In the context of RAMI 4.0, the 

Orion context broker and IoT gateway represent the 

communication layer, data such as historical data, policy data, 

data usage represent the information layer, the shared blockchain 

data, IoT backend and sensor represents the integration layer, and 

the production equipment represents the asset layer.  

 

 

Figure 5: A RAMI 4.0 View Predictive Maintenance Platform 

based on FIWARE 

5.4 Data Processing and Analytics 

5.4.1 Data Source. Data required for the predictive 

maintenance are generally described in the following; 

 

1. Production data: data such as product name, volume, product 

specification  

2. Defect data: historical data about events occurred regarding 

fault or breakdown to the asset including the type of fault or 

breakdown, reason, time stamped  

3. Maintenance/repair data: historical maintenance data of the 

assets including replacement, executed tasks 

4. Machine data: historical operational data of the assets 

including status of the machine, state information such as the 

machine critical parameter name, parameter value, parameter 

value specification, up time, down time, alert indicator such 

as oil low 

5. Asset manufacturer data: such as measurements, controls 

data (base data) from the manufacturer of the asset, storing 

on IDS blockchain [45]. 

 

The focus of predictive modelling in the case is the equipment 

condition based on equipment sensor data, manufacturer machine 

data from IDS blockchain data, historical machine conditioning 

data, fault., etc. The predictive maintenance is differentiated into 

two aspects: real-time analytics (alert and monitoring) and off-line 

predictive analysis. 
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5.4.2 Real-time Processing and Analytics. Real-time analytics 

concerns with real-time monitoring and notification. In this 

aspect, the underlying machines, devices and factories are 

considered as the maintenance items. As prerequisites, the item 

requiring maintenance for the alert indicator and key state 

information are derived from the characteristics of each item for 

the maintenance. During factory operation, real-time state data 

collected from the underlying machine is processed by comparing 

the key state of each maintenance item including the threshold. In 

this way, the process triggers the alert indicator if the threshold is 

met. The threshold of the item is based on a combination of events 

including geometric errors based on [19, 54]. The state and 

threshold of the equipment item represent a policy which is stored 

in the database. The policy can be triggered by an event from 

context broker or IDS connectors. The overall design architecture 

is presented in Figure 6. 

In the real-time processing, the Nitem represents the total 

number of items to be maintained. Real-time data collected from 

the underlying derives the state of Nitem, representing the data 

value of the state information of each equipment item. The state 

threshold Nthreshold represents the threshold of each item’s state 

value. The alert [Nitem] indicates the alert indicator (normal, 

abnormal) for each item. When the threshold is above the state 

threshold or the alert indicator is abnormal, the alert will trigger to 

the qualified available maintenance equipment to perform the 

executable maintenance task. Upon the completion of the 

maintenance task, the corresponding item of alert [Nitem] is set to 

normal. If the maintenance task cannot solve the problem, the 

qualified available maintenance operator will be required, and the 

corresponding item of alert [Nitem] will then also be set to normal. 

5.4.3 Predictive Analysis (off-line). The predictive analysis off-

line is based on the data-driven approach and predictive models 

which derived from historical data. Predictive analytics apply 

machine-learning algorithms to produce data-driven models of the 

asset. Predictive models utilize available variables and conditions 

that contributed to past events such as failures in order to predict 

future events (failures). New data are run through the model and 

the scores are generated on a real time basis. Predictive analytics 

encompasses a variety of techniques from statistics, modeling, 

machine learning, and data mining that analyze current and 

historical data to predict future events. 

For a flexible and modular manufacturing system, the 

maintenance items usually need to be compatible with different 

processing components and different processing parameters. The 

traditional maintenance approach is typically manual, and the 

estimation of equipment life is usually based on production 

experience to decide when maintenance is required, or else wait 

for a failure alert of the components. This is expensive as well as 

tends to lead to a suspension in production, causing production 

cost. The remaining effective working time of the current 

equipment is predicted by combining its working status and 

historical information. Therefore, prediction algorithm can 

enhance the prediction accuracy for maintenance and production 

activities. 

 

Figure 6: A RAMI 4.0 View Monitoring and Tracing 

Analytics based on FIWARE 

The processing cycle typically involves four phases of 

processing: 

 

1. Identifying phase: Identify the use case scenario 

2. Modeling phase: Learn a model from training data 

3. Predicting phase: Deploy the model to production and use 

that to predict the unknown or future outcome 

4. Re-tuning phase: Review (repeat phase 2 – 3) based on new 

data and knowledge 

 

Typically, predictive models used would be derived from 

machine learning algorithms such as Neural Networks, Decision 

Trees or Regression Analysis to arrive at conclusions [14, 15, 17, 

18, 44, 55, 56, 57, 58, 59). For instance, SVM is a supervised 

learning method that can be used for classification and regression 

analysis [56]. In the binary classification, each sample is a record 

that belongs to the unit of time for an asset. In the context of 

regression, the aim is to find a model that calculates for example, 

the remaining useful life of each new sample as a continuous 

number [57]. It generally involves a training phase that requires 

machine condition (health) indicators with the corresponding label 

or equipment condition such as good, bad, fault [56, 57]. 

With the recent development of big data and cloud computing, 

neural networks have been widely used in machine learning 

models [57, 58, 59]. Neural network searches for patterns and 

interactions between features to automatically generate a best-fit 

model without a need for predefining features in the model [60]. 

In addition to predicting machine condition, neural network can 

also produce multiple classifiers, enabling optimizations such as 

optimal machine execution for a specific production, etc. The 

accuracy of trained models will determine the model to be 

deployed in production [14, 15, 18] and subsequently is stored in 

blockchain. The tracing aspect focuses on the ability to query a 

certain process data by a collaborative partner, enhancing 

transparent collaboration. In this aspect, process related data can 

be traced from blockchain data storage as well as other sources. 

Tracing can be described by the process instance (Processinst) with 
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related policies (Policy) and logs: T (Processdata) = {Processinst, 

Policy, Log}. 

6 Discussion 

Industry collaborations in complex and dynamic manufacturing 

environment requires a concrete, extensible architecture and 

platform. Designing predictive maintenance architecture in the 

context of RAMI 4.0 with FIWARE framework requires the 

understanding of the industry operations, partners, communication 

and the underlying technologies. The complex interactions of 

industry partners and systems involve a variety of different range 

of applications and systems requiring different interaction 

schemes and mechanisms. The complexity of the industry can be 

simplified by the instantiation of RAMI 4.0 as shown in Figure 5. 

This enables better understanding about the interaction of 

complex processes and components with a high-level view. The 

instantiation of FIWARE components further provides a 

consistent Industry 4.0 manufacturing platform, enabling the 

integration and interoperability of the maintenance process with 

other operations, processes, technologies of the manufacturing 

environment in compliance with the Industry 4.0 standards. The 

open modular architecture of FIWARE enables the ease 

integration of different components as pluggable elements. On the 

other hand, FIWARE implementation is based on event driven 

approach which can pose challenges such as increased complexity, 

security risks. 

The big data analysis enabled component of FIWARE in 

conjunction with both real-time and batch processing enables in 

dealing with big data collected from sensors as well as providing 

real-time monitoring based on the asset key state and threshold as 

presented in Figure 6. Implementing predictive models trained 

from different data sources such as historical operational and 

machine data as well as shared data such as manufacturer data via 

blockchain will provide better management of the condition and 

process of expensive manufacturing equipments and optimization 

of the whole production chain. 

Collaboration with transparency and traceability is essential to 

the whole production chain in a complex and competitive industry 

like manufacturing. Thus, implementing the IDS connector as 

well as blockchain storage for data sharing with platform 

increases transparent collaboration. Asset manufacturing base data 

such as measurement, control data is considered as shared 

blockchain data and the implementation of the IDS connector 

deals with access policy and usage. The tracing enables querying 

the policies and usage of the shared data to the collaborative users, 

enabling transparent collaboration as well as future 

monetarization. However, data privacy and protection such as 

GDPR must be critically examined for any implementation. 

7 Conclusion and Future Work 

Flexible and consistent architecture platform is essential to 

modern industry collaborations like complex and dynamic 

manufacturing domain in order to effectively operate and manage 

the whole cycle of the production chain. In this paper, we 

proposed a Predictive Maintenance Platform designed with RAMI 

4.0, providing a consistent view of the Industry 4.0 with different 

components and processes as shown in Figure 5. The instantiation 

of the FIWARE framework provides a modular open framework 

for the implementation of RAMI 4.0. Predictive maintenance 

capabilities provide effective ways to manage the conditions of 

equipment as well as optimizations of processes utilizing big data 

and machine leaning model enabled analytics. Collaborative 

business process requires maintaining transparency and traceable 

process data. Shared data storing on blockchain and accessed via 

IDS connector offer to be key enabler of transparency and 

traceability in complex and competitive collaborations.  

In this paper, we focus on the design and instantiation of 

RAMI 4.0 and FIWARE framework, and we plan to do the 

implementation and evaluation of the design platform including 

real-time processing, predictive models, with the described 

application case as well as additional use cases across industries. 
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