16 research outputs found

    Scalable and Safe Multi-Agent Motion Planning with Nonlinear Dynamics and Bounded Disturbances

    Full text link
    We present a scalable and effective multi-agent safe motion planner that enables a group of agents to move to their desired locations while avoiding collisions with obstacles and other agents, with the presence of rich obstacles, high-dimensional, nonlinear, nonholonomic dynamics, actuation limits, and disturbances. We address this problem by finding a piecewise linear path for each agent such that the actual trajectories following these paths are guaranteed to satisfy the reach-and-avoid requirement. We show that the spatial tracking error of the actual trajectories of the controlled agents can be pre-computed for any qualified path that considers the minimum duration of each path segment due to actuation limits. Using these bounds, we find a collision-free path for each agent by solving Mixed Integer-Linear Programs and coordinate agents by using the priority-based search. We demonstrate our method by benchmarking in 2D and 3D scenarios with ground vehicles and quadrotors, respectively, and show improvements over the solving time and the solution quality compared to two state-of-the-art multi-agent motion planners.Comment: Accepted at AAAI2021. 9 pages, 5 figures, 1 tabl

    Simplified Continuous High Dimensional Belief Space Planning with Adaptive Probabilistic Belief-dependent Constraints

    Full text link
    Online decision making under uncertainty in partially observable domains, also known as Belief Space Planning, is a fundamental problem in robotics and Artificial Intelligence. Due to an abundance of plausible future unravelings, calculating an optimal course of action inflicts an enormous computational burden on the agent. Moreover, in many scenarios, e.g., information gathering, it is required to introduce a belief-dependent constraint. Prompted by this demand, in this paper, we consider a recently introduced probabilistic belief-dependent constrained POMDP. We present a technique to adaptively accept or discard a candidate action sequence with respect to a probabilistic belief-dependent constraint, before expanding a complete set of future observations samples and without any loss in accuracy. Moreover, using our proposed framework, we contribute an adaptive method to find a maximal feasible return (e.g., information gain) in terms of Value at Risk for the candidate action sequence with substantial acceleration. On top of that, we introduce an adaptive simplification technique for a probabilistically constrained setting. Such an approach provably returns an identical-quality solution while dramatically accelerating online decision making. Our universal framework applies to any belief-dependent constrained continuous POMDP with parametric beliefs, as well as nonparametric beliefs represented by particles. In the context of an information-theoretic constraint, our presented framework stochastically quantifies if a cumulative information gain along the planning horizon is sufficiently significant (e.g. for, information gathering, active SLAM). We apply our method to active SLAM, a highly challenging problem of high dimensional Belief Space Planning. Extensive realistic simulations corroborate the superiority of our proposed ideas

    Adaptive search techniques in AI planning and heuristic search

    Get PDF
    State-space search is a common approach to solve problems appearing in artificial intelligence and other subfields of computer science. In such problems, an agent must find a sequence of actions leading from an initial state to a goal state. However, the state spaces of practical applications are often too large to explore exhaustively. Hence, heuristic functions that estimate the distance to a goal state (such as straight-line distance for navigation tasks) are used to guide the search more effectively. Heuristic search is typically viewed as a static process. The heuristic function is assumed to be unchanged throughout the search, and its resulting values are directly used for guidance without applying any further reasoning to them. Yet critical aspects of the task may only be discovered during the search, e.g., regions of the state space where the heuristic does not yield reliable values. Our work here aims to make this process more dynamic, allowing the search to adapt to such observations. One form of adaptation that we consider is online refinement of the heuristic function. We design search algorithms that detect weaknesses in the heuristic, and address them with targeted refinement operations. If the heuristic converges to perfect estimates, this results in a secondary method of progress, causing search algorithms that are otherwise incomplete to eventually find a solution. We also consider settings that inherently require adaptation: In online replanning, a plan that is being executed must be amended for changes in the environment. Similarly, in real-time search, an agent must act under strict time constraints with limited information. The search algorithms we introduce in this work share a common pattern of online adaptation, allowing them to effectively react to challenges encountered during the search. We evaluate our contributions on a wide range of standard benchmarks. Our results show that the flexibility of these algorithms makes them more robust than traditional approaches, and they often yield substantial improvements over current state-of-the-art planners.Die Zustandsraumsuche ist ein oft verwendeter Ansatz um verschiedene Probleme zu lösen, die in der Künstlichen Intelligenz und anderen Bereichen der Informatik auftreten. Dabei muss ein Akteur eine Folge von Aktionen finden, die einen Pfad von einem Startzustand zu einem Zielzustand bilden. Die Zustandsräume von praktischen Anwendungen sind häufig zu groß um sie vollständig zu durchsuchen. Aus diesem Grund leitet man die Suche mit Heuristiken, die die Distanz zu einem Zielzustand abschätzen; zum Beispiel lässt sich die Luftliniendistanz als Heuristik für Navigationsprobleme einsetzen. Heuristische Suche wird typischerweise als statischer Prozess angesehen. Man nimmt an, dass die Heuristik während der Suche eine unveränderte Funktion ist, und die resultierenden Werte werden direkt zur Leitung der Suche benutzt ohne weitere Logik darauf anzuwenden. Jedoch könnten kritische Aspekte des Problems erst im Laufe der Suche erkannt werden, wie zum Beispiel Bereiche des Zustandsraums in denen die Heuristik keine verlässlichen Abschätzungen liefert. In dieser Arbeit wird der Suchprozess dynamischer gestaltet und der Suche ermöglicht sich solchen Beobachtungen anzupassen. Eine Art dieser Anpassung ist die Onlineverbesserung der Heuristik. Es werden Suchalgorithmen entwickelt, die Schwächen in der Heuristik erkennen und mit gezielten Verbesserungsoperationen beheben. Wenn die Heuristik zu perfekten Werten konvergiert ergibt sich daraus eine zusätzliche Form von Fortschritt, wodurch auch Suchalgorithmen, die sonst unvollständig sind, garantiert irgendwann eine Lösung finden werden. Es werden auch Szenarien betrachtet, die schon von sich aus Anpassung erfordern: In der Onlineumplanung muss ein Plan, der gerade ausgeführt wird, auf Änderungen in der Umgebung angepasst werden. Ähnlich dazu muss sich ein Akteur in der Echtzeitsuche unter strengen Zeitauflagen und mit eingeschränkten Informationen bewegen. Die Suchalgorithmen, die in dieser Arbeit eingeführt werden, folgen einem gemeinsamen Muster von Onlineanpassung, was ihnen ermöglicht effektiv auf Herausforderungen zu reagieren die im Verlauf der Suche aufkommen. Diese Ansätze werden auf einer breiten Reihe von Benchmarks ausgewertet. Die Ergebnisse zeigen, dass die Flexibilität dieser Algorithmen zu erhöhter Zuverlässigkeit im Vergleich zu traditionellen Ansätzen führt, und es werden oft deutliche Verbesserungen gegenüber modernen Planungssystemen erzielt.DFG grant 389792660 as part of TRR 248 – CPEC (see https://perspicuous-computing.science), and DFG grant HO 2169/5-1, "Critically Constrained Planning via Partial Delete Relaxation

    SAT Competition 2020

    Get PDF
    The SAT Competitions constitute a well-established series of yearly open international algorithm implementation competitions, focusing on the Boolean satisfiability (or propositional satisfiability, SAT) problem. In this article, we provide a detailed account on the 2020 instantiation of the SAT Competition, including the new competition tracks and benchmark selection procedures, overview of solving strategies implemented in top-performing solvers, and a detailed analysis of the empirical data obtained from running the competition

    SAT Competition 2020

    Get PDF
    The SAT Competitions constitute a well-established series of yearly open international algorithm implementation competitions, focusing on the Boolean satisfiability (or propositional satisfiability, SAT) problem. In this article, we provide a detailed account on the 2020 instantiation of the SAT Competition, including the new competition tracks and benchmark selection procedures, overview of solving strategies implemented in top-performing solvers, and a detailed analysis of the empirical data obtained from running the competition. (C) 2021 The Authors. Published by Elsevier B.V.Peer reviewe
    corecore