1,440 research outputs found

    Biometric identity-based cryptography for e-Government environment

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Modelling and simulation of a biometric identity-based cryptography

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    SIGNCRYPTION ANALYZE

    Get PDF
    The aim of this paper is to provide an overview for the research that has been done so far in signcryption area. The paper also presents the extensions for the signcryption scheme and discusses the security in signcryption. The main contribution to this paper represents the implementation of the signcryption algorithm with the examples provided.ElGamal, elliptic curves, encryption, identity-based, proxy-signcryption, public key, ring-signcryption, RSA, signcryption

    Proxy Blind Signature using Hyperelliptic Curve Cryptography

    Get PDF
    Blind signature is the concept to ensure anonymity of e-coins. Untracebility and unlinkability are two main properties of real coins and should also be mimicked electronically. A user has to fulll above two properties of blind signature for permission to spend an e-coin. During the last few years, asymmetric cryptosystems based on curve based cryptographiy have become very popular, especially for embedded applications. Elliptic curves(EC) are a special case of hyperelliptic curves (HEC). HEC operand size is only a fraction of the EC operand size. HEC cryptography needs a group order of size at least 2160. In particular, for a curve of genus two eld Fq with p 280 is needeed. Therefore, the eld arithmetic has to be performed using 80-bit long operands. Which is much better than the RSA using 1024 bit key length. The hyperelliptic curve is best suited for the resource constraint environments. It uses lesser key and provides more secure transmisstion of data

    Identity-Based Cryptosystem Based on Tate Pairing

    Get PDF
    Tate Pairings on Elliptic curve Cryptography are important because they can be used to build efficient Identity-Based Cryptosystems, as well as their implementation essentially determines the efficiency of cryptosystems. In this work, we propose an identity-based encryption based on Tate Pairing on an elliptic curve. The scheme was chosen cipher text security in the random oracle model assuming a variant of computational problem Diff Hellman. This paper provides precise definitions to encryption schemes based on identity, it studies the construction of the underlying ground field, their extension to enhance the finite field arithmetic and presents a technique to accelerate the time feeding in Tate pairing algorithm

    Algorithms and cryptographic protocols using elliptic curves

    Get PDF
    En els darrers anys, la criptografia amb corbes el.líptiques ha adquirit una importància creixent, fins a arribar a formar part en la actualitat de diferents estàndards industrials. Tot i que s'han dissenyat variants amb corbes el.líptiques de criptosistemes clàssics, com el RSA, el seu màxim interès rau en la seva aplicació en criptosistemes basats en el Problema del Logaritme Discret, com els de tipus ElGamal. En aquest cas, els criptosistemes el.líptics garanteixen la mateixa seguretat que els construïts sobre el grup multiplicatiu d'un cos finit primer, però amb longituds de clau molt menor. Mostrarem, doncs, les bones propietats d'aquests criptosistemes, així com els requeriments bàsics per a que una corba sigui criptogràficament útil, estretament relacionat amb la seva cardinalitat. Revisarem alguns mètodes que permetin descartar corbes no criptogràficament útils, així com altres que permetin obtenir corbes bones a partir d'una de donada. Finalment, descriurem algunes aplicacions, com són el seu ús en Targes Intel.ligents i sistemes RFID, per concloure amb alguns avenços recents en aquest camp.The relevance of elliptic curve cryptography has grown in recent years, and today represents a cornerstone in many industrial standards. Although elliptic curve variants of classical cryptosystems such as RSA exist, the full potential of elliptic curve cryptography is displayed in cryptosystems based on the Discrete Logarithm Problem, such as ElGamal. For these, elliptic curve cryptosystems guarantee the same security levels as their finite field analogues, with the additional advantage of using significantly smaller key sizes. In this report we show the positive properties of elliptic curve cryptosystems, and the requirements a curve must meet to be useful in this context, closely related to the number of points. We survey methods to discard cryptographically uninteresting curves as well as methods to obtain other useful curves from a given one. We then describe some real world applications such as Smart Cards and RFID systems and conclude with a snapshot of recent developments in the field

    Identity-Based Cryptosystem Based on Tate Pairing

    Get PDF
    Tate Pairings on Elliptic curve Cryptography are important because they can be used to build efficient Identity-Based Cryptosystems as well as their implementation essentially determines the efficiency of cryptosystems In this work we propose an identity-based encryption based on Tate Pairing on an elliptic curve The scheme was chosen ciphertext security in the random oracle model assuming a variant of computational problem Diffie-Hellman This paper provides precise definitions to encryption schemes based on identity it studies the construction of the underlying ground field their extension to enhance the finite field arithmetic and presents a technique to accelerate the time feeding in Tate pairing algorith
    corecore